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SUMMARY 

Current concerns about sustainable agriculture and the needs to reduce the use of 

concentrates has led researchers to investigate new approaches in feeding systems for 

dairy cows. The beginning of lactation is a threatening episode in cow’s life. The 

increasing nutrient demands for milk production often overcomes their capacity to ingest 

enough feed to supply their nutrient demands. In addition, exist other factors besides the 

physical constrains that may influence intake in cattle i.e. metabolic changes, diet 

composition or animal characteristics. The use of concentrates, which are rich in energy, 

seem to be crucial to compensate the energetic deficiencies in this lactation stage. 

Therefore, the hypothesis of this experiment was that cows fed with low concentrate 

levels during the first six weeks of lactation would have higher silage intake but lower 

milk yield and a more negative energy balance. Thirty-one cows were used in the 

experiment during their first six weeks of lactation. The herd comprised cows with 

different lactation number and two breeds, Swedish Holstein and Swedish Red. Two diets 

with different amounts of concentrate and ad libitum silage were offered. The low 

concentrate group (LC) received 4-5Kg of concentrate depending on lactation number 

and the High concentrate group (HC) received 14-15Kg. The concentrate was based on 

by-products with the peculiarity of being rich in neutral detergent fibre (NDF) (88%

DM, 179g/Kg DM CP, 67.4 g/Kg DM Fat, 328 g/Kg DM NDF, 53.6 g/Kg DM Ash, 

32.5 g/Kg DM Starch and 13.2 MJ/Kg DM ME). The silage used was clover-grass

silage with low content in NDF and highly digestible (36.5% DM of fresh matter, 80% 

OMD, 138g/Kg DM CP, 391g/Kg DM NDF, 83g/Kg DM Ash, 11.7MJ/Kg DM ME and 

pH=4.3). All cow were milked twice daily in an Automatic Milking Rotary (AMR) 

system. Silage and concentrate intakes, milk yield, body weight (BW), and camera body 

condition score (BCS) were recorded on daily basis. Visual BCS and milk sampling for 

composition analysis were measured the second, fourth and sixth week of lactation for 

each cow. From the data collected, energy corrected milk (ECM) and energy balance 

(EB) were calculated. The effect of treatment was not significant for total dry matter 

intake (DMI), total metabolizable energy (ME) intake, energy corrected milk (ECM), 

energy balance (EB), and BCS. Silage intake was significantly higher within LC group. 

Effects of parity and breed were statistically significant for all the parameters measured 

except for the effect of breed and lactation number on energy balance. In conclusion, 

dairy cows fed with low concentrate diets during early lactation could compensate their 

energetic requirements for both body maintenance and milk production by eating more 

silage of high digestibility. 
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1. BACKGROUND

1.1 Intake regulation in the Transition period 

Parturition is an event of the animal life, which the organism has been preparing from the 

conception date. Mammals have evolved in favour of a successful rearing of their 

offspring. Hence, during late pregnancy and lactation, physiological mechanisms have 

been developed in order to lead nutrient partitioning towards milk synthesis. This 

generates an increase on energetic demands for the animals and in consequence inhibit 

their reproductive system until the recovery of the energetic deficiencies. In late gestation, 

mammals experience a decline in dry matter intake that reaches its lowest point at 

parturition day. The endocrine system, responsible of all the hormonal changes in the 

body, orchestrates the functioning of these mechanisms and accompanying to these 

changes, animals start to mobilise fat body reserves (Bauman & Currie, 1980). These 

events are especially particular in dairy cattle. After parturition, energetic demands 

towards milk synthesis increase drastically whereas the rise in intake is not proportional 

to the energetic demands. Hence, genetic selection has led to a prolongation of negative 

energy balance threatening the health status of the cow (Ingvartsen & Andersen, 2000). 

1.1.1 Endocrine regulation 

The ovaries and the placenta secrete progesterone during pregnancy. Progesterone is the 

responsible to maintain pregnancy but also is involved in growth and development of the 

mammary gland and inhibition of lactogenesis.  It remains in high concentrations during 

the whole pregnancy upon time of parturition when it falls drastically (Sjaastad, et al., 

2010). Drop in progesterone serves as a signal to increase the differentiation rate of 

mammary gland cells and consequently acquire the ability to synthetize milk components 

by the mammary gland (Sjaastad, et al., 2010).  

A few days before parturition, other hormones start to appear on scene, there is an increase 

on plasma concentration of oestrogen and corticosteroids (Ingvartsen & Andersen, 2000). 

Their function is to induce lactation by stimulating the secretion of prolactin from the 

anterior pituitary. In addition, Green, et al.(1994) and Grummer, et al. (1990), proved the 

negative correlation between feed intake and β-17-estradiol in ewes and cows in late 

gestation, respectively. On the other hand, stress hormones are also associated with 

inhibition of feed intake (Ingvartsen & Andersen, 2000)  

At parturition, there is a peak of prolactin and somatotropin (GH). Oestrogen and 

prolactin have a synergistic effect promoting cell differentiation of the mammary gland. 

Prolactin also influences the metabolism of the adipose tissue towards milk synthesis 

(Szczesnaa, et al., 2011), and stimulates the hypertrophy of the gastrointestinal tract in 

order to increase the absorptive capacity of nutrients (Bauman & Currie, 1980). GH is 

responsible to maintain lactation (galactopoesis). Somatotropin also influences the 

metabolism of both adipose tissue and liver. It stimulates lipolysis in the adipose tissue 

and gluconeogenesis in the liver, increasing plasma concentrations of non-esterified fatty 

acids (NEFA) and glycerol. At the same time, it inhibits lipogenesis in the adipocytes by 
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making the tissue refractory to the effects of insulin in order to favour nutrient uptake by 

the mammary gland (Bell, 1995). GH also stimulates the secretion of insulin-like growth 

factor 1 (IGF-1) in the liver, which acts as mediator of the effects of GH in a wide variety 

of cell types. IGF-1 also acts a regulator of secretion of GH through a negative feedback 

loop. In late pregnancy the dip on DMI down-regulates the expression of GH receptor 1A 

(GHR 1A) in the liver. Therefore circulating GH cannot bind to the receptor and 

expression of IGF-1 decreases. The depletion of IGF-1 in blood enhances the secretion 

of somatotropin increasing nutrients partition towards milk production. The increase in 

intake in early lactation restores the expression of GHR 1A and nutrient portioning in the 

liver is rehabilitated. The level of uncoupling of this somatotropic axis in early lactation 

will influence the capacity of milk synthesis and increase the predisposition to suffer fatty 

liver or ketosis (Lucy, et al., 2001). As already mentioned, somatotropin and prolactin 

decrease the affinity of the receptors to insulin. Together with the decreased levels of 

circulating insulin in late pregnancy contributes to slow down the nutrients uptake and 

consequently stimulate fat mobilisation of body reserves (Bell, 1995). Another hormone 

involved is leptin, which is secreted by the adipose tissue. Leptin has satiating effects. In 

early lactation, negative energy balance reduces the synthesis of leptin. This fall in leptin 

is processed by the central nervous system and acts increasing appetite (Nowroozi-Asl, 

et al., 2016). 

Intake regulation is integrated inside the limbic systems of the central nervous system. 

