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Abstract 

Investigation for spatial continuity in tree diameter distribution is attempted. 

Parametric and non-parametric approaches are employed to see whether tree diameter 

distribution acts as regionalized variable or not. Tree diameter at breast height (dbh) 

with size five ems or greater is recorded in circular plot along with the relative geo­

referenced co-ordinates of the plot center at compartment level. For the parametric 

approach, truncated two parameter Weibull distribution is found best fit for plot data 

and that an overlook of truncated data may result in wrong inference. From the 

truncated Weibull distribution, the maximum likelihood scale and shape parameter 

estimates of each plot data is obtained. Consequently, both parameter estimates, as 

attributes of tree dbh distribution, are subjected to spatial variation study usmg 

omnidirectional semivariogram and associated models at compartment level. 

Computation of cumulative distribution function of dbh at selected cutoff ( cdf) in the 

plots is followed by investigation for spatial continuity in the non-parametric case . The 

spatial continuity study of the number of stems per hectare greater or equal to the 

selected cutoff is also considered. 

The variograms and cross validation study of the Weibull parameter estimates ,  cdf and 

number of stems as attributes of tree dbh distribution seem to be very indicative to 

suggest that tree diameter distribution exhibits spatial continuity in the same fashion to 

regionalized variable. 

Key words : Spatial continuity; Geostatistics; Regionalized variable; Truncated 

distribution function; Variogram; Kriging;  Cross validation. 
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1 .  Introduction 

In natural resources , including forestry, estimation and mapping remam to be an 

integral part of management, planning and research. Estimation and mapping require 

data acquired through a survey of the resources . For reasons of cost, time, and 

practicality total survey of resources is rarely possible. Accordingly, an appropriate 

sampling design is necessary. However, there is a widely reported precaution that 

classical statistical methods have overlooked the spatial characteristics of properties in 

sampling and subsequent analysis(Matheron, 1 963 ; Cressie, 1 993 ;  Isaaks and 

Srivastava, 1 989;  Biondi et al . ,  1 994; Rossi, 1 99 1 ;  Kohl and Gertner, 1 997) . 

Matern ( 1 960) reported problems related to spatial variation in sampling, especially in 

forest survey and designs of field experiments . He warrants to have a good knowledge 

of spatial variation in regions where sample survey or field experiments are to be 

carried out. Analysis of forest structure and dynamics that include information on 

spatial variation are bound to give a more accurate description of reality (Biondi et al . ,  

1994) . Holmgren and Thuresson ( 1 996) suggested allocation of treatment units on the 

grounds of spatially continuos description of the forest which they termed as "dynamic 

treatment units" . They attempted to justify that dynamic treatment units improve the 

economic output of forest management. Hof et al. ( 1 996) investigated the implications 

of the spatially autocorrelated forest yield in relation to harvesting cost optimization. 

The study lead them to general conclusion that consideration of spatial dependency in 

forest ecosystem management may be quite important in managing risk and 

uncertainty. Biondi et al . ( 1994) noted the importance of spatial knowledge to define 

homogeneous unit areas of forest ecosystems with respect to a given variable or set of 

variables which in turn lies a ground to design optimal sampling schemes, apply 

efficient silvicultural treatments and reduce management costs . 

It is, therefore, of paramount importance to study the spatial variation of forest 

attributes and to take account this spatial features in all subsequent silvicultural and 

management decisions. 
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The attempt of this study is to investigate spatial continuity of tree diameter 

distribution and thereby the possibility to estimate the diameter distribution on the basis 

of spatial continuity functions . In general, there are two approaches that may exploit 

the spatial continuity models so that kriging method can be used to estimate the 

distribution of an assumed property (Isaaks and Srivastava, 1989) . These are 

parametric and non pararneteric approaches .  The parametric method requires 

distribution function (e .g the family of two parameter weibull distribution) that is 

assumed to fully describe the distribution of the tree diameters (property under study) . 

Then the spatial continuity function will be constructed on the basis of the parameters 

estimated from the assumed distribution function of the plots . Consequently, it makes 

possible to use kriging method to estimate parameters of the expected diameter 

distribution function. 

The non-parametric approach requires no distribution function assumption. Rather, it is 

based on spatial continuity models of diameter size proportion below or above certain 

thresholds or cutoffs . To describe the diameter distribution in this way require to 

construct variograrn models at several cutoffs of the diameter distribution. It is 

similarly possible to speak of spatial continuity models for proportions between certain 

cutoffs or class interval. The former method in this approach leads to cumulative 

distribution and the latter to frequency distribution estimation where one can be 

obtained from the other. 

This work is, therefore, limited to : 

1 )  investigate a distribution function that well describes the diameter 

distribution on plot level of the forest under consideration, 

2) investigate spatial continuity of the parameters estimated from the 

selected distribution function in(l) , 

3) examine spatial continuity of the proportion of diameter size and 

number of sterns per hectare at selected cutoff, and 

4) carry out cross validation study of the fitted models .  
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2. Geostatistical theory 

According to Matheron(l963) Geostatistics is " . . .  concerned with the study of the 

distribution in space of useful values for mining engineers and geologists . . .  " .  This 

signifies Geostatistics is an applied statistics that originates and develops from mining 

industry. Through time, Geostatistics has proven to be applicable in many fields and it 

is now neither limited to geology nor becomes the only concern of mining engineers. 

Isaaks and Srivastava ( 1989) defines Geostatistics as a method for describing the 

spatial continuity that is an essential feature of many natural phenomena. In general, 

Geostatistics is a package of statistical tool that comes to be a widely accepted for 

understanding, describing and ultimately estimating values of observations in space. 

Thus, the concern of this applied statistics is to take account the space characteristic 

(spatial variation ) of the observations which was thought to be overlooked in classical 

statistics .  Such observations viewed in the totality of their set-up (location) defined by 

Matheron ( 1 963) as regionalized variables, simply to stress the spatial aspect of the 

phenomena. 

In its simplicity form, Geostatistical tools assume that neighbouring values (samples) 

are not independent to each other. Rather, in general terms, closer samples posses 

similarity and this similarity diminishes with distance to a level called discontinuity or 

nugget effect in Geostatistical terms . The tools of Geostatistics describe and model this 

autocorrelation relation and then uses the model to estimate unvisted values closer to 

the samples . 

Matheron ( 1 963) summarized the general properties of the regionalized variable as 

following: 

a) It is localized moreover defined by its geometrical support(holder) , 

b) Its continuity as spatial variable ranges from steady continuity to 

discontinuity (nugget effect) , and 

c) There may exist preferential direction where the values do not vary 

significantly (anisotropy) .  
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The common functions of Geostatistics found worthy in describing the spatial 

continuity of regionalized variables include variogram (semi-variogram), correlogram 

and covariogram. V ariogram is the most common tool. The use of variogram is related 

to two stationary conditions which constitute the intrinsic hypothesis of regionalized 

variable theory (McBratney &Webster, 1 986; Oliver and Webster, 1 990) . These are : a 

constant local mean and stationary variance of the differences between values in places 

separated by a given distance and direction. To properly describe and model the spatial 

variation of the regionalized variables, it is therefore required that the intrinsic 

hypothesis holds true (McBratney & Webster, 1 986;  Kohl & Gertner, 1 997 ; Oliver & 

Webster, 1 990) . 

Classical variogram estimate is computed (Matheron, 1 963) as : 

1 N(h) 

1 (h) = L (Z(x;)- Z(x; + h))2 
2N(h) ; 

where N(h) is the number of pairs of values separated by h, lag , and Z( . )  is the value 

of interest at a given location. The estimates are expected to yield an increasing 

function with distance, h, since on average the further the two samples are the more 

they look different and consequently the variance of their difference increases. The 

sample variogram estimates are plotted against the distance h to examine directional 

and scale of dependency of the regionalized property. Moreover, this plotted function 

also serves as a basis to choose a model for the variogram. 

To avoid problems related to parameter estimation, a commonly known as positive 

definite (authorized ) functions are used to model the variogram estimates .  The basic 

variogram models can be conventionally divided into those that reach a plateau and 

those that do not. For the formulas of variogram models may be consulted to 

McBratney & Webster, 1 986; Isaaks and Srivastava, 1 989 and Cressie, 1 993 . 

The Spherical, Exponential and Gaussian models are often referred to as transitional 

models since they reach a plateau. The linear model is an example of the models that 

do not reach a plateau and referred to as non transitional model . The distance at which 

the variogram model reaches a plateau is called the range . The corresponding 

variogram to the range is called the sill. The Exponential and Gaussian models reach 
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the sill asymptotically. Consequently, their range is commonly defined as the distance 

at which the variogram value is 95% of the sill (Isaaks and Srivastava, 1 989) . 

The method of moments , maximum likelihood, and restricted maximum likelihood are 

common methods for estimating parameters of variogram models (Curriero and Lele, 

1 999) . Curriero and Lele also studied and recommended use of composite likelihood 

method. Even though, it is not without limitations, the moment method is the most 

popular for model fitting. Fitting variogram models using least squares approach 

including ordinary non-linear and weighted least squares are the common moment 

methods . Zimmerman and Zimmerman ( 1 99 1 )  compared different estimation methods 

and noted the importance of ordinary non-linear least squares (NLS) and weighted 

non-linear least squares .  Cressie ( 1 985) suggested weighted non-linear least squares 

(WLS) parameter estimator: 

i N(h(j)) { y (h�j:) - 1  }z 
j=1 y(h(;) ,<j>) 

where N(h(j)) pairs in lag j ,  K is number of lags, y(h(j)) value of empirical variogram 

at lag j and y ( h(j) ; <1>) is the known variogram model with the unknown , <1> , vector of 

parameters . 

