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Abstract 
 

 

Botanically diverse pastures are commonly used in New Zealand to reduce the ruminant 

environmental impact by reducing the methane production from the rumen digestion. In order 

to evaluate the effects diverse pasture species have on the milk fatty acid profile seventy-two 

lactating Friesian-Jersey crossbred dairy cows were used in a randomised block design with 

two replicates of six treatments. Six different pasture mixtures were fed at a daily allowance 

of approximately 15 kg DM/cow/day. The mixtures were categorised as either a simple or a 

diverse pasture. The simple mixtures all contained white clover with the addition of either a 

standard diploid perennial ryegrass (RG), a diploid high sugar ryegrass (HS) or tall fescue 

(TF). The three diverse mixtures included each of the simple mixtures with the addition of 

either chicory, plantain, prairie grass and red clover (RGD), chicory, plantain and big trefoil 

(HSD), or chicory, plantain, prairie grass and lucerne (TFD). Milk samples were collected and 

the fatty acid profile was analysed using Fatty Acids Methyl Esters (FAME) analysis. The 

proportion (g/100g of milk fat fatty acids) of linoleic and linolenic acid increased while the 

proportion of cis-9, trans-11 C18:2 (CLA) decreased in milk from cows grazing the diverse 

pastures compared to cows fed the simple pastures. These changes were probably associated 

with a shift in the rumen microbial population or rumen metabolic routes caused by several 

secondary metabolites present in some plants, e.g. herbs and legumes. As a consequence the 

lipolysis and biohydrogenation decreased, resulting in an increased rumen outflow of linoleic 

and linolenic acid. These assumptions are based on the reported effects of secondary 

metabolites on rumen methanogenesis. The results of this study suggest that it is possible to 

change the milk fatty acid profile through inclusion of diverse plant species in the pastures 

which provides opportunities to change the fatty acid composition to become more beneficial 

from a human health perspective. 
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Sammanfattning 
 

 

Betesmarker bestående av varierande betesväxter används runt om i Nya Zeeland för att 

minska idisslarnas miljöpåverkan genom att minska metanproduktionen från vommen. För att 

utvärdera effekten dessa varierande betesväxter har på mjölkens fettsyrasammansättning 

användes 72 lakterande mjölkkor av en korsning av raserna nya zeeländsk Holstein-Friesian 

och Jersey i en studie med randomiserad block design med två repetitioner av sex 

behandlingar. I försöket användes sex olika blandningar av betesväxter och betestillgången 

var ungefär 15 kg TS/ko/dag. Blandningarna kategoriserades som antingen enkla eller 

mångfaldiga beten. De enkla betesblandningarna innehöll alla vitklöver med tillsatsen av 

antingen vanligt engelskt rajgräs (RG), engelsk rajgräs med hög sockerhalt (HS), eller 

rörsvingel (TF). De tre mångfaldiga blandningarna innehöll en av de enkla blandningarna med 

tillskottet av antingen cikoria, groblad, präriegräs och rödklöver (RGD), cikoria, groblad och 

stor käringtand (HSD), eller cikoria, groblad, präriegräs och lusern (TFD). Mjölkprover 

insamlades och mjölkens fettsyraprofil analyserades med hjälp av fettsyrametylesteranalys 

(FAME). Andelen (g/100g av totala fettsyror) linol- och linolensyra ökade medan andelen cis-

9, trans-11 C18:2 (CLA) minskade i mjölk från kor som gick på de mångfaldiga 

betesmarkerna. Förändringarna i mjölksammansättningen berodde antagligen på en förändring 

bland mikrobpopulationen eller i de metaboliska vägarna i vommen orsakat av sekundära 

metaboliter som finns i vissa växter, t.ex. baljväxter och örter. Som följd minskade lipolysen 

och biohydrogeneringen i vommen med ett ökat utflöde av linol- och linolensyra som följd. 

Dessa antaganden är baserade på de bevisade effekter som sekundära metaboliter i vissa 

växter har på vommens metanproduktion. De resultat som presenterats i den här studien 

indikerar att det är möjligt att ändra mjölkens fettsyraprofil genom att inkludera mer 

mångfaldiga växtarter i betesvallen. Detta ger möjligheter att förändra mjölkens 

fettsyrasammansättning så att den blir mer hälsosam för mänsklig konsumtion.  
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Introduction 
New Zealand accounts for about 2.2% of the total milk production in the world which makes 

the country the world’s eighth milk producer. Their dairy production is mainly pasture based 

since the milder winter climate makes it possible to keep the animals outdoors throughout the 

year with only some supplementary feeding during the winter months. In the last decades the 

dairy farmers have been aiming for an increased milk production and therefore focus has been 

on increasing the productivity and quality of the pastures. Simultaneously, the New Zealand 

dairy industry has been held to account for a big part of the country’s environmental impact 

since the animals produce large amounts of methane per kg milk due to their forage based 

diets. In order to achieve this goal a lot of focus has been put on improving the quality and 

composition of the pastures. Research has shown that by altering the pasture composition both 

the milk production and methane production in the animal may be improved. Researchers 

have suggested that some plant species, such as birdsfoot trefoil (Lotus corniculatus), contain 

metabolites that may affect the rumen environment, resulting in a higher utilisation efficiency 

of the dietary nitrogen and lower methane production (Woodward et al., 2004; Woodward et 

al., 2009; Williams et al., 2011).  

 

Recently, inclusion of novel plant species into the pasture mixtures, such as chicory and 

plantain, has come to practise in order to reduce the environmental impact even further (Roca 

et al., 2010). Inclusion of these diverse species provides an even greater opportunity to 

manipulate the fermentation patterns in the rumen and reduce the methane emissions due to 

their various nutritional and chemical compositions. Although these plant species are 

commonly used by farmers in New Zealand nowadays, their impact on the milk composition 

needs to be further investigated. One of the most variable components in milk, both in 

absolute amounts and in relative proportions, are the milk fat fatty acids. Due to the fact that 

their composition accounts for many of the milk’s physical properties, increasing the fat 

content in milk has long been a major goal when feeding dairy cows. Some studies indicate 

that inclusion of botanically diverse plant species in the pastures increases the content of 

polyunsaturated fatty acids (PUFA) in ruminant products (Kraft et al., 2003; Lourenço et al., 

2005). Increasing the content of PUFA in milk is currently of great interest as researchers 

have found that certain of these fatty acids have beneficial effects for human health and may 

act as anticarcinogenic agents (Parodi, 1997a; Parodi, 1999). Since the easiest way to affect 

the fatty acid profile in milk is by nutritional changes, including more diverse plant species in 

the pasture mixtures may lead to opportunities to increase these fatty acids in milk even 

further. 

Aim and hypothesis 
The aim of this study was to examine how the milk fat fatty acid profiles in milk from 

lactating Friesian-Jersey crossbred dairy cows is affected when grazing botanically diverse 

pastures. 

 

The hypothesis is that the milk fatty acid profiles will differ between cows with respect to 

whether they receive diverse pastures or not, especially in the proportion of long chain fatty 

acids which are of dietary origin. The proportion of certain PUFA, including linoleic acid, 

linolenic acid and cis-9, trans-11 C18:2, will be higher in the milk of cows on the diverse 

pasture treatments. 
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Literature review 
 

Mixed pasture species for milk production 
New Zealand’s pastoral farming for dairy cows is normally based mainly on the permanent 

mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) (Powell 

et al., 2007). The production and quality of these pastures is often limited during the summer 

months, partially due to a combination of hot weather and a shortage of rain. Botanically 

diverse pastures, however, have been shown to improve the yield of the pasture (Daly et al., 

1996), as well as enhance its nutritional profile (Sanderson et al., 2003). Moreover, 

combining different plant species in the pasture provides an opportunity to maintain the 

productivity of the pastures in the summer months, as well as to manipulate the fermentation 

patterns in the rumen with possibilities to reduce ruminant livestock methane emissions (Roca 

et al., 2010). The animals’ utilisation of the pasture may also be increased which is of great 

importance for the farmers since dairy farming in New Zealand heavily relies on the pasture-

based systems. Inclusion of other plant species may also increase milk production and alter 

milk composition and dietary CP content (Waugh et al., 1998). Including a lot of legumes in 

the animal diet often result in increased milk production since legumes have a higher nutritive 

value than grasses (Ulyatt, 1981, cited by Cosgrove et al., 2006). However, a major problem 

with mixed species pastures is that they often contain insufficient amount of clover to capture 

their high nutritional value as extra milk production (Cosgrove et al., 2006) resulting in a 

lower increase in production than is possible. By combining species that interact with each 

other successfully the milk yield may still be increased without decreasing the species 

diversity in the pasture. 

High sugar ryegrasses 

Increasing the content of water soluble carbohydrates (WSC) in ryegrass has long been of 

great importance in plant breeding and management in New Zealand since it is associated 

with a higher supply of readily-available energy for the degradation of plant protein in the 

rumen (Kingston-Smith & Theodorou, 2000). Thus, the conversion of plant protein into 

microbial protein is improved and more protein becomes available for absorption in the 

intestine. High sugar ryegrasses are promoted for their ability to increase milk yield, although 

the animal responses have been inconsistent. Miller et al. (2001b) demonstrated that milk 

yields from cows offered a high sugar ryegrass diet were higher, compared to a control group. 

Contrary to these results, Tavendale et al. (2006) found no difference in either milk 

production or milk fat concentration between cows fed pastures with different sugar content. 