According to Miner, et al. (1990), neuropeptide Y (NPY) has an orexigenic effect in 

ruminants. Injections of NPY at the lateral ventricle of the brain resulted in greater intake 

for ewes. A proteomic study of the cerebrospinal fluid conducted in dairy cows showed 

that the concentration of pro-neuropeptide Y decreased after parturition possibly due to 

an increase cleavage of the pro-neuropeptide into its active form (NPY) and this could be 

linked with DMI regulation (Kuhla, et al., 2014).  

1.1.2 Effects of nutrient metabolites on intake regulation 

Intake decreases during late pregnancy generating a great mobilisation of body fat in order 

to meet the increasing energetic demands of the cow. Although it has not been fully 

demonstrated, is likely that non-esterified fatty acids (NEFA), and ketone bodies have an 

additional effect depressing DMI. If levels of NEFA continue to be high during early 

lactation, intake will not recover according to the increasing energetic demands. Thus, 

cows would prolong their negative energy balance and consequently be more prone to 

develop metabolic disorders.  

Non-esterified fatty acids are the metabolites released to blood stream after lipolysis from 

the adipose tissue. There is a high correlation between fat mobilization and plasma 

concentrations of NEFA. Hence, they are good indicators of fat mobilisation. Once NEFA 

reach the blood stream either go to the mammary gland and in turn, incorporated in milk 

triglycerides, or are degraded in the liver via β-oxidation (Sjaastad, et al., 2010). There is 

an unproven hypothesis that fatty acid oxidation by the hepatocytes generate intake 

inhibitory signals mediated by vagal afferents to the central nervous system (Langhans, 

1996). Hepatocytes have limited capacity to degrade NEFA via citric acid cycle. Instead, 
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some acetyl-CoA is used to synthetize ketone bodies. These are released again into the 

blood stream and serve as an energy source by other tissues (Sjaastad, et al., 2010). In a 

study conducted in rats by Arase, et al.(1988), showed that chronic infusion of 3-

hydroxybutyrate (3-OHB) in the brain decreased intake and body weight of the animals. 

Therefore, might be that ketone body β-hydroxybutyric acid (BHBA) has a central 

regulating effect in intake. 

1.2 Role of diet composition on Intake and Milk production 

Ruminants are forestomach fermenters. This means that nutrient breakdown is done by 

fermentation by the ruminal microflora. Carbohydrates, proteins and fat are the principal 

nutrients ingested in a ruminant diet. Dietary carbohydrates (cellulose, hemicellulose, 

pectin, soluble sugars and starch) are used as substrate of fermentation for ruminal 

microorganisms. The resulting compounds are volatile fatty acids (VFA) i.e. acetate, 

butyrate and propionate, which serve as an energy source for the body tissues including 

the mammary gland.  Dietary fat only accounts for a small proportion of nutrient intake 

since the type of diet of ruminants usually is not rich in fat. Furthermore, they do small 

contribution in rumen fermentation since they are barely fermented (France & Dijkstra, 

2005). Rumen hydrolases proteins to amino acids. The vast majority serves as substrate 

for microbial synthesis, which in turn is responsible to ferment carbohydrates into VFA. 

The portion of proteins that is not used by microorganisms passes directly to the 

abomasum and small intestine. Rumen Degraded Proteins (RDP) are the proteins 

fermented inside the rumen and non-degraded or bypass protein (UDP) is the portion that 

escapes fermentation. Microbial protein (MP) are the resulting proteins and other 

nitrogenous compounds from microbial fermentation. MP together with the bypass 

proteins are the major source of essential and non-essential amino acids for the host 

(Nolan & Dobos, 2005). 

1.2.1 Neutral Detergent Fibre (NDF) and Non-fibrous Carbohydrates (NFC) 

Neutral Detergent Fibre (NDF) constitutes fibrous compounds in plants i.e. cellulose, 

hemicellulose and lignin. On the other hand, Non-Fibrous Carbohydrates are simple 

sugars i.e. starch, glucose, sucrose and fructose. 

There is a generalized assumption that diets containing higher amounts of NDF contribute 

to rumen fill and are poorer in metabolizable energy. From this reasoning emerges the 

idea that NDF has negative effects on DMI and consequently in milk production. Rabelo, 

et al. (2003), observed that high levels of NDF in the diet affected negatively DMI and 

lactation performance, especially in multiparous cows. During late pregnancy, cows had 

significantly lower DMI when fed a diet with high NDF content (40% NDF and 38%NFC 

in the low-density diet versus 32% NDF and 44% NFC of the high-density diet). 

However, these results did not carry over significantly in the subsequent lactation. 

Nonetheless, they claimed that an early lactation diet containing high amounts of NFC 

was beneficial for energy balance and lactation performance. The only significant effect 

observed post-partum was that multiparous cows had greater DMI and milk production 

irrespective of treatment. Notwithstanding, an earlier study conducted by Dhiman, et al. 
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(1995), concluded that the energy content in the diet may be even more important than 

the levels of NDF. In this study, different levels of alfalfa silage were offered to dairy 

cattle during a whole lactation period. Content of NDF increased linearly as more alfalfa 

silage was included in the diets. Moreover, the results showed that DMI and dry matter 

digestibility decreased significantly as the proportion of alfalfa silage increased, deriving 

to a greater rumen fill, which in turn, impaired DMI. However, the correlation between 

DMI and DM digestibility was not significant. Thereby, the significant effect of poor 

digestibility was dependent on the silage quality. Diets containing more alfalfa were 

poorer in energy than diets with more concentrate and thus, energy intake diminished. 

This fact was the causative of a prolonged negative energy balance during early lactation 

and consequently affected milk production. 

Studies conducted in grazing systems have shown that not necessarily the amount of NDF 

can be detrimental for DMI and milk production. A retrospective study performed  by 

Kolver & de Veth (2002), showed that fresh pasture grazing cows were able to maintain 

a low ruminal pH (pH= 5.8 – 6.2), despite the high levels of NDF (40%) contained in the 

diets. In addition, these levels of ruminal pH had a significant benefit for milk production 

parameters without compromising DMI. The authors claimed that NDF content was not 

determinant of bad ruminal fermentation; indeed fresh pasture contained high-

fermentable NDF. In agreement with these arguments, Roche, et al. (2010) studied the 

effect on concentrate supplementation in grazing dairy cows receiving a diet with the 

same energy density. Results showed that when metabolizable energy was equal in both 

diets independently of the content in NFC, the effect in energy corrected milk, body 

condition score and body weight did not differed between treatments. Furthermore, the 

diet containing more NFC decreased significantly the content in milk fat. These results 

imply that if the energetic content of the diet is adequate in a given production stage, the 

nature of the carbohydrates and their implications in DMI will be relegated to a secondary 

plane. 

1.2.2 Dietary Protein 

As mentioned, ruminal bacteria degrade and transform most of the dietary protein 

ingested. Grummer, et al. (2004), reviewed the effect of UDP and RDP on intake. Most 

of the literature was consistent with the fact that these two nutrients do not affect DMI. 