Variogram summarizes the general form of variation, its magnitude and spatial scale. It 

is useful to compare variation of properties within a region and most importantly for 

optimal interpolation or kriging (Oliver and Webster, 1 990) . 

Kriging is best linear unbiased estimator that allows to estimate value of unvisited 

location using weighted linear combination of the local sample values with its desirable 

quality in minimizing the error variance (Isaaks and Srivastava , 1 989) . 

In the absence of a data set aside to validate the spatial predictor, a cross validation is a 

common approach (Ripley, 1 98 1 ;  Cressie, 1 993; Isaaks and Srivastava, 1 989 ;  

Mcbratney and Webster, 1 986) .  This cross  validation refers to  the deletion of each 

datum in tum and predicting it from the rest sample using the fitted model. For 
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A 

instance, delete a datum Z( s1 ) and predict it with Z(s1) from the variogram model 

fitted and the sample data Z excepting Z( s). This procedure is applied for all n 

elements of the sample data Z to produce the set of n predicted values , each 

associated with its mean squared prediction error a 
2 
(s1). 

The closeness of the estimates to the true value can be assessed in various ways. Isaaks 

and Srivastava ( 1 989) demonstrated some package of tools including a quantile -

quantile and scatter plot of the predicted versus the observed values .  Cressie ( 1 993) 

has demonstrated the use of the standardized prediction residuals for the purpose as 

shown in the following equations : 

[ 1 n 
]112 

n � {(zcs;)- Z(s;))! a(sj )} 
2 

steam and leaf plot of {CZ(s;)- Z(s; )) I a (sj ) : j = 1, ... , n} . 

( 1 )  

(2) 

(3) 

To feel a confident on the spatial prediction model and the mean squared prediction 

error, the mean in ( 1 )  and the root-mean-square in (2) should be approximately zero 

and one, respectively (Cressie, 1 993) . The histogram in (3) is used to detect outliers . 

Isaaks and Srivastava ( 1989) have also remarked that the statistics of the reduced 

residuals (3) from a cross validation study are commonly used as indications of how 

well the variogram model is performing in practice .  McBratney & Webster ( 1 986) 

have demonstrated the use of the standardized predicted residuals which is also 

commonly known as reduced residuals for choosing fitted models .  
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3. Geostatistical works in forestry 

According to Matem( 1960) report, use of spatial variation concept in forest work is 

dated back to 1 926. He noted Langsaeter ( 1 926) used the sernivariogram incidentally 

to express variation when dealing with systematic sampling in forest survey . 

Reports of Matem( 1960) also show that Matern ( 1 947) has carried out a spatial 

variation study using different variables from the National Forest survey of Sweden in 

which, among others, the spatial variation of volume trees was presented using 

correlograms. Matern( 1 960) examined the spatial continuity of coniferous seedlings 

observed in plots of 0.7m radius using covariance function. The material is collected 

from 196 plots lied out in an experimental field established by Swedish Forest Research 

Institute . Oliver and Webster ( 1 987) have shown spatial distribution of soil in Wyre 

Forest in England and demonstrated variogram model selections and kriging 

estimation. Using height growth of plantation of Dahrek (Melia azedarach Linn.) in an 

experimental area of about half hectare, Samara et al . (l989) dealt with variogram 

models and kriging estimation. Spatial variation study of soil property in secondary 

tropical dry forest observed in a 56m x 56m grid was studied and exhibited some 

spatial autocorrelation at a distance of 24m or less (Gonzalek and Zak, 1 994) . 

Gonzalek and Zak also carried out block kriging procedure to estimate unsampled 

locations .  Hock et al. ( 1 993) constructed linear model for the variograms of forest site 

index and satisfactorily used for kriging estimation. Biondi et al. ( 1 994) have used 

variogram models and kriged maps to study spatial dependence of stem diameter 

(DBH) , basal area (BA) , and 10  year periodic basal area increment(BAI) in an old 

growth permanent plot stand. They come to conclude that spatial dependence 

explained a large amount of stem size variability, a Gaussian model remarkably fits well 

the omnidirectional sample variograms for DBH and BA, variogram models for DBH 

and BA are consistent through time ( with or without ingrowth records) ,  and the range 

for the variograms was 30m. Biondi et al. also reported that spatial dependence of 

stem increment was smaller and decreased through time than that of stem size. Kohl 

and Gertner ( 1 997) attempted to describe the spatial distribution of forest damage,  

needle/leaf losses based on average needle/leaf loss of sample plots over 4km x 4km 

grid. They fitted exponential variogram models and applied block kriging for 
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estimation to demonstrate the potential of Geostatistical methods in forest inventory. 

Kuuluvainen et al .( 1996) investigated the spatial autocorrelation of tree size (DBH, 

and height) in managed and primeval forest in Finland over an area with size 50m x 

50m. They found clear spatial dependence in tree size up to inter tree distance of 

about 1 2  meters in managed forest and weak spatial continuity in the primeval forest. 

Using Spherical variogram model, Gunnarsson et al . ( 1 998) have applied kriging to 

some useful forest variables including volume, volume increment, and site index m 

stratified forest. 

The summary of the literature work indicates a growing concern to incorporate the 

spatial dependency of forest attributes to planning and management. However, as far 

as the knowledge of the author is concerned, no effort is made to study the spatial 

continuity of diameter distribution using the parametric or non-parametric approaches. 



9 
4. Materials and Methods 

4. 1 Materials 

The data is collected on August 1 998 from the forest owned by the County Board of 

Forestry in Viisterbotten, Sweden. The area is located at Biicksjon, 1 5  Kms north of 

Umea (latitude 63°50'N, longitude 20°30'E) .  The elevation of the area is on average 

1 OOm above sea level. The main data of interest consists of tree diameter at breast 

height with five or more ems size and relative gee-referenced co-ordinates of the 

center of each plot. Six compartments are considered for the study based on the map 

of the forest. Main plot locations are laid out on the map of each compartment with a 

grid square using systematic random sampling design. Additional short interval plots 

were also laid out from the main plots alternatively on the N, S ,  E and W directions. 

For details on sampling design description see Appendix 1 .  In the forest, circular plots 

with radius 1 0  meters are established for inventory using compass and measuring tape.  

Inventory was carried out using the Forest Management Planning Package (Jonsson et 

al . ,  1 993) .  The relative gee-referenced co-ordinates of each plot centre is also recorded 

using the map, distance and direction information. The main species in this mixed 

forest are Scots pine (Pinus sylvestris) and Norway spruce(Picea abies) with low 

presence of two broad leafed species: Birch(Betula spp.) and Aspen (Populus 

tremula) . The general features of the data is shown in Table 1 .  

Table 1 :  General features of the data 

a) Measured attributes 

Ave. G 

Comp. Area Number of Trees DGw m2/ Stl Tree Sps. (%) by stem 

No. (ha) plots /plot Cm ha ha Pine Spruce Broad sps 

17 7.3 39 25.1 26.30 32.37 800 23.25 75.38 1.37 

34 3.0 24 39.6 18.55 25.60 1262 64.84 29.88 5.28 

39 1.9 36 31.3 25.9 25.43 996 25.31 48.68 26.01 

41 1.4 16 36.7 17.65 19.70 1170 59.66 29.74 10.60 

43 10.1 38 47.4 16.9 23.93 1511 37.43 44.82 17.75 

45 2.9 22 37.0 14.8 15.35 1178 96.35 2.46 1.19 
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b) Less objective attributes 

Comp. Total age (years) Thinning Site quality index 

17 100 : fairly even No: last 15 years 19(spruce): with moderate variation 

34 60: even Partly: last 15 years 18(pine): almost no variation 

39 IOO:uneven No: last 15 years 20(spruce): heterogeneous stand, 

and partly swampy area 

41 60: fairly even Partly: some last 19(pine): almost no variation 

five years 

43 70:uneven No: last 15 years 16(spruce): moderate variation, 

heterogeneous stand 

45 50: even Partly: last 5 years 18(pine ): moderate variation 

4.2 Methods 

4.2 . 1 Parameter estimation for tree diameter distribution 

Knowledge of stand wise tree diameter distributions is central in the current aim of 

forestry to increase the vertical integration between forest management and the 

individual utilization of round wood. Use and value of trees depend highly on diameter. 

Accordingly, management plans or silvicultural operations are not only designed to 

initiate quality and volume production but also to maintain desirable diameter 

distribution. Diameter distribution is also important for growth and volume prediction. 

Besides, knowledge of diameter distribution facilitates a suitable sampling design for 

growmg stock estimation (Jayaraman and Rugrnini, 1 988) .  In general, diameter 

distribution gives a clear insight into the structure of the forest and is an important 

basis for economic decisions and may be used in planning, if actual distributions can be 

successfully predicted via mathematical distribution functions (Loetsch et al . ,  1 973) .  

Such role of  the tree diameter (breast height) distribution has initiated many 

researchers to model diameter distributions. 

Use of probability density function is the widely used method for describing tree 

diameter distributions. To date, many probability density functions are investigated 

for the propose. These include Gamma (Nelson, 1 964; Laar, 1 990 ; Schrender and 

Swank, 1 974; Swindel et al. ,  1 987), Log-normal (Bliss and Reinker, 1 964) , 

Normal(Schrender and Swank, 1 974) , Beta ( Loetsch, et al. ,  1 973 ; Burkhart and 
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Strub, 1974; Laar, 1990; Swindel et al . ,  1987; Jayaraman and Rugmini, 1988; Maltamo 

et al. ,  1995), Weibull (Bailey and Dell, 1973; Schrender and Swank, 1974; Laar, 

1990; Little, 1983; Magnussen, 1986; Kikki and Paivinen, 1986; Swindel et al . ,  1987; 

Ueno and Osawa, 1987; Jayaraman and Rugmini, 1988; Kilkki, et al . ,  1989; Holte, 

1993; Maltamo et al. ,  1995; Maltamo, 1997; Lindsay et al. ,  1996 ) , and Johnson' s  

system b (Holte, 1993; Zhou and Mctague, 1996). 