However, coherently for these studies, the utilisation of dietary nitrogen (N) for milk 

production was improved for cows on a high sugar ryegrass diet (Miller et al., 2001a; Miller 

et al., 2001b; Tavendale et al., 2006) and more N was excreted in the milk and less in urine 

(Moorby et al., 2006). According to these diverse results there does not appear to be any 

unswerving relationships between the concentration of WSC and milk production (see also 

Edwards et al., 2007). Cosgrove et al. (2009) investigated the chemical composition of three 

ryegrasses with different WSC content to establish the effect they had on animal performance. 

The results were inconsistent, although the authors speculated whether the reduction in both 

protein and fibre, at the expense of the higher sugar content, might enhance the effect WSC 

have on the nutritional value of ryegrasses. A higher sugar content could also affect the fatty 

acid profile in milk as it leads to a lower pH in the rumen which will affect the microbial 

population and the biohydrogenation process. Nevertheless, the various responses to WSC 
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content in the diet indicate that there are other constituents in the plants that affect the animal 

performance, apart from the higher sugar content. 

Tall fescue in pastures 

In New Zealand, dairy farming has expanded into dry areas, such as Canterbury, where 

irrigation is necessary to maintain the high production performances of the pastures. Since 

water is a limited source alternative grass species to ryegrasses that have higher water 

utilisation efficiency have been investigated. Minneé et al. (2010) investigated the 

establishment and production of pastures which either contained perennial ryegrass (Lolium 

perenne) or tall fescue (Lolium arundinacea). They observed that the perennial ryegrass 

pasture had a higher annual yield in the year of establishment, although the pasture containing 

tall fescue had higher yields of dry matter over the next years. Tall fescue also had higher 

water use efficiency in summer than ryegrasses. The authors concluded that tall fescue is a 

profitable alternative to ryegrass in dry regions in New Zealand. However, tall fescue has a 

slower establishment than ryegrasses and is more difficult to manage in a pasture since it is 

unable to compete with other grasses in a mixed sward (Easton et al., 1994; Monk et al., 

2009). Nevertheless, tall fescue combined with chicory has shown production advantages 

compared to ryegrasses in soils with moderate moisture levels during the summer (Rollo et 

al., 1998). 

Alternative pasture species 

Recently, novel plant species have been introduced to the pasture mixtures in New Zealand, 

including chicory (Cichorium intybus), plantain (Plantago lanceolata) and big trefoil (Lotus 

pedunculatus). How these species will interfere with the rumen environment in vivo needs to 

be investigated. However, Roca et al. (2010) examined the methane production from chicory, 

plantain, birdsfoot trefoil (Lotus corniculatus) and ryegrass (Lolium perenne) when incubated 

in vitro. According to their results the methane production for chicory, plantain and birdsfoot 

trefoil was lower than for ryegrass throughout the study. They speculated whether the lower 

methane production for both chicory and plantain could be due in part to their high 

digestibility and ratio between water soluble carbohydrates and structural carbohydrates 

(WSC:SC). A high WSC:SC ratio is associated with increased passage rate through the 

rumen, due to rapid particle breakdown and low retention time in the rumen (Barry, 1998; 

Moss et al., 2000). Roca et al. (2010) concluded that, due to their high WSC:SC ratio, 

legumes and herbs, such as chicory, plantain and birdsfoot trefoil, result in lower short-term in 

vitro production of methane, compared to ryegrass. Ramírez-Restrepo and Barry (2005) 

reached the conclusion that, in order to reduce the methane production and increase animal 

productivity, the most important plant characteristics are a high ratio of WSC:SC along with 

the presence of condensed tannins (CT) and possibly other secondary compounds. Condensed 

tannins are phenolic plant secondary compounds present in a number of legumes, including 

birdsfoot trefoil (Lotus corniculatus), big trefoil (Lotus pedunculatus) and in the flowers of 

white clover (Trifolium repens) (Terrill et al., 1992). They act by binding to plant protein, 

forming complexes and making them unavailable for rumen degradation. As a result the 

amount of ammonia released from rumen digestion is reduced (Waghorn, 2008). Table 1 

shows the presence of CT and other secondary compounds in some temperate forage species. 

Hence, these plant species may be used as feed stuffs for dairy cows in order to reduce the 

environmental impact. 
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Table 1. Concentration of condensed tannins (CT) and other secondary compounds in temperate 

forage species. Adapted from Ramírez-Restrepo and Barry (2005) 

Forage Total CT content (g/kg DM) Other secondary compounds 

Perennial ryegrass 

(Lolium perenne) 

1.8 Endophyte alkaloids 

12-30 mg/kg DM 

Birdsfoot trefoil 

(Lotus corniculatus) 

47 0 

Big trefoil 

(Lotus pedunculatus) 

77 0 

White clover 

(Trifolium repens) 

3.1 Cyanogenic glycosides 

Red clover 

(Trifolium pratense) 

1.7 Iso-flavones 7-14 g/kg DM 

Lucerne 

(Medicago sativa) 

0.5 Coumestrol  

0-100 mg/kg DM 

Chicory 

(Chicorium intybus) 

4.2 Sesquiterpene lactones 

3.6 g/kg DM 

Plantain 

(Plantago lanceolata) 

14 Iridoid glycosides 

Catapol 8 g/kg DM 

Acubin 22g/kg DM 

 

Chicory has during the last decades gained popularity in New Zealand, most likely due to its 

advantageous growth patterns as a summer forage crop (Li et al., 1997). Research has shown 

that chicory increases the fat content in milk, as well as the milk production, when offered as 

a supplement to pasture (Waugh et al., 1998), possibly due to its high content of unsaturated 

fatty acids (Soder et al., 2006). Its high digestibility of organic matter results in a rapid 

breakdown in the rumen and a high rumen fractional outflow rate (Barry, 1998). The high 

passage rate through the rumen is probably the reason that the feed intake often is higher in 

animals fed chicory, which most likely explains the increased milk production. Although 

chicory has a lower content of N than ryegrasses the duodenal flow of non-ammonia N is 

similar, possibly due to increased microbial production of proteins in the rumen which are 

transferred to the intestine. 

 

Inclusion of plantain in the pasture mixtures has resulted in increased production and a more 

even distribution of dry matter yield throughout the year in the pasture (Moorhead & Piggot, 

2009), probably due to its high drought tolerance and considerable summer heat tolerance 

(Stewart, 1996; Rumball et al., 1997). Although few studies have investigated how the plant 

affects milk production in dairy cows, several studies have demonstrated positive influence on 

production in lambs and ewes, relative to perennial ryegrass (Moorhead et al., 2002; Judson et 

al., 2009; Hutton et al., 2011). Furthermore, plantain contains antimicrobial compounds that 

appear capable of interfering with the rumen fermentation process and altering the volatile 

fatty acid composition which potentially can affect animal performance and milk composition 

(Deaker, 1994, cited by Stewart, 1996). Sanderson et al. (2003) investigated the nutritive 

value of both plantain and chicory from different harvests to determine their potential use as 

forage crops. They concluded that the herbs had a relatively high nutritive value, compared to 
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other forage species, and that their inclusion in the pasture mixture could enhance its 

nutritional profile. Even though chicory and plantain have a high nutritional value their 

presence must be balanced against their lack of persistency in the sward in order to maintain a 

high pasture production and animal performance. 

 

Although different plant species may affect the fatty acid composition in milk the main 

influencing factor is the amount and composition of dietary fat (Khanal & Olson, 2004). Thus 

the fatty acid composition in plants will now be discussed, followed by an introduction to the 

different fatty acids present in milk and how they are synthesised in the dairy cow. 

 

Fatty acids in plants 
A traditional diet for dairy cows is composed of fresh or conserved forage and concentrate. 

However, these diets differ greatly among different regions in the world, as well as among 

seasons of the year. Therefore, the fatty acid composition in milk probably varies over the 

year and between different regions. In New Zealand, where the animal production systems are 

mostly pasture-based, altering the lipid profile in the pasture species is the easiest and most 

economical way to change the fatty acid profile in dairy milk. Today, the main goal of 

ryegrass selection in New Zealand is to increase the dry matter yield (Edwards et al., 2007), 

while selecting for other traits, e.g. improving its nutritive value is relatively rare. 

 

In fresh forage the total fat content comprises about 6-7% of the dry weight of leaf tissue, of 

which 40-50% are fatty acids (Harfoot & Hazlewood, 1997), present predominately in 

galactolipids and phospholipids (Bauman et al., 1999). In pasture, the fatty acids are mainly 

unsaturated (average 70-90%), where linoleic acid and linolenic acid predominate (Harfoot & 

Hazlewood, 1997). Clapham et al. (2005) investigated the fatty acid composition in different 

plant species at three different harvest times (Table 2). They found that the fatty acid 

composition varied between the different harvests, where the trend was a declining content in 

most plants during their development. 
 

