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Abstract  

Metals are a natural part in our environment. Due to increased use of metals in our 

society the biogeochemical cycles of metals are being altered on local, regional and 

global scales. Metals can be emitted through direct use of some elements (Fe, Zn 

and Cu) or indirectly as a result of processes (e.g., burning of fossil fuels resulting 

in emission of V and Hg). Both the chemical and physical properties of the element 

affect the amount of metals distributed in the environment, but the main factor is the 

usefulness of an element for humans. (Mason, 2013) 

 

To be able to evaluate an anthropogenic impact on a lake of pollutants like metals, 

reference conditions are needed. Background concentration is one type of reference 

condition, which can be separated into regional and a natural background concen-

tration. E.g. in Sweden, 1860 is used as a reference year for acidification because 

the effect of acid deposition should have been at a minimum during this time period 

(SEPA, 2010).  

 

The aim of this study was to create a model that could predict the natural background 

concentration of a metal in lakes based on easily measured variables such as TOC 

and pH. This was possible for Pb, Zn and Ni (if including sedimentation rate).The 

predicted background concentration in this study were higher for all three metals 

than the one currently used in the Swedish Environmental Protection Agency’s 

standards. However, beyond this it was also possible to model the current concen-

tration of Al, Cu, Cr, Co, Fe, Mn and V in the studied lakes.  

 

Due to the fact that all lakes are to some extent affect by humans (through atmos-

pheric deposition), using modelling approach can provide a better way to estimate 

the background concentrations in lakes and through that also a better estimation of 

the human impact. 
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Sammanfattning 

Metaller är en naturlig del i vår miljö. På grund av ökad användning av metaller i 

vårt samhälle har de biogeokemiska cyklerna rubbats på både lokal, regional samt 

global nivå. Utsläpp av metaller kan ske genom direkt användande av ämnet (Fe, 

Zn och Cu) eller indirekt som resultat av en process (förbränning av fossila bränslen 

resulterar i utsläpp av V och Hg exempelvis). En metalls kemiska och fysiska egen-

skaper avgör hur den sprids i miljön, men den största faktorn är hur användbar den 

är för oss människor. (Mason, 2013) 

 

För att kunna utvärdera hur stor antropogen påverkan som skett på en sjö krävs ett 

referens tillstånd. Bakgrundskoncentration är en typ av referenstillstånd som sedan 

kan delas in i regional och naturlig bakgrundskoncentration. Inom försurning av 

sjöar används exempelvis år 1860 som referensår i Sverige (SEPA, 2010). 

 

Syftet med denna studie var att skapa en modell som kan användas för att förutspå 

koncentrationen av en metall i en sjö baserat på parametrar som TOC och pH, vilka 

är enkla att mäta och ingår i det nationella miljö övervakningsprogrammet. Detta 

var möjligt för Pb, Zn och Ni (om sedimentationshastigheten inkluderades i mo-

dellen). Resultatet visar att den modellerade backgrundskoncentrationen i denna 

studie var högre för samtliga tre metaller än de som för närvarande används i Na-

turvårdsverkets jämförelsevärden. Förutom dessa tre modeller kunde även koncent-

rationen av följande metaller modelleras: Al, Cu, Cr, Co, Fe, Mn and V.  

 

Med anledning av att alla sjöar är till viss mån påverkade av det mänskliga samhället 

(exempelvis genom atmosfäriskt nedfall) kan detta tillvägagångssätt, att modellera 

den historiska koncentrationen, erbjuda ett bättre sätt att uppskatta den historiska 

bakgrundkoncentrationen i sjö och genom det också en bättre uppskattning på den 

mänskliga påverkan. 
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Populär vetenskaplig sammanfattning 
Metaller är en naturlig och livsviktig del av vår levnadsmiljö, dock kan vissa vara giftiga i 

för höga koncentrationer. Vi påverkar metallernas biogeokemiska cykler på både lokal, reg-

ional och global nivå genom vårt användande av metaller i vårt. Utsläppen kan ske genom 

olika processer, vissa metaller genom direkt användning av dem (järn, zink och koppar) och 

andra metaller genom förbränning av fossila bränslen (exempelvis vanadin och kvicksilver). 

Metallernas kemiska och fysiska egenskaper påverkar hur ämnet reagerar efter utsläppet och 

hur det sprids i naturen (Mason, 2013). 

 

För att kunna utvärdera den mänskliga påverkan på en sjö måste det finnas ett tillstånd att 

jämföra med, till detta används ett referenstillstånd. Det finns flera typer av referenstillstånd 

för metaller, ett sådant är bakgrundskoncentration. Bakgrundskoncentrationer kan i sin tur 

delas in i regionala och naturliga. År 1860 används exempelvis som referensår för försurning 

av sjöar i Sverige eftersom påverkan av sur deposition inte hunnit ge så stor effektvid den 

tidpunkten (SEPA, 2010). 

 

Syftet med denna studie var att modellera den naturliga bakgrundskoncentrationen av me-

taller i svenska sjöar baserat på parametrar som ingår i det nationella övervakningsprogram-

met (ex. pH och TOC). Detta var möjligt för bly, zink och nickel. För nickel krävdes det 

även att sedimentationshastigheten ingick i modellen. Resultatet från modellerna visade på 

högre bakgrundshalt för samtliga tre metaller jämfört med Naturvårdsverkets jämförelsevär-

den. Utöver dessa metaller var det också möjligt att skapa modeller som beskrev aluminium, 

koppar, krom, kobolt, järn, mangan samt vanadin. Dessa kunde tyvärr inte testas, inom ra-

men för denna studie, mot uppmätta halter från de studerade sjöarna.   

 

Då alla sjöar är påverkade av oss människor genom atmosfäriskt nedfall kan detta arbetssätt, 

att skapa modeller för bakgrundskoncentrationer av metaller i sjöar, vara ett bättre arbetssätt 

för att utvärdera hur stor den mänskliga påverkan är istället för som i dagsläget; använda 

koncentrationer från sjöar som bedöms vara mindre påverkade.  
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1 Introduction 
Metals are found in all lakes, having both natural and anthropogenic origins. To be 

able to estimate the anthropogenic influence on a lake, a reference condition is 

needed to compare with. A reference condition is an estimation of what the concen-

tration would be with no human impact (background concentration). In today’s 

monitoring the background concentration used for environmental assessment of 

lakes in Sweden is based on the 50-percentil value for lakes found in a specific 

region (ecoregion) (Johansson et al., 2009).  

 

Modelling has been used in environmental science for long time, especially when 

working with eutrophication or acidification of surface waters (Lindström, 2000). 

Through mathematic formula, it is possible for a researcher to describe relationships 

in nature. Predictive modelling can forecast scenarios both in future and historical 

time periods through applying formulas based on current and/or historical data to 

new scenarios. Predictive modelling of metals has been used in earlier research to 

estimate the load of metals reaching a lake, concentration in sediment and the dis-

tribution of metals between particulate associated and dissolved fractions 

(Lindström, 2000). However, it has not been used to predict the concentration of a 

certain metal in lake water. 

 

Total organic carbon (TOC) is one of the factors affecting metal concentration in a 

lake both directly and indirectly. Observations in recent years, together with mod-

elling, have shown an increase of TOC in both rivers and lakes (Cunningham et al, 

2008, Rosén, 2005). Increasing TOC in lakes could potentially increase the metal 

concentration in the water. This together with the fact that the reference condition 

used today is based on measurements made in the last 30-years, urge for the need of 

a new method to estimate background concentration. 

1.1 Aim 

The aim of this study was to construct a model able to predict background concen-

trations of metals in Swedish lakes. This was done through an empirical model based 

on sediment and water chemical data. The hypothesis to be answered is if it is pos-

sible to predict background metal concentrations based on readily available histori-

cal data such as TOC, pH and sediment metal content. 
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1.2 Limitations 

The metals studied are those included in the Swedish Freshwater monitoring pro-

gram except for Mercury (Hg), Cadmium (Cd) and Arsenic (As). These three are 

excluded from this study due to limitations in analysing methods (ICP-AES and 

ICP-MS). Remaining metals that are used in this study are Aluminium (Al), Copper 

(Cu), Chromium (Cr), Cobalt (Co), Iron (Fe), Manganese (Mn), Lead (Pb), Nickel 

(Ni), Zinc (Zn) and Vanadium (V). The factors used in the modelling were pH, TOC, 

sedimentation rate and concentration of metals in sediment. 
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2 Theoretical framework 
Metals are natural parts of aquatic ecosystems. Some are essential to living organ-

ism, but can still be toxic at high concentrations. Due to increased use of metals in 

daily life, biogeochemical cycles are being altered on both local, regional and global 

scales (Nriagu and Pacyna, 1988). Metals can be emitted through direct use of some 

elements (Fe, Zn and Cu) or indirectly as a result of processes (e.g., burning of fossil 

fuels resulting in emission of V and Hg). Both the chemical and physical properties 

of the element affects the amount of metals distributed in the environment, but the 

major factor  are the usefulness of an element for us human being  (Mason, 2013). 

2.1 Reference conditions  

To be able to evaluate an anthropogenic impact on a lake, reference conditions are 

needed. Background concentration is one type of reference condition, which can be 

separated into regional and a natural background concentration. E.g. in Sweden,  

1860 is used as a reference year for acidification (SEPA, 2010).  