Nitrogen sources of the diet do not have a direct effect in milk synthesis. A study about 

nitrogen utilization efficiency in dairy cows concluded that diets containing less protein 

did not had a detrimental effect in lactation and that it was the most efficient way to 

improve its utilization (Higgs, et al., 2013). In contrast, Whelan, et al. (2014), observed 

that milk yield and protein yield were significantly improved in diets rich in proteins and 

low in NFC. However, energy balance was better for cows consuming a diet poor in 

proteins and rich in NFC. Nonetheless, results from both studies could be conciliated 

since protein content of diets in Whelan, et al. (2014), experiment were half of the amount 

contained in Higgs, et al. (2013). 
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1.2.3 Dietary Fat 

Even though dietary fat accounts for little proportion of energy uptake from a normal diet; 

dietary fat supplementation seems to have a marked inhibitory effect on DMI. Grummer, 

et al. (2004), affirmed that the effect could be seen with small changes in fat content in 

the diet (2% to 3.2% fat). Furthermore, they showed a strong relationship between fat 

inclusion and parity. Heifers seemed to be more sensitive to fat changes in the diet than 

multiparous cows. The fact that multiparous cows may have been exposed to 

supplemental dietary fat in previous events made them more tolerant.  

Regarding milk production, dietary fat is the principal factor affecting milk fat synthesis 

in the mammary gland. Milk fat is formed by fatty acids of different length. Long-chain 

fatty acids come from preformed fatty acids in the body either from the rumen 

biohydrogenation of dietary fat or from mobilized fatty acids in the adipose tissue. Short-

chain fatty acids are synthetized de novo inside the mammary gland. When fat is present 

in large amounts in the diet conjugation of linoleic acid (C18:2) is displaced towards its 

trans- isoform which has been described as having an inhibitory effect of the de novo 

synthesis of fatty acids in the mammary gland. In consequence, milk at yield is depressed. 

This disorder is known as milk fat depression (Bauman, et al., 2006). 

1.3 Role of animal characteristics on intake and milk production 

Individual characteristics of a cow also influence DMI during the transition period. Parity, 

body condition score (BCS) and breed have been described to play a role in intake and 

energy balance.  

1.3.1 Effect of Parity 

Effect of parity is usually present in research of dairy cows during their whole production 

cycle. In late pregnancy, lactation number seems to have a detrimental effect on intake. 

Marquardt, et al. (1977), showed a greater intake decline for older cows than heifers two 

weeks before parturition, 18 and 14% DMI, respectively. Furthermore, Hayirli, et al. 

(2002), also showed a similar trend. Multiparous cows decreased DMI relative to their 

body weight from 1.88% to 1.4% the last 21 days of pregnancy. While heifers decreased 

DMI from 1.7% to 1.3%. However, according to Grummer, et al. (2004), heifers can enter 

in negative energy balance (NEB) before calving since they have extra requirements for 

growth and their intake capacity is lower than multiparous cows. Feeding behaviour 

studies during lactation have also found differences between cows of different lactation 

number. Dado & Allen (1994), observed that during early lactation multiparous cows had 

higher DMI than primiparous cows. Moreover, DMI was positively correlated to body 

weight and milk production. In support to these findings Beauchemin, et al. (2002) 

observed that multiparous cows ate 9% more and produced 4 Kg of milk/day more than 

primiparous cows. Intake capacity of multiparous cows was greater due to their bigger 

rumen sizes.  

Multiparous cows produce more milk than primiparous cows. This difference may 

partially be explained by differences in hormone concentrations from the beginning of 
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lactation. In primiparous cows, their lower intake capacity is accompanied with 

significant higher levels of leptin and IGF-1 before calving. The increased levels of these 

hormones contribute to reach a satiety state. However, the innate requirements for energy, 

demand greater mobilization of body reserves and in turn, plasma concentrations of 

NEFA and BHBA increase. The rise of plasma NEFA and BHBA before calving indicates 

that primiparous cows can enter in negative energy balance before calving (Wathes, et 

al., 2007). After parturition levels of leptin drop significantly and there is a surge in 

somatotropin while IGF-1 continues to be high. This has direct consequences on the 

recovery of intake and affects milk production. The higher concentrations of IGF-1 will 

affect the recoupling of the somatotropic axis necessary for milk production since it has 

inhibitory effects on the secretion of GH. Therefore, less milk will be produced. Even so, 

an important characteristic of primiparous cows is that exists a positive relationship 

between milk yield and plasma BHBA. This means, that their livers have better capability 

to degrade fatty acids towards milk production and thus, indirectly, to suffer less 

metabolic disorders. In addition, primiparous cows can maintain BCS postpartum better 

than multiparous cows. The high concentrations of IGF-1 post-calving has positive effects 

against body condition loss. Furthermore, the steepest fall of leptin concentration also 

will contribute to the maintenance of BCS since intake will be stimulated (Wathes, et al., 

2007).  

In comparison, multiparous cows have greater intake before parturition but they also 

experience a deepest intake depression. Therefore, levels of NEFA and BHBA can be 

significantly higher if the level of intake suppression is high. In consequence, their risk 

to enter in negative energy balance, suffer post-partum metabolic disorders and affect 

milk yield increases because their oxidative ability of fatty acids in the liver is not as 

efficient as in primiparous cows. There is a strong negative relationship between milk 

yield and plasmatic levels of BHBA. On the other hand, if multiparous cows are in an 

acceptable NEB during the first weeks of lactation they will be able to recouple their 

somatotropic axis faster than primiparous cows because of their greater intake capacity 

(Wathes, et al., 2007).  

1.3.2 Effect of BCS 

Body Condition Score (BCS) is a qualitative measuring tool used to evaluate the 

proportion of body fat in dairy cows. In dairy cattle management, BCS is an important 

parameter of consideration in order to monitor different aspects of cattle productivity. The 

studies discussed below have shown that BCS at calving has an effect on lactation DMI, 

BCS loss post-calving, milk yield, immunity and reproduction performance. BCS is a 

dynamic parameter that its optimal point is dependent on the management system, breed 

or lactation stage. Therefore, an optimal BCS would be the one that expresses the 

maximum potential of milk production and genetic merit in a cow. Nonetheless, even the 

optimum recommendations can vary from farm to farm, there is a general agreement that 

dairy cattle should calve with a BCS between 3 and 3.5 (Roche, et al., 2009). 

Level of fatness of an individual will influence DMI before and after calving. Hayirli, et 

al. (2002), demonstrated that animals that were scored as obese had greater declines of 
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intake before parturition than cows that were classified as thin or medium. Total DMI 

depression of the studied groups were 28%, 29% and 40% for thin, medium and obese 

cows, respectively. This severe drop in intake of obese cows could lead to a higher 

predisposition to suffer metabolic disorders after calving due to extended NEB in early 

lactation. Stockdale (2007), studied the incidence of post-calving disorders related to 

BCS. The results showed that only cows with high BCS suffered clinical hypocalcaemia 

and a greater incidence of subclinical ketosis. The author argued that cows high BCS had 

greater lipid mobilization due to a deeper decrease in DMI before calving. Thus, 

triggering a status of oxidative stress, which in turn, would favour the development of the 

above-mentioned diseases. Bernabucci, et al. (2005), observed that cows with high BCS 

had significantly higher plasma concentrations of NEFA and BHBA due to a greater BCS 

loss after calving. Furthermore, their results of TBARS (thiobarbituric acid-reactive 

substances) and ROM (reactive oxygen metabolites) analysis revealed that fat cows were 

undergoing with stress oxidative conditions before and after parturition.  

This strong relationship between BCS pre-calving and body reserves mobilization after 

parturition has an indirect consequence in DMI because nutrient blood metabolites (i.e. 

NEFA and BHBA) have inhibitory effects in DMI (Ingvartsen & Andersen, 2000). 