For the last two decades, particularly for even aged diameter distributions, the case in 

many studies, Weibull enjoyed the most popularity. In this study, the two-parameter 

Lognormal, and Weibull distribution are investigated and compared for modelling the 

tree diameter distribution under study in plot level. The fact that the sample is taken 

from the portion of the population with diameter at breast height (dbh) greater or 

equal to Scm, it is a left truncated data. Accordingly, since failure to account for 

truncation can lead to biased inference (Kalbfleish and Lawless, 1992) , the truncated 

candidate distributions are employed for parameter estimation. The performance of the 

fit of the distributions is compared with chi-square test of Goodness of fit. 

In general, the likelihood function for a random sample of n observations drawn from 

a left truncated random variable X at a point T is 

L ( ; x) = TI f(xi;) 
i=I 1 - F(T) 

( 4 )  

where Xi� T , f(xi;) is the probability density function (pdf) and F(T) is the 

cumulative distribution function (cdf) at the truncated point T. From (4), it is possible 

to form the likelihood functions of the distributions concerned and derive the 

parameter estimators using maximum likelihood method. 

4.2 . 1 . 1  Lognormal distribution 

The two parameter lognormal distribution can be defined as the distribution of a 

random variable X, whose logarithm is normally distributed. The probability density 

function of X is 

= 0, otherwise (5) 
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The lognormal distribution is generally identified as a heavily tailed distribution that is 

unlikely to be useful for small skewness, a <1 , (Cohen, 1 988) . 

The parameter estimation for the truncated lognormal distribution is commonly carried 

out by exploiting its relation to Normal distribution. If the random variable X has a 

lognormal distribution ( � , cr 2) ,  then Y = ln(X) has a normal distribution ( 1-1 , cr 2) .  

Consequently, to analyze the sample data from a lognormal distribution, it is only 

needed the logarithmic transformation of the data and to adopt applicable normal 

theory for the rest of analysis (or parameter estimation) . In this case, the 

transformation Yi = ln( x i) is made to the sample data and then a left truncated normal 

distribution is used for parameter estimation. 

From equation ( 4) the likelihood function for the transformed sample data (normally 

distributed) is 

L( fl ,cr 2 ; y) = (I- F@)-" ( <> -.fiitf" exp [-� (Y; -!1)2 / 2cr 2 ] (6) 

1; 
where F(�) = J <j>(t)dt , � = (T -!-1) I cr , T = truncation point and 

Using the common method for derivation of the maximum likelihood estimators , 

Cohen( 1 959) has derived the estimators from equation ( 6) as : 

cr 2 = s 2 + 8 ( y-T )2 , and 

�=y-8 (y-T) 

where 8 = e (�) = �(�) 

� Z( )-

(7) 

, Z(�) = 
<j>(�)

� 
and, s2 and y are sample variance 

1 - F( ) 

and mean, respectively. The same estimators can also be derived using moment method 

(see Cohen, 1 99 1 ) .  

A 

To compute the estimates from (7) manually a prior estimate of 8 is required from 

tables made for this purpose (see Cohen 1 959, Cohen 1 96 1 ,  Cohen 1 99 1 ) .  However in 

this study a Fortran program is written to carry out the parameter estimation by 

directly maximizing the loglikelihood function. 
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4.2. 1.2 Weibull distribution 

A probability density function (pdf) of the Weibull distribution may be derived from 

the standard exponential distribution with pdf 

(8) 

= 0 , otherwise. 

With Y = [: J � in (8) ,  the transformation method gives that the random variable 

X has a Weibull distribution with pdf 

f(x) = ! ( �) � - 1 exp(- [.!...] � ) ,  x ;:: 0, � > 0, () > 0 
() () 0 

= 0, otherwise. (9) 

Reparameterization of the scale parameter to a = () -!3 gives Weibull cumulative 

distribution function ( cdf), and pdf, respectively, 

F(x) = 1- exp(-a x� ), and ( 1 0) 

f(x) = a� x
�- 1 exp(-a x� ) ( 1 1 )  

where x ;:: 0 ,  � > 0 ,  a > 0 .  

Introducing a as a scale parameter provides easier derivation of the estimators . 

The corresponding cdf and pdf for the left truncated Weibull distribution (L TWD) at a 

point T are, respectively, 

F (x) = 1-exp [ - a (x �- T �) ] ( 1 2) 

f (x) = a � x � - 1 exp [ -a (x �- T �) ] , where x> T>O. ( 1 3) 

On the basis of that maximum likelihood estimation method will be used for parameter 

estimation, an effort is exerted below to show the derivation of the estimators . 

The likelihood function of LTWD( 1 3) gives 

i=l i=l 

The loglikelihood function of ( 14) can be written as 



L( a, � ;x) = n In( a � )+( � - 1) I ln(xi)-I a (xi� - T �) 
i=l i=l 

where xi > T, � >O, a > 0 .  ( 15) 

14 

Carrying out derivatives with respect to the scale and shape parameters in ( 15) and 

equating them to zero gives the following system of equations : 

dL I da = �-t (xi � - T � ) = 0 
a i=I 

� n 
From ( 16) a = "" � � . 

.-'.)
x; -T ) 

Substituting ( 1 8) into ( 1 5) and ( 17), yields 

( 16) 

( 17) 

( 1 8) 

L(�) = n(ln n -l)+nln� +(� -1 )  I ln xi -n ln (I (xi �- T �)) , and ( 1 9) 
i=l i=l 

n 

n 
nL (x;� ln(x; ) -T� lnT) 

!!:._ + L In xi - ; = 0 
� i=l i, cxi

�-T�) 
i 

� 

(20) 

The MLE � may be obtained by iteration of (20) or by finding the global maximizer 

of the one dimensional optimization of ( 1 9) .  The latter approach is used in this work 

using Fortran programming language. The optimization is one dimensional that 

maximizes L( �) ,  � E (a, b) , where O<a<b (Wingo, 1 989) . 

Wingo noted that locally convergent root finders such as Newton' s  method may 

require modifications to ensure computer floating point overflow does not occur when 

evaluation of X; � or T � is attempted. 

4.2 .2  Spatial continuity 

The effort of this work is to examme the spatial continuity of tree diameter 

distribution with both parameteric and non-parametric approaches .  Using the selected 

Weibull distribution, parameters are estimated for each plot. Consequently, 

investigation for spatial variation of the parameters is considered. Since the 
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parameters are expected to reflect the dbh distribution at each plot, such study is an 

attempt to investigate whether tree dbh distribution exhibits spatial continuity or not. 

Normally, in the non-parametric approach, several cutoffs of the cumulative 

distribution function of the diameter are required to construct spatial continuity 

functions that may describe the diameter distribution. However for a demonstration 

purpose single cutoff is selected by considering its economic importance and range of 

diameter distribution of the compartment. These cutoffs in em are 25 , 20, 25 , 20, 1 8 ,  

and 1 8  respectively in compartment 1 7 ,  34, 39,  4 1 ,  43 and 45 . Accordingly, the 

cumulative distribution function of the cutoff is computed from each plot in the 

compartment under consideration and used to study the spatial variation in tree 

diameter distribution by dealing with omnidirectional semivariograms and models 

therein. 

Both the non-linear least squares (NLS) and weighted least squares ,  Cressie( 1 985) 

(WLS) parameter estimation methods are used when model estimation is deemed 

necessary. However, in the cross validation study the parameters estimated by WLS is 

used for almost all Kriging estimation. 

To assess the fitted variogram models, the use of the standardized prediction residuals 

(SPR) is employed as defined in equations ( 1 )  and (2) . The stem and leaf plot of the 

SPR is also used to check outliers . A quantile-quantile plot and linear regression are 

also used to see the relation between the kriged and the observed values .  

All Geostatistical computations in this work are made on S+ Spatialstats version 3 . 3  

software statistical programme. 
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5. Results 

5. 1 Goodness of fit 

For the reasons stated in the methodology, truncated distributions are considered 

appropriate for fit of the diameter distribution under study. To further strength the 

argument, a comparison of fit of Weibull parameters estimated from truncated and 

untruncated distributions is made. To this end, materials of Compartment 45 are 

considered for demonstration. From compartment 45, the parameters of the truncated 

and untruncated Weibull distributions are estimated using maximum likelihood 

estimation method. The parameter estimates of the distributions and their 

corresponding computed and tabular values of X 2 as measure of fit is contained in 

Table 2. 

Table 2: Parameter estimates and X 2 values for truncated and untruncated Weibull 

distribution 

Data Trees Truncated Untruncated Table 

Comp ( N )  Scale Shape x2 Scale Shape x2 2 X .os.zo 

45 8 14 13. 1278 2.8585 26.7 13.6457 3.2582 69. 1 3 1.4 

The connected plots of the fit of these estimates are shown in Fig 1. The fit of the 

truncated estimates is very much better as observed from Fig 1. 
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Fig 1: Comparison of fit of truncated and untruncated Weibull distributions 
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It is also a good precaution t o  note that according to the chi-square( X 2 ) test at 5 %  

level of significance, the fit of the parameter estimates from the truncated distribution 

is accepted while the other not. Therefore, an attempt to overlook truncated data and 

to assume inference from untruncated (complete) distribution may end in wrong 

conclusion. 