Table 2. Concentration (mg/g of DM) of certain fatty acids in different plants at three different harvest 

times with three weeks interval. Adapted from Clapham et al. (2005) 
 

Plant material Harvest C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 

Perennial 

ryegrass 

1 

2 

3 

6.99 

6.35 

5.91 

0.94 

0.74 

0.56 

0.30 

0.28 

0.32 

1.46 

1.01 

0.71 

6.76 

5.74 

5.47 

34.7 

31.5 

26.8 

Tall fescue 1 

2 

3 

5.91 

4.94 

3.78 

1.23 

0.97 

0.53 

0.24 

0.22 

0.16 

1.54 

1.03 

0.64 

5.70 

4.12 

3.01 

28.4 

25.3 

17.1 

White clover 1 

2 

3 

6.52 

5.62 

4.85 

1.01 

0.75 

0.59 

0.54 

0.47 

0.44 

1.40 

0.89 

1.21 

8.23 

5.89 

6.27 

26.7 

20.3 

17.8 

Chicory (Puna) 1 

2 

3 

7.39 

5.65 

5.01 

1.25 

0.81 

0.63 

0.25 

0.22 

0.22 

1.24 

0.43 

0.31 

9.69 

7.17 

5.88 

42.5 

24.2 

19.8 

Plantain 1 

2 

3 

6.64 

5.28 

3.72 

1.03 

0.67 

0.39 

0.37 

0.38 

0.34 

0.73 

0.39 

0.30 

8.68 

6.19 

4.49 

26.1 

22.6 

15.2 

 



 

7 

 

Factors affecting the fatty acid profile in plants 

The fatty acid profile in plant species are constantly subject to turnover and lipases are always 

present in the living plant, degrading the lipids. This will, however, not have an important 

influence on the fatty acid composition during normal growing conditions. Nevertheless, the 

fatty acid profile may change significantly during senescence of the plant, after detachment 

and during storage (Elgersma et al., 2003b). Environmental factors have a huge influence on 

the fatty acid composition in plants as well, such as temperature, light intensity (Hawke, 1973; 

Dewhurst & King, 1998), stage of maturity and season (Elgersma et al., 2003b). The leaf/stem 

ratio may also have an effect on the fatty acid composition in early season due to the fact that 

the galactolipids are mainly located in the metabolically active leaves (Van Soest, 1994). 

Furthermore, nitrogen application increases the concentration of fatty acids in plants but do 

not have any impact on their profile (Elgersma et al., 2005). 

Fatty acid composition in fresh grass and silage 

At harvest, the concentration of linoleic and linolenic acid decreases in forage due to 

oxidation and degradation by different enzymes, a plant defence mechanism initiated in 

damaged tissues (Elgersma et al., 2003b; Dewhurst et al., 2006). Thus, there is some risk that 

the content of fatty acids will be lower in the fermented silage, depending on the ensiling 

method used. Elgersma et al. (2003a) examined the fatty acid composition in fresh grass 

versus ensiled forage. According to their results 98% of the fat in fresh grass was present as 

esterified fatty acids (EFA) whereas, in ensiled grass, 27-73% of the total fatty acids consisted 

of free fatty acids (FFA). Thus, during the conservation process important PUFA that are 

precursors for fatty acids in milk may be lost. Dewhurst and King (1998) found that the 

content of total fatty acids was reduced by 30% when the grass was wilted prior to ensiling 

and the concentration of linolenic acid was reduced by up to 40%. Nevertheless, ensiling may 

only have a minor influence on the fatty acid concentration, provided compaction and sealing 

of the silos are effective (Doreau & Poncet, 2000). Additives, such as formic acid or formalin, 

also reduce losses significantly. 

 

Agenäs et al. (2002) examined how the composition of different milk fatty acids changed 

when cows where turned out to pasture after being kept indoors for the winter period. After 

turnout there was an increase in the long chain fatty acids, which originate from dietary fat or 

adipose tissue. Simultaneously there was a reciprocal decrease in the de novo fatty acids, 

synthesised within the mammary gland. The results indicate that the shift in fatty acid 

composition in milk fat was caused by a higher proportion of unsaturated fatty acids from 

pasture which consists of more long chain fatty acids, especially linolenic acid which is the 

main precursor for trans-11 C18:1 and cis-9, trans-11 C18:2 in milk (Agenäs et al., 2002; 

Elgersma et al., 2004). Similar results were shown by Kelly et al. (1998b). In their study two 

groups of Holstein cows were divided into either a control group fed a total mixed diet, or a 

grazing group which was gradually adjusted to a diet consisting of fresh pasture. Milk 

samples were analysed and the result showed that cows on pasture had higher milk fat 

concentrations of CLA than cows fed a total mixed diet, which has been confirmed in later 

studies (White et al., 2001; Kraft et al., 2003; Elgersma et al., 2004). Furthermore, grazing 

cows had a lower concentration of short and medium chain fatty acids in their milk, due to 

decreased milk fat synthesis in the mammary gland. 
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Fatty acids in milk 
Milk fat is composed by a large number of fatty acids of varying length and saturation, most 

of which are present esterified to glycerol as triacylglycerides. The exact number of fatty 

acids is still unclear but has been estimated to be over 400 (Bauman & Griinari, 2003). 

However, a large proportion of these acids are only present as trace amounts in the milk, 

while about 15-20 fatty acids represent approximately 90% of the total number (Bauman et 

al., 2006). The fatty acids are divided into two different groups, according to the length of 

their carbon chains. Approximately 50-70% of the fatty acids are composed of long carbon 

chains with 16 carbons or more, while the other 30-50% have carbon chains that consist of 14 

carbons or less, i.e. short and medium chain fatty acids (Santos, 2002). The different fatty 

acids in milk arise almost equally from the uptake of circulating, preformed fatty acids or 

from the synthesis of new fatty acids that occur in the mammary gland, i.e. de novo synthesis 

(Bauman et al., 2006). 

 

The typical composition of milk fat in dairy cows comprises of approximately 70% saturated 

fatty acids, 25% monounsaturated fatty acids and 5% polyunsaturated fatty acids (Grummer, 

1990; Bauman et al., 2006; Elgersma et al., 2006). The polyunsaturated fatty acids represent 

approximately 2.3% by weight of the total fatty acids (Lindmark Månsson, 2003). The main 

ones are linoleic acid (C18:2) and linolenic acid (C18:3) which account for 1.6 and 0.7% by 

weight of the total fatty acids, respectively. The composition of fatty acids in milk can be 

affected by many different factors, such as genetics, stage of lactation, mastitis and ruminal 

fermentation (Palmquist et al., 1993). The composition can also be affected by feed-related 

factors, i.e. it can be related to intake of fibre and energy, as well as by seasonal and local 

effects which may influence the feed composition. 

 

Milk fat also consists of trans fatty acids, which represent approximately 3.2-5.2% of the total 

fatty acids (Aro et al., 1998). The main trans fatty acids in milk are trans-11 C18:1 (vaccenic 

acid) and different isomers of conjugated linoleic acid, of which cis-9, trans-11 C18:2 (rumenic 

acid) represents more than 80% (Chin et al., 1994). Trans fatty acids have long been 

considered to be less favourable from a human health perspective and have been associated 

with an increased risk of several chronic diseases, including cardiovascular disease and type-

II diabetes (Willett, 2006; Erkkilä et al., 2008). Nevertheless, scientists have during the last 

quarter decades found that some of these trans fatty acids have beneficial effects on human 

health and may act as functional food components in the milk (Bauman et al., 2006). 

Bioactive components and CLA in milk 

As a result of consumers’ increased awareness of the association between diet and health 

much research has focused on to clarify the role specific food components have on health 

maintenance and disease prevention. Scientists have found that milk contains numerous 

components that have bioactive properties beneficial to human health, including several fatty 

acids, as shown in Table 3. 
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Table 3. Milk fat components that have beneficial human health implications. Adapted from 

Bauman et al. (2006) 

Cancer Cardiovascular Health Immune Response Bone Health 

CLA CLA CLA CLA 

Vaccenic acid Stearic acid   

Sphingolipids Omega-3 fatty acids   

Butyric acid    

13-methyltetradecanoic 

acid 

   

Ether lipids    

 

Among the different fatty acids there are primarily isomers of conjugated linoleic acid (CLA) 

that are of interest and about 75% of our daily intake of CLA comes from dairy products 

(Bauman et al., 2006). The term CLA consists of 28 different isomers of octadecadienoic 

acid, where every positional isomer has four possible geometric pairs of isomers, i.e. 

cis,trans; trans,cis; trans,trans and cis,cis (Collomb et al., 2006). Although 14 different forms 

of CLA occur naturally in milk fat (Lock & Bauman, 2004), it is the cis-9, trans-11 C18:2 

(Figure 1), which represents more than 80% of the total CLA in milk fat, that is of interest as 

a functional food component (Parodi, 1977; Aro et al., 1998). Cis-9, trans-11 C18:2 acts 

anticarcinogenic by inhibiting the growth of a number of cancer cell lines and by suppressing 

tumour development in the body (Parodi, 1997b). Other beneficial effects on human health 

are antiatherogenic effects, reducing the development of atherosclerotic lesions, and reducing 

total plasma cholesterol and low-density lipoproteins cholesterol concentrations. The presence 

of cis-9, trans-11 C18:2 are related to the ruminal biohydrogenation of polyunsaturated fatty 

acids (PUFA) and it is an intermediate in the biohydrogenation of linoleic acid. However, the 

principal source of cis-9, trans-11 C18:2 in milk fat are derived from endogenous synthesis in 

the mammary gland, which will be described later. 

 

 
 

Figure 1. Chemical structure of cis-9, trans-11 C18:2. 