Furthermore, attempts to increase DMI and avoid higher fat mobilization during early 

lactation have had little effect (McCarthy, et al., 2007). Notwithstanding, cows can 

mobilize body reserves using different strategies according to their actual level of fatness 

in order to face the requirement overload in early lactation. Weber, et al. (2013), observed 

three different levels of fat mobilization in early lactating cows. Cows that had greater fat 

mobilization had higher BCS before parturition. These cows after calving had lower DMI, 

entered in a severe NEB and blood metabolites like NEFA and intake regulatory 

hormones increased. On the contrary, cows that mobilized less body reserves had lower 

BCS prior calving but DMI in early lactation was significantly higher than the other 

groups. Furthermore, these cows faced a small NEB and moderate changes in blood 

metabolites and hormones mainly due to their high DMI. Cows that mobilized fat in an 

intermediate level had similar patterns in DMI and blood metabolites as cows with high 

mobilization, principally because they had higher plasmatic concentration of leptin. 

Despite the differences, energy corrected milk (ECM) was not statistically different 

among groups.  

In general prolonged negative energy balance in early lactation provoked by a low intake 

has detrimental effects in milk yield. Cows that are above the optimal recommendations 

(BCS < 3.5) have decreased milk production due to a greater depression in DMI during 

early lactation. The deeper NEB of these cows impede to meet the energetic demands for 

milk production and thus, affecting milk yield. Inversely, cows that are below or in 

optimal BCS (BCS≤3.5) have greater milk yield. Cows that have low BCS eat more and 

therefore there is a greater availability of energy that can be used for milk synthesis 

increasing lactation efficiency (Garnsworthy & Topps, 1982).  
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1.3.3 Effect of Genetics 

Genetic selection has played an important role improving milk production but in 

consequence, has affected indirectly other physiological mechanisms. Differences 

between and within breeds not only exists for milk production, but also in the rate of 

mobilizing fat reserves, intake, BCS or body weight. These differences arise when 

observing different breeds in the same management system. Cows genetically selected 

for specific environmental conditions will perform differently and be less efficient when 

placed in different managements systems, which they have not been selected for.  For 

instance, cows selected for intensive farm systems and high milk yields are not able to 

express fully their genetic potential when farmed in low-input management systems 

(grazing systems). Thus, threatening their metabolic status and milk production. 

McCarthy, et al. (2007) and Horan, et al. (2005), compared three strains of Holstein-

Friesian breed under grass-based management systems. The results showed that the strain 

selected for high milk production had lower BCS and grater condition loss during 

lactation while strains selected for lower milk yield were able to maintain a stable BCS. 

Furthermore, BCS profiles of the three strains observed had an inverse relationship with 

the lactation curve shape. High producing cows still produced more milk but they 

mobilized more body reserves. Therefore, under grazing-management systems these 

cows had to mobilize much more body reserves towards milk synthesis than less 

productive cows. In addition, milk persistency after peak of lactation was lower in high 

producing cows. On the contrary, when these cows were supplemented high levels of 

concentrate, high producing cows performed much better. Differences between strains 

could be influenced by a different degree of decoupling of the somatotropic axis as 

demonstrated Lucy, et al. (2009). 

French (2006) studied the relationship between breed and DMI depression during late 

pregnancy. The results showed that Holstein cows had significantly higher body weight 

and DMI than Jersey cows. However the magnitude of DMI depression was higher for 

Holstein cows (p<0.01). Furthermore, Jersey cows were able to maintain energy balance 

more constant than Holsteins. Hence, breed was an influential factor affecting DMI and 

EB pre-partum. Another study Friggens, et al. (2007), hypothesized that breed caused 

differences in energy balance during lactation. Results for body reserves mobilization 

were significant in early lactation, being Danish Holsteins who had greater mobilization. 

However, these breed differences disappeared as lactation progressed. Although breed 

differences were present for mobilization of body reserves, the low correlations observed 

between phenotype and genotype for energy balance during early lactation indicated that 

during this period EB was poorly mediated by genetics. Nonetheless, for the whole 

lactation the authors concluded that genetics influenced the different patterns of energy 

balance observed.  
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1.4 Effects of feeding strategies on intake, energy balance and milk 

production 

Research about feeding strategies in dairy cows dates back in the early 80’s (Gordon, 

1982). The main purpose has always been to increase production while minimizing feed 

inputs, in other words, increase milk production efficiency. During early lactation, milk 

production has an increasing trend until it peaks after approximately 60 days in lactation. 

However, during this period, increased requirements for milk production trigger to a 

negative energy balance, which has direct consequences in health and reproduction 

(Ingvartsen, et al., 2001). Through the years, different feed strategies have aroused in 

order to maximize peak yield because it is considered the major determinant of total 

lactation performance. Traditionally, the common recommendation was to feed high 

amounts of concentrates in early lactation in order to increase peak yield and decrease the 

amount of concentrates after the lactation peak in order to compensate feeding costs 

(Olsson, et al., 1997). Concentrates are energetic rich sources that contribute to minimize 

the negative energy balance in early lactation. However, not only the amount of 

concentrate is important to achieve a high peak yield, the rate of inclusion from the 

beginning of the lactation or the availability of roughages are also important factors that 

may influence milk production (Ingvartsen, et al., 2001). In addition, as discussed in 

previous sections, exist other factors playing an important role too. 

Gordon (1982) studied the benefits of providing flat rates of concentrate from the 

beginning of lactation in milk production in first lactation cows. The experimental design 

consisted in two different concentrate pattern allocations. One group of cows received a 

flat rate of concentrate of 6.8Kg/day until 182 days in milk (DIM) and the other group 

received 8Kg/day until 90 DIM and afterwards decreased concentrate amount to 

5.4Kg/day, imitating the traditional step-feeding system. The results showed that cows 

from the first group had significant greater silage intakes (>60Kg) and milk yields were 

not affected by treatment at any stage of lactation. These events opposed to the current 

literature at the time since it was considered that the level of feeding in early lactation had 

a major effect on the subsequent lactation performance. However, the author argued that 

differences in the results could be explained by the restricted availability of forages in the 

previous studies and because the second part of the lactation in the experiment was at 

pasture. Then the conclusion was that given ad libitum forage, constant allocation of 

concentrate could produce as high yields as the strategies designed to maximize peak 

yield. Posterior research supported the idea that allocation pattern of concentrate in early 

lactation had no significant effects on milk production and body condition loss and thus, 

using flat rates of concentrate with ad libitum access to forage was profitable. 

Nonetheless, the quality of the forage had to be taken into consideration because poor 

quality forages resulted in decreased intakes, milk yields and health. Furthermore, it was 

argued that high-yielding cows could benefited if fed according to their yield potential 

since they could be offered as much concentrate as their energetic requirements (Taylor 

& Leaver (1984) and Poole (1987)). Contrary to these results, in similar experimental 

conditions Aston, et al. (1995), reported that milk yield increased linearly on flat rate diets 
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containing higher amounts of concentrate. The experimental design included diets 

containing 3, 6, 9 or 12 Kg of concentrate in early lactation. Although results for milk 

yield increased by concentrate level in the diet, milk fat content decreased with diets 

containing three or twelve kilograms of concentrate. It was argued that cows receiving 

low amounts of concentrate (3Kg) were in a compromised energetic status and thus, milk 

fat synthesis was affected. Conversely, cows receiving the highest amounts of concentrate 

(12Kg) depressed milk fat synthesis due to changes in ruminal fermentation. In addition, 

high levels of concentrate contributed to minimize weight loss. The authors also agreed 

that step-feeding system did not have any significant benefit in milk production when 

compared to a flat rate system.  