Accordingly, on the basis of the aforementioned argument, the parameters of both left 

truncated Lognormal and Weibull distributions are estimated at each plot in a 

compartment with the methods demonstrated in section 4 .2 . 1 . 1  and 4 .2 . 1 .2 ,  

respectively . Comparison of Goodness of fit between the distributions is  made using 

X 2 test. The parameter estimates of each plot by compartment for both Lognormal 

and Weibull distributions with their corresponding X 2 as a measure of Goodness of fit 

is shown in Appendix 2 .  For the computation of the X 2 , classes ranging from 3-9 

depending on the number of trees in the plot and with about equal number of trees are 

formed. X 2 is not computed for plots with number of trees less than 1 5 .  With 

exception to compartment 39 with 7 plots and compartment 17  with one plot, all other 

plots have at least 1 5  trees .  See also Appendix 2 for the number of trees in each plot. 

Table 3 indicates acceptance or rejection of fit of the performance of the distributions 

at 5 %  level of significance. In general both are accepted for fitting the diameter 

distribution under study. 

Table 4 compares the Goodness of fit of the distributions. With exception to 

compartment 43 , the computed X 2 from Weibull fit is smaller in most plots of the 

other compartments as compared to Lognormal. Hence, on average the summary in 

Table 4 favours Weibull distribution as a better fit. Accordingly, the Weibull 

parameter estimates are used in the ensuing study of the spatial continuity . 



Table 3 :  Fit of plot data to Lognormal and Weibull as measured by X 2 at 5% 
significance level. 

Lognormal Weibull 
Number of plots Number of plots 

Comp. Accepted Rejected Others Accepted Rejected Others 
17  24 3 12  26 1 1 2  
34 24 24 
39 1 8  2 1 6  1 8  2 1 6  
4 1  1 5  1 1 5  1 
43 36  1 35 3 
45 22 22 

Others = Plots with trees less than 1 5  or plots with three classes , making degree of 
freedom (df) zero. 

Table 4: Comparison of the fit of the Lognormal and Weibull distributions for the 
plots in each compartment 

Comp. 
17  
34  
39 
41  
43 
45 

Number of plots show small X 2 

Lognormal Weibull 
1 0  (26 .3  %) 28 (73 .7%) 
6 (25%) 18 (75%) 
7 (26%) 20 (74%) 
7 (44%) 9 (56%) 
21 (55%) 17  (45%) 
8 (36%) 14  (64%) 

5.2 Parametric approach for describing spatial continuity of tree diameter 

distribution. 
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A study of semivariogram and corresponding models are carried out taking each scale 

and shape parameter estimate of the Weibull distribution at each plot as a diameter 

distribution attribute. The variogram models and /or variograms for scale and shape 

parameter estimates of the six compartments are displayed in Fig 2 and Fig 3 ,  

respectively. The parameter estimates of the models are given in Table 5 .  The 

variograms, in general, seem to show that both Weibull parameter estimates exhibit 
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spatial continuity which may connotes that diameter distribution also possesses spatial 

continuity in its nature. 

Kriging estimation for cross validation study is made in the compartments were 

variogram models are displayed. The variogram models estimated with WLS (Cressie, 

1985) is used for kriging. To obtain a diagnostic check for the fit of the variogram 

models presented, the standardized predicted residuals (SPR) are used. The stem and 

leaf plot of the SPR show no potential outliers (see appendix 3 ) .  The mean (M) and 

root-mean-square (RMS) of the SPR as defined in equations ( 1 )  and (2) are computed 

and presented in Table 6 .  The statistics M and RMS are approximately close to 0 and 

1 ,  respectively for all models .  This result may indicate fairness of the models and the 

kriging error but it can not be a proof. 

Fig 4 indicates the plots of the kriged estimates versus the Weibull parameter 

estimates .  The regression equation of the two variables with the adjusted r2, the kriged 

estimate as explanatory variable, is also presented under respective plots . The 

coefficient of correlation is significant at 5% level and in most compartments fairly 

high. A quantile-quantile(qq) plots of the kriged estimates versus the Weibull estimates 

are also displayed in Fig 5. The qq plots indicate the similarity of the distributions since 

the plots are clustered around the line x = y where distributions are said to be identical . 

Thus, the cross validation study seem to support that, in general, diameter distribution 

at compartment level is spatially dependent attribute or a regionalized variable in the 

terms of Geostatistics . 
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Table 5 :  Parameter estimates of the Variogram models (for Weibull estimates) 
displayed in Fig 2& 3 .  

NLS method WLS method 

Comp Variable Model Nugget Sill Range Nugget Sill 

17 Scale Exp 7 .745 83 .403 

34 Scale Gauss 1 .308 3 12 .4 1 1 735 .992 1 .205 20.999 

39 Scale Gauss 32.753 86 .532 59 .482 34.453 87 . 338  

34 shape Gauss 0 .2 1 8  7 .009 308 .769 

39 Shape Spher 0 .863 2 .6 1 6  90.398 1 . 306 2.239 

4 1  Shape Gauss 0.259 3 .924 77 .860 0 . 1 89 3 . 1 1 6  

45 Shape Spher 0. 1 99 1 . 1 69 1 1 5 .96 1 0 . 1 79 1 . 1 68 

* The blanks indicate that the program aborted to estimate the parameters. 

Table 6 : The mean (M) and root-mean-square (RMS) of the standardized predicted 
residuals 

Statistics of SPR 

Comp. Variable Model M RMS 

17  Scale Exp -0 .005 0 .97 1 

34 Scale Gauss 0 .0 140 1 .254 

39 Scale Gauss 0.007 0 .883 

34 shape Gauss -0 .0002 1 .059 

39 Shape Spher 0.006 0 .893 

41 Shape Gauss -0 .0 1 9  0.998 

45 Shape Spher -0 .03 1 0.997 

22 

Range 

855 .657 

1 77 .03 1 

62.9 1 6  

1 06 .238 

62.925 

1 09 .007 
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5 . 3  Nonmparametric approach for describing spatial continuity of tree diameter 

distribution. 

This non-parametric approach for studying spatial continuity of diameter distribution 

refers to the computation of cumulative distribution function ( cdf) at several cutoffs 

and investigation of spatial continuity functions for each cutoff. For most practical 

problems, this approach of describing spatial continuity of regionalized variables may 

require to determine few cutoffs that are of economic or any other interest. Then it 

will be of particular interest to study the continuity functions of these cutoffs . In light 

of this argument and range of distribution of the diameter in each compartment, a 

single cutoff is considered in this study to investigate spatial dependency in diameter 

distribution. The variogram model and/or variogram of the cdf of diameter at the 

selected cutoff in each compartment is shown in Fig 6 .  The functions and parameter 

estimates of the variogram models displayed in Fig 6 are contained in Table 7. The 

variograms of the considered cutoffs in all compartments indicate spatial dependency 

of the diameter distribution varying in scale and range from compartment to 

compartment. The models fitted to the variogram estimates also differ with 

compartment. 

As it was in the parametric case, the standardized predicted residuals (SPR) are used to 

carry out diagnostic check of the fitted models . The stem and leaf plots show no 

warranty to outliers (see appendix 3 ) .  The mean (M) and root-mean-square(RMS) of 

the SPR are computed as shown in Table 8 .  The evidence shows M and RMS are 

fairly close to 0 and 1 ,  respectively . 

The plots of the kriged cdf estimates versus the observed cdf of dbh with their 

corresponding regression functions are presented in Fig 7. Fig 8 shows the quantile­

quantile plot of the kriged versus the observed cdf at the selected cutoffs . In general 

speaking, the cross validation study seem to suggest the spatial dependency of 

diameter distribution which agrees to the conclusion obtained from the parametric 

approach study. 
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Table 7 :  Parameter estimates of the variogram models of cdf displayed in Fig 6 

cdf NLS method WLS method 

Comp. cutoff Models Nugget Sill Range Nugget Sill 

17 25 cm Exp 0.0 1 5  0. 1 10 328 .849 0.0 145 0 . 1 04 

39 25 cm Exp 0.006 0. 1 53 1 95 .442 0.0056 0. 1 3 8  

43 1 8  em Spher 0.002 0.008 1 1 8 . 305 0 .002 0 .008 

45 1 8 cm Spher 0.003 0.003 95 .062 0.003 0 .003 

Table 8: The statistics of the Standardized predicted residuals (SPR) from the models 
estimated by WLS as shown in Table 7 

cdf Statistics of SPR 

Comp. cutoff Models M RMS 

17 25 cm Exp 0.003 0 .954 

39 25 cm Exp -0.006 0.975 

43 1 8 cm Spher 0 .01 1 1 .032 

45 1 8  em Spher -0 .002 0.977 

Range 

294.4 1 8  

1 69.043 

1 33 . 607 

96 .703 
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5.4 Spatial continuity of number of stems per hectare 
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In this section an effort i s  made to investigate the spatial dependency of number of 

stems per hectare greater or equal to selected cutoff using isotropic semivariogram and 

corresponding model. The same cutoffs used for the cdf spatial continuity study (5 . 3 )  

are also used here. The variogram models and/or variograms of  the number of  stems 

per hectare greater or equal to selected cutoff in each compartment is presented in Fig 

9. The functions and parameter estimates of the variogram models displayed in Fig 9 is 

shown in Table 9 .  

The cross validation study followed by diagnostic check for the models using SPR is 

carried out. After the stem and leaf plot of the SPR is checked for outliers (see 

appendix 3) ,  the statistics of the SPR are computed as presented in Table 10 .  Table 1 0  

seem to show no evidence against the fitted models and their corresponding kriging 

errors since M and RMS are approximately 0 and 1 ,  respectively . 