 

Milk fat synthesis 
The synthesis of milk fat in dairy cows occurs from two different sources. The first source is 

uptake from circulation of dietary fat or adipose tissue which has been biohydrogenated in the 

rumen (Bauman et al., 1999; Griinari & Bauman, 1999; Lock & Bauman, 2004). The fatty 

acids that are taken up from circulation are derived mainly from the intestinal absorption of 

dietary and microbial fatty acids, while lipolysis and mobilisation of body fat only accounts 

for less than 10% of the fatty acids in milk (Bauman & Griinari, 2003). The second source of 

milk fatty acids is from endogenous synthesis within the mammary gland, i.e. de novo 

synthesis. Short chain fatty acids (4 to 8 carbons) and medium chain fatty acids (10 to 14 

carbons) arise almost exclusively from synthesis within the mammary gland while long chain 

fatty acids (>16 carbons) are derived from the uptake of circulating lipids (Elgersma et al., 
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2003b). Fatty acids of 16 carbons in length originate from both sources. Since very little of 

the desired long chain fatty acids in milk (C18) are synthesised by the cow itself these have to 

be ingested with the feed. The amount of dietary fat that is directly transformed into milk fat 

depends mainly on three different factors; the biohydrogenation in the rumen, the absorption 

and digestibility of the ingested nutrients, and the deposition of adipose tissue (Palmquist et 

al., 1993). To understand how the fatty acid composition is influenced by nutrition, 

knowledge about the metabolic pathways of the synthesis of milk fat is of great importance. 

Fatty acid metabolism in the rumen 

The fatty acids that originate from the ingested feed undergo two transformations in the 

rumen. Firstly the microbial lipases hydrolyse the ester linkages and secondly the unsaturated 

fatty acids are biohydrogenated by the rumen bacteria (Harfoot & Hazlewood, 1997; Bauman 

et al., 1999). The bacteria can be divided into two different groups, A and B, based partly on 

their end products of biohydrogenation. Members of group A bacteria mostly hydrogenate 

linoleic acid and linolenic acid which result in the end product trans-11 C18:1. Group B 

bacteria are capable of hydrogenating this trans-11 C18:1 fatty acid into stearic acid. To which 

extent the fatty acids are hydrogenated depends on the type of diet, the degree of unsaturation 

of the fatty acids, and on the level and frequency of feeding (Jenkins, 1993). 

 

The initial step in the biohydrogenation process of linoleic acid is isomerisation of the cis-12 

double bond which leads to the formation of cis-9, trans-11 C18:2 as the double bond is 

transferred to carbon-11 position (Harfoot & Hazlewood, 1997; Bauman et al., 1999; Khanal 

& Dhiman, 2004). This is followed by a rapid hydrogenation of the cis-double bond of cis-9, 

trans-11 C18:2 which is then converted into trans-11 C18:1. However, the hydrogenation of the 

trans-11 C18:1 to stearic acid occurs less rapidly and thus it accumulates in the rumen and may 

therefore escape to the intestines where it can be absorbed (Griinari & Bauman, 1999; 

Bauman & Griinari, 2001). An alternative route for the biohydrogenation of linoleic acid 

involves the formation of trans-10, cis-12 C18:2, typical for diets that cause milk fat depression 

(Bauman & Griinari, 2001). 

 

Linolenic acid is isomerised at cis-12 position, forming cis-9, trans-11, cis-15 C18:3 (Harfoot 

& Hazlewood, 1997; Khanal & Dhiman, 2004). This fatty acid is then reduced at the cis-

bonds and forms trans-11 C18:1. The final step in the biohydrogenation of linolenic acid is 

similar that of linoleic acid. Approximately 75-90% of linoleic acid and 85-100% of linolenic 

acid are biohydrogenated in the rumen (Harfoot & Hazlewood, 1997). A schematic picture of 

the biohydrogenation process of both linoleic and linolenic acid is shown in Figure 2.  
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Figure 2. Scheme for the biohydrogenation of linoleic acid and α-linolenic acid. Adapted from 

Griinari et al. (1999). 

 

As a consequence of the ruminal biohydrogenation the fatty acids that reach the small 

intestine are mainly saturated, although some intermediates from the biohydrogenation can 

escape the rumen. The two major ones are trans-11 C18:1 and cis-9, trans-11 C18:2 (Lock & 

Bauman, 2004). From the small intestine the fatty acids are absorbed through the lumen wall 

and transported as triglycerides in VLDL (very-low-density lipoprotein) through the 

bloodstream to the udder. The uptake by the mammary gland depends on the action of LPL 

(lipoprotein lipase) which is located in the capillary walls. The fatty acids that have been 

mobilised from adipose tissue are transported as non-esterified fatty acids and their uptake by 

the mammary gland is proportional to plasma concentrations. 

Endogenous synthesis of CLA 

As mentioned previously, cis-9, trans-11 C18:2 is formed as an intermediate in the ruminal 

biohydrogenation and is rapidly hydrogenated into trans-11 C18:1. However, trans-11 C18:1 can 

be converted into cis-9, trans-11 C18:2 in the mammary gland and in endogenous tissues by the 

action of the enzyme Δ
9
-desaturase (Griinari & Bauman, 1999; Griinari et al., 2000). Trans-

11 C18:1 and cis-9,trans-11 C18:2 are present in the milk at a ratio of 1:3 (Lock & Bauman, 

2004) and about 70-80% of the cis-9,trans-11 C18:2 found in cow milk originates from 

endogenous conversion of trans-11 C18:1 (Griinari et al., 2000; Lock & Garnsworthy, 2002). 

Both cis-9, trans-11 C18:2 and trans-11 C18:1 found in milk have been shown to have 

anticarcinogenic activity (Table 3), the latter because it can be converted to cis-9, trans-11 

C18:2 through the de novo synthesis in the mammary gland. Ingested trans-11 C18:1 can also be 

converted into cis-9, trans-11 C18:2 endogenously in mammals (Salminen et al., 1998) and the 

conversion rate have been estimated to approximately 20% (Turpeinen et al., 2002). 
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Increasing CLA content in milk fat 
The content of the CLA cis-9, trans-11 C18:2 in milk fat is dependent on a number of different 

factors and can be increased several-fold, where the diet of the dairy cow is the most 

significant factor (Bauman et al., 1999; Bauman & Griinari, 2003). The amount in the milk 

can be increased either by increasing the intake of its precursors in the diet, by reducing the 

level of biohydrogenation in the rumen, or by increasing the activity of the enzyme Δ
9
-

desaturase, which converts trans-11 C18:2 into cis-9, trans-11 C18:2 in the mammary gland 

(Elgersma et al., 2003b). The enzyme activity have, however, been proposed to be rather 

unaffected by the diet (Lourenço et al., 2005b). According to Griinari et al., (2000), the main 

focus should lie on increasing the ruminal formation of trans-11 C18:1, rather than the 

production of cis-9, trans-11 C18:2 itself. Therefore the most feasible alternative would be to 

feed a diet rich in trans-11 C18:1 or to increase the formation of this fatty acid by the rumen 

biohydrogenation and its uptake in the duodenum. This statement was later supported by 

Vasta and Luciano (2011). 

 

The most common methods to increase the content of cis-9, trans-11 C18:2 are by feeding 

fresh pastures, or by addition of plant and marine oils to the diet (Dhiman et al., 1999; 

Bauman & Griinari, 2003). The composition of the dietary fatty acids, along with other 

dietary factors, will affect the ruminal production of both cis-9, trans-11 C18:2 and trans-11 

C18:1 (Bauman et al., 1999). These factors involve both provision of lipid substrate for the 

production of cis-9, trans-11 C18:2 or trans-11 C18:1, as well as factors that affect the bacteria 

involved in the biohydrogenation process, i.e. changes in the rumen environment. 

Furthermore, diets rich in linoleic acid, as well as pasture based diets, have been shown to 

inhibit the hydrogenation of trans-11 C18:1, resulting in this fatty acid being the main end 

product instead of stearic acid (Harfoot et al., 1973; Harfoot & Hazlewood, 1997). Thus, 

trans-11 C18:1 accumulates to a higher extent in the rumen and therefore more substrate can be 

absorbed and be available for endogenous synthesis of cis-9, trans-11 C18:2. The milk content 

of cis-9, trans-11 C18:2 may also be affected by the stage of maturity of the forage. Forage at 

the early growth stage gives an increase of cis-9, trans-11 C18:2 in milk fat, compared to 

second-cut or late-growth forage (Chouinard et al., 1998, cited by Bauman et al., 1999). It is 

possible that the high amount of degradable carbohydrates in early grazed pastures may affect 

the rumen environment so that less cis-9, trans-11 C18:2 and trans-11 C18:1 is used by the 

rumen and therefore available for postruminal absorption (Shroeder et al., 2004). 

 

Another way to increase the content of cis-9, trans-11 C18:2 in the milk is to increase the 

concentration of linoleic and/or linolenic acids in the diet. Lock and Garnsworthy (2002) 

examined how different diets affected the content of CLA in cows’ milk. They discovered that 

there were only diets high in linoleic acid that resulted in increased production of cis-9, trans-

11 C18:2 in the rumen as well as in the milk. In another study (Dhiman et al., 2000), a similar 

increase of cis-9, trans-11 C18:2 for diets rich in linolenic acids has been found as well. In a 

study by Kelly et al. (1998a), groups of equally producing Holstein cows were randomly 

assigned to three different diets to which peanut oil (high oleic acid), sunflower oil (high 

linoleic acid) or linseed oil (high linolenic acid) where added. Milk samples were collected 

and analysed from all cows at the end of the treatment period. The results showed that the 

milk fat concentration of cis-9, trans-11 C18:2 during the sunflower oil treatment differed 

significantly from the other treatments and was approximately 500% higher than for cows 

consuming traditional diets. Similar results have been observed when feeding diets rich in 

corn oil, which contains about 50% linoleic acid (McGuire et al., 1996). Furthermore, diet 

supplementation of cis-9, trans-11 C18:2 has been shown to lead to increased concentration of 

this fatty acid in milk fat (Chouinard et al., 1998, cited by Bauman et al., 1999). However, 
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feeding diets high in plant oils often result in milk fat depression and may also decrease the 

milk protein percentage and yield (Bauman & Griinari, 2003).  