Few years later, Olsson, et al. (1997), studied the effects of different levels of concentrate 

in rations fed individually to Swedish dairy breeds. All diets contained the same amount 

of energy and protein but differed on the ratio concentrate: forage, from 1Kg to 9Kg of 

concentrate per day. The results showed that the concentrate: forage ratio did not have an 

effect on intake neither for milk yield. The authors argued that due to the high quality of 

the forage, cows receiving a diet high in forage could obtain sufficient energy to meet 

their requirements. Moreover, low amounts of concentrate could be actually more 

convenient since was observed that cows eating higher amounts of concentrate had 

gastrointestinal problems (i.e. diarrhea). Nonetheless, results for health issues among 

treatments were not significant. In continuity with previous studies, Ingvartsen, et al. 

(2001), compared the effects on intake and lactation performance in dairy cows fed with 

two different increasing rates of concentrates (+0.5Kg/day and +0.3Kg/day) and a 

complete diet containing mixed forage and concentrate. Regarding the comparison of the 

two rates of inclusion, the authors reasoned that faster increase of concentrates 

(0.5Kg/day) resulted in a marked silage intake depression with high intake substitution of 

forage by concentrate. Furthermore, these cows experienced a greater weight loss during 

the first three weeks of lactation without any significant increase in milk production 

compared to the other group. On the other hand, the authors evoked that feeding a 

complete diet had significant benefits. Intake was improved up to 24% the first three 

weeks of lactation and energy corrected milk was significantly higher.  

Total mixed rations (TMR) gave new research insights about feeding systems in dairy 

cattle. This feeding strategy granted potential benefits in terms of intake and milk 

production. Andersen, et al. (2003), studied the effects of high concentrate proportion in 

TMR diets on milk production and DMI during the first 16 weeks of lactation. Results 

showed that DMI was not affected between treatments having 25% or 75% of concentrate, 

although there was a strong tendency favouring the high concentrate group. Furthermore, 

in terms of energy intake the differences were strongly significant due to differences in 

diet composition of NDF and starch. This favoured the cows receiving 75% of concentrate 

to produce up to 15% more milk yield, which in terms of standardized milk was translated 

to 11% ECM more. In addition, cows receiving less concentrate had greater losses in body 

weight and body condition the first eight weeks of lactation. Similar results were observed 

in a least extreme study including two breeds of cows (Holstein and Normand). Cows 

receiving a higher portion of concentrates (30%) produced more milk, in terms of yield 
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and fat content, and mobilized slightly less body reserved than the group receiving 15% 

concentrate. However, the incidence of digestive disorders tended to be greater in the high 

concentrate group, particularly in the Holstein breed. Regarding the energy balance 

between the treatment groups revealed that although milk production increased with more 

concentrate allowance, energy balance was slightly improved. Most of the additional 

energy within the high concentrate treatment group went to produce more milk at 

expenses of other body requirements. The following stages of lactation culminated with 

a lower lactation persistency for those cows receiving more concentrates (Delaby, et al., 

2009). 

In the recent times, interest about feeding concentrates to cows has decreased. The 

volatility of market prices for this kind of feedstuffs has increased the susceptibility to 

meet the requirements in high-input farm systems. Furthermore, the massive use of 

concentrates for livestock has destined large areas of arable land, which could be used to 

feed the population, to crop animal feedstuffs. Ruminants are less competitive for food 

with humans as could be monogastric animals. Due to the anatomy and physiology of 

their gastrointestinal system, they can degrade feed sources that are not edible for human 

consumption. On that sense, feeding large amounts of concentrates restrict them to 

express their innate ability to convert fibre-rich resources into edible energy for human 

consumption via milk or meat (Eisler, et al., 2014). Therefore, new perspectives in dairy 

farming have emerged in order to decrease the use of concentrates towards more 

sustainable systems.  

Observational studies have compared cow performance and health between organic and 

conventional farms. The principal difference between these two management systems is 

diet composition, where organic farms include higher proportions of roughages in the 

diets. The most common traits measured in these studies are milk yield and composition, 

energy balance, body weight, body condition and health status. Results have shown that 

milk yield is lower in organic farms but metabolic status is not compromised when 

receiving diets that are less energetic. This suggests that cows in organic conditions can 

adapt their production according to their feed intake (Roesch, et al. 2005 and Fall, et al., 

2008). Interestingly, a similar study evaluated cost and income revenues in farms that did 

not use concentrates as part of the diet. It was concluded that although milk production 

was lower, the marginal income per cow was not different from conventional systems. 

(Ertl, et al., 2014).  

Under experimental conditions, effects of concentrate levels in the diet seem to be 

controversial depending on the length of the observational period. In a study conducted 

during the whole lactation period, low levels of concentrates (6Kg) in diet had significant 

lower results in milk and fat plus protein yields compared to high levels of concentrate 

(10Kg). Nonetheless, the response to concentrate for milk production was greater with 

low levels concentrate, 1.38 Kg milk/Kg concentrate and 0.5Kg milk/Kg concentrate in 

low concentrate and high concentrate levels, respectively. Treatment group did not affect 

body condition and body weight. In addition, the effect of genotype was present. Purebred 

Holstein were more productive with higher levels of concentrate inclusion in the diet than 
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crossbred Holstein x Jersey (Vance, et al., 2013). Horn, et al. (2014), observed similar 

results when compared diets containing 3.7Kg and 7.5Kg of concentrate in dry matter 

basis. For the whole lactation period, cows within the high concentrate group had 

significantly greater ECM yields than cows receiving less concentrate. However, BCS, 

BW and reproductive performance were not affected by treatment. Within the same 

experiment, results for the early lactation period were not the same as those observed for 

the whole lactation. ECM and BCS were not significantly affected by treatment. 

Furthermore, the analysis of blood metabolites in early lactation revealed that cows with 

a low concentrate diet were not in a worse metabolic status than cows eating more 

concentrate since blood metabolites (i.e. glucose, NEFA and BHBA) were similar. 

Focusing on the metabolic profiles in early lactation in cows receiving different amounts 

of concentrate, Reist, et al. (2003), observed that cows eating low concentrate diets had 

more negative energy balance but it did not affect milk production. The metabolic profiles 

of cows receiving less concentrates showed low plasma concentrations of glucose insulin 

and IGF-1 whereas concentrations of NEFA, BHBA and GH were high. These showed 

that although low concentrate diets contributed to a more stressful metabolic status cows 

could adapt successfully to their energetic demands. Therefore, it is likely that although 

low concentrate diets given during the whole lactation may affect milk production, there 

is little effect when fed in early lactation. 

2. HYPOTHESIS 

The hypothesis of this experiment was that cows fed low concentrate levels during the 

first six weeks of lactation would have higher silage intake but lower milk yields and a 

severe negative energy balance. 
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3. MATERIALS AND METHODS 

This experiment was carried out at the Swedish Livestock Research Centre (Lövsta 

forskningscentrum) from the 1st of February of 2016 to 18th April of 2016. 

3.1 Experimental design 

In this study, dairy cows received two levels of concentrate and forage ad libitum during 

their first six weeks of lactation. The first group received a low concentrate ration with 4-

5 kg/day of concentrate depending whether the cows were in the first lactation or more. 