 

The natural background concentration of a certain metal is the concentration that is 

assumed to be present in a lake without any human impact, while the regional back-

ground concentration takes diffuse inputs into account (e.g. nitrogen- and sulphur 

oxides from burning of fossil fuels) (Stoddard et al., 2006). The regional background 

concentrations in Swedish lakes are calculated as the median concentration of all 

measured values in the same limnological ecoregion with the same hydromorpho-

logical properties (Johansson et al., 2009).  

 

In July 2000 the water framework directive was established, forcing the member 

countries to monitor surface water bodies. The aim with the objective is to work for 

a sustainable use of water in our society. Metals concentrations in lake ecosystems 

are parts of this work through the evaluation and monitoring of chemical status of 

surface waters (“2000/60/EG,” 2000; “Övervakning enl. vattendirektivet,” n.d.). 

2.2 Metals in the environment - sources and impact from pollution 

Emission of metals to the environment takes place from all types of combustion 

processes, transport, mining, agriculture, waste treatment, cement production, and 

metallurgic industries. The form of emission (gas, particulate e.g.) specifies the im-

pact. Point source output from an industry close to a water body impacts the local 
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area, whereas air emission are diffuse and can spread longer distances. A majority 

of metals are emitted and transported as particles in the atmosphere. Hg is an exam-

ple of a metal where transport can take place in gaseous form (Mason, 2013). De-

pending on the chemical and physical properties, together with characteristics of the 

source (height over ground, local environment such as wind and topography), dis-

tribution patterns differs between metals  

 

Metals are transported according to weather patterns and deposited in wet and/or 

dry deposition. In Sweden, a major part of the atmospheric deposition of heavy met-

als originates from outside the country. Studies of mosses have shown that the at-

mospheric deposition of heavy metals is distributed in a geographically (spatially) 

decreasing gradient from south to north in some part of the Sweden (Rühling and 

Tyler, 2001, 1971). These studies also show that the deposition of metals has de-

creased since approximately 1968/70. Especially for Fe and Pb, which in 1995 were 

20% and 11% of the values measured in 1968, respectively. The decreases may be 

explained by actions taken to reduce long-range transport of particles.  

2.3 Availability and transport of metals to lakes 

The hydrogeochemical cycles of metals are the connecting pathways between water, 

land and atmosphere. Metals can enter the hydrological cycle through natural pro-

cesses, such as weathering and erosion, or by emission with anthropogenic origin 

(Håkanson, 1983; Mason, 2013).  The amount of metals reaching a lake is influ-

enced by factors such as size of the lake, the catchment size and land use.  

 

2.3.1 Classification of metals 

Different classification concepts can be used to better predict how metals will be-

have in the environment. One common way to classify metals is to categorize them 

based on the number of electrons in the outer orbital shell with the classes  

A-, B- or C-type. The A-type metals have an electron configuration causing low 

polarizability, whereas B-type metals have a high polarizability. C-type metals have 

partially filled outer orbitals (Mason, 2013). Another method used is to differentiate 

them into hard and soft metals, similar to hard and soft acids and bases. The term 

hard and soft originates from how easily the electron shell is deformed by influence 

of other ions (Mason, 2013; Stumm, 1996). 

 



10 

 

Based on these two concepts, it is possible to make simple predictions of how stabile 

different complex formations are. Soft metals typically form complexes through co-

valent bonding with soft ligands while hard metals forms ionic bonds with hard lig-

ands (Mason, 2013). Complexes consisting of both hard and soft metal –ligands can 

also be formed but will not be as strong as hard-hard or soft-soft complexes. Com-

plexation is described further in section 2.4.1 Complexation.  

 

Table 1. Based on Stumm (1996) showing the allocation between A-type, B-type and transition metal 

cations (Stumm, 1996). The metals studied are marked with bold font  

Hard/A-type metal cations Transition metal cations Soft/B-type metal cations 

Li+, Na+ , K+, Be2+, Mg2+, Ca2+, 

Sr2+, Al3+, Sc3+, La3+, Si4+, Ti4+, 

Zr4+, Th4+ 

V2+, Cr2+, Mn2+, Fe2+, Co2+, 

Ni2+, Cu2+, Ti2+, V3+, Cr3+, 

Mn3+, Fe3+, Co3+ 

Cu+, Ag+, Au+, Tl+. Ga+, Zn2+, 

Cd2+, Hg2+, Pb2+, Sn2+, Tl3+, 

Au3+, In3+, Bi3+ 

 

2.4 In-lake metal cycling process and availability 

The effects of metals on a lake ecosystem are determined by the speciation of the 

metals. Speciation is the distribution of a metal between different forms, for exam-

ple free ion (Fe), Fe-colloids and Fe complexes in solution. To separate soluble from 

particulate forms, a membrane filter with a size of 0.45μm is generally used (Berg-

gren Kleja et al., 2006). Through this filtration the metals in the lake can be divided 

into adsorbed, colloidal and dissolved metals. Processes that control the speciation 

are interactions with particles (sorption), complex formation and biological uptake. 

Environmental parameters that affect these processes in lakes are pH, redox poten-

tial, temperature, residence time, alkalinity and dissolved oxygen among others 

(Håkanson, 1983; Stumm, 1996). This section will go through some of the processes 

affecting the metal concentration and distribution in both the water column and the 

sediment in the lake.  

2.4.1 Complexation 

Complexation is an important process when studying trace metals in aquatic sys-

tems.  A complex consists of a combination of separate atoms/ions; a metal ion 

called the central ion that binds to another atom called ligand. Ligands can be single 

ions and molecules, such as EDTA, or organic molecules. The formation of a com-

plex can take place both between soluble free ions and between a free ion and a 

surface area forming a surface complex (Berggren Kleja et al., 2006). Depending on 
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which type of metal and ligand is present, stability of the complex may differ. Hard 

metals prefer ligands with oxygen as an electron donor while soft metals prefer lig-

ands with N or S as a donor atom (Stumm, 1996).   

2.4.2 Adsorption- desorption 

Lake sediment is generally a sink for metals in the environment due to physical and 

chemical adsorption. Metal ions are bound to particles that settle and accumulate at 

the bottom of the lake. Clay minerals, oxides, and solid organics are the most im-

portant adsorbents or sorbents, but colloids are also important (Kretzschmar and 

Schafer, 2005; Sparks, 2005). Both complexation and adsorption processes are de-

pendent on pH and surface charge of the particle.  

2.4.3 Interactions with organic matter  

Organic matter in a lake can be produced within the lake (autochthonous) or trans-

ported to the lake from the surrounding landscape (allochthonous) (Håkanson, 

1983). Organic matters influence metal concentration both in the dissolved and solid 

forms. Uptake of metals, through physical or chemical adsorption by solid organic 

matter, influences the distribution and the amount of metals retained in the sediment 

(Hart, 1982). Changes in dissolved organic carbon (DOC) also have an effect on the 

physical, chemical and biological parameter in the lake. An increase in DOC can 

create a shift in the distribution of thermocline layers in a stratified lake (due to 

decreased amount of light) (Pérez-Fuentetaja et al., 1999). Oni et al (2013) refer to 

a variety of research showing that DOC impacts the toxicity, speciation and mobility 

of metals such as lead (Pb), copper (Cu) and cesium (Cs). Through its capacity to 

bind protons, DOC also affects the pH, which can cause a shift in the redox proper-

ties of different ligands in the lake.  

2.4.4 Internal load/Redox transformation 

Metals in the sediment can re-enter the water column through re-suspension or re-

lease at the sediment-water interface. Fe and Mn are two metals that participate in 

redox processes in aquatic systems (Stumm, 1996). The availability of oxygen gen-

erally controls this type of chemical reaction. If the water above the sediment has 

low oxygen concentration, and no other alternate electron acceptors are available 

(e.g. NO3
- or SO4

2-), the reduction of Mn and Fe will take place at the surface of the 

sediment. When Fe(OH)3 (s) are reduced at the sediment surface to Fe2+, it becomes 

re-dissolved and enter the water column again (McBride, 1994).  
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The sensitivity to changes in redox condition varies between metals. Fe and Mn are 

two elements that are more sensitive than others, causing the capacity to migrate 

within the sediment (pore-water). This can results in a layer with higher concentra-

tion of the two oxides at the sediment surface. Example of metals that are not redox 

sensitive are Al and Pb (Boyle, 2001). However, these processes are influenced of 

if the lake is stratified or not. In a stratified lake there will be oxygen depletion in 

the hypolimnion during summer/winter which can cause reduction of Mn and Fe 

and release from the sediment (Mason, 2013).  