 

Effect of feeding botanically diverse forages on milk fat synthesis 
Feeding ruminant animals diets consisting of more botanically diverse forages have resulted 

in changes in the milk fatty acid profile, making the milk healthier for human consumption 

(Lourenço et al., 2008). Several studies have shown that diverse forage diets result in a higher 

proportion of PUFA in the milk, including trans-11 C18:1 and cis-9, trans-11 C18:2, compared 

to feeding ryegrass-based diets (Kraft et al., 2003; Lourenço et al., 2005). In addition, the 

milk also has a higher content of linolenic acid even though the intake of this fatty acid does 

not differ significantly between diets (Table 4) (Lourenço et al., 2005; Lourenço et al., 2008; 

Petersen et al., 2011).  

 
Table 4. Milk fatty acid profile, recovery of dietary linoleic (C18:2 n-6) and linolenic (C18:3 n-3) acid in 

the milk and intake of dairy cattle fed a less diverse forage (>600 g/kg DM of grasses) or a 

botanically diverse forage (>300 g/kg of herbs). Adapted from Lourenço et al. (2008) 
 

Fatty acids Control Botanically diverse P 

Fatty acids (g/100 g)    

C18:1 t10 + t11 1.99 2.84 n.s. 

C18:2 n-6 1.07 1.22 n.s. 

CLA c9t11 0.866 1.43 n.s. 

C18:3 n-3 0.788 1.06 <0.05 

    

Intake (g/d)    

C18:2 n-6 65.4 64.0 n.s. 

C18:3 n-3 147 116 n.s. 

    

Recovery (g/100g)    

C18:2 n-6 8.40 9.39 n.s. 

C18:3 n-3 4.34 5.80 <0.1 

 

Petersen et al. (2011) studied the effects a herbage rich diet had on milk composition 

compared to a clover rich and a ryegrass rich diet. The herbage diet contained high levels of 

chicory, English plantain and salad burnet and resulted in a twofold increase in the transfer 

efficiency for linolenic acid. Furthermore, the herbage diet increased the transfer efficiency 

for linoleic acid by 28%, even though the diet did not contain higher levels of any of these 

fatty acids. 

 

The increases of certain PUFA in milk from cows fed botanically diverse diets most likely 

result from an increased rumen outflow of trans-11 C18:1 and linolenic acid to the intestine 

caused by a change in the fermentation patterns in the rumen (Lourenço et al., 2005b). 

Correlations have been found between biohydrogenation patterns and the content of PUFA in 

plant species (Collomb et al., 2002b) as well as between diverse plant species and the 

microbial activity in the rumen (Lourenço et al., 2007a; Lourenço et al., 2007b). Feeding 

botanically diverse forages to ruminants are associated with changes in the microbial 

populations in the rumen which are suggested to partially inhibit the hydrogenation of linoleic 

and linolenic acid. Consequently the conversion of trans-11 C18:1 into stearic acid (C18:0) 

becomes more sensible to inhibition, resulting in an accumulation of trans-11 C18:1 in the 

rumen (Lourenço et al., 2005b). The additional quantity of trans-11 C18:1 can more easily 
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escape the rumen and thus be available for absorption in the intestine. As mentioned earlier, 

trans-11 C18:1 can be transformed into cis-9, trans-11 C18:2 in the mammary gland and in 

endogenous tissues (Griinari & Bauman, 1999; Griinari et al., 2000). Therefore this fatty acid 

is increased in the animal products as well. Lourenço et al. (2008) compiled results from 

several studies examining the effects of botanically diverse forages. They could not 

distinguish any correlation between the proportion of diverse forages in the diet and the 

proportions of cis-9, trans-11 C18:2 in milk. Nevertheless, they suggested that the number of 

plant species in the diet could be associated with the changes in milk proportions of trans-11 

C18:1 and cis-9, trans-11 C18:2. 

 

The inhibition of complete biohydrogenation in the rumen is most likely caused by a shift in 

the microbial population. It is possible that some herbs contain secondary plant metabolites 

that have antimicrobial activity and can therefore potentially modify the rumen 

biohydrogenation by inhibiting or promoting different microbial populations (Lourenço et al., 

2007b). These suggestions are based on the demonstrated effects some secondary plant 

metabolites, e.g. condensed tannins, have on rumen methanogenesis (Waghorn, 2008).  

Inclusion of CT in the diet has also been reported to increase the milk production and change 

the milk composition in dairy cows. Woodward et al. (1999) examined to which proportion 

the increase in milk yield and milk composition was due to the CT and which proportion was 

due to factors associated with the legumes themselves, e.g. increased herbage intake and 

improved forage quality. Their results concluded that CT contributed to approximately 42% 

of the increased milk production from a diet consisting of birdsfoot trefoil (Lotus 

corniculatus), compared to a ryegrass diet. However, they found that CT themselves had no 

significant effect on milk fat concentration, indicating that the higher concentrations of fatty 

acids in milk from cows fed the legume diet were a result of the legumes’ higher nutritional 

value compared to ryegrass. The same results were later confirmed by Turner et al. (2005) 

and by Benchaar and Chouinard (2009). Although some research show that CT and other 

secondary plant metabolites have a beneficial impact on milk composition lack of direct 

evidence implies that further research within the area is essential. 

 

Before continuing with the next part of this report it should be mentioned that most studies 

included in this review has compared different grass forages and silages of varying 

composition but not pasture diets. The effect of feeding botanically diverse forages on milk 

composition should be rather similar between silage and pasture diets but the amount and 

concentration of the milk solids might not be comparable with each other. 
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Material and methods 
 

Experimental design 
The experiment was conducted at Lincoln University Research Dairy farm during summer 

2011 (27 January – 5 February). All sampling was carried out in compliance with Animal 

Ethics regulations. 

 

A total of seventy-two lactating Friesian-Jersey crossbred dairy cows of different lactation 

numbers were used. After being blocked according to milk yield, live weight, body condition 

score, days in milk and age, cows were divided into 12 groups (6 cows/group) and randomly 

assigned to six replicated pasture treatments. The experimental design was randomised block 

design where two replicates of six treatments (Figure 3). Pasture allowance was, 

approximately, 15 kg DM/cow/day. The six different pasture mixtures used were categorised 

as either a simple or a diverse pasture. The three simple mixtures all included white clover 

(cv. Kopu II) and were sown with either a standard diploid perennial ryegrass (RG cv. 

One50), a diploid high sugar ryegrass (HS cv. Abermagic) or with tall fescue (TF cv. 

Advance). The three diverse mixtures included each of the simple mixtures with the addition 

of either chicory, plantain, prairie grass and red clover (RGD), chicory, plantain and big 

trefoil (HSD), or chicory, plantain, prairie grass and lucerne (TFD). In all six combinations 

the base grasses were infected with either AR1 or MaxP endophyte. 

 

 
Figure 3. The experimental design and pasture treatments. 

 

The experiment lasted for 8 days with a 4 day adaptation period followed by a 4 day sampling 

period. Animals were milked twice daily at 7am and 3pm, and received a fresh pasture 

allocation following the 3pm milking. 

 

Pasture measurements 
Dry matter intake (DMI) was determined from random quadrate cuts which were harvested 

from each of the pastures pre and post grazing each day. The herbage was dried to a constant 

weight and dry weights were recorded. The calculations were made as following: 

 

    
                                                      

             
 

 

Samples from each replicate were thoroughly mixed prior to sub sampling. Two sub samples 

were made; the first one was immediately frozen for later analysis while the second sub 

sample was used to determine the botanical composition of the herbage. The fresh weight was 

recorded and the plant materials were sorted into either vegetative or reproductive ryegrass, 

different plant species, dead material or weeds. Each plant component was then dried 

separately at 60°C for 48h and dry weights were recorded. Based on these values the DM 
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content of the whole diet was calculated. The chemical composition and digestibility was 

analysed by using a near-infrared spectrophotometer (NIRS. Model: FOSS NIRSystems 

5000). The analyses for each of the pasture treatments and the inclusion level of the diverse 

plant species in the different pasture mixtures are presented in Table 5 and 6, respectively. 

The HSD pasture contained big trefoil but the inclusion level was too low to be measured, and 

values for big trefoil are not presented. 

 
Table 5. Chemical composition and calculated nutrient content of the different pastures. Values are 

presented as % of DM unless specified otherwise 
 

 HS HSD RG RGD TF TFD 

DM (% fresh forage) 22.68 16.93 23.54 16.73 18.25 16.90 

CP  16.21 13.67 13.41 16.24 19.44 13.77 

WSC 17.65 15.66 17.32 12.88 13.22 11.45 

NDF 35.09 28.82 40.42 30.78 35.07 34.63 

ADF 18.24 19.11 21.65 22.03 19.43 23.94 

Ash  9.35 11.01 10.18 10.29 10.45 10.63 

OMD 89.79 87.87 85.37 80.06 86.29 79.01 

ME (MJ/kg DM) 12.53 11.95 11.90 11.26 11.94 11.00 

 
 

Table 6. Inclusion level (in % of DM) of different plant species in each of the pasture mixtures, along 

with the proportion of dead material 
 

 HS HSD RG RGD TF TFD 

High sugar ryegrass 75.35 22.63     

Standard ryegrass   77.29 30.86   

Tall fescue     70.94 2.73 

White clover 1.91 0.85 2.20 3.90 23.79 4.97 

Chicory  56.69  32.93  53.08 

Plantain  3.91  5.31  8.74 

Lucerne      8.02 

Red clover    20.35   

Prairie grass    2.04  9.95 

Dead plant material 22.60 13.92 20.44 4.49 5.14 5.15 

 

Sampling and analysis 

Milk samples were collected from both am and pm milkings on day 6 during the four day 

sampling period and milk yield was recorded (DeLaval Alpro Herd Management system, 

Hamilton, New Zealand). Sub samples were attained for composition of fat, protein, lactose 

and urea-N. The sub samples were frozen at -20°C until milk fatty acid methyl esters (FAME) 

analysis. To get a representative sample for each day the milk from the am and pm milkings 

were sub pooled for each cow based on their milk volume for that day. Before sub pooling, 

the samples were thawed to 37°C to get homogenized. FAME GC analysis (GC-2010, 
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Shimadzu) was performed and peaks were identified by comparison of retention times with 

reference standards (Larodan, Sweden).  