The second group received an increasing rate of concentrate from the beginning of the 

lactation up to reaching a maximum of 14-15 Kg/day by the 24th day of lactation. 

Afterwards the amount of concentrate was maintained stable until the cows left the 

experiment. The day when cows entered into experiment (2 days post-calving) 2-3Kg of 

concentrate were offered as a base and the allocation pattern consisted in 0.5Kg/day until 

they reached the stipulated maximum. The cows included in this study calved between 

the 1st of February and 12th of March of 2016 and where then followed until their sixth 

lactation week.  

3.2 Herd and Management 

Thirty-one cows were included in the experiment. The animals entered in the trial 

randomly, according to their calving date. Two different dairy breeds formed the herd, 

Swedish Holstein (SH) and Swedish Red (SH). In addition, the experiment included both, 

primiparous cows (heifers) and multiparous cows (2 or more lactations). The distribution 

between both treatment groups was done according to parity and breed. In total 18 cows 

joined the low-concentrate groups and the remaining (n=13) joined the high-concentrate 

group. The inequality between groups occurred in order to maintain the equilibria on the 

distribution criteria since cows were included into the experiment by calving date. Cows 

entered to the experiment 2-3 days post-calving. 

The cows were kept in a free-stall barn with an individualized automatic feeding system. 

All cows had access ad libitum to forage and water at any time of the day. Concentrate 

was automatically dispensed according to their stipulated concentrate ration using 

individual feed stations. The cows were fitted with transponders that communicated to a 

central management software. This allowed automatizing individual feed dispensation 

and to record both intake levels of forage and concentrate into the central computer. All 

cows were milked twice daily (a.m. and p.m.) in an Automatic Milking Rotary (AMR) 

system.  

The researchers conducted a general monitoring checklist twice a week in order to avoid 

possible incidences with the feed rations, milking or health issues that could not have 

been noticed by the farm staff.  
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3.3 Data Collection 

Forage intake was recorded from each cow and feeding bunk on daily basis. Individual 

concentrate intake was also recorded daily at the feed stations. Body weight and body 

condition score were recorded on daily basis at the entrance of the milking parlour using 

a scale and a BCS camera (DeLaval body condition scoring BCS, DeLaval International 

AB, Tumba, Sweden), respectively. Milk yields were recorded automatically at each 

milking time.  

Milk samples to analyse milk composition were taken on the second, fourth and sixth 

week of lactation for each cow in the experiment. The samples of each week were 

collected at evening milking and the consecutive morning milking. Milk sampling 

containers were used to collect the milk and were kept under refrigeration temperatures 

until time of analysis. Milk analysis was performed the day after the sampling.  

Additionally to the BCS camera records, the researchers used a visual method to score 

body condition in a 5-point scale. Visual body condition evaluation was performed the 

second, fourth and sixth week of lactation of each cow. The scoring results were given by 

the consensus of two operators.  

3.4 Feed composition and analysis 

Before parturition, cows and heifers received an ad libitum diet containing 80% first cut 

grass-clover silage and 20% straw. The silage used in this experiment was first cut grass-

clover silage. The silage ratio of grass:clover used in both diets was unknown since they 

contained silage from leys lying between 1 and 4 years of antiquity. All silages were 

treated with the additive Promyr and stored in concrete bunker silos. Silage used during 

the experimental period was evaluated for nutrient composition in periods of two weeks. 

Silage samples were analysed as described by Åkerlind, et al. (2011) for DM at 60ºC 

(with correction of losses of volatiles), ash, CP, NDF and in vitro organic matter 

digestibility by the method of Lindgren (1979) for calculation of metabolizable energy.  

Table 1 shows the chemical composition of silage used in the pre-partum diet and the 

experimental diet.  

Table 1 Chemical composition of pre-partum and experimental silage. 

Pre-partum Experimental 

DM g/Kg fresh matter 316 365 

OMD (%) 80 80 

CP g/Kg DM 127.6 138 

NDF g/Kg DM n.a* 3911 

ME MJ/Kg DM 11.5 11.7 

Ash g/Kg DM 88.4 83 

pH 4 4.3 

*Not analysed
1Value obtained before ensiling 
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The concentrate used in this trial was a pelleted mix of by-products containing principally 

sugar beet pulp (SBP), rapeseed meal (RS) and distiller’s grains (DG). Minerals were also 

provided within the concentrate using a Premix (AAK Sweden AB, Karlshamn, Sweden). 

Table 2 and 3 show the ingredient and chemical composition of the concentrate, 

respectively.   

Table 2 Ingredient composition of the concentrate 

Ingredient % DM 

Sugar beet pulp 50.1 

Rapeseed meal1 16.8 

Distiller’s grain 15 

Wheat bran 8 

Fatty acids2 3.9 

Molasses 2 

Palm kern expeller 4 

Premix3 0.2 
1ExPro® (AAK Sweden AB, Karlshamn, Sweden) 
2AkoFeed Cattle (99% Fat; 45% C16:0; 37 C18:1) 
3Containing minerals, vitamins and trace elements 

Table 3 Chemical composition of the concentrate 

Nutrient 

DM, % fresh matter 87.7 

CP, g/Kg DM 179 

Crude fat, g/Kg DM 67.4 

NDF, g/Kg DM 328 

Ash, g/Kg DM 53.6 

Starch, g/Kg DM 32.5 

ME, MJ/Kg of DM1 13.2 
1Predicted, not analysed value 

3.5 Energy Balance and Energy Corrected Milk Calculations 

Energy balance was calculated as the difference between total energy intake and energy 

requirements. Energy requirements were calculated as regression line points where the x-

value represented the sum of maintenance and milk production requirements. In first 

lactation cows and additional 8MJ/day were added in concept of growth requirements. 

Both energy requirements and energy corrected milk (ECM) were calculated according 

to Spörndly (2003) using the following formulas: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (𝐸𝐵) = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑡𝑎𝑘𝑒 − 𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 

Energy requirements: 

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 (𝑀𝐽/𝑑𝑎𝑦) = 0.57 ∗ (𝐾𝑔 𝑜𝑓 𝐵𝑊0.75)

𝑀𝑖𝑙𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑀𝐽/𝑑𝑎𝑦) = 5 ∗ (𝐾𝑔 𝐸𝐶𝑀/𝑑𝑎𝑦)  

𝐺𝑟𝑜𝑤𝑡ℎ = 8𝑀𝐽/𝑑𝑎𝑦 
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Regression line: 

𝑌 = 1.11𝑥 − 13.6 

Energy Corrected Milk: 

𝐾𝑔 𝐸𝐶𝑀 = (𝐾𝑔 𝑚𝑖𝑙𝑘 ∗ 0.01) + (12.2 ∗ 𝐾𝑔 𝑓𝑎𝑡) + (7.7 ∗ 𝐾𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛) + (5.3 ∗ 𝐾𝑔 𝑙𝑎𝑐𝑡𝑜𝑠𝑒) 

3.6 Milk Analysis 

Milk samples were analysed for fat, protein and lactose content by Fourier Transform 

Infrared (FTIR) analysis using CombiFoss 6000 equipment from Foss.  

