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ABSTRACT 
LiDAR sensors present increasing popularity in the Forestry sector, due to its capability of acquiring 
high resolution three dimensional data of the forest, useful to a variety of applications. Terrestrial Laser 
Scanning (TLS) consists of a way to collect large amounts of forest data at the plot level, making further 
3D modelling and tree reconstruction possible, thus allowing foresters to extract dendrometric variables 
with high accuracy from those point clouds. In order to enjoy the full potential of TLS technology for 
forest inventory, tool sets to extract useful information from TLS point clouds of a variety of tree species 
are required, starting by stem isolation, which is the core of silviculture and the most targeted outcome 
of forest management everywhere. The present study aimed to assess the performance of three different 
methods of stem isolation from TLS point clouds of single trees, both boreal and tropical species. At the 
same time making the algorithms available as an open source R package. The methods were adapted 
from three main authors. They rely on finding one main trunk in the point cloud, followed by a circle or 
cylinder fitting procedure on trunk sections to precisely extract only the stem points. The circle-fit based 
method had better performance in most cases. Accuracy was higher for all algorithms when tested on 
boreal trees point clouds, with stem diameter RMSEs ranging from 1.53 to 3.15 cm. For the tropical 
species the RMSEs ranged from 3.50 to 7.54 cm. Best diameter estimations were obtained for Pinus 
sylvestris, followed by Picea abies, Eucalyptus sp. and Pinus taeda, respectively. All point clouds had 
reduced density, keeping less than 300 thousand points per tree, and processing time varied from a few 
seconds up to 20 min/tree, depending on the method applied and point cloud size. 
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1 Introduction 

1.1 LiDAR 

LiDAR (Light Detection and Ranging) is a type of technology used to measure distances in three-
dimensional (3D) space based on laser pulses (Leeuwen & Nieuwenhuis 2010). Every laser pulse return 
is stored in a 3D coordinate database: a point cloud. LiDAR sensors have been increasingly applied in 
many areas of expertise, due to its high accuracy and speed for acquiring large amounts of data (Schwarz 
2010), thus allowing virtual reconstruction of scanned objects from LiDAR point clouds. 

The most common implementation of LiDAR sensors is in airborne laser scanning (ALS), where large 
areas are mapped in 3D by attaching those sensors into airplanes. This technology allows extraction of 
information at high spatial resolutions, from which one can extract digital terrain models, canopy height 
models, land cover classification etc. (Dassot et al. 2012). For fine scale precision in measurements of 
individual objects ALS is not suitable though, mainly due to a large laser footprint – i.e. the further from 
the laser beam source the targeted object is, the larger is the area covered by a laser pulse when it reaches 
the target (its footprint), reducing the level of detail captured by the sensor. Other reasons for the lack 
of detail in ALS surveys are the occlusion effect from the upper canopy, lower pulse density and 
scanning system oscillation. For targeting high accuracy at fine scales, approaches other than ALS are 
adopted, such as Ground Based Laser Scanning, or Terrestrial Laser Scanning. 

1.2 Terrestrial Laser Scanning 

TLS works in a similar way to ALS in the sense that it measures distances by means of a LiDAR sensor, 
but it is positioned on the ground instead. An advantage with TLS systems is that the sensor is located 
closer to the targeted objects when scanning, reducing laser footprint size, thus catching more detail, 
with the trade-off that the total area covered by TLS is much smaller than in ALS surveys (Hackenberg 
et al. 2014). While ALS is suitable for scanning large areas and building terrain models, TLS excels in 
highly accurate 3D reconstruction of individual objects. 

ALS and TLS are rather complementary tools, since their fields of application may differ widely. While 
ALS has become very popular for surface mapping, in surveying natural resources and geo-sciences in 
general (Hudak et al. 2009), TLS is more suited for engineering applications, such as 3D modeling and 
reconstruction of objects (Lichti et al. 2002). In Forestry, for example, both tools are used, either 
individually or in complement to each other. 