 

Cow number 3 and 13 were not sampled on the am milking and their samples were not 

analysed for FAME analysis. 

 

Statistical analysis 

The data were analysed in two different ways; to examine the effect diverse pastures had on 

milk yield and milk fatty acid composition compared to simple pastures, and to examine the 

effect each diverse pasture mixture had compared to its simple mixture (HS vs. HSD etc.). In 

addition, milk yield data was analysed, and treatment means differences were tested, across 

all different pasture types.   

 

In order to compare all the diverse mixtures to the simple mixtures a two-way ANOVA was 

used (GenStat v.14). The animals were grouped according to whether the treatment was a 

simple or a diverse mixture of each base grass (i.e. HS, RG, and TF) and the calculations were 

based on the mean values of each group for each of the fatty acids of interest. Treatments 

were included as fixed effects.  

 

To investigate the effect each diverse mixture had when compared to its simple version a one-

way ANOVA was used (GenStat v.14). Animals were grouped according to treatment (e.g. 

simple/diverse) and treatments were included as fixed effects. 

 

The level of significance was set at 5% (P < 0.05) and levels of P < 0.1 were considered as 

tendencies. 
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Results 
 

Milk production 
The milk yields registered on the day of sampling are presented in Table 7. The milk yield did 

not differ significantly between cows on diverse compared to simple pastures. However, cows 

on pasture treatment TF had a significantly (P = 0.03) higher milk yield compared to all the 

other treatments. No significant difference was observed between the other pasture treatments. 

 

Milk fat composition 
The total milk fat (g/kg DM) and milk fatty acid composition (g/100g fatty acids) in milk 

from cows grazing HS, HSD, RG, RGD, TF and TFD pastures are presented in Table 7. The 

total fat yield did not differ significantly between simple and diverse pastures. The content of 

linoleic and linolenic acid was significantly higher in the diverse pastures compared to the 

simple pastures. Simultaneously there was a significant decrease in the content of cis-9, trans-

11 C18:2. The content of trans-11 C18:1 decreased in all the diverse pasture treatments but the 

decrease did not reach statistical significance. The content of long chain saturated fatty acids 

(LCSFA) increased slightly in milk from cows on the diverse pastures but the increase was 

not significant when all the simple pastures were compared to the diverse ones. The total 

content of medium chain saturated fatty acids (MCSFA) in milk collected from cows in all 

treatments did not differ; neither did the total content of monounsaturated fatty acids 

(MUFA), polyunsaturated fatty acids (PUFA) or saturated fatty acids (SFA). 
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Table 7. Milk yield, milk fat proportion and milk fatty acid composition in milk from cows grazing either a simple or a diverse pasture. The mean values of the 

all the simple pastures were calculated and compared to the mean values of all the diverse pastures 
 

Fatty acids (g/100g fatty acids) HS HSD RG RGD TF TFD Mean LSD P 

       Simple Diverse   

Milk yield (kg/d) 16.85 15.40 15.79 16.78 19.18 16.73 17.27 16.30 1.69 n.s. 

Milk fat (g/kg milk solids) 332.20 341.12 341.59 347.85 341.02 321.94 338.27 336.97 39.64 n.s. 

Linoleic acid 0.61 0.89 0.65 0.97 0.80 1.05 0.69 0.97 0.25 <0.05 

Linolenic acid 0.61 0.91 0.65 0.99 0.98 1.02 0.75 0.98 0.22 <0.05 

C18:1 trans-11 3.24 3.12 3.20 3.00 3.15 2.37 3.20 2.80 0.65 n.s. 

C18:2 cis-9, trans-11 1.62 1.52 1.68 1.38 1.72 1.29 1.67 1.40 0.25 <0.05 

LCSFA
1 

44.79 46.03 44.95 45.56 44.12 45.93 44.59 45.84 2.62 n.s. 

MCSFA
2 

25.60 24.78 25.05 24.45 25.13 25.37 25.29 24.87 1.18 n.s. 

Fatty acids above 16C 70.69 71.45 71.19 71.78 71.09 70.82 70.97 71.35 1.11 n.s. 

Fatty acids below 16C 28.99 28.20 28.46 27.84 28.55 28.84 28.69 28.30 1.12 n.s. 

Total MUFA
3 

22.95 22.00 23.05 22.50 23.02 21.32 23.02 21.94 1.90 n.s. 

Total PUFA
4 

4.67 5.18 4.88 5.42 5.71 5.34 5.08 5.32 0.64 n.s. 

Total SFA
5 

72.06 72.48 71.71 71.70 70.91 72.96 71.55 72.38 2.37 n.s. 

n.s.: not significant 
1
 Long chain saturated fatty acids (C16:0 – C26:0); 

2
 Medium chain saturated fatty acids (C6:0 – C15:0); 

3
 Monounsaturated fatty acids;  

4
 Polyunsaturated fatty acids; 

5
 Saturated fatty acids. 
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In order to investigate the effect inclusion of diverse plant species had on milk yield and fatty 

acid composition each of the diverse pasture mixtures were compared to its simple mixture of 

grass and white clover. When the fatty acid profile was compared between the HS and the 

HSD treatments a significant difference was observed in the content of both linoleic and 

linolenic acid (P<0.001) as well as in the content of total PUFA (P<0.1) (Table 8). There was 

also a small decrease in the content of cis-9, trans-11 C18:2 as well as an increase in the 

content of LCSFA and total content of fatty acids above 16 carbons but none of these values 

reached statistical significance. 

 
 

Table 8. Comparison in milk fatty acid profiles from cows grazing either simple or diverse pastures 

with the base grass high-sugar perennial ryegrass 
 

Fatty acids  

(g/100g fatty acids) 

HS HSD LSD P 

Linoleic acid 0.61 0.89 0.10 <0.001 

Linolenic acid 0.61 0.91 0.12 <0.001 

C18:1 trans-11 3.24 3.12 0.83 n.s. 

C18:2 cis-9, trans-11 1.62 1.52 0.39 n.s. 

LCSFA
1 

44.79 46.03 2.68 n.s. 

MCSFA
2 

25.60 24.78 1.50 n.s. 

Fatty acids above 16C 70.69 71.45 1.37 n.s. 

Fatty acids below 16C 28.99 28.20 1.37 n.s. 

Total MUFA
3 

22.95 22.00 2.09 n.s. 

Total PUFA
4 

4.67 5.18 0.54 <0.1 

Total SFA
5 

72.06 72.48 2.58 n.s. 

n.s.: not significant 
1
 Long chain saturated fatty acids (C16:0 – C26:0); 

2
 Medium chain saturated fatty acids (C6:0 – 

C15:0); 
3
 Monounsaturated fatty acids; 

4
 Polyunsaturated fatty acids; 

5
 Saturated fatty acids. 

 

 

There was a significantly higher concentration of PUFA, including linoleic and linolenic acid, 

in milk from cows grazing the RGD pasture compared to cows on the RG pasture (Table 9). 

No other values reach statistical significance although a small decrease in the content of cis-9, 

trans-11 C18:2 can be observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

21 

 

Table 9. Comparison in milk fatty acid profiles from cows grazing either simple or diverse pastures 

with the base grass standard perennial ryegrass 
 

Fatty acids  

(g/100g fatty acids) 

RG RGD LSD 

 
P 

Linoleic acid 0.65 0.97 0.14 <0.001 

Linolenic acid 0.65 0.99 0.18 <0.001 

C18:1 trans-11 3.20 3.00 0.90 n.s. 

C18:2 cis-9, trans-11 1.68 1.38 0.40 n.s. 

LCSFA
1 

44.95 45.56 2.49 n.s. 

MCSFA
2 

25.05 24.45 1.79 n.s. 

Fatty acids above 16C 71.19 71.78 1.77 n.s. 

Fatty acids below 16C 28.46 27.84 1.76 n.s. 

Total MUFA
3 

23.05 22.50 1.90 n.s. 

Total PUFA
4 

4.88 5.42 0.55 <0.1 

Total SFA
5 

71.71 71.70 2.24 n.s. 

n.s.: not significant 
1
 Long chain saturated fatty acids (C16:0 – C26:0), 

2
 Medium chain saturated fatty acids (C6:0 – 

C15:0); 
3
 Monounsaturated fatty acids; 

4
 Polyunsaturated fatty acids; 

5
 Saturated fatty acids. 

 

Table 10 shows the comparison in milk fatty acid profiles from cows on either the TF or the 

TFD treatment. There was a significant difference in the concentration of linoleic acid and in 

the total content of MUFA with a higher and a lower content in the milk from cows grazing 

the diverse pasture, respectively. There was a tendency of significance difference in the 

content of trans-11 C18:1, as well as in the content of LCSFA and total SFA. Unlike the other 

treatments the concentration of linolenic acid did not increase but was at a relatively high 

level in the milk from cows on both treatments. 