3.7 Statistical Analysis 

All data were analysed with SAS (version 9.4, SAS Institute Inc. Cary, NC, USA). Silage 

intake, DMI, NDF intake, ME intake, energy balance, Kg of milk per day and energy 

corrected milk were analysed using a mixed model (PROC MIXED). The random 

variable was considered as cow and repeated measure was lactation week. Lactation 

number, treatment, breed, lactation week and lact.week x treatment were established as 

fixed factors. BW change and BCS change, camera and visual, were analysed using a 

General Lineal Model which included treatment as the only fixed factor. Least square 

mean values and statistical significance of the parameters measured are shown in the 

following section. All results were considered significant when p-value was <0.05. 

Figures were created with Microsoft Office Excel 2013 using the least square means of 

the parameters analysed statistically, except for Figure 5 and 6 that were created using 

the BW and BCS averages from the database.  



21 

4. RESULTS

Table 4. Treatment effects on Silage intake, Dry Matter Intake (DMI), Metabolizable energy (ME), Energy Corrected Milk (ECM) and Energy Balance (EB), 

Total Neutral Detergent Fibre (NDF) including the level of significance for breed, lactation number, lactation week and lactation week*treatment of each of the 

measured parameters from week 1 to 6 of lactation. 

Treatment2 P-values 

LC HC Treatment Breed Lactation No. Lact. week Treat. x Lact. week 

Silage Intake1 16.3 12.2 <0.001 0.03 <0.001 <0.001 <0.001 

DMI1 20.1 20.8 0.39 (n.s.) 0.03 <0.001 <0.001 0.02 

ME Intake 240.5 256.1 0.12(n.s.) 0.03 <0.001 <0.001 <0.001 

NDF Intake1 7.6 7.6 0.95 (n.s) 0.03 <0.001 <0.001 0.39 (n.s.) 

Kg Milk/ day 31.5 32.1 0.66 (n.s) 0.003 <0.001 <0.001 0.06 (n.s) 

ECM 33.7 35.6 0.29 (n.s.) 0.01 <0.001 <0.001 0.21 (n.s.) 

EB -10.3 -4.4 0.63 (n.s) 0.42 (n.s) 0.91 (n.s.) <0.001 0.65 (n.s.) 

Silage Intake = Kg of silage consumed in DM basis 

Total DMI = Total Kg of silage and concentrate intake in DM basis 

ME = Total metabolizable energy consumed including silage and concentrate (expressed in MJ/day) 

Total NDF intake = Total kg of neutral detergent fibre consumed from both silage and concentrate in DM basis 

ECM = Energy corrected milk (expressed in Kg of milk/ day) 

EB = Energy balance (expressed in MJ/day 

Treat x Lact. week = Interaction between treatment and lactation week 

LC= Low concentrate treatment 

HC = High concentrate treatment 
1The results are expressed in Kg/day 
2 Least Square Means of the experimental period 
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Silage Intake was significantly higher (p<0.001) for cows receiving the Low concentrate 

diet (LC), indeed cows in the LC group ate on average four kilograms more than the HC 

group (Table 4). Breed and lactation number had a significant effect over silage intake. 

Swedish Holstein (SH) had greater intake (15.2 Kg) than Swedish Red (SR) cows (13.3 

Kg) and multiparous cows ingested more silage than primiparous cows, 16.1Kg and 

12.4Kg, respectively. In terms of total DMI and Metabolizable Energy (ME), which 

included the sum of concentrate and silage, the effect of treatment was not significant 

(Table 4) meaning that cows were consuming similar amounts of dry matter and energy. 

There was a significant interaction between treatment and lactation week for both 

parameters, p=0.02 and p<0.001, respectively. However, Figure 1 shows that the 

significant differences observed belong to intake differences at beginning and end of the 

experiment. The effect of breed and lactation number over DMI and ME intake continued 

to be significant (p<0.001) for these measurements. Regarding total NDF intake, the 

effect of treatment was not significant for both diet types (Table 4). Nonetheless, 

significant results were observed for the effects of lactation number where multiparous 

cows in accordance with DMI results had greater intake of NDF. The effect of lactation 

week was significant for NDF intake but the interaction between treatment and lactation 

week was not (p=0.39). Figure 2 shows the evolution of NDF intake between treatment 

groups during the experimental period.  
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Figure 1 A: Least Square Means with error bars of Dry Matter Intake (DMI) for cows offered 

Low concentrate (LC) and High concentrate (HC) diets. B: Least Square Means with error bars 

of Metabolizable Energy (ME) intake of cows offered Low concentrate (LC) and High 

concentrate (HC) diets. 

 

Figure 2 Least Square Means with error bars of Total Neutral Detergent Fibre (NDF) intake of 

cows offered Low concentrate (LC) and High concentrate (HC) diets. 

1 2 3 4 5 6

LC 16.27 17.51 19.41 21.21 22.49 23.49

HC 14.81 17.39 20.09 22.52 24.29 25.62

10
12
14
16
18
20
22
24
26
28
30

K
G

 /
 D

A
Y

LACTATION WEEK

1 2 3 4 5 6

LC 194.93 210.59 233.08 254.19 269.18 280.8

HC 177.76 211.14 246.88 279.5 302.57 318.98

150
170
190
210
230
250
270
290
310
330
350

M
J 

/ 
D

A
Y

LACTATION WEEK

1 2 3 4 5 6

LC 6.17 6.6 7.34 8.04 8.55 8.93

HC 5.6 6.47 7.37 8.13 8.73 9.21

4

5

6

7

8

9

10

11

K
G

 /
 D

A
Y

LACTATION WEEK

A 

B 



24 
 

Results in milk production (Kg of milk and ECM) were not significantly affected by 

treatment. However, the interaction of treatment and lactation week tended to be 

significant for milk yield (Table 4).  Milk composition was similar in both treatments with 

no significant effects. Nonetheless there was a tendency of increasing milk fat throughout 

the experimental weeks in the HC group (Table 5). This may explain the divergence on 

ECM the latter lactation weeks (Figure 3B), although the statistical results were not 

significant. Effects of breed, lactation number and lactation week were consistent with 

previous results (p< 0.05) (Table 4). Swedish Holstein and multiparous cows produced 

more milk, in terms of Kg and ECM, than Swedish Red and primiparous cows.  

 

 

Figure 3. Least Square Means with error bars of A: Kg of Milk/day and B: Energy Corrected 

Milk (ECM) of cows offered Low concentrate (LC) and High concentrate (HC) diets 

Table 5. Least square means of milk composition for cows offered Low concentrate (LC) and 

High concentrate (HC) diets. 
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LC cows tended to have lower energy balance (EB). However the effect was not 

significant among groups (p=0.63). Figure 4 shows the evolution of EB for both treatment 

groups along the experimental period. The effect of lactation week was significant but no 

interaction was found between treatment and lactation week (p=0.65). Effects of breed 

and lactation number were not significant.  

 

Figure 4 Least Square Means with error bars of Energy Balance (EB) of cows offered Low concentrate 

(LC) and High concentrate (HC) diets. 

Table 6. Treatment effects on Body Weight Change (BWC), Visual BCS Change and Camera BCS Change 

observed during the experimental period. 