 

2.4.5 Impact of biological activity 

Different forms of a specific metal in lake water (or aquatic systems) include dis-

solved and particulate/colloidal metals in the water column and the sediment. Con-

necting these pools are the uptake by phytoplankton (as the first step in the food 

chain) and decomposition of detritus (Hart, 1982). Uptake can be divided into two 

types. The first results in retention or incorporation of metals into particulate matter, 

and when the plankton die, the metal will be released after the organic matter is 

mineralized by bacteria. The second type of uptake transforms the metal into differ-

ent species. Methylation is one of the latter forms, where an atom is replaced with a 

methyl group. B-type metals (e.g. Pb, Hg and As) are generally those that can be 

methylated. This type of transformation increases the toxicity and biomagnification 

of e.g. mercury (as methylmercury). (Mason, 2013) 

2.5 Modelling of metals in lakes 

Lindström (2000) describe the criteria for a good predictive model of heavy metals 

in a lake. A model should be general, in that it is possible to apply it to all types of 

lakes. It should also be constructed with easily measured driving variables and be 

possible to be empirical tested. The size of the model, in terms of number independ-

ent variables, is important when building a model. Every independent variable 

added brings a certain uncertainty to the model, at the same time as the coefficient 

of determination increases (r2-value). Håkansons advice, when building predictive 

dynamic or statistical regression models, is to use between two to six variables de-

scribing the dependent variable (Håkanson, 1995). 
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2.6 SEPA’s water quality standards  

Swedish Environmental Protection Agency has developed guidelines for concentra-

tion of metals in water and sediment on both national and regional scales to be used 

as a reference value for how affected a lake is by anthropogenic disturbance. Both 

a natural concentration and a regional background concentration are used to evaluate 

lakes. For water concentration, the estimated natural concentration is based on lakes 

in the northern parts of Sweden with low impact from atmospheric deposition. The 

regional background concentrations are based on groups of lakes classified from 

geographical location (limnological ecoregion) and surrounding conditions. (Jo-

hansson et al., 2009; Wiederholm, 2000)  

Table 2. Table based on the comparison value set by SEPA for non-acid lakes (pH>6) (Wiederholm, 

2000). Sediment concentrations are given as dry weight. Natural concentration are based on lakes 

with low anthropogenic impact in the north of Sweden, while background concentration are based on 

lakes divided into groups regarding geographical location (limnological region), hydromorphological 

characteristics and watershed conditions (Johansson et al., 2009) 

  Cu Zn Cd Pb Cr Ni Co V 

Lakes (μg/l)         

 Natural 0.3 1 0.005 0.05 0.05 0.2 0.03 0.1 

 Background  

North  Sweden 

0.3 0.9 0.009 0.11 0.05 0.2 0.02 0.1 

 Background South Sweden 0.5 2.0 0.016 0.24 0.2 0.4 0.06 0.2 

Sediment (mg/kg)         

 Natural 15 100 0.3 5 15 10 15 20 

 Background  

North Sweden 

15 150 0.8 50 15 10  20 

 Background South Sweden 20 240 1.4 80 15 10  20 
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3 Materials and Methods  
To better describe the modelling process used in this study, a process tree describing 

each step in constructing the models is presented below (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Study sites  

The study contains 17 lakes which all are part of the long-term national monitoring 

program in Sweden (Fölster et al., 2014). The lakes are used as reference lakes 

meaning that they have not been limed, are not affected by point source pollution, 

and minimal changes to land use have occurred (Swedish Environmental Protection 

Agency, n.d.). The lakes are distributed over most part of Sweden except the county 

of Norrbotten (Figure 2). 

• Precipitation  
• Land use 
• Water chemical data 
• Sediment chemical data 

Average for correspond-
ing time period for 1 cm 
sediment layer 

JMP 

Model 

Applied to  
reconstructed 
data  
(pH, TOC) 

Figure 1. Process tree describing the work in this study. Averages for time periods corre-

sponding to 1 cm of sediment layer were calculated from the collected data. These averages 

were used in the modelling software JMP to create models describing metal con-centration 

in the lake water. The models were then applied to reconstructed data such as pH and TOC 

to predict historical concentrations 
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Figure 2.  Situation map over the lakes used in this studied 

 

3.2 Data collection 

Climatic data (i.e., precipitation and temperature) were collected from the Centre of 

Environmental Data Archival (Climatic Research Unit (CRU) time-series datasets 

for variations in climate with variations in other phenomenon, and cover the time 

span 1901-2013 (CRU, 2008). 

 

Water chemical data were downloaded from the Department of Aquatic Sciences 

and Assessment at the Swedish University of Agricultural Sciences and is a part of 

the national freshwater monitoring program. Surface samples varied from a depth 

between 0.5-2 m. The number of samples per year increased when the program was 

expanded. The oldest data consists of between one to three samples per year (1983), 

whereas later the sampling interval increased to up to six to eight times per year 

(metals were not measured each sampling event).  

 

Sediment cores were collected in 1998,1999, 2006 and 2014 (Table 3) as a part of 

the national environmental monitoring program and a recent Formas project 

(LIMT, Huser, 2012). Six cores, three old (1999) and three new (2014) were ana-

lysed for metals to increase the time period with overlapping data points. 

 



16 

 

 The age of the sediment was determined, as part of earlier projects, at Umeå Uni-

versity at the Department of Ecology and Environmental Science through using 
210Pb method (Appleby and Oldfield, 1978; Olid et al., 2014). 

Table 3. Geographical and morphological data for the studied lakes. X means data were not available 

Lake  N E Catchment 

area (km2) 

Lake 

area 

(km2) 

Water 

residence 

time (y) 

Lake vol-

ume 

(km3) 

Mean 

depth (m) 

Max 

depth 

(m) 

Sedi-

ment 

sampled 

Allgjuttern 6423441 564895 1.1 0.16 3.46 0.70 5.13 13.72 1999 

Djupa Holmsjön 6561755 615611 1.6 0.14 1.33 0.38 3.17 8.20 1998 

Grissjön 6513623 508222 1.6 024 1.88 0.84 4.25 11.60 1999, 

2014 

Harasjön 6319105 413711 5.6 0.57 0.81 1.63 3.45 10.09 1999, 

2014 

Hällsjön 6319105 413711 1.5 0.21 1.47 0.65 3.73 10.08 1998, 

2006 

Remmarsjön 7085766 660807 125.7 1.35 X X 5 14 1999 

Rotehogstjärnen 6524402 304387 3.6 0.17 0.16 0.46 3.71 8.62 1999, 

2014 

Siggeforasjön 6650914 620487 21.5 0.7 0.44 2.13 3.17 10.97 1998, 

2006 

Stora Envättern 6555228 634745 1.4 0.38 4.02 1.03 3.25 9.02 1998 

Stora Gryten 6526890 562305 19.1 1.06 0.63 2.86 1.60 10.03 1999, 

2006 

Svartesjön 6302133 392431 0.4 0.03 0.26 0.05 2.88 2.62 1999 

Svinarydsjön 6225833 496102 1.8 0.18 1.44 0.47 4.13 7.64 1999 

Tväringen 6901492 534982 36.2 1.61 0.45 5.32 5.48 12.77 1998 

Tärnan 6606900 690200 13.5 1.06 1.92 4.82 4.26 16.16 1998 

Älgsjön 6551428 578455 5.0 0.35 1.12 1.25 4.04 11.96 1998 

Örsjön 6237996 480506 0.9 0.19 4.12 0.64 3.71 10.85 1999 

Övre Skärsjön 6633397 530845 8.8 1.7 1.63 5.07 3.71 11.66 1999 

 

 

The pH data used are yearly mean values from measured samples during the period 

1983-2013. When no water chemical data were available, modelled values between 

1860-2100 were used (generally only needed before 1980). The modelled pH was 

estimated with the MAGIC model (Model of Acidification of Groundwater In 

Catchments). MAGIC is a parameter model developed to estimate soil and water 

acidification (Cosby et al., 1985a, 1985b, 1985c). Based on Futter et al. (2014) the 

values 3.8, 4.7 and 5.5 was used for pKa1, pKa2 and pKa3 respectively.   
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3.3 Chemical analysis and calculations 

Sediment samples were freeze-dried after freezing at -20 C for 24 hours to calculate 

the water content. To extract metals, sediment was exposed to distilled HNO3 (7M) 

and autoclaved at 121°C for 30 min. The samples where then centrifuged and two 

dilutions were made (depending on the metal) with a factor of 10 (Fe, Al) and 100 

(all other metals). ICP-AES was used to analyse the extractions. Calibration of the 

machine was performed by the staff at the Chemistry Department at Uppsala Uni-

versity using a standard from Spectra Scan. Blanks were treated and analysed iden-

tically to the samples. 

 

The method used in the monitoring program to determine metal concentrations was 

ICP-MS. To be able to increase the amount of data with low economical cost, ICP-

AES was chosen as analysing method in this study. To ensure that it would be pos-

sible to compare result from ICP-AES with ICP-MS, replicates were made from old 

samples (from earlier research project using ICP-MS) to see if the result differed 

(Table 4). The difference between ICP-AES and MS was highest for Cd and As 

(Table 4). Zn also showed substantial difference for samples from core Brunnsjön-

2, where the result from ICP-AES was 51% higher than with ICP-MS. The sediment 

from Pahajärvi showed high difference for all metals measured. Based on the above 

results, however, Cd and As were excluded from the analysis. 