1.3 LiDAR and TLS in Forestry 

Just as in many other fields, LiDAR sensors have increased in popularity amongst foresters, being 
applied in planning, management, inventory, biometrics etc. In the future, LiDAR may be applied to 
automate tasks such as harvesting and weed control. Large ALS surveys over forested areas are common 
practice in forest enterprises, providing detailed description of forest land at the stand level, gathering 
input data for models used to estimate several variables of interest for forest management, such as 
standing volume, basal area, carbon stock, leaf area index etc. (Hudak et al. 2009). 

TLS, on the other hand, is capable of gathering data on the individual tree level in detail, which can’t be 
reached by ALS alone. Furthermore, since ALS operates from above the forest, it is partially blocked 
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by the canopy and data collection aptitude for vertically oriented objects, such as tree stems, becomes 
severely limited due to the objects being parallel to the laser pulse directions. By operating from below 
the canopy and scanning radially, TLS collects data that may allow full digital reconstruction of 
individual trees, making possible direct extraction of variables of interest, such as diameters, tree taper 
and volume. LiDAR data produced in such ways provide means for the direct measurement of trees 
instead of just serving as input for predictive modeling. The high resolution of LiDAR sensors in short 
distances is another factor that contributes for preserving scanned objects’ geometrical features in high 
detail and accuracy. For these reasons, there is a great interest in tools for extraction of tree features 
based on TLS point clouds. Figure 1 shows the outcome of ALS and TLS surveys side by side. 

 
Figure 1. (A) ALS and (B) TLS point clouds from the same scanned area. 

 

Given the level of detail acquired by TLS surveys, one can see that TLS based inventory methods can 
achieve much finer scales that are not achievable by other state of the art, remote sensing based, forest 
inventory methods, such as ALS and KNN – K nearest neighbor (Meng et al. 2007). Once time efficient 
tools are validated and available, TLS will likely become a widely popular tool applied in forest 
inventory and biometrics. Outside the quantitative realm in forestry, TLS has potential to be used for 
other purposes. LiDAR sensors can collect information other than coordinates alone, such as laser pulse 
return intensity and reflected wavelengths. It also can be combined with cameras taking pictures 
simultaneously to the laser scanning, thus, combining high resolution spatial data with spectral data. 
This range of capabilities of TLS open doors for methods aiming to automate other procedures, e.g. tree 
species identification. 

1.4 Tree structure and geometry 

Several researchers have developed routines for processing TLS point clouds containing tree data. 
Applications range from isolation of single trees in scanned plots (Liang et al. 2012; Olofsson et al. 
2014) to segmentation of tree components (e.g. branches, stem and canopy) (Raumonen et al. 2013; 
Hackenberg et al. 2014). In order to automate the process of isolating tree components in point clouds, 
general assumptions need to be made about a tree’s geometrical structure. A trained algorithm for stem 
isolation, for example, requires a level of generalization that allows it to capture the essential information 
of point clouds from a variety of tree shapes. 

Some commonly adopted assumptions that roughly apply to most trees is the vertical orientation of the 
bole (approximately orthogonal angle with the ground), approximately circular stem cross sections 
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(Olofsson et al. 2014) and approximately cylindrical stem segments. Those assumptions are the core of 
many already implemented algorithms, but a key issue lies underneath those assumptions: fitting circles 
and cylinders works well on clean point clouds (with the stem already isolated), but can’t be applied 
directly upon unfiltered ones. Good methods for noise (or outliers) filtering are paramount for making 
a robust stem isolation algorithm – robust means that a method performs well in the presence of outliers. 

Furthermore, tree species present a variety of morphological features, and therefore may present a more 
or less complex architecture. For example, tropical species usually present a more branched and complex 
structure when compared to conifer species, which are generally straight. Some properties that should 
be borne in mind when fitting an algorithm for stem isolation are: branchiness, canopy density, leaning 
stem segments, more or less circular cross sections and understory density. 

1.5 Rationale and objectives 

Tool sets focusing on automatic processing of TLS data and LiDAR point clouds in general will assist 
foresters in the future, reducing need of laborious field work and destructive sampling, as well as 
providing quick and accurate estimations of tree or forest variables based on 3D data sets, reducing costs 
for the forest enterprise and allowing foresters to focus more on planning and management activities. 