 Treatment1 P-values 
 LC HC Treatment 

BWC2 -16.1 -1.9 0.16 

Visual BCS3 -0.4 -0.04 0.04 

Camera BCS3 -0.3 -0.2 0.05 

LC= Low concentrate treatment; HC= High concentrate treatment 
1Least Square Means  
2Expressed in Kg. Data collected weekly 
3Data collected the 2nd, 4th and 6th week of lactation 

Cows from the LC group entered to experiment with a greater body weight (BW) than 

cows belonging to the HC (Figure 5). However, although treatment effect was not 

significant, LC group had a more pronounced BW loss (Table 6).  Nonetheless, in terms 

of BCS change for both observational methods (visual and camera) the effect of treatment 

resulted to be significant. Cows from the LC group lost almost half body condition scoring 

point during the experiment. Even though the differences between groups were not 

dramatic, BCS change rate could be appreciated in Figure 6. 
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Figure 5. Evolution of the weekly average BW during the first six weeks of lactation for Low 

concentrate (LC) and High concentrate (HC) treatment groups. 

 

Figure 6. Evolution of the average BCS recorded with the camera for Low concentrate (LC) and 

High concentrate (HC) treatment groups during observational days.  
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5. DISCUSSION 

5.1 Effect of Breed 

The significant effects of breed on intake and milk production parameters, were consistent 

with the literature reviewed in the background (Friggens, et al., 2007; Horan, et al., 2005; 

McCarthy, et al., 2007). Although the reviewed research was done in different breeds 

than those used in this experiment, the results agree in the sense that the existing 

differences are what permits them to be named as two different breeds. 

Swedish Holsteins (SH) were heavier than Swedish Red (SR) cows, 645 Kg and 603 Kg, 

respectively. Average camera BCS records of SH was 3.2, indicating that cows were not 

over conditioned. Therefore, these results point that SH were larger animals and thus, had 

greater intake capacity. Results for silage intake, total DMI and ME intake were then in 

consonance with their expected intake capacity, being SH who had the greatest intakes in 

dry matter and energy basis.  

Regarding milk production SH produced significantly more milk (34.1Kg of milk /day) 

than SR cows (29.6 Kg of milk /day). Both breeds were distributed equally between the 

two treatment groups. However, effect of treatment was not significant for ECM. This 

reveals that Swedish Holstein cows can produce more milk irrespective of feeding level. 

Furthermore, their greater intake may have potentiated milk production since DMI has 

positive effects on the recoupling of the somatotropic axis (Lucy, et al., 2009). Sources 

consulted about the specific breeds used in this study specify that in general Swedish 

Holstein cows produce about 1000 Kg of milk more than Swedish Red cows per lactation 

(Lindhé, B, 2004). 

5.2 Effect of Parity 

Effect of parity was statistically significant for all the parameters measured except for 

energy balance. In the current study, multiparous cows had the greatest intakes. This 

reflected the positive relationship between lactation number and intake capacity. 

Multiparous cows also produced more milk than primiparous cows. These results are 

consistent with Beauchemin, et al. (2002) who observed greater intake and milk yield in 

multiparous cows. Results for energy balance were similar for both parity groups. 

Grummer, et al. (2004) and Wathes, et al. (2007) stated that primiparous cows could enter 

in a negative energy balance even before calving due to their lower intake capacity and 

hormonal status. Least squares means from the present study showed that primiparous did 

not entered in an early negative energy balance when compared with multiparous cows. 

Therefore, indicates that primiparous cows had the ability to compensate the differences 

in DM and ME intake via other pathways that were not explored in this experiment. A 

metabolic profile analysis would be convenient in order to know whether similar 

metabolic changes occurred as Wathes, et al. (2007) observed. 
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5.3 Effect of Concentrate Level 

The chemical composition of the feedstuffs used are of special interest for the results 

observed in this experiment. The silage was poor in NDF (391g/Kg DM) and highly 

digestible (80% OMD), which gave a direct benefit to cows of the LC group in order to 

cover their energetic demands. In contrast, the concentrate, which was made of by-

products, contained high levels of NDF (328 g/Kg DM) and relatively low proportions of 

starch (32.5 g/Kg DM). This is reflected on the results of total NDF intake where both 

treatment groups had similar NDF intakes. Silage intake was significantly higher in the 

Low concentrate group. However, the differences in total dry matter intake and 

metabolizable energy were not significant. Cows from the low concentrate group were 

able to compensate the energetic deficiencies due to the lack of concentrate by eating 

more silage. The results for silage intake are consistent with Ingvartsen, et al. (2001), who 

observed a high substitution rate of forage by concentrate in rations where the inclusion 

of concentrate was faster (+0.5Kg/day), the same used in this experiment.  

The present study had no significant differences in NDF intake nor for DM intake nor 

ME intake between treatment groups. Dhiman, et al (1995), observed that diets containing 

high levels of NDF did not impair intake if the silage used was of good quality. Similar 

appreciations have been reported in studies performed in grazing systems where levels of 

NDF in the diet are usually high. Kolver & de Veth (2002) observed that using pastures 

with high content in high-fermentable NDF did not compromise DMI. In addition, Roche, 

et al (2010), stated that the energetic density of the diet was actually more important for 

a proper lactation performance than the nutrients per se that feed contains. The fact that 

silage was rich in ME (11.7 MJ/Kg DM) and offered ad libitum may have contributed to 

equate the total energy intake. Olsson, et al. (1997), feeding silage with similar energy 

content as in this experiment did not find significant differences on intake when high 

ratios of silage: concentrate were used. In addition to these findings, the authors did not 

observe any differences in milk yield during the experimental period when feeding low 

concentrates, and concluded that with good quality forages cows could obtain enough 

energy to cover their energetic requirements. This affirmation was in agreement with the 

current findings for energy balance and milk production. Treatment effect on EB and milk 

production was not statistically significant, meaning that all cows could adapt 

successfully to their energetic demands. From this study, it cannot be concluded which 

cows were in a worse metabolic status. Further analysis of blood metabolites is needed. 

Body Weight Change during the experimental period was not significant between both 

treatment groups. However, the effect of treatment on BCS change in both of the 

methodologies used were statically significant. Cows from the LC group lost between -

0.3 to -0.4 BCS points during the experiment while cows that belonged to the HC group 

only lost -0.04 to -0.2 BCS points. On the other hand, it is important to consider that cows 

from the LC group had on average higher BW and BCS than HC cows. These results are 

consistent with the study of Weber, et al (2013) where BCS before parturition had 

significant effects on BCS and BW change, and metabolic status during early lactation. 

Cows that had a BCS over the optimal point at calving presented greater mobilization of 
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fat body reserves and lower DMI that, in turn, made them to develop a severe negative 

EB and an increase of blood metabolites. On the contrary, cows that calved below or with 

the optimal BCS had less fat mobilization, greater DMI and a less severe negative energy 

balance. The fact that in the present study cows from the LC group calved with a BCS 

above the optimal point may have contributed to the significant results between 

treatments. In addition, the effect of treatment on BCS change could not be understood 

other way. Even though the ratio concentrate:forage was different between treatment 

groups, all cows consumed similar amounts of DM, NDF and energy and thus, the effect 

on each treatment group should have been comparable. In support to this idea, Horn et al 

(2014) did not observe significant differences between cows that were offered different 

amounts of concentrates on BCS, EB or ECM during early lactation. 

6. CONCLUSIONS  

Cows fed with low concentrate levels during their first six weeks of lactation ingested 

higher quantities of silage. However milk yield and energy balance were not affected by 

eating less concentrate when compared with a group eating higher amounts of 

concentrate. Therefore, dairy cows fed with low concentrate diets were able to 

compensate their energetic requirements for both maintenance and milk production by 

eating more silage, which was highly digestible, and with low NDF content.  
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