Fig 1 0  shows plots of the kriged versus the observed number of stems per hectare 

greater or equal to the selected cutoff at each compartment. The corresponding 

regression function of the variables, the kriged values as explanatory variable, is also 

presented along with the adjusted r2• A quantile-quantile plot of the kriged versus the 

observed number of stems is displayed in Fig 1 1 . In general, the presented evidence 

seem to depict a considerable spatial dependency of the number of stems greater or 

equal to the selected cutoff (per hectare) in each compartment. 
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Table 9 :  Functions and parameter estimates of the variograrn models for number of 

sterns displayed in Fig 9 

sterns NLS method WLS method 

Cornp. cutoff Model Nugget Sill Range Nugget Sill 

17 25 ern Gauss 885 1 .275 19656.77 1 30 . 1 32 9025 .394 2 1 1 25 . 24 

39 25 ern Gauss 7632.553 28445 .59 142 .5 12  802 1 .378 40465 .02 

43 1 8  ern Spher 0 22500 86 .2 0 23286 .648 

45 18 ern Spher 278 1 .05 2726.53 88 .780 2800.394 2759 . 1 9  

Table 10 :  The statistics of SPR for the models estimated by WLS as shown in Table 9 .  

sterns Statistics of SPR 

Comp. cutoff Model M RMS 

17 25 cm Gauss -0 .007 0 .976 

39 25 cm Gauss 0 .003 0.95 1 

43 18 em Spher -0 .0 17  1 .027 

45 1 8 cm Spher -0 .00 1  0.934 

Range 

142 .67 1 5  

1 83 .2733 

89.7 

9 1 .48792 



Compartment 17  

% 
• 

� 
� � * � 

M 

� 
" 2 � 
" 
E 
* � 
1 [ 

100 150 200 250 300 

):'::okrlged stem numbers wUh dbh greater or equal to 25tm 

y = 10 . 333  + 0.954x , 
adjusted r2 = 0 .36  

Compartment 39 

� 
• 

! � 

� � � 
6 g • 
" 

t ;'! 
� " � I [ 

100 150 20il 250 300 

l<=kr!ged stem numbers with dbh greater or equal to 25cm 

y = 2 .490 + 0.990x 
adjusted r2 = 0 .58  

350 

Compartment 43 

� 
. 
" 

• [! 
ii � 
i . 

" � 
" 
E 
* 

i 
� 
• 

100 200 400 

lt=krlged stem numbers with dbh greater or equal to 18cm 

y = 19 .42 1 + 0.9 1 2x 
adjusted r2 = 0 .38  

Compartment 45 

� 
. 
� 
� 
• 
li 
: 
j -" 

I -
E 
* 
i � 
� 
[ 

80 100 140 

-=krlge d slem numbers with dbh greater or equal to 18cm 

y = -49 .80 + 1 .469x, 
adjusted r2 = 0.26 

Fig 10 :  Plots of the kriged vs the observed number of stems per hectare greater or 
equal to the selected diameter at breast height (dbh) 

33 

500 

160 



Compartment 17  
Compartment 45 

100 250 300 350 

Kliged stem numbers wllh dbh greater or equal to 25�m 

100 120 140 160 

Kflgedstem numbers wlth dbh greater or equal to 18cm 

Compartment 39 

50 100 150 200 250 300 350 

Krlged slemnumbers wilh dbh greate r or equal lo 25cM 

Compartment 43 

100 200 300 500 

Krlged stemnumbers wtlh dbh greater or equal to 18cm 

---- -----------------

Fig 1 1 : A quantile-quantile plots of the kriged vs the observed number of stems per 
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5.5. Practical aspect 

Kriging is unbiased and weighted linear combination estimation, where, in general, 

more weight is given to samples closer to the prediction location. Hence, variogram 

models used for kriging may seem very much promising when samples considered for 

kriging are very closer to the prediction location. But in practical inventory work, 

models may be imposed to estimate by kriging sample values located at a reasonably 

far away from the estimation location, say at least 25 meters . In such cases, it is of 

practical importance to investigate the performance of the models .  Accordingly, an 

effort is made to compare predictions obtained from the cross validation study and 

predictions made by kriging samples at least 25 meters distance away from estimation 

location. 

As it was the case in the predictions obtained by cross validation approach, the 

standardized predicted residuals (SPR) are used to assess the fitted models 

performance when the said restriction is put to the samples . Before the statistics of 

SPR is computed, the stem and leaf plot is checked for outliers (see Appendix 4) . The 

statistics of SPR is shown in Table 1 1 .  From Table 1 1 , it seems that variability of the 

estimates has increased as the RMS of most of the variables has exceeded one. 

Otherwise, it seems not apparent to count other indications against the fitted models 

(or predicted values) as far as the statistics of SPR is concerned since M and RMS are 

fairly close to 0 and 1 ,  respectively . 

The prediction obtained from cross validation (P1 ) and distance restriction imposed 

samples (P2) are compared by their sum of the squares of residuals (SSR) .  Table 1 2  

compares the SSR of the two prediction types . The column (P2/P1 - 1 )%  shows the 

increase of SSR in percent due to the distance restriction imposed on the samples .  In 

more than 50% of the variables in the study, the SSR increased by more than 50% due 

to the distance restriction put on samples used for kriging. Therefore, it seems that 

discrepancy increases to considerable amount when samples are 25 meters or more 

distance away from the prediction location in this study. 



Table 1 1 : The Statistics of SPR when kriging is made from observations at least 25 

meters away from the prediction location 

a) Weibull parameters 

Statistics of SPR 

Comp. Variable Model M RMS 

17  Scale Exp -0 .059 1 .0 1 5  

34 Scale Gauss 0 .0 1 56 1 .230 

39 Scale Gauss -0 .0 1 37 0.959 

34 shape Gauss 0 .006 1 .086 

39 Shape Spher -0 .024 0. 877 

4 1  Shape Gauss 0 .006 1 .082 

45 Shape Spher -0 .0 1 8  1 . 1 3 1  

b) Cumulative distribution function (cdf) of diameter 

cdf Statistics of SPR 

Comp. cutoff Models M RMS 

17 25 cm Exp 0.090 1 .0 1 0  

39 25 cm Exp -0 .0 1 2  0.92 1 

43 1 8  em Spher -0.035 1 .092 

45 1 8  em Spher 0 .007 1 . 1 98 

c) Stern per hectare greater or equal to the given cut-off. 

Sterns Statistics of SPR 

Cornp. cutoff Model M RMS 

17 25 em Gauss -0 .054 0.968 

39 25 ern Gauss 0 .0 14  0.996 

43 18 ern Spher 0 .036 1 .077 

45 1 8 cm Spher -0 .008 1 . 1 65 

36  
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Table 1 2: Comparison of the SSR when predictions are obtained from cross validation 

(P1 ) and distance restriction imposed samples (P2) 

Comp Variables/ SSR SSR ratio  (P2/P1 - 1 )% 

Wei b u l l  parameters ( P 1 )  (P2) (P2/P 1 )  

1 7  cdf cutoff = 25cm 1 .0082 1 4 1 .3202 1 1 1 .309455 30. 95 

39 cdf cutoff = 25cm 0.665583 1 .028282 1 .544934 54.49 

43 cdf cutoff = 1 8cm 0 .20868 0.335349 1 . 607001 60.70 

45 cdf cutoff = 1 8cm 0.098292 0. 1 71 486 1 .744659 74.47 

45 stem per  ha � 1 8cm 88220.24 1 59496 1 .80793 80.79 

43 stem per ha � 1 8cm 456779 .4 8957 1 8.4 1 . 960943 96.09 

39 stem per h a  � 25cm 300908 .4 35 1 089. 8  1 . 1 66766 1 6 .68 

1 7  stem per h a  � 25cm 421 200.9  4689 1 4.6  1 . 1 1 328 1 1 .33 

1 7  scale 466.4352 608.0634 1 .30364 30.36 

34 scale 62.91 642 73.88892 1 . 1 74398 1 7 .44 

39 scale 1 300. 957 2 1 1 0.377 1 . 622 1 73 62.22 

34 shape 7. 1 1 5028 7. 862628 1 . 1 05073 1 0. 5 1  

39 shape 60.78485 73.45505 1 .208443 20. 84 

41 shape 5 .73634 1 6 . 9231 2 2 .9501 6 1 95.02 

45 shape 1 5 . 1 9626 30.3278 1 1 . 995742 99.57 
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6. Discussion 

This work attempts to investigate the spatial continuity of tree diameter distribution 

using both parametric and non-parametric approaches at compartment level. For the 

parametric case, truncated two parameter Weibull distribution function is found better 

to describe the tree diameter distribution under study and that any effort to overlook 

truncated data may adversely influence conclusion. In forestry practice, it seems 

uncommon to use truncated distribution for parameter estimation, however it requires 

caution when samples are taken from a portion of the population, for instance, when 

lower diameter sizes are ignored in sampling design. The effect of such practice could 

be pronouncing in young stands and in natural forests where regeneration is a 

continuos process . 

The shape and scale parameters of the truncated Weibull function are estimated using 

maximum likelihood method at plot level. Consequently, both parameter estimates are 

subjected for spatial continuity study as attributes of tree dbh distribution using 

isotropic semivariogram and corresponding models .  In the non-parametric approach, 

the cumulative tree dbh distribution function (cdf) at a single cutoff for each plot in 

the compartment is computed and examined for spatial continuity. The spatial 

continuity study of number of stems per hectare greater or equal to the selected cutoff 

is also considered. As shown in Figures 2, 3 ,  6, and 9 ,  most of the variograms of 

Weibull parameter estimates, cdf and number of stems as attributes of tree dbh 

distribution seem to exhibit steady spatial continuity. Even though no apparent reason 

may be given at this point, the older stands seem to exhibit better and consistent spatial 

continuity in the variables considered. Since variograms depend on lag distance, the 

reported variograms are based on the lag distance that yields better spatial continuity . 