 
Table 10. Comparison in milk fatty acid profiles from cows grazing either simple or diverse pastures 

with the base grass tall fescue 

Fatty acids  

(g/100g fatty acids) 

TF TFD LSD P 

Linoleic acid 0.80 1.05 0.15 <0.01 

Linolenic acid 0.98 1.02 0.17 n.s. 

C18:1 trans-11 3.15 2.37 0.84 <0.1 

C18:2 cis-9, trans-11 1.72 1.29 0.54 n.s. 

LCSFA
1 

44.12 45.93 2.00 <0.1 

MCSFA
2 

25.13 25.37 1.14 n.s. 

Fatty acids above 16C 71.09 70.82 1.15 n.s. 

Fatty acids below 16C 28.55 28.84 1.15 n.s. 

Total MUFA
3 

23.02 21.32 1.58 <0.05 

Total PUFA
4 

5.71 5.34 0.70 n.s. 

Total SFA
5 

70.91 72.96 2.17 <0.1 

n.s.: not significant 
1
 Long chain saturated fatty acids (C16:0 – C26:0); 

2
 Medium chain saturated fatty acids (C6:0 – 

C15:0); 
3
 Monounsaturated fatty acids; 

4
 Polyunsaturated fatty acids; 

5
 Saturated fatty acids. 
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Discussion 

Milk yield 
The daily milk yield did not differ significantly between cows on the simple compared to the 

diverse pastures, and there does not seem to be any beneficial effect of inclusion of diverse 

plant species on the milk production. However, the milk production from cows on the TF 

pasture was significantly higher than the production from cows on the TFD pasture (P = 

0.03). This might be due to the fact that tall fescue is a good summer crop in dry 

environments, such as in Canterbury, as it has higher water use efficiency than ryegrasses and 

may produce more kg dry matter per hectare, especially if the weather is hot and dry (Millée 

et al., 2010). The TF pasture also had a much higher content of crude protein (19.44%). This 

might have some contributing effect although many studies have shown no positive effect of a 

crude protein content higher than 16% of DM on milk production (Kalscheur et al., 1999; 

Colmenero & Broderick, 2006). Other explanations to the higher milk yield from cows on the 

TF pasture is a possibly higher intake of dry matter or the fact that the proportion of dead 

plant material was much lower in that pasture compared to both HS, HSD and RG. The TF 

pasture was also the only pasture that contained a relatively high proportion of white clover 

(23.79%). It is well known that the clover content of the pasture has an impact on the milk 

production as a higher content of clover increase the utilisation efficiency of amino acids in 

the animal (Johnson & Thomson, 1996). The combination of the drought resistant tall fescue 

with white clover in the pasture mixture would therefore result in a highly nutritious pasture 

for the dairy cows, especially if the weather was dry during the experimental period which 

might have been the fact considering the large proportions of dead plant materials in some of 

the pastures. 

 

Cows on the high sugar ryegrass pasture (HS) had a numerically higher daily milk production 

compared to cows on the standard ryegrass pasture (RG). These results correspond to other 

studies where diets consisting of high sugar ryegrasses resulted in an increased milk 

production (Miller et al., 2001b). Although different studies have come to varying 

conclusions, ryegrasses with higher sugar content have been shown to increase milk 

production by improving ruminal amino acid utilisation for microbial protein synthesis as a 

result of a better supply of easily available carbohydrates, e.g. WSC (Moorby et al., 2006). 

Although the WSC content did not differ between the pastures the HS pasture had a higher 

digestibility of organic matter (OMD) than the RG and higher protein content (16.21 vs. 

13.41%). However, when including more plant species in the pasture the RGD treatment 

resulted in higher milk yield compared to the HSD treatment. This might be a consequence of 

the lower proportion of high sugar ryegrass in the pasture at the expense of more plant species 

or the fact that the RGD pasture had higher crude protein content (16.24 vs. 13.67%) as well 

as a higher proportion of red clover (24.20 vs. 0.85% of DM). The lower production in cows 

grazing HSD and RG pastures may also be a consequence of the low clover content in those 

pastures as Cosgrove et al. (2006) stated that a common problem with diverse pastures is that 

they often contain insufficient amounts of clover to capture their nutritional value as extra 

milk production. Since several of the pastures had a low inclusion level of white clover this 

might be a likely explanation to the lower milk production in cows grazing these pastures. 
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Milk fatty acid composition 
Before discussing the changes in milk fatty acid composition it should be mentioned that there 

is a chance that the experimental period in this study was too short for the fatty acid 

composition to change and establish properly according to the composition of the different 

pasture treatments. The adaptation period in this study was only four days and the milk 

samples were collected on day six in the experiment which leaves little time for changes in 

the milk composition to take place. Khanal et al. (2008) investigated the changes in fatty acid 

composition after cows were turned out to pasture and measured how many days it took for 

the different fatty acids to stabilise their concentration in the milk. According to their results it 

took around 23 days for most of the fatty acids in the milk to get stabilised after the cows 

were turned out to pasture but only seven days for the values to be back at their original level 

when the cows were put back on a TMR diet inside the barn. Since the milk samples in this 

study were obtained on day six the fatty acid profile might not yet have been stabilised to the 

final level. The same quick changes in the milk fat composition in cows after transition from a 

fresh grass diet to a silage diet have been observed by Elgersma et al. (2004) as well. They 

observed that most changes in milk fatty acid composition took place within four days after 

transition to the silage diet It should, however, be mentioned that these experiments compared 

the fatty acid composition in milk from cows on either a pasture or a silage diet. No data have 

been found on how long it takes for the fatty acid composition to stabilise after cows have 

been subjected to changes in their pasture diet. Nonetheless, in the present study, in spite of 

the short length of the experimental period, some differences in milk fatty acid composition 

among pastures types were evident. 

 

All the diverse pasture treatments resulted in a significantly higher content of the PUFA 

linoleic and linolenic acid in the milk compared to the simple mixtures (Table 7). Meanwhile, 

the concentration of cis-9, trans-11 C18:2 was significantly lower in the milk from cows on 

these treatments, which differs from the hypothesis stated in the introduction. The 

concentration of linolenic acid in milk fat increased in each diverse pasture mixture compared 

to the simple mixtures, except for cows grazing the TFD pasture where the increase was not 

significantly higher than in milk from cows grazing the TF pasture. A possible explanation to 

the smaller increase in linolenic acid between these treatments is that the concentration of this 

fatty acid was high in milk from cows on both treatments (~1 g/100g fatty acids). The TF 

pasture appears to result in a high content of linolenic acid in milk, similar to the increases 

observed in milk from cows grazing diverse pastures. Therefore the difference in linolenic 

acid content between TF and TFD is not as large as it is between the other treatments. 

 

There was a small increase in the concentration of LCSFA in the milk from cows on the 

diverse pastures but the increase did not reach statistical significance, except for between the 

TF and TFD pastures. Simultaneously there was a small decrease in the proportion of MCSFA 

in most of the diverse pasture treatments which indicates lower de novo synthesis. According 

to previous studies feeding ruminants diverse forage diets result in higher concentrations of 

both linoleic and linolenic acid in the milk as well as increased concentrations of  trans-11 

C18:1 and cis-9, trans-11 C18:2 (Kraft et al., 2003; Lourenço et al., 2005b). However, Lourenço 

et al. (2008) compiled statistical data from several studies on effects of diverse forages on the 

milk fatty acid profiles and stated that the concentration of trans-11 C18:1 and cis-9, trans-11 

C18:2 varied between the studies. They suggested that the concentration of these fatty acids in 

milk depends of several different factors and stated that no certain correlation can be 

determined between feeding diverse plant species and the concentration of trans-11 C18:1 and 

cis-9, trans-11 C18:1 in milk fat. 
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The significant increase in linoleic and linolenic acid in milk from cows grazing the diverse 

pastures found in this study is most likely a result of changes in the rumen environment. 

Different microbial populations have been observed in the rumen of cows receiving different 

diets which might explain the changes in the biohydrogenation intermediates as well as in the 

amount and proportion of fatty acids escaping the rumen and ending up in the milk (Lourenço 

et al., 2007a). Lourenço et al. (2007b) also found that the abomasum content of both linoleic 

and linolenic acid was significantly higher in lambs grazing a botanically diverse pasture, 

although this difference could not be observed in the rumen contents which indicate a higher 

rumen outflow of these fatty acids. Lourenço et al. (2005b) suggested that the higher 

concentrations of PUFA in milk from cows fed diverse diets were due to higher transfer 

efficiency from the duodenum to the mammary gland of these fatty acids. This statement has 

later been supported by Peterson et al. (2011). Furthermore, several studies have found 

correlations between the microbial activity in the rumen and feeding diverse plant species to 

ruminants (Lourenço et al., 2007a; Lourenço et al., 2007b). The most likely explanation for 

the changes that occur in the milk fatty acid profiles from cows receiving diverse diets is that 

the microbial population in the rumen is affected by different secondary metabolites in the 

diverse plant species which result in a reduced lipolysis and hydrogenation of linoleic and 

linolenic acid (Lourenço et al., 2007b). These suggestions are based on the demonstrated 

effects some secondary plant metabolites have on rumen methanogenesis (Waghorn, 2008) 

but the mechanism behind it is not yet fully understood. Another explanation to the higher 

concentrations of linoleic and linolenic acid might be that the different pasture mixtures 

differed in concentrations of these fatty acids as correlations have been found between 

biohydrogenation patterns and the content of PUFA in plant species (Collomb et al., 2002b). 