Table 4 .The table shows the percentage of difference between analyses made with ICP-AES and ICP-

MS. Original data is found in Appendix 1 - Table 14 

Lake Al Fe Mn Cu Zn Pb Cd Cr Ni Co As V 

Brunnsjön-1 8 11 18 1 20 1 68 8 10 2 75 6 

Brunnsjön-2 3 3 1 5 51 1 92 8 14 13 95 16 

Bysjön 13 5 6 13 5 5 61 19 22 5 27 23 

Pahajärvi 19 17 19 22 3 19 370 28 30 25 6 32 

3.4 Data analysis 

Water chemical and sediment data were log10 transformed to normalize distribu-

tions. Averages of the water chemical data, during corresponding time periods for 

each sediment layer, were calculated along with precipitation. For example, if the 
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sediment sample from 0 to 1 cm sediment depth contained 10 years of deposited 

sediment, water and climatic data were averaged over this same 10-year period.  

 

The data were analysed through stepwise multiple regression, to see which of the 

variables influenced the metal concentration the most. As a second step, the data 

was divided into groups based on ratio between watershed area and lake area, pH, 

and by the morphometric index created by Osgood. The Osgood Index uses the ratio 

between the mean water column depth and the square root of the lake area to predict 

if water column mixing occurs in the lake during summer. A value less than 6 clas-

sifies the lake as shallow (indicating that it may be polymictic) and higher than 8 as 

less prone to mixing, or stratified. (Cooke et al., 1993) 

 

The ratio between watershed and lake area (WS: LA) was used as an indicator for 

amount of surface runoff reaching the lake relative to lake size. A high ratio (small 

lake area and large watershed) can result in greater amount of watershed derived 

metals reaching the lake through surface flow whereas direct deposition of metals 

may be more important for lakes with small watershed. Three divisions were created 

to separate lakes with different WS:LA ratios: ratios either less 12.5, between 12.5 

and 25, or greater than 25 were used as separation criteria. 

 

Categories were also developed for the lakes based on pH, either acidic (<6) or non-

acidic (>6) lakes based on. Some lakes have been classified as slightly acidic (pH 

between 5.5 and 6), but are counted as acid in the modelling part (Wiederholm, 

2000). 

 

3.5 Modelling 

Multiple linear regression analysis was used to determine variables that had a strong 

influence on metal concentration in the lake water. This method assumes that the 

data satisfy a linear relationship, as example: 

 

𝑦 = 𝑎 + 𝑏1 𝑥 𝑋1 + 𝑏2 𝑥 𝑋2 + ⋯ + 𝑏𝑛 𝑥 𝑋𝑛.  

 

The X in the formula represent the independent variables and the a and b are regres-

sion coefficients (Grandin, 2013). The analyses were done with JMP statistical soft-

ware (SAS Institute Inc., version 11). Forward stepwise regression was chosen as 
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modelling type, meaning that the analysis starts with no variables and then variables 

are added until the stopping criteria is fulfilled. As stopping criteria a BIC (Bayesian 

Information Criterion) value as low as possible together with a p ≤ 0.05 was used. 

The aim with BIC value is to reduce the risk for over fitting the model by rectifying 

for each adding parameter. 

 

The software (JMP) produces an equation with the most significant variables in-

cluded (Xn). By using more than one independent variable in the model there is a 

risk for multicollinearity between the variables. A correlation analysis was made 

between variables used to minimize this risk. (Grandin, 2013) 

 

As a first step the MLR analysis was made with all parameters to create more gen-

eral models, as a second step the predictive models where developed based only on 

parameters that were possible to reconstruct historically. A residual analysis was 

made for Pb, Zn and Ni, to detect potential bias. In the results section adjusted r2 

values are presented. The adjusted r2 value takes the amount of variables in the pre-

diction formula into account (Grandin, 2013).  
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4 Results 
The results are divided into two parts. The first part consists of models built with all 

available parameters (general models) and the second part contains models built 

with parameters with an historical record (either measured or predicted) such as pH, 

TOC, precipitation, sedimentation rate (predictive models). An R2 value of 0.7 was 

chosen as a limit for presented results.  

4.1 Variability of metals in water 

The metal concentrations in surface water samples varied substantially between the 

lakes (Table 5). The concentration of Fe in Lake Harasjön was 2381 μg/l compared 

to Lake Allgjuttern 39 μg/l. In addition, Lake Harasjön was also higher regarding 

concentrations of Mn where it had the highest value of all lakes (233 μg/l). By look-

ing at controlling variables such as pH and TOC, it possible to see that Lake Haras-

jön is acidic and TOC increased during the time period with available data (1994-

2011).  

 

 

  



21 

 

Table 5. Lake specific average of chemical data for studied lakes. TOC are given in mg/l while the 

metals are shown in μg/l. Overlapping time series of measured metals were not available for all lakes 

which is represented by empty cells 

 TOC Al Fe  Mn Cu Zn Pb Cr Ni Co V 

Allgjuttern 7.0 56 39 15 0.5 6.9      

Djupa Holmsjön 11.9 182 299 54 0.8 10      

Grissjön 11.7 252 326 26 0.4 5.5 0.7 0.3 0.5 0.2 0.4 

Harasjön 16.8 255 2381 233 0.7 7.2 2.6 0.4 0.4 0.3 1.0 

Hällsjön 8.6 102 232 45 1.3 4.6 0.2 0.2 0.3 0.1 0.2 

Remmarsjön 9.3 166 627 35        

Rotehogstjärnen 12.6 292 542 50 0.6 7.2 0.7 0.4 0.9 0.7 0.6 

Siggeforasjön 15.8 209 483 91 0.9 5.0 0.3 0.4 0.4 0.1 0.6 

Stora Envättern 8.6 51 45 11        

Stora Gryten 17.2 142 357 99 1.0 2.6 0.5 0.4 0.9 0.2 0.5 

Svartesjön 15.3 155 1750 39        

Svinarydsjön 9.2 221 319 99        

Tväringen 8.0 69 215 29 3.1 5.8      

Tärnan 9.1 54 90 21        

Älgsjön 18.4 148 595 93        

Örsjön 7.3 119 352 144        

Övre Skärsjön 7.2 172 338 39 8.9 10      

Average 11 155 529 61 1.80 6.49 0.84 0.36 0.55 0.29 0.55 

Max 18.4 292 2381 233 8.9 10 2.6 0.4 0.8 0.7 1.0 

Min 7.0 51 39 11 0.4 2.6 0.2 0.2 0.2 0.1 0.2 

 

The concentration of metals in a lake is affected by the surrounding land use of the 

catchment. Most of the lakes have forest dominated catchments (Figure 3). In con-

trast are Lake Örvattnet and Lake Stora Envättern, which have large parts of the 

catchment covered by open surface water. An exception is Lake Svartesjön, which 

has the highest percentage of wetland area together with the lowest area of forest 

cover. 
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4.2 General models 

Multiple stepwise regression analysis resulted in nine models describing seven of 

the studied metals (Table 6). The p-value was less than 0.0001 for all models except 

for Ni (p <0.001). The highest r2 value achieved was for the model for Ni based on 

TOC, sedimentation rate, precipitation and iron concentration in the water column. 

TOC had the highest predictive effect on Fe, with an increase of 1.77 for each in-

crease of one of log10 TOC (mg/l), and the lowest impact on the Vanadium model. 

Sedimentation rate had both positive (Fe and Zn) and negative (Ni) effects on some 

of the metals.  
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Figure 3. Percentage of land use for each catchment. Svartesjön stands out with more than half of 

the catchment area covered with wetlands. Lake Älgsjön has the highest percent of  

clear-cut area while Lake Svartesjön catchment has the highest cover of wetland. 
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Table 6. Result from the stepwise MLR analysis, showing independent variables used to describe different 

metal concentration the lakes (µg/l). The numbers in the columns are the coefficients for each specific vari-

able (pH, TOC, sedimentation rate etc.). TOC data were log10 transformed before constructing the models. 

Sediment concentrations (mg/kg) are given as dry weight. N represents number of data points used in the 

model  

Metal  r2 P N Inter-

cept 

pH TOC 

(mg/l) 

Sed 

rate 

(cm/y) 

Preci-

pitation 

Fe 

(sed.)  

Cr  

(sed.) 

Al  

(sed.) 

Fe  

(wat.) 

Al 

(wat.) 

Al 0.63 <0.0001 50 -0.39 -0.24      0.767 0.298  

Fe 0.78 <0.0001 44 -1.00 -0.35 1.77 0.38 0.00105 0.64     

Zn 0.47 <0.0001 27 3,03 -0,4         

Zn 0.79 <0.0001 20 8.83 -1.03 1.53 0.86   1.53   -1.95 

Pb 0.79 <0.0001 21 0.39 -0.41 1.57        

Ni 0.73 <0.001 15 -1.64  1.40 -0.75       

Ni 0.94 <0.0001 15 -5.88  1.36 -0.66 0.00082   1.36   

Co 0.71 <0.0001 21 3.31 -0.61 1.17      -0.59  

V 0.87 <0.0001 15 2.76  0.97 0.54  -0.94     

 

A multivariate analysis was made to see if there were any correlation between the 

independent variables in the data (Appendices -Table 16). The analyse showed that 

V, Pb and Al are strongly correlated to Fe concentration in water, with r values of 

0.79 for V and Pb and 0.69 for Al.  

 

The next step was to analyse the data based on groups sorted by morphometric prop-

erties (represented by Osgood Index), acidity and WS:LA. The lakes contributes with 

between one data points up to 11 at most (specification in Appendices -Table 16). 

The distribution was even between most of the categories except WS:LA which have 

less numbers lakes when the ratio increases (Table 7). 