Motivated by the issues mentioned above, the present study aims to evaluate the performance of three 
main different approaches for stem isolation on TLS point clouds containing single trees, by testing 
them on point clouds taken from a Swedish Spruce/Pine boreal forest, and tropical plantations of 
Eucalypt and Pine in Brazil. A side objective is to develop and make available an open source package 
in R containing functions for dealing with single tree TLS point clouds, focusing on stem isolation. 
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2 Methods 
In the current study, all algorithms were implemented in the R language (R Core Team 2016). The 
packages rLiDAR (Silva et al. 2015) and rgl (Adler et al. 2016) were used for reading LAS files and 3D 
visualization, respectively. Three main approaches were implemented based on the work published by 
Olofsson et al. (2014), Liang et al. (2012) and Raumonen et al. (2013). All algorithms consist of two 
main phases, respectively: pre-filtering, to deal with noise filtering and rough trunk isolation; and fitting, 
to accurately fit circles/cylinders to the trunk, removing all remaining outliers outside the fitted bole. 
This division allows the user to apply any desired combination of pre-filtering and fitting methods – 9 
pairwise combinations. 

2.1 Data sources, acquisition and its properties 

All TLS data was acquired by means of multiple scan setups, which require co-registration of point 
clouds of the same area from different positions. In order to do so, targets with known exact positions 
are fixed inside the plot, and their coordinates are used to convert point clouds from all scanning 
positions to the same coordinate system (Hilker et al. 2012). 

2.1.1 Boreal species 

2.1.1.1 Tree data 

The trees were selected from test plots in Northern Sweden. Six plots dominated by Scots pine (Pinus 
sylvestris L.) or Norway spruce (Picea abies L. Karst.) were measured in the period October-December, 
2013. Average age and tree density varied among plots. Three trees were measured manually in every 
plot. The trees were calipered along the stem with a height distance of approximately 1 meter, starting 
from the ground level up to 15 m above ground. 

2.1.1.2 Scanning data 

Scanning was carried out in August, 2013. A Leica ScanStation C10 with high scanning mode was used 
with a distance of 0.5 cm between measurements in the horizontal and vertical direction, at a distance 
of 10 m. The scanner had a green laser, 532 nm, beam divergence of 0.1 mrad, scanning pulse rate up 
to 50 kHz, and horizontal and vertical field of view of 360 and 270 degrees, respectively. A multiple 
scan setup was adopted with three scan positions in each plot, approximately 25 m apart from each other 
– forming a triangle surrounding the plot, scanning it from outside. 

2.1.2 Tropical species 

2.1.2.1 Tree data 

Eucalyptus sp. plots were inventoried on June 2016 in an experimental station from the University of 
São Paulo, in the city of Itatinga, São Paulo, Brazil. The trees were 7 years old, planted in a density of 
1667 trees/ha. Some trees were felled and had their stems calipered every 30 cm up to 1.3 m, and every 
1 m from 1.3 m up to the total height. 

Pinus taeda L. trees were also scanned, in an uneven-aged, seed generated stand belonging to the Santa 
Catarina State University, in the city of Lages, Santa Catarina, Brazil. No field inventory was carried at 
the stand and manual measurements on the cloud were performed for reference data. Diameters were 
extracted at 0.5 m and 1 m above ground and then every two meters up to heights with visible stem 
portions. 
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2.1.2.2 Scanning data 

A multiple scan setup with five scan positions per plot was adopted for the Eucalyptus sp. Scanning was 
performed on October 2015 and the equipment used was a RIEGL VZ-400 V-Line® 3D Terrestrial 
Laser Scanning. The phase shift technique was used to measure distances in the near infra-red spectrum 
(1550 nm), with beam divergence of 0.35 mrad, pulse rate of 122 kHz, field of view of 360 and 100 
degrees, horizontally and vertically, respectively. 

A multiple scan setup with five scan positions per plot was also applied on the Pinus taeda stand. The 
equipment used was a Faro Focus 3D, with a pulse rate of 244 kHz and field of view of 360 and 305 
degrees in the horizontal and vertical directions, respectively. 