 

The higher concentration of linoleic and linolenic acid in milk from cows subjected to the 

RGD treatment compared to the RG treatment might in part be explained by the inclusion of 

red clover in the diverse pasture mixture. Inclusion of red clover in the diet has been shown to 

result in higher concentrations of linoleic and linolenic acid in the milk (Dewhurst et al., 

2003; Lourenço et al., 2008; Van Ranst et al., 2011; Arvidsson et al., 2012) as well as a lower 

biohydrogenation of these fatty acids in the rumen (Van Ranst et al., 2011). Lourenço et al. 

(2008) compiled results from different studies where cows were fed red clover forages 

compared to ryegrass forages. The milk from cows fed red clover had higher proportions of 

linolenic acid, despite the similar dietary supply from both diets, and the rumen proportion 

and outflow of this fatty acid was also higher. This is a consequence of the fact that red clover 

contains the plant metabolite polyphenol oxidase (PPO) which is known to reduce the activity 

of plant lipases (Lourenço et al., 2005a; Lee et al., 2007). It acts by forming diphenols from 

phenols, which are both present in plants, and then oxidising the diphenols to quinones. The 

quinones react with each other and form a polymer network which can also bind to certain 

amino acids (e.g. lysine, cysteine, and methionine), thereby including proteins in their 

network. As a consequence, the proteins are denatured and enzyme activity is inhibited which 

might be an explanation for the lower biohydogenation (Lourenço et al., 2008; Van Ranst et 

al., 2011). The quinones may also react with microbial enzymes in the rumen, thereby 

inhibiting the lipolysis. This is, however, not as likely as the quinones are very reactive and 

would have bond to proteins or other quinones before reaching the rumen. Nevertheless, Lee 

et al. (2007) concluded that the presence of PPO in forages have a direct impact on 

biohydrogenation. In their study two lines of red clover were compared; containing high and 

low concentrations of PPO, respectively. They found that the biohydrogenation of linoleic and 

linolenic acid was significantly lower in the treatment with high concentrations which 

suggests that forages high in PPO activity may be used to reduce the losses of PUFA in the 

rumen. Another explanation to the lower biohydrogenation is that the quinones can bind to the 
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lipid membranes, protecting them from lipolysis (Lee et al., 2007; Lourenço et al., 2008). 

Since the accumulation of unesterified linoleic and linolenic acid is limited in the rumen 

lower lipolysis will result in a higher outflow of these fatty acids which will end up in the 

milk to a higher extent (Harfoot & Hazlewood, 1997; Lourenço et al., 2008). 

 

The increase of linoleic and linolenic acid in milk from cows grazing the diverse pastures 

might also be a consequence of the higher concentration of CT in those diets. As is shown in 

Table 1 chicory and plantain contain higher levels of CT than grasses. Chicory and plantain 

were present in all the diverse mixtures, along with big trefoil in the TFD treatment. CT act by 

binding to proteins in the rumen, forming non-degradable complexes, resulting in a higher 

flow of non-ammonia nitrogen to the duodenum (Waghorn et al., 1994). The bindings within 

the complexes are pH dependent and since the pH in the duodenum is higher the tannin-

protein complexes are broken and the proteins can be absorbed through the intestinal wall. 

Thus, less PUFA are subjected to biohydrogenation by the rumen bacteria and may instead 

end up in the milk in a higher amount. CT may also affect the microbial population in the 

rumen either indirectly, by affecting the microbial enzymes and inhibiting their activity 

(McSweeney et al., 2001), or directly by altering the permeability of their membranes and 

inhibiting their oxidative phosphorylation (Scalbert, 1991). Inclusion of moderate amounts of 

CT in the ruminant diet (<50 g/kg DM) has been shown to have beneficial effects by 

improving the digestibility and utilisation of the feed by the animal (Barry & McNabb, 1999; 

Min et al., 2003; Frutos et al., 2004). Very high levels of CT, as in big trefoil (77 g/kg DM; 

Ramírez-Restrepo & Barry, 2005) might have a negative effect on the cow’s performance 

with consequences as reduced voluntary feed intake and reduced nutrient availability to the 

animal (Barry & Duncan, 1984; Barry, 1985). However, in this experiment the proportion of 

diverse plant species containing CT were relatively small in each of the diverse pasture 

mixtures, thus no such negative effect would be expected. In fact the proportion of CT might 

even be too small (<10 g/kg DM) for a beneficial effect to be noticeable. Both chicory and 

plantain contain relatively low concentrations of CT (see Table 1) and according to the values 

presented in this study the proportion of CT did not exceed 3.5 g/kg DM for any of the pasture 

mixture at the time of sampling. The concentrations of CT in the pastures included in this 

study might therefore be too low to get a positive effect on the milk composition. There is 

also a difference in the reactivity of CT between plant species and the effect depends both 

upon its concentration and chemical structure (Min et al., 2003). It is therefore possible that 

the CT present in chicory and plantain do not have any substantial impact on the milk 

production and milk composition when fed to dairy cows. Furthermore, Beever and Siddons 

(1986; cited by Barry & McNabb, 1999) suggested that mixing CT containing plant species 

with non-CT containing species seldom results in any beneficial effects since the CT will 

preferably react with the proteins from the CT-containing plant. There is therefore a chance 

that the CT in the diverse pastures in this study did not contribute to the positive effects seen 

in the milk fatty acid profile from cows on these pastures. 

 

Milk from cows grazing diverse pastures had significantly lower concentrations of cis-9, 

trans-11 C18:2 compared to cows grazing the simple pastures. However, the milk from all 

cows in the study had a rather high concentration of this fatty acid compared to other studies 

(0.87g/100g; Collomb et al., 2002a). In other studies where the cis-9, trans-11 C18:2 content 

decreased in milk from cows fed botanically diverse diets the concentration in the milk was 

already high which might explain the lack of effect on the composition of this fatty acid (1.7 

g/100g; Leiber et al., 2005). The lower concentration of cis-9, trans-11 C18:2 might also be a 

consequence of the higher concentrations of linoleic and linolenic acid in the milk. As already 

been discussed the PPO in red clover may protect the lipids from lipolysis in the rumen 
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resulting in a higher outflow of these fatty acids and thus a lower biohydrogenation of them. 

Since cis-9, trans-11 C18:2 is an intermediate in the biohydrogenation of linoleic and linolenic 

acid (as is trans-11 C18:1) the outflow might be lower if less linoleic and linolenic acid is 

hydrogenated. 

 

Besides the possible impact different plant secondary metabolites may have on the milk fatty 

acid composition the composition of the pastures may have further impact on the milk fatty 

acid profile, especially the concentrations of WSC and protein. A high WSC content leads to a 

decreased pH in the rumen which will affect the microbial population and hence the 

biohydrogenation of the unsaturated fatty acids, whilst an increased protein content will result 

in higher pH (Eeston et al., 2009). The relationship between WSC and CP was negative for 

the RGD, TF and TFD pastures but positive for the HS, HSD and RG pastures. However, the 

concentration of linoleic and linolenic acid was somewhat higher for the RGD, TF and TFD 

pastures compared to the others which would not be expected since the rumen pH would have 

been higher in the rumen of the cows grazing these pastures. Nevertheless, the proportion of 

dead plant material in these pastures were much lower compared to the other pastures which 

possibly had a larger effect on the milk fatty acid composition than the content of WSC. 

 

Finally, one important detail to bear in mind when studying the effects of botanically diverse 

diets on milk composition is that the term “botanically diverse” is not a fixed concept. Thus 

the diversity and number of plant species in the diet may vary between studies which will 

have an impact on the results. In this study the diverse pasture mixtures only contained three 

or four extra species and may not be considered to be “diverse” in comparison to other studies 

or in other parts of the world, although the inclusion levels of diverse plant species in this 

study were rather high. In a study by Leiber et al. (2005) 71 plant species were used in the 

pasture mixture, of which 46 were herbs. Other studies, by Collomb et al. (2002a,b) and 

Lourenço et al. (2005b), used 55 and 42 plant species in their pastures of which 13 and 22 

were herbs, respectively. However, the proportion of diverse plant species in the pasture does 

not seem to have a direct impact on the milk fatty acid profile as Leiber et al. (2005) reported 

lower content of cis-9, trans-11 C18:2 in milk although their pasture contained more plant 

species than the other studies listed above in which the concentration of cis-9, trans-11 C18:2 

increased in the milk. There seems to be an interaction of several different factors that affect 

and determine the fatty acid profile in milk which implies that further research within the area 

is essential. 
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Conclusions 
Feeding botanically diverse pastures to dairy cows affect the milk fat fatty acid proportions, 

increasing the proportions of PUFA, especially of linoleic and linolenic acid. The higher 

transfer efficiency of these fatty acids from feed to milk is probably caused by changes in the 

rumen environment due to various plant metabolites present in herbs and legumes that have 

antimicrobial activity and may interfere with the biohydrogenation in the rumen and the 

microbial population. 

 

Including more diverse plant species in the ruminant diet provides an opportunity to produce 

healthier products from a human perspective with higher concentrations of unsaturated fatty 

acids. This, along with the reported decreases in rumen methanogenesis from cows fed 

diverse forages, indicates that the effect of secondary plant metabolites on ruminant 

production merit further investigation. 
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