Table 7. Summary of the distribution of lakes between groups. The distribution is even between the 

categories except for lakes with higher WS:LA than 12.5. These two groups consist of only 5 lakes 

each 

 Osgood Index Acidity WS:LA 

Deep  Shallow Acid Neutral <12.5 12.5–25 >25 

Number 

of lakes 9 8 8 9 8 5 5 
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When analysing the lakes divided based on pH, the result consists of two models 

describing Al in acidic lakes and six models describing Fe, Mn, Ni, V, Cr and Pb in 

neutral lakes. All models have positive regression coefficients for TOC and only 

two models have pH as a driving variable (Table 8). The number of data points used 

in Fe-model was highest with 30 data points, while the rest of the models were based 

on 13-14 data points.  

Table 8. The result of stepwise MLR made on acid and neutral lakes. The numbers are the coefficients 

used in the expression describing the concentration of a certain metal, resulting in one row builds one 

expression. Sed stands for sediment concentrations, class NE stands for neutral and class A for acid 

lake (pH<6). N represents number of data points used in the model  

 

Metal 

 

Class 

 

r2 

 

p 

 

N 

 

Intercept 

 

pH 

 

TOC 

Sed 

rate 

 

Precipitation 

Fe 

(sed.)  

Al 

(sed.) 

Pb 

(sed.) 

Fe NE 0.85 <0.0001 30 -5.25  1.55   1.26   

Mn NE 0.78 <0.0001 30 2.55 -0.50 2.24      

Ni NE 0.97 <0.0001 13 -2.55  1.60 -0.50 0.000963    

V NE 0.94 <0.0001 13 -2.24  1.49 0.34   0.22  

Cr NE 0.82 <0.0001 13 -1.6  1.00      

Pb NE 0.88 <0.001 13 -15.48 0.85 3.23 0.26    2.81 

Al A 0.79 <0.001 14 1.19   -0.53 0.000424  -0.94  

Al A 0.69 <0.0001 14 2.10   -0.5 0.000435    

 

When using Osgood index to analyse the lakes, the number of data points included 

in the models decreased compared to earlier models, which may cause higher un-

certainty in the results (Table 9). Eight models were constructed, describing seven 

metals in lakes with an Osgood Index of deep.  

Table 9. The result from multiple stepwise regression analysis made on the lake with Osgood index 

deep. Sediment values (mg/kg) are given as dry weight, TOC in mg/l and sedimentation rate in cm/y 

 

Metal  

 

r2 

 

p 

 

N 

 

Inter-

cept 

 

pH 

 

TOC 

Sed 

rate 

 

Precipita-

tion 

Fe 

(sed.)  

Al 

(sed.) 

Al 0.70 <0.0001 23 0.82 -0.33 0.60    0.64 

Cu 0.95 <0.01 7 6.28  -4.85 -6.50    

Fe 0.9 <0.0001 19 -1.33 -0.55 1.67 0.95 0.0009209 0.97  

Mn 0.73 <0.0001 19 -1.69 0.79  -0.96    

Ni 0.90 <0.001 8 3.36 -0.63      

Pb 0.82 <0.01 8 3.33 -0.64      

V 0.84 <0.001 8 -1.58    0.001427   

V 0.96 <0.0001 8 4.34    0.0015081  -1.38 
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When analysing the lakes with an Osgood Index <6 (shallow lakes) eight models 

were possible to construct (Table 10). The metals described were the same as for 

deep Osgood Index except for Co instead of Cu. Common for these models are that 

none of them have precipitation as a predictive variable in contrast to the other 

groups. All models except three have a p-value <0.0001 and the model predicting 

Ni has the highest p-value (<0.01). 

Table 10. Result from stepwise MLR for the lake with the Osgood index shallow. Sediment values 

(mg/kg) are given as dry weight, water concentration in (µg/l), TOC in mg/l and sedimentation rate in 

cm/y  

 

Metal 

 

r2 

 

P 

 

N 

 

Inter-

cept 

 

pH 

 

TOC 

Sed 

rate 

Fe 

(wat.) 

Al 

(wat.) 

Pb 

(sed.) 

Ni 

(sed.) 

Al 0.71 <0.0001 25 0.85   0.51 0.43    

Co 0.73 <0.001 13 -2.00 -0.21 2.06      

Fe 0.79 <0.0001 27 2.01 -0.33 1.13   0.66   

Mn 0.83 <0.0001 27 1.13 -0.29 2.26      

Ni 0.72 <0.01 11 -2.37  1.93 -0.61     

Ni 0.76 <0.001 13 -0.34 -0.31      1.63 

Pb 0.86 <0.0001 13 -11.67  2.77    4.11  

V 0.75 <0.0001 13 1.05 -0.20       

 

The result differed when analyzing the lakes based on WS: LA resulting in less 

metals that were possible to model (Table 11). The highest r2 value is in the model 

for Zn (0.97) and the lowest for Mn (0.61). Common for all three categories of 

WS:LA models was that a linear relationship was found between Mn and TOC with 

the highest coefficient in models describing lakes with WS:LA ratio less than 12.5. 
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Table 11. Result from multiple stepwise regressions with the data divided depending on WS:LA. Sedi-

ment concentrations are given as dry weight, precipitation in mm/y and sediment rate in cm/y and 

TOC (mg/l) 

 

Metal  

 

WS:LA 

 

r2 

 

p 

 

N 

 

Inter-

cept 

 

pH 

 

TOC 

 

Sed 

rate 

 

Precipi-

tation 

 

Fe 

(wat.) 

 

Cr 

(sed.) 

 

Zn 

(sed.) 

Co <12.5 0.89 <0.001 8 1.41 -0.37       

Cr <12.5 0.89 <0.002 8 2.42    -0.0010  -1.77  

Mn <12.5 0.73 <0.01 22 -0.02  1.75      

Al 12.5-25 0.84 <0.0001 16 -0.02  1.00  0.0015    

Co 12.5-25 0.90 <0.001 7 2.86 -0.55       

Mn 12.5-25 0.78 <0.0001 16 -0.66  2.10      

Mn >25 0.75 <0.001 12 3.93    -0.0038    

Mn >25 0.65 <0.001 12 -0.92  2.40      

Zn >25 0.97 <0.02  13.75 -2.18  1.54  -2.69  3.00 
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4.3 Predictive models 

The aim with the predictive models was that they should be based on variables that 

are easy and simple to measure, such as TOC and pH. Together with the requirement 

that historical concentrations should be able to be predicted as well.  

Of all the general models, Pb was the only one of the studied metals that was possi-

ble to predict based only on these two variables. A linear relationship was found 

between Zn and pH while sedimentation rate and TOC were needed to predict Ni. 

For predictive models, the reconstructed pH (reference) was used for all years. 

4.3.1 Lead 

It was possible to predict lead concentration based on pH and TOC only (r2 = 0.79) 

(Equation (1). In the expression, log10 transformed lead concentration an increase 

of pH has a negative impact on amount of Pb in the water while TOC has positive 

impact. The model is based on 21 data points. 

  

log( 𝑃𝑏 𝜇𝑔 𝑙)⁄  = 0.3875 + (−0.4082) × 𝑝𝐻 + 1.57 ×  log (𝑇𝑂𝐶 𝑚𝑔 𝑙)⁄  (1) 

 

The model was applied to 11 of the 17 lakes. In the general models, TOC is based 

on annual averages, which reduce the variability of multiple measured values during 

e.g., intense rainfall events. When comparing the measured and the reconstructed 

TOC it appeared that the measured data was often higher than the predicted data. 

But to be able to do historical modelling, reconstructed TOC had to be used.  

 

The results are divided into acid and neutral lakes (Figure 4 and Figure 5)). There 

is a difference in magnitude of Pb in the two types of lakes; the concentration is 

lower in the neutral lakes compared to the acidic lakes. But it is possible to see the 

same general trend in both type of lakes, an increase from 1950 with a peak around 

late 1980’s. In Rotehogstjärn, the increase is four times the concentration in 1950. 
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Figure 4. Modeled Pb (ug/L) concentration for acid lakes based on equation 1. In Lake Harasjön there  

is a decrease in Pb concentration during 1860-1950 and then an increase takes places. The same trend  

is also shown in Lake Rotehogstjärn and Lake Grissjön during the same time period 

Figure 5. Modelled concentration of Pb (µg/l) in the acid Lake Rotehogstjärn. Between 1935-1992 the con-

centration of Pb increases four times 
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Figure 6. Concentration of Pb (μg/l) model applied to neutral lakes (Equation 1).Three of 

the lakes has increasing concentration during the time period 1940-1990, while Lake 

Siggeforasjön has a decrease Pb concentration during the same period 
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Figure 7. Modelled concentration of Pb (µg/l) in the neutral Lake Hällsjön based on Equa-

tion 1. There is a slight increase of concentration of Pb in from the 1940 until around 1990, 

just as in Lake Rotehogstjärn 
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4.3.2 Zink 

The model with highest r2 value (0.79) had pH, TOC, sedimentation rate, precipita-

tion and Cr concentration in the lake sediment and Al concentration in the lake water 

as driving variables (Equation 3). However, this model can’t predict historical con-

centration because of no available historical records earlier than 1980’s of Al con-

centration in lake water. 