On both multiple scan setups, one sensor scanned the plot from its center, while the other four scanned 
it from outside –  in a “X” shape. 

2.2 Method M1: Hough transformation and RANSAC circle fit 

This method was adapted from Olofsson et. al. (2014). It focuses on identifying circular patterns in two 
dimensional representations of tree segments based on the Hough transformation (Illingworth & Kittler 
1987), following by the identification of best circle parameters iteratively by least squares fit in a 
RANdom SAmple Consensus (RANSAC) approach (Choi et al. 2009). 

The tree point cloud is first subdivided vertically, generating t vertical segments of l length in the z = 
[0,0,1] direction. Each stem sub-section is assumed to have an approximate vertical orientation (parallel 
to z). The sub-sections are further processed individually, working as input for the subsequent steps. 

At first, a baseline section is defined at a specified height interval (e.g. 1 to 2 m above ground or from 
5% to 10% of the tree’s total height). Its approximate circle parameters are then estimated (x and y center 
coordinates and radius) by applying the Hough transformation (explained below). Up to the height of 
the baseline section, all points outside a range of the radius plus an inflation factor (e.g. 5 cm) from its 
estimated center are disregarded. Above the baseline section’s height, the search for circles in each 
segment is constrained to the range found for the previous section in the x and y dimensions. The 
outcome of this filtering step is a point cloud that contains the stem and some noise, which is further 
refined by an adapted RANSAC algorithm. 

2.2.1 The Hough transformation 

The Hough transformation is a robust method for shape detection in two dimensions (2D). It is applied 
on a raster layer and finds specific patterns according to a targeted primitive 2D shape (in this case, 
circles). The stepwise Hough transformation based filtering applied on this study is outlined below. 

A raster layer is generated from the input point cloud section. Each pixel displays the local relative point 
density (Eq. 1) inside the raster’s x and y limits. 

 

  

9 
 



Eq. 1 

𝑝𝑝𝑝𝑝 =
𝑛𝑛𝑖𝑖

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚
 

Where: 

pd = point density 

ni = number of points counted inside cell i 

nmax = number of points in the pixel with the highest count 

 

Over the generated raster, all pixels with values above a specified threshold (e.g. 30% density) are used 
as centers for generating circles in a range of radii in between a lower and upper limit, then an iterative 
process is conducted. Each iteration generates circles of radius ri centered on all applicable pixels. 
Another raster layer is then created, and each pixel counts the number of circles that intersect with it – 
further referred in the text as votes. The pixel with the highest votes count (or score) on iteration i is 
assigned as center for radius ri. Out of m iterated radii, the best candidate as true radius is the one whose 
center has the most votes (Figure 2). Its respective center is therefore also considered as the best 
candidate for the true center. 

 

 
Figure 2. 10 iterations of the Hough transformation searching for circles in raster layers of 2.5 cm pixel size, 
depicting a vertical cylinder of 0.5 m radius. Each pixel counts the number of votes received for the tested radius 
stated. The best candidate for true circle is iteration number 7, for a radius of 0.508 m. All other tested radii present 
many possible conflicting centers. The radius of 0.508 m is the closest one to have all outer circles converging at 
the same pixel, having the highest score, thus outputting the best circle estimates. All other radii present many 
conflicting centers with lower scores (a ring instead of a point at the center). 

 

The pixel size gives the maximum level of detail extracted from the image, therefore it should be small 
enough to cover the maximum level of detail of the represented object, but large enough to allow 
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reasonable computation time. It may happen that very small pixels are not able to catch information 
enough to properly represent the data, e.g. most pixels may present similar densities. Figure 3 shows the 
Hough transformation applied over varying pixel sizes for a section of a sample tree. 

 

 
Figure 3. Hough transformation applied over raster layers of different spatial resolutions for the same tree segment 
–sample tree point cloud (a) with cropped segment detached (b), converted to raster layers of (c) 1 cm, (d) 2.5 cm 
and (e) 5 cm of spatial resolution, respectively. 