Accordingly, the lag distance that result in the reported variograms varies from one 

compartment to another which in tum may depends on the stand characteristics .  As 

regards to the non parametric approach, even though a single cutoff is considered , it is 

important to note that the variogram could vary with cutoffs . For estimation purpose, 

spatial functions of more cutoffs are required. 
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The parameters for the variogram models considered in this study are estimated using 

ordinary non-linear (NLS) and weighted least squares (WLS) ,  Cressie ( 1 985) methods . 

In most cases , particularly, when the variogram shows steady continuity, both methods 

of parameter estimation show the same performance, as it can be observed from their 

respective model plots . This observation agrees with the study of Zimmerman and 

Zimmerman( 199 1 ) .  However, the WLS is used for kriging in the cross validation 

study . Mcbratney and Webster( 1986) have recommended WLS as reliable and 

computationally efficient. 

Despite that in some compartments the sample size or the number of pairs in a lag 

considered in this study is small as compared to the size known to be "a rule of 

thumb" (30-50 pairs) ,  the variograms presented for Weibull parameter estimates, cdf, 

and stems per hectare in most compartments seem to be very indicative to suggest that 

the tree diameter distribution under study is a regionalized variable. Thus, this 

exhibited spatial continuity of tree diameter distribution may be modelled and used for 

estimation purpose. However, when it comes to interpolation, particularly with the 

parametric approach, the size of plot associated with the number of trees ,  distribution 

function that is assumed to completely describe all plots in the compartment, design of 

sampling, optimal spacing between plots , and effect of the distance of samples from 

estimation location are prior points of investigation. It is understood that a slight 

variation in parameter estimates may yield different diameter distribution. This sensitive 

character of the parameter estimates may not be encouraging for practical application. 

Another point of importance in practice is distance between prediction location and 

samples .  It may be rarely of practical importance to take samples very closer to the 

estimation location. The results in this paper shows estimation considered from 

samples located 25 meters or more distance away from the prediction location is not 

encouraging .  The SSR has increased considerably (see Table 12) and variability seem 

to increase since in 66.7% of the variables their RMS values exceeded one as 

compared to 26.7% in the prediction from the cross validation study . Hence, it is 

recommended to carry out comprehensive study of the problem in order to arrive at 

conclusive remark. 
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Appendix 1 :  Sample design description 

In principle, for each compartment plots were arranged in a systematic grid, with 

randomly chosen starting point. The spacing was chosen to give about ten plots per 

compartment (a bit more or less depending on size of the compartment) . There is one 

exception: In compartment 43 two grids were laid out, where the second starts 50 m 

SW from the starting point of the first. In addition to these main plots , short span 

plots , called satellite plots , were laid out from the main plots in an effort to provide 

useful data for the variogram function estimation. The direction (N, S ,  E, W) for the 

satellite plots were chosen randomly. For the compartments 17  and 39 two satellite 

plots (at 90° angle) were laid out for each main plot. The spacing between plot centers 

is shown in the following table. 

Spacing in meters 

Cornp. Main plot Satellite - 1 Satellite -2 

1 7  80 20 25 

34 50 1 5  

39 40 1 2  1 5  

4 1  40 1 2  

43 100 20 

43 100 20 

45 50 1 5  
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Appendix 2 :  Lognormal and Weibull parameter estimates for plots and computed 
chi-squares 

Lognormal est. Weibull estimates 
Comp Plot Loc Stems Mean St.d chi-sq Scale Shape chi-sq 

17 1 [0,0 ] 2 1  2 .86420 0.49374 1 .2847 1 2 1 . 53088 2 .58996 0.40853 
1 7  2 [ -80,0 ] 22 3 .029 1 9  0.346 19  0.48800 24.2 1 906 3 . 69599 0.06737 
1 7  3 [- 1 60,0 ] 23  2 .97800 0 . 17837 0 .58793 2 1 .57 1 22 5 . 34032 0 .64000 
1 7  4 [0,80] 22 2.93667 0.49886 2 .39628 23 . 1 8505 3 .00899 0.2946 1 
1 7  5 [-80,80 ] 1 3  3 .24988 0 .22063 28 . 80564 4.47559 
17 6 [- 1 60,80] 35  2.75842 0.26626 0.68635 17 . 82430 4 .66601 0 .98546 
17  7 [-80, 1 60] 27 3 . 1 2574 0.26876 0.97878 25 . 9 1030 4 . 1 5709 1 .064 1 0  
1 7  8 [0, 1 60 ] 3 0  3 .088 1 2  0.30836 0.4977 1 25.4 1 94 1  3 . 60239 0 .22520 
17 9 [0,240 ] 21 3 . 1 6083 0.2750 1 0 .36072 26.92946 4.09477 0 .34885 
17  10 [-80,240] 30 2 .93450 0.28470 0 .35724 2 1 .5746 1 3 . 8 1 549 0 . 1 33 1 1 
17  1 1  [-80,300] 34 2 .68836 0 .36388 0.56932 17 .20402 3 . 2 1 539 0 . 1 7706 
17 12 [0,300 ] 39 2.45364 0.64017  4. 14378 14 .22 1 56 1 .5 1 88 1 2 .79247 
1 7  1 3  [30,-63 ] 1 6  3 .2 1 374 0.32995 0. 1 2805 28 .9 1452 3 .99297 0 .380 1 5  
17  1 4  [0, 100 ] 24 3 . 1 360 1  0 .30792 0.66350 26.45088 4 .27373 0 . 1 6 102 
1 7  1 5  [- 1 00,80] 24 3 .29276 0 .2 1 288 0 .6 1 885 29 .93876 4 .96456 0 .9673 1 
1 7  1 6[- 1 60,60] 26 3 . 0 1993 0.28 1 19 0.57772 23 .5386 1 3 .70 145 2 .22377 
17 17 [-60, 1 60] 19 3 . 30 1 50 0.28782 1 .65 17 1  30.73784 5 .07268 0 .69229 
17 1 8  [0, 1 80 ] 22 3 .0 1 8 10 0 .33 1 1 3 0.06359 23 . 9 1208 3 .4747 1 0 . 1 5028 
17 19 [-20,240] 1 8  3 .24952 0.249 1 3  0.08259 29 . 1 30 1 6  4 .32493 0 .35036 