 

log 𝑍𝑛 ( 𝜇𝑔 𝑙⁄ ) =  8.84 − 1.30 × 𝑝𝐻 + 1.53 × log 𝑇𝑂𝐶 + 0.86 × 𝑠𝑒𝑑. 𝑟𝑎𝑡𝑒

+ 1.53 × log 𝐶𝑟(𝑚𝑔/𝑘𝑔 𝑇𝑆) − 1.94 × log 𝐴𝑙 (𝑢𝑔/𝑙) 

(3) 

 

But a linear relationship was also found with pH as the only driving variable 

(r2=0.47) (Equation 4). Similar to Pb, an increase in pH has negative impact on Zn 

concentration. The model was built with data points from eight lakes, but has been 

applied to the eleven lakes with data available for reconstructed pH (Figure 8 and 

Figure 9). 

                             

log 𝑍𝑛 (𝜇𝑔 𝑙⁄ ) = 3.028 + (−0.395) × 𝑝𝐻 (4) 

For Lake Harasjön, Svartesjön, Rotehogstjärnen, Grissjön the concentration of Zn 

follow a similar trend with a peak in the late 1980’s. In the other lakes there was a 

small peak but not as distinct as in the first mentioned.  
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Figure 8. Predicted concentrations of Zn based on Equation 4. In most of the lakes an increase, with 

different magnitude, in Zn concentration takes place with a peak in the late 1980’s, following with a 

decrease right after 
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Lake Hällsjön and Lake Rotehogstjärn are an example of two lakes where the mag-

nitude of variation in Zn concentration between the lakes was high (Figure 9). This 

is caused by Lake Hällsjön having a higher pH than Lake Rotehogstjärn. 

 

 

4.3.3 Nickel 

Ni was possible to predict based on TOC concentration and sedimentation rate 

(cm/y) (Equation (5). The model is based on 15 data points from five lakes and have 

an r2 -value of 0.73.  

 

log (𝑁𝑖 𝜇𝑔 𝑙) =⁄ (−1.643) + (−0.753) × 𝑆𝑒𝑑 𝑟𝑎𝑡𝑒 +  1.401 × log ( 𝑇𝑂𝐶 𝑚𝑔 𝑙)⁄  (5) 

 

The model was applied to lakes that had yearly matching data with both recon-

structed TOC and sediment data. It was possible to see some pattern in the prediction 

of Ni (Figure 10). For Lake Harasjön, Lake Djupa Holmsjön, Lake Tväringen and 

Lake Remmarsjön it was illustrated as a decrease during the early of 1900’s and 

then shifting to an increase during late 1900’s.  

Figure 9. Modelled concentration of Zn (µg/l) in Lake Hällsjön and Lake Rotehogstjärnen. The lakes 

are an example of the difference in magnitude of Zn concentration in lakes with acid (Rotehogstjärn) 

and neutral pH (Hällsjön) 
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Figure 10. Prediction of Ni concentration in 11 lakes based on Equation 3. For Lake Djupa Holmsjön, Lake 

Harasjön, Lake Tväringen and Lake Remmarsjön there was a pattern with a decrease between early 1900’s 

which shift to an increase after 1950 
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4.4 Residuals 

The residuals from the predictive models were plotted as a method to validate the 

models (Figure 11). If the residuals are randomly distributed through all the x-val-

ues, the data are homoscedastic, indicating that a linear regression can be used. In 

contrast, if the variation is increasing/decreasing with the value of the independent 

variables, the data is heteroscedastic and linear regression should not be used 

(Grandin, 2013). For both Pb and Zn the models plotted data seems to be homosce-

dastic, while for Ni the variation decreases with higher value on the x-axis. How-

ever, the amount of data points decreases with higher values, so it was not possible 

to accurately determine if the data were heteroscedastic or not. 
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Figure 11. Residuals plotted against predicted values for Pb (a), Ni (b) and Zn (c). The data are log trans-

formed. For both Pb and Zn, the plotted residuals seems to be homoscedastic, while the distribution of Ni 

residuals decrease with higher value on the x-axes. This could indicate that the data is heteroscedastic- 

However, the amount of data point decreased so it is not possible to determine 
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4.5 Comparison of measured and predicted data 

The predicted concentrations of the three metals were plotted against the measured 

to evaluate the models (Figure 12. Predicted concentration of log10 Pb (µg/l) plotted 

against the measured concentration. The line represent if the predicted values would 

correspond to the measured. In this case the data point are spread on both side of the 

line which indicate that the models doesn’t clearly over- or under estimate the con-

centration). The straight line in the figure represent if the predicted values would 

equal the measured values. The distance between the line and the points represent 

the difference between the models predictions and the measured concentration. 

 

The Pb model have data points spread on both side of the line (line representing if 

the predicted values would equal the measure). No clear pattern of over- underesti-

mation is visible. When comparing the predicted concentration of Zn versus the 

measured concentration the same distribution of plots is visible (Figure 13). 
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Figure 12. Predicted concentration of log10 Pb (µg/l) plotted against the measured concentration. The 

line represent if the predicted values would correspond to the measured. In this case the data point 

are spread on both side of the line which indicate that the models doesn’t clearly over- or under 

estimate the concentration 
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When the Ni model was plotted against the measured data the distribution looked 

quite the same as the two other models, with points spread quite close and on both 

side of the line (Figur 13). 

 

 

Figure 14 Predicted concentration of Ni (µg/l) plotted against the measured concentra-

tion.  The straight line represent if the predicted values would correspond exactly to the 

measured values 
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4.6 Background concentrations 

Both Pb and Zn could be reconstructed back to 1870 and 1860 with exception for 

some lakes (Table 12 and Table 13). The predicted background concentration of Zn 

varies in the range of 1.53-9.76 for 11 of the studied lakes.  

Table 12. Predicted background concentration of Zn (μg/l) based on reconstructed pH 

Lake Year Zn 

Djupa Holmsjön 1860 3.22 

Grissjön 1860 3.76 

Harasjön 1860 4.12 

Hällsjön 1860 2.79 

Remmarsjön 1860 2.40 

Rotehogstjärnen 1860 3.94 

Siggeforasjön 1860 2.04 

Svartesjön 1860 9.76 

Tväringen 1860 2.04 

Älgsjön 1860 1.53 

Örsjön 1860 2.38 

 

Regarding Pb concentration the magnitude of variation was lower compared to Zn 

as the predicted background concentration varied between 0.22-1.02 (magnitude of 

0.8). 

Table 13. Predicted background concentration of Pb (μg/l) based on reconstructed TOC and pH 

Lake Year Pb 

Djupa Holmsjön 1870 0.24 

Grissjön 1870 0.28 

Harasjön 1870 1.02 

Hällsjön 1880 0.22 

Remmarsjön 1910 0.07 

Rotehogstjärnen 1870 0.47 

Siggeforasjön 1900 0.27 

Svartesjön 1860 0.87 

 

Ni was only possible to reconstruct in Lake Djupa Holmsjön further back than 1900 

and it was 0.52 µg/l. Closest in time then came Lake Harasjön (1903) with an con-

centration of 0.76 µg/l. 
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5 Discussion 

5.1 General models 

The variation in water chemical data between the lakes was high, which is positive 

when developing a general model. It was possible to construct models for all metals 

included in the study. The model with highest r2 value was Zn in lakes with a high 

WS:LA ratio (small lake area and/or big watershed). Two common parameters for 

most of the models were pH and TOC. When TOC increases in a lake, it contributes 

with potential ligands for the metals to create organic complexes with. This can keep 

the metals dissolved instead of being adsorbed to particles.  

 

When pH is low, the fraction of non-bound metals is high due to competition by 

protons for surface sites on particles. Cation exchange can also occur and metals 

bound to colloids can be dissolved due to protons taking their place. This was shown 

in the results and is also consistent with an earlier study (Köhler, 2010) showing that 

increasing pH decreases the ratio between filtered metals (the colloidal together with 

dissolved metal) and total metals (includes dissolved, adsorbed, colloidal) in Swe-

dish lakes (Pb, Fe and Al). 

 

Low pH could be why Lake Harasjön deviated more than the other lakes regarding 

concentrations of metals (Table 5). The lake is acidic which leads to more metals in 

solution and the internal load/release of metals from sediment can also increase. It 

also had an Osgood Index classification of “shallow” indicating that it may be 

polymictic (no or only a weak thermocline). When no thermocline is created there 

will be more mixing of the water, less oxygen depletion and probably a lower pH at 

the sediment surface. Lake Harasjön had the second largest cover of wetland area, 

however, which should instead decrease the metals reaching the lake (especially for 

organophilic metals) (Lidman et al., 2014). Additional explanation for higher metals 

concentrations would be that the catchment of Lake Harasjön has an easily weath-

ered soil with high metal content.  

 

According to the models, the amount of Fe in water and sediment influences the 

concentrations of Al, Zn, Ni, Co and V in the lake water. Colloidal form of iron 

(<0.45 μm) can act as a surface to bind different metals, especially strong associa-

tions have earlier been found between Al and colloidal Fe (Pokrovsky and Schott, 

2002).  
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The multivariate correlation analysis made in this study showed that V, Pb and Al 

are strongly correlated to Fe concentration in water while for Ni and Zn there was 

only a very weak correlation. Recent research has also found a similar relationship 

for Co and Pb (Köhler, 2010). When Fe had negative impact on the metal concen-

tration (decreasing) it may be caused by the metal creating surface complexes with 

iron hydroxide.  

 

By dividing the lakes based on different chemical and morphological properties, the 

numbers of possible models increased. These models were not applied to data from 

other lakes but the results imply that more time should be dedicated to developing 

models specific to different lake types. 

5.2 Predictive models 

When applying the constructed models using reconstructed data (pH and TOC), it 

was possible to predict concentration of Pb and Zn, as well as Ni to a limited extent. 

During later part of 1900’s, most of the lakes had a peak in the predicted concentra-

tions of Pb. The peak is highest for Lake Rotehogstjärn with concentrations reaching 

2 μg/l in approximately the late 1980s. This could be caused by either a decrease in 

pH during this time period or increase of TOC, or in combination with the atmos-

pheric deposition of metals taking place at this time (Rühling and Tyler, 2001). 

 

When applying the Zn model to reconstructed data, the results for almost all lakes 

followed the same pattern, due to pH being the only parameter in the expression 

(decreasing pH increases the metal concentration). The peak takes place around late 

1980´s, which corresponds to acidification effects caused by industrial activity.  

 

The prediction of Ni concentrations on the other hand didn’t have the same distinct 

pattern over time compared to Pb and Zn. Four lakes (Harasjön, Djupa Holmsjön, 

Tväringen and Remmarsjön) had a decrease in Ni following by an increase after 

1950’s but when looking at their chemical and morphological parameters no com-

mon denominator was found except for both acid lakes (Harasjön and Djupa 

Holmsjön) have a greater magnitude of their decrease than the two neutral lakes. 

Lake Djupa Holmsjön is the only one of the four mention lakes that also has a de-

crease during the 1990’s. 
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Stratification can lead to oxygen depletion in the deeper layer of the lakes, which 

cause reducing conditions. Both Pb and Zn are classified as B-type of metal cations, 

indicating that they prefer soft ligands (S for example), which is favoured by reduc-

ing conditions (stratified lakes). To the contrary, if the metals are bound to organic 

material forming an organometallic compound, they are more strongly bound com-

pared to complexation. The later of these phenomena could appear more often in 

polymictic lakes.  

5.3 Background concentrations 

Comparison between measured and predicted values showed that they all had data 

points spread quite even on both side of the line. Which indicated that none of the 

models constantly over- or underestimate the metals concentration. But for Zn tho 

a small majority was found on the left side of the line which could indicate a small 

overestimation of Zn in the lake water. One reason for this could be that a change 

in pH has a greater effect on Zn than on Pb and Ni, due to pH being the only param-

eter in the Zn model. This could be explained through Zn being more common as 

free ion form than Ni and Pb, which could make Zn simpler to model. Pb on the 

other hand form strong complexes together with humic substances and oxides (Gus-

tafsson et al., 2007), which explains the addition of TOC as model parameter. Ni 

has common properties to Zn, but at higher pH and if Al is present it can more easily 

precipitate compared to Zn (Gustafsson et al., 2007). In the predictive models pro-

duced in this study, Al is not present as a parameter. The reason for this could be 

that the lake used in the modelling was even spread between acidic and neutral lakes 

which reduced the impact of Al.  

 

The residuals were also analyzed for Pb, Zn and Ni models. The distribution was 

random for both Pb and Ni while the Zn residuals were more tightly clustered at 

higher concentrations. This could have been explained by fewer data points, but the 

low amount of data makes it difficult to evaluate the result.  

 

Two predictive models were constructed for Zn (Equation 3 and 4). The first one 

(Equation 3) consists of more parameters and had higher r2 value compared to Equa-

tion 4. The second model (Equation 4) had lower r2, and describes a linear relation-

ship between Zn and pH and can be used to describe historical concentration in 

contrast to Equation 3 due to the fact that there are already established models able 

to predict the historical concentration of pH. 
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The result from the predicted background concentrations for all three metals was 

higher than the estimated values from SEPA for non-acid lakes (Table 2). It was not 

possible to go as far back as 1860 for all lakes using the Pb model due to lack of 

reconstructed TOC and/or pH so far back time. The predicted background concen-

tration of Zn however was higher for all lakes except Lake Älgsjön, than SEPA’s 

comparison values. One of the lakes (Svartesjön) was almost 5 times higher than 

the regional background concentration for South of Sweden. Lake Svartesjön is one 

of the lakes with the highest percentage of wetlands covering the watershed which 

corresponds to earlier research (Lidman et al., 2014) that has shown a negative cor-

relation between wetland coverage and stream water concentration of trace element.  

 

For Ni it was only possible to go as far back as 1870 for one lake (Djupa Holmsjön), 

Lake Djupa Holmsjön had, just as with Pb and Zn, more than twice as high concen-

tration as the SEPA comparison values for non-acid lakes . 

 

The overall high modelled background concentration raises the question to divide 

the lakes based on pH before constructing the models (Table 8) to see how this 

would impact the parameters in the model.  

 

By underestimating the concentrations of metals in a lake when performing envi-

ronmental assessment there is a risk to classify a lake as more affected by anthropo-

genic emission than it actually is. Which in itself leads to no harm, but it may result 

in environmental monitoring goals are set to high and not possible to reach. 

 

5.4 Model limitations 

The distributions of data was uneven between the lakes (Table 5 and Appendices - 

Table 16), which could cause some lakes to have higher influence on the models 

than others. The solution to minimize the impact of certain lakes could be to only 

use lakes with the same amount of monitored data. Still, in this case, the amount of 

data was low from the beginning so all available data was used to be able to see if 

it was possible create any model.  

 

As always when working with modelled data as input variables, the potential errors 

made in the first model are included in the next model. This increases the uncertainty 
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of the results. Research also shows that metals in surface water has a high temporally 

variance which makes it different to model in high  

However, this project was a good first step for predicting metal concentrations based 

on easily measured parameters such as pH and TOC, which have a long history of 

monitoring and are parameters that are possible to reconstruct historically.  

 

5.5 Further work 

Research predicts that TOC concentration will increase in the future (Cunningham 

et al., 2011; Rosén, 2005). Confirming this, Huser et al. (2011 and 2012) showed 

that TOC has increased in Swedish running waters over the last few decades, and is 

expected to continue increasing in the future. Combined with the results from this 

study, this would suggest that concentration of metals in lake water will increase in 

the future. For metals that bind strongly with TOC (Pb, Zn, Cr), this means that 

concentrations in lakes may increase without any impact from anthropogenic 

sources. But at the same time many lakes are recovering from the acidification dur-

ing the 1980’s which could decrease the effect of pH. 

 

The models constructed in this study should not yet be applied for evaluating water 

quality criteria. However, the area of topic should be further investigated and seen 

as an indicative of the direction of the monitoring of Swedish lakes. As further work, 

the data set should be increased to include more lakes and the same procedure could 

be done, for metal concentrations in the sediment. Through this approach it would 

be possible to compare the result against sediment samples as a way to evaluate the 

models.  
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6 Conclusions 
This study showed that it is possible to estimate historical concentrations of some 

metals using a few, easy to measure, model parameters in the water and sediment of 

lakes. This could provide a better method for estimated background concentrations 

compared using current concentrations from minimally impacted lakes, because all 

lakes are affected to some extent by anthropogenic emissions of metals (through 

deposition). To improve the models in this study, more lake sediment cores could 

be analysed and used. In addition, more attention is needed to this subject to improve 

the predictive modelling approach of metals in lakes, which in turn would improve 

the decision making and sampling design for environmental monitoring. 

 

The conclusions from this study are: 

 

 It was possible to create models describing metal concentrations in a lake based 

only on available data for Al, Cu, Cr, Co, Fe, Mn, Pb, Ni, Zn and V. 

 

 It was also possible to model background concentration for Pb, Zn and Ni but the 

results should be evaluated further and the models tested by applying them to a 

larger number of lakes.  

 

 

 

 

 

 



43 

 

7 References 
 

Appleby, P.., Oldfield, F., 1978. The calculation of 210Pb dates assuming a con-

stant rate of supply of unsupported 210Pb to the sediment. Catena 1978, 

1–5. 

Berggren Kleja, D., Elert, M., Gustafsson, J.P., Jarvis, N., Norrström, A.-C., 2006. 

Metallers mobilitet i mark (No. 5536). Stockholm : Naturvårdsverket, 

Stockholm. 

Boyle, J., 2001. Redox remobilization and the heavy metal record in lake sedi-

ments: a modelling approach 2001, 423–431. 

Cooke, G.D., Welch, E.B., Peterson, S., Newroth, P., 1993. Restoration and Man-

agement of Lakes and Reservoirs, Second Edition. CRC Press. 

Cosby, B.., Hornberger, G.., Galloway, J.., Wright, R.., 1985a. Modelling the ef-

fects of acid deposition: assessment of a lumped-parameter model of soil 

water and streamwater chemistry. Water Res. 1985, 51–63. 

Cosby, B.., Hornberger, G.., Galloway, J.., Wright, R.., 1985b. Modelling the ef-

fects of acid deposition: estimation of long-term water quality responses in 

a small forested catchment. Water Res. 1985, 1591–1601. 