1 7  20 [ -80,220] 30 2 .973 1 1  0 .25933 0.76696 22. 1 3596 4 .3 1 967 0 .98504 
1 7  2 1  [-60,300] 4 1  2.76 1 10  0.29396 1 .66433 1 8 .078 14  4 .07545 0 .6 1 3 8 1 
1 7  22 [0,280] 1 9  3 .04003 0.46540 1 .09447 25 .639 1 6  2.45628 1 . 1 1444 
17 23 [0,20] 22 3 . 2 1795 0.29647 2 .85340 28 .57295 4. 1 0288 1 . 3893 1 
1 7  24 [-60,0] 25 3 .04583 0 .33093 3 .66488 23 .960 1 5  4. 64439 0 .3 1 762 
17 25 [- 1 60,-20] 33 2 .69467 0.24697 0 .32867 1 6 .65367 4.49364 0.753 1 6  
1 7  26 [ 10,-63] 24 2 . 80528 0 .58065 2.04069 20.6467 1 1 . 855 1 9  1 . 1 9335  
1 7  27  [25,0] 22  2 .99008 0.46008 4 . 1 6859 24.24647 2 .97735 1 .73402 
17 28 [-80,25] 20 3 .07687 0 .393 1 3  1 . 1 9975 25 .598 1 8  3 .37726 0 .36369 
17 29 [- 1 35 ,0] 30 2 .92487 0 .266 19  6 .28455 2 1 . 2 100 1  3 .64985 1 1 .0659 1 
1 7  30 [-25 ,80] 1 8  3 .26845 0 .32454 1 . 3 1 827 30.42386 3 .9 1 648 0 .80490 
17 3 1  [-80, 1 05] 20 3 . 30373 0 .27669 0 .885 1 5  30.87227 4 .6775 1 0 .37778 
1 7  32  [- 1 3 5 ,80] 2 1  2 . 82868 0 .56480 0.76248 2 1 .4 1 874 2 .46037 0 . 1 2355  
1 7  3 3  [-80, 1 35 ]  28 3 .25029 0.25399 0 .68580 29.20 1 54 4.42974 1 . 14526 
17 34 [-25 , 1 60] 23 3 . 1 9827 0.2 1 775 3 . 1 6625 27 .0 1245 5 . 398 1 0  1 .75590 
17 35  [0,2 1 5] 24 3 .06679 0 .3 1457 3 .933 1 5  24.54582 4 .67306 0 .63663  
1 7  36  [-55 ,240] 23 3 .06234 0.37 1 7 1  3 .95790 24.96332 4 .04365 0 .63228 
1 7  37 [-80,275] 30 3 .00792 0 .3 1 2 1 0  0 .82699 23 .36678 3 .764 1 0  1 .79783 
1 7  3 8  [-25,300] 43 2.65566 0.4 1 633 2 .07363 1 6 .73437 2 .26978 3 . 1 0300 
17 39 [30,-88] 18 3 .28342 0 .32232 0.429 17  3 1 .0 1 847 3 . 80 1 14  0 .28792 
34 1 [ 125 , 1 50] 34 2 .497 14 0.43294 1 .28860 14 .38953 2 .50225 1 .22502 
34 2 [75 , 1 50] 41 2 .60759 0 .3 1 309 4.0 1 333  1 5 .593 14  3 .7 1 5 1 3  2 .43566 
34 3 [25 , 1 50] 40 2.77 1 1 9 0.29360 0.9 1005 1 8 . 35055 3 .62072 0 . 1 9733  
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34 4 [0, 1 50] 35 2 .86606 0 .30 1 9 1  2 .23525 20. 1 6652 4. 1 848 1 0 .89359 
34 5 [25 ,200] 39 2 .64848 0.27992 1 .45083 1 6 .09025 3 . 64752 1 .96 1 3 5  
34 6 [75 ,200] 44 2 .566 17  0.28 1 1 1  0.63689 14 .78725 3 .74680 2 .0662 1 
34 7 [75 , 1 00] 35 2.7 1 343 0. 38237 1 .42043 17 . 8 178 1 2 .88602 0 .67 122 
34 8 [25 , 1 00] 35 2 .8 1 6 1 6  0. 30588 0 .56576 19 . 1 829 1 3 .96472 0 .5597 1 
34 9 [0, 1 00] 42 2 .76 1 7 1  0. 327 14  2. 65932 1 8 . 34230 3 . 2 1285 1 . 5 8005 
34 10 [0,50] 36  2 .54046 0.4 1 527 1 . 1 5646 14 .9 1 346 2 .463 1 8  1 . 32997 
34 1 1 [0,0] 40 2 .68 1 69 0.40567 1 . 1 3045 17 . 386 1 3  2 . 82846 1 . 35753 
34 1 2[25,50] 5 1  2 .52755 0. 39264 2 .8775 1 14 .668 1 9  2.72 1 30 1 . 89798 
34 1 3 [ 1 25 , 1 35]  45 2 . 32272 0.42677 0 .890 1 5  1 1 . 388 10  2 .02785 0 .88330 
34 14[90, 1 50] 36 2 .42909 0.45409 0.44753 1 3 .33969 2.23027 0 .42395 
34 1 5 [25 , 1 35] 48 2.7 1 009 0 .26635 3 . 6 1745 17 .00 179 4 .30473 3 .32982 
34 1 6[0, 1 35] 30 2 . 84246 0.23559 5 .88 108 1 9 . 1 1 889 5 .03028 3 .03937 
34 1 7 [ 10,200] 33 2 .8363 1 0 .24625 0.76472 1 9 .09934 5 .03288 1 .5 1 266 
34 1 8 [75,2 1 5] 4 1  2 .5 1 1 25 0. 34535 3 . 3 1 853 14 .25024 3 . 36278 4 .050 1 1 
34 1 9[60, 1 00] 36 2 .72878 0. 3994 1  5 .47909 1 8 .23995 2.96985 2 .95724 
34 20[40, 1 00] 43 2.78244 0.32 12 1  2 . 1 6706 1 8 .70480 3 . 63456 1 .9 1 464 
34 2 1 [- 1 5 , 1 00] 45 2 .6962 1 0.37574 9.49869 17 . 50 1 60 2 .97264 5 .978 1 3  
3 4  22[ 1 5 ,50] 43 2 .6 1 299 0.4 1078 2 . 17630 1 6 . 14902 2 .62608 0.77530 
34 23 [0, 1 5] 39 2 .568 1 9  0.4 1438 2 .20247 1 5 .4388 1 2.757 12  1 . 52208 
34 24[25 ,35] 40 2 .69896 0.4 1455 2.28260 17 .72830 2. 79608 1 .29889 
39 1 [80,0] 1 1  3 .22047 0 .36263 29 .77 1 03 3 . 3 1 927 
39  2 [80,40] 1 3  3 . 22364 0.4 1006 - 29 .68474 3 . 59 1 88 
39  3 [80,80] 28 2 .33 1 3 1  0 .9 1 676 3 . 85598 14.48497 1 . 1 1 624 4 .66093 
39  4 [80, 1 20] 30 0.9798 1 1 . 1 8839 3 .68556 2 .539 1 3  0 .59225 4 .32202 
39  5 [40,40] 20 3 . 1 9667 0.23487 0.06594 27 .36275 4 .8 1 959 0 .25733 
39 6 [40,80] 1 5  3 . 1 5003 0.46864 1 .46776 27 . 8722 1 3 .626 1 6  0 . 1 0 1 68 
39  7 [40, 1 20] 25 2 .5 148 1  0.73976 3 .26635 1 6 .092 1 5  1 . 39778 3 .7 1 333  
39  8 [40, 1 60] 1 00 1 .56753 0.67766 7 .0609 1 3 .35750 0 .88409 6 .50 1 29 
39  9 [0, 1 60] 1 5  2 .89396 0 .58868 0.09608 22.78338 1 .82494 0 . 1 1 355  
39  1 0[0,200] 45 2 .28453 0.46 153  8 .26720 1 1 .28555 2 .05700 6 .56360 
39  1 1 [0,240] 38 1 .68243 0.7 1 847 0 .82702 3 .58 1 66 0 .8 1 996 0.72266 
39  1 2[0,280] 61 2.05649 0 .5535 1 3 .20399 7 . 53673 1 .28806 3 . 2 1025 
39  1 3 [68 ,0] 1 3  3 .37 140 0 . 17977 3 1 . 8464 1 5 .96499 
39  14[80,28] 15 2 .589 1 6  0. 844 1 2  0 .37404 17 . 1 9344 1 . 1 366 1 0 .209 1 3  
39  1 5 [68,80] 1 6  3 . 1 2003 0 .58 1 87 1 .07597 28 .93607 2 .46068 0 .24246 
39  1 6[68, 1 20] 37 1 .797 1 1  0 .90095 3 .35024 5 .92344 0 .82002 3 .49501 
39  17 [52,40] 14 3 . 32 1 69 0 . 1 9774 - 30.23273 6 . 82267 
39  1 8 [40,68] 16 3 .07285 0.4 1 97 1  1 .03953 25 .37646 3 . 84 1 65 0 .38784 
39  1 9 [28 , 1 20] 1 7  3 .08094 0.47233 0.92440 26.59939 3 .03870 0 . 1 9734 
39  20[40, 1 48]  52 1 .82266 0 .70262 6 .856 1 5  6 .09902 1 .05375 5 .77776 
39  2 1 [0, 1 72] 17 2 . 87869 0 .45309 0. 37849 2 1 .64282 2 .94 1 60 0 .53728 
39  22[0,2 1 2] 27 0 .24262 1 .29674 0 .3 1 239 0 . 1 8662 0 .36285 0 . 3575 1 
39  23 [- 1 2,240] 25 2.72796 0 .504 1 9  0.74553 1 8 .79 1 88 2.23 1 7 1  0 . 33363 
39  24[0,268] 58 1 .64984 0 .63588 0.453 17  3 . 87894 0 .96 1 52 0.48 1 4 1  
39  25[80, 1 5] 14  3 . 33300 0.40 17 1 33 .707 1 6  3 .22 174 
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39 26[65 ,40] 9 3 . 1 29 1 5  0 .47494 27 . 1 3949 4 .25342 -

39 27[80,65] 27 3 . 17874 0.26346 0.7287 1 27 .00 103 5 . 1 62 1 4  0 .56872 
39  28 [80, 1 05] 3 1  2 .65800 0.568 1 5  1 .25688 17 .89777 2 .02277 1 .49678 
39  29[ 40,25] 17 3 . 25702 0. 1 5333  0.73250 27 .94702 7 . 30099 1 .23844 
39 30[55 ,80] 14 3 .4498 1 0 . 1 8469 34 .39504 6 .40 1 3 6  
39  3 1 [40, 1 35] 49 2 .23 1 90 0 .56564 5 .27 1 12 10 . 54439 1 . 54580 3 .74703 
39 32[25 , 1 60] 42 2 .33676 0 .59323 3 .09258 1 2.5833 1 1 .68078 2 .00303 
39  33 [- 1 5 , 1 60] 22 3 .08493 0.40656 0.05765 26. 38894 2.77586 0 . 1 3 1 93 
39 34[ 1 5 ,200] 52 2 .09748 0 .47844 10 .222 19  9 .41 267 2 .00287 10 .26 1 68 
39  35 [0,255] 60 0 .73363 0 .93209 7 .54508 1 . 1 3 172 0 .60894 8 .20727 
39 36 [  - 1 5 ,280] 29 2.73474 0 .53861  1 .37665 19 .25364 2 .29482 1 .45707 
4 1  1 [40, 1 60] 34 2.45217  0 .45275 6 .956 12  1 3 .96 142 2 .59228 8 .9492 1 
4 1  2 [40, 1 20] 49 2 .3888 1 0.46664 2 .84843 1 2.34666 1 .890 1 2  2 .4 1 85 1  
4 1  3 [40,80] 44 2.44 143 0.49426 2 .89 173 1 3 .3343 1 1 . 88058 1 .92729 
4 1  4 [70,40] 34 2 .6589 1 0.44642 1 .4547 1 17 .08563 2 .3330 1 1 .44575 
4 1  5 [40,40] 33 2 .67620 0. 345 12  0 .47752 16 . 9 1764 3 . 14004 0 .398 17  
4 1  6 [40,0] 32 2 .73866 0.25837 6 .0730 1 17 . 1 9 1 57 5 . 9803 1 1 . 8657 1 
4 1  7 [0, 1 20] 48 2.47459 0.37375 1 . 14248 1 3 .79959 2 .90994 1 . 3 1 109 
4 1  8 [0, 1 60] 2 1  2 .567 1 9  0.29265 0. 1 5847 14 .89645 3 .47803 0 . 1 3406 
4 1  9 [40, 148] 26 2 .5302 1  0 .3805 1 2 .503 1 2  14 .43799 2.40405 1 . 37834 
4 1  1 0[28, 1 20] 50 2.42 1 59 0 .365 1 3  1 .24827 12 .76256 2.47605 2 . 1 0 1 1 1  
4 1  1 1 [28,80] 63 2 .03 8 1 2  0.57936 2.7 1 678 7 .6877 1 1 .28925 2 .73622 
4 1  1 2[70,28] 23 2 . 8669 1 0 .37439 1 .35482 20.79 196 3 .20 1 80 1 .76874 
4 1  1 3 [52,40] 28 2 .83738 0.3 1 1 10 2.05832 1 9 .79 144 3 . 63456 1 .65 1 23 
4 1  14 [40, 1 2] 33  2.72335 0.20344 1 . 8 1 1 34 1 6 .77435 5 .75609 1 .40657 
4 1  1 5 [0, 1 32] 46 2 .4823 1 0 .27 1 38  0.69496 1 3 .52763 3 . 99998 0 .68203 
4 1  1 6 [ 1 2, 1 60] 24 2.40503 0.40340 0.28576 1 2.60790 2 .25466 0 .44 1 94 
43 1 [ 1 00,500] 39 2 .53467 0 .30349 0.54050 14 .37585 3 . 57630 1 .443 1 8  
43 2 [ 100,400] 46 2 .37028 0.45879 1 .77544 12 .3877 1 2 .09304 1 .03293 
43 3 [0,400] 46 2.42273 0 .37443 2 . 1 8406 12 .96902 2 .65 103 1 .6 1 1 32  
43  4 [0,300] 90 2 .566 10  0 .32 100 1 .74960 14 .853 1 2  2.75349 6 .9674 1 
43 5 [ 1 00, 1 00] 44 2.44998 0 .35226 0.65632 1 3 .24097 2.69 128  1 . 14923 
43 6 [ 1 00,0] 42 2 .35747 0.4 1 540 4.64230 1 2.25 1 1 1  2 .44026 3 . 1 86 1 5  
43 7 [200,0] 42 2.46099 0.48256 9.28267 1 3 . 82324 2 .04555 8 .32862 
43 8 [200, 1 00] 43 2 .65328 0 .3 1 059 1 . 547 14 16 .27685 3 .68697 1 . 8 1 1 56  
43  9 [200,200] 34  2.44457 0 .35472 1 . 37449 1 3 . 38365 3 . 39088 2 .503 1 1  
43 10 [ 1 00,480] 47 2 .58298 0 .27436 1 .94367 1 5 .00589 3 . 88909 4 .54480 
43 1 1 [80,400] 53 2 .4 1 885 0 .362 1 3  1 . 1 0043 12 .79940 2 .6355 1 1 .5 1 1 30 
43 1 2[20,400] 5 1  2 .43024 0.34355 4 .69396 1 3 .05774 3 .06 1 97 2 .76090 
43 1 3 [0,320] 77 2 .55849 0 .3 1 353 7 .63237 14 .8 1720 3 . 55878 3 .68 146 
43 1 4[80, 1 00] 36 2.40 1 39 0.45038 2 .34857 1 2.89422 2 .2 1 634 1 .3 8029 
43 1 5 [ 1 00 ,-20] 46 2.49 1 52 0.45638 1 . 89862 14 .0478 1 2 .07050 1 .98572 
43 1 6[200,20] 44 2 .58090 0 .39444 3 .05766 1 5 .43270 2 .50525 4 .52833 
43 1 7 [ 1 80, 1 00] 40 2 .56348 0.4 1 644 0.47748 14 .99273 2 . 1 353 1 1 . 1 8736 
43 1 8 [220,200] 27 2 .58659 0 .33333 0 .9459 1 1 5 . 35263 3 . 3 8622 1 .46953 
43 1 9[65,465] 57 2 . 39878 0.4 1 1 3 3  4.44247 1 2.94703 2.7 1482 2 .58265 
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43 20 [65,365] 46 2.4 120 1  0 .39444 3 .06223 12.30333  2 .04 178 4 .47737 
43 21 [65,65] 49 2 .20721  0 .65720 5 .06727 10 .03609 1 .25667 5 .04525 
43 22 [65,-35]  61 2 . 50453 0 .29724 6 .22953 1 3 . 7 1476 2 .68 153  1 6 .23396 
43 23 [ 1 65 ,-35] 40 2 .33947 0.43 153  1 .98456 1 1 .73380 2 .07 1 58 2 .58846 
43 24 [ 1 65 ,65] 41 2.75623 0 .32674 0.27337 1 8 . 30985 3 .09873 0 .6495 1 
43 25 [ 1 65 , 1 65] 62 2 .46057 0.37940 1 3 .97304 1 3 .44674 2 .576 10  1 2 .24 1 93 
43 26 [ 1 65 ,265] 48 2 .6075 1 0.40488 1 . 1 3562 1 5 .97830 2 .54322 2 .58979 
43 27 [ 1 65 ,365] 30 2.75608 0.289 17  4 .8679 1 1 8 .05 17 1 3 .72379 8 .07 108 
43 28 [245 , 1 65] 3 1  2.47933  0 .2625 1 1 . 1 8502 1 3 .39 149 4.598 14  1 . 5 8 1 57 
43 29 [85 ,465] 56 2 .62635 0 .27732 2 .909 14  1 5 . 638 1 5  4 .2 1 100 2 .52890 
43 30  [65 ,385] 60 2.45672 0 .33667 7 .046 17 1 3 . 33 1 37 2 .93740 7 . 80305 
43 3 1  [65 ,85] 50 2 .34650 0 .53508 4 .53604 12 .53969 1 . 897 1 3  3 .94336  
43 32  [85 ,-35]  48 2 .6 1 843 0. 3 8 1 73 4 .85262 16 . 1 0776 2 . 89597 5 . 96033 
43 3 3  [ 145 ,-35]  30 2.4505 1 0 .38 1 65 1 . 1 8959 1 3 .250 1 6  2 .38885 0 .99020 
43 34 [ 1 65,45] 5 1  2.76338  0 .36366 2.29848 1 8 . 65093 3 .00530 3 .79852 
43 35  [ 1 65 , 1 45] 53  2.47885 0.44200 1 . 1 0266 14 . 1 3447 2.434 1 5  0 .85972 
43 36 [ 1 45 ,265] 59 2 .54604 0. 37438 9 .69387 14 .85873 2.74434 1 0.29655 
43 37 [ 1 45 ,365] 40 2 .70404 0 .30992 0 .67 1 53 17 .25097 3 .269 1 2  1 . 89485 
43 38 [245 , 1 85] 43 2 .29 1 64 0.40522 1 . 1 3644 1 1 . 3 1 527 2.4 1 304 0 .6 1 17 1  
45 1 [ 175 ,200] 27 2.667 1 1  0. 32357 0 . 1 6770 1 6 .65389 3 .5 1 555 0 .48083 
45 2 [ 1 25 ,200] 40 2 . 17997 0 .35096 1 .63675 9 . 82454 2 .65 1 54 1 . 1 8020 
45 3 [ 1 25 , 1 50] 26 2 .5 1 6 1 8  0.45336 1 . 64229 1 5 .00353 2.925 17  2 . 36482 
45 4 [ 175 , 1 50] 41 2.42223 0 .38262 1 .48726 1 3 . 1 30 1 3  3 .008 1 5  0.7758 1 
45 5 [ 125 , 1 00] 37 2 .65 1 23 0 . 1 9960 4.00774 1 5 . 56 1 30 6 .02339 1 .56787 
45 6 [25 , 1 00] 50 2.43569 0.3049 1 4 .37097 1 3 .02635 3 .93827 1 .5 8744 
45 7 [25,50] 37 2 .5 1 1 26 0.27366 1 . 1 1 239 1 3 .93573 3 .73092 3 . 1 1 929 
45 8 [50,0] 42 2 . 1 682 1 0 .495 1 3  4 .59370 9 .4 1709 1 .65 1 55 4 . 1 8840 
45 9 [75 ,50] 36 2 .40690 0 .3024 1 0 .36586 12 .54249 3 .20249 0.23574 
45 10 [0,50] 44 2 .46456 0 .34358 5 . 55352 1 3 .56726 3 .2450 1 2 .40780 
45 1 1  [25 , 1 50] 34 2 .50843 0 .36779 0.57007 14 . 3493 1 3 .23574 0 .29488 
45 1 2  [ 175 , 1 85] 3 6  2.487 1 5  0.47227 2 .06605 14 .53599 2.45788  2 .39530 
45 13 [ 1 35 ,200] 30 2 .43777 0.42 178 2 .53244 1 3 .58 104 2.75238 2 .77748 
45 14 [ 1 1 0, 1 50] 37 2.27 109 0.406 17  2 .45759 10.95596 2 .30395 2 .05332 
45 15 [200, 1 50] 36  2 .55086 0 .30205 1 .4547 1 14 .6 1 575 3 .55654 1 .5 3246 
45 1 6  [ 1 25 , 1 1 5]  29 2.5775 1 0 .25925 0 .3470 1 14 .8 1 346 4 .26755 0 .93835 
45 17 [40, 1 00] 40 2.422 1 5  0 .2539 1 1 . 83887 12 .62338  4.25989 1 . 1 72 1 1 
45 1 8  [25 ,65] 34 2 .46479 0 .34 1 54 2 .93850 1 3 .54449 3 . 5 1 757 0 . 86043 
45 1 9  [ 1 0,0] 30 1 .99270 0.55086 0 .78520 6 .06740 1 . 1 3048 1 .005 1 6  
4 5  20 [75 ,65]  46 2 .203 1 6  0 .34565 3 . 88679 10.06466 2 .67976 3 .785 1 9  
4 5  2 1  [ 1 5 ,50] 47 2 .487 1 6  0 .2773 1 4 .67068 1 3 .566 1 3  4 .6 1 257 2 .24868 
45 22 [ 10, 1 50] 35 2 .49 1 22 0 .36526 1 .27906 14 .06660 3 . 1 803 1 1 .74729 



Appendix 3 :  Stem and leaf plot of the SPR from cross validation 
(Leaf unit = 0.0 1 ) ,  computed in MINITAB 
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Appendix 4 :  Stem and leaf plot for the SPR from distance restricted samples. 
(Leaf unit = 0.0 1 )  
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