Cosby, B.., Hornberger, G.., Galloway, J.., Wright, R.., 1985c. Time scales of 

catchment acidification: a quantitative model for estimating freshwater 

acidification. Environ. Sci. Technol. 1985, 1144–1149. 

CRU [WWW Document], 2008. . CEDA Catalouge Site. URL http://cata-

logue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d 

Cunningham, L., Bishop, K., Mettävainio, E., Rosén, P., 2011. Paleoecological ev-

idence of major declines in total organic carbon concentrations since the 

nineteenth century in four nemoboreal lakes. J. Paleolimnol. 45, 507–518. 

doi:10.1007/s10933-010-9420-x 

EUR-Lex - 32000L0060 - SV [WWW Document], 2000. . Eur. Gemenskapernas 

Off. Tidn. Nr 327 22122000 0001 - 0073. URL http://eur-lex.eu-

ropa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000L0060:SV:HTML 

(accessed 5.26.15). 

Fölster, J., Hallstan, S., Johnson, R.K., 2014. Utvärdering av de nationella miljöö-

vervakningsprogrammen av sjöar - Trendsjöar och Sjöomdrev (No. 

2014:3). Institutionen för vatten och miljö, Uppsala. 

Futter, M.N., Valinia, S., Löfgren, S., Köhler, S.J., Fölster, J., 2014. Long-term 

trends in water chemistry of acid-sensitive Swedish lakes show slow re-

covery from historic acidification. AMBIO 43, 77–90. 

doi:10.1007/s13280-014-0563-2 

Grandin, U., 2013. Dataanalys och hypotesprövnng för statistikanvändare. Natur-

vårdsverket, Uppsala. 

Gustafsson, J.-P., Jacks, G., Simonsson, M., Nilsson, I., 2007. Soil and water 

chemistry. KTH, Stockholm. 



44 

 

Håkanson, L., 1995. Optimal size of predictive models. Ecol. Model. 78, 195 – 

204. doi:http://dx.doi.org/10.1016/0304-3800(93)E0103-A 
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Appendix 1 
 

Table 14. Comparison between replicates of ICP-MS measurement and ICP_AES.  Unit mg/kg TS 

Method Lake Sed.  

sec-

tion 

Al  Fe Mn Cu Zn Pb Cd Cr Ni Co As V 

ICP-MS Brunnsjön 0-2 16450 27960 141 27,3 83,5 106 1,79 16 12.1 10.1 6.62 68.6 

ICP-AES Brunnsjön 0-2 17783 24873 166 27.6 99.8 107.4 3 14.7 10.85 10.3 11.6 64.5 

ICP-MS Brunnsjön 30-32 10230 12750 253 20.5 51.3 33.1 0.58 10.1 6.66 3.47 3.7 30.9 

ICP-AES Brunnsjön 30-32 10524 12371 255 19.5 77.5 33.5 1.1 9.25 5.72 3.92 7.2 25.9 

ICP-MS Bysjön 2-4 27620 45880 1231 26.5 244 74.1 1.2 30.8 23.7 17.9 5.8 67 

ICP-AES Bysjön 2-4 31242 43527 1161 23.1 231.4 70.7 3.2 25.99 19.41 18.77 7.39 54.5 

ICP-MS Pahajärvi 0-2 14730 116300 1491 29.8 143 64.4 1.2 40 16.3 14.5 8.05 63.8 

ICP-AES Pahajärvi 0-2 11930 96720 1215 23.1 138.6 52.1 5.6 28.867 11.4 10.9 8.5 43.4 
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Table 15. Result from multivariate correlation analysis. Concentrations are log transformed. Metals without units are in mg/kg 

 Sed rate Preci-

pitation 

pH Al  Fe  Mn  Cu  Zn Pb Cr  Ni  Co  As  V  

Sed Rate 1 -0.45 0.40 0.41 0.28 0.31 -0.12 0.37 -0.25 0.07 -0.14 0.15 -0.03 0.23 

Precipitat-

ion 

-0.45 1.00 -0.69 -0.51 -0.44 -0.55 -0.06 -0.27 -0.05 -0.54 -0.22 -0.38 -0.20 -0.40 

pH 0.40 -0.69 1 0.74 0.47 0.72 -0.21 0.36 -0.27 0.69 0.38 0.54 0.08 0.48 

Al  0.41 -0.51 0.74 1 0.39 0.59 -0.25 0.47 -0.37 0.78 0.47 0.69 -0.07 0.72 

Fe   0.28 -0.44 0.47 0.39 1 0.80 0.25 -0.07 -0.16 0.39 -0.10 0.65 0.59 0.70 

Mn   0.31 -0.55 0.72 0.59 0.80 1 0.01 0.16 -0.33 0.64 0.20 0.70 0.31 0.73 

Cu   -0.12 -0.06 -0.21 -0.25 0.25 0.01 1 -0.14 0.41 0.02 0.04 0.13 0.20 -0.02 

Zn   0.37 -0.27 0.36 0.47 -0.07 0.16 -0.14 1 -0.18 0.36 0.51 0.28 -0.09 0.06 

Pb   -0.25 -0.05 -0.27 -0.37 -0.16 -0.33 0.41 -0.18 1 -0.18 -0.14 -0.18 -0.09 -0.11 

Cr   0.07 -0.54 0.69 0.78 0.39 0.64 0.02 0.36 -0.18 1 0.69 0.70 -0.09 0.67 

Ni   -0.14 -0.22 0.38 0.47 -0.10 0.20 0.04 0.51 -0.14 0.69 1 0.52 -0.22 0.14 

Co   0.15 -0.38 0.54 0.69 0.65 0.70 0.13 0.28 -0.18 0.70 0.52 1 0.27 0.73 

As   -0.03 -0.20 0.08 -0.07 0.59 0.31 0.20 -0.09 -0.09 -0.09 -0.22 0.27 1 0.13 

V   0.23 -0.40 0.48 0.72 0.70 0.73 -0.02 0.06 -0.11 0.67 0.14 0.73 0.13 1 

TOC mg/l 0.29 0.07 0.11 0.30 -0.06 0.28 -0.42 0.50 -0.58 0.17 0.22 0.21 -0.22 0.15 

Fe µg/l 0.12 0.47 -0.45 -0.20 -0.01 -0.06 -0.23 0.12 -0.38 -0.36 -0.23 -0.09 0.02 -0.03 

Mn µg/l 0.32 0.16 -0.15 0.08 0.14 0.19 -0.26 0.25 -0.32 -0.21 -0.11 0.09 -0.03 0.14 

Cu µg/l -0.16 -0.20 0.26 0.24 0.34 0.47 -0.15 0.15 -0.07 0.41 0.24 0.23 0.14 0.39 

Zn µg/l -0.47 0.45 -0.70 -0.62 -0.45 -0.57 0.46 -0.37 0.50 -0.37 -0.11 -0.34 -0.17 -0.24 

Al_s µg/l 0.19 0.44 -0.46 0.00 -0.19 -0.22 -0.14 0.17 -0.32 -0.29 -0.10 -0.02 0.02 -0.04 
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Pb µg/l -0.09 0.59 -0.71 -0.78 -0.57 -0.36 0.10 -0.13 -0.08 -0.78 -0.27 -0.72 -0.28 -0.59 

Cr µg/l 0.13 -0.11 0.06 0.16 -0.06 0.22 -0.44 0.29 -0.63 0.15 0.34 0.10 0.09 0.03 

Ni µg/l -0.45 0.40 -0.17 0.00 -0.47 -0.11 0.06 0.25 -0.48 0.08 0.65 0.05 -0.46 -0.41 

Co µg/l -0.39 0.73 -0.78 -0.48 -0.70 -0.65 0.12 -0.25 -0.10 -0.50 0.05 -0.41 -0.69 -0.48 

V µg/l 0.35 0.28 -0.31 -0.25 -0.22 0.05 -0.53 0.03 -0.64 -0.34 -0.11 -0.37 -0.11 -0.14 
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Appendix 2  

Table 16. Different groups and lakes affiliation, N represent amount of data rows for each lake. The 

limits for acid lake are pH< 6. As seen in the table some lakes contribute with one data point while 

other with 11 at most. This is caused by the shortage of overlapping time series of sediment cores and 

water chemical data 

Lake  Osgood Index Acidic-Neutral WS: LA N 

Allgjuttern Deep neutral 7.0 3 

Djupa Holmsjön Deep acidic 11.6 2 

Grissjön Deep acidic 6.7 3 

Harasjön shallow acidic 9.8 4 

Hällsjön Deep neutral 7.1 5 

Remmarsjön shallow neutral 91.5 1 

Rotehogstjärnen Deep acidic 21.7 5 

Siggeforasjön shallow neutral 30.6 11 

Stora Envättern shallow neutral 3.8 1 

Stora Gryten shallow neutral 18.1 6 

Svartesjön Deep acidic 13.9 1 

Svinarydsjön Deep acidic 9.9 1 

Tväringen shallow neutral 22.5 1 

Tärnan shallow neutral 12.7 1 

Älgsjön Deep neutral 14.0 2 

Örsjön Deep acidic 4.5 2 

Övre Skärsjön shallow acidic 5.2 2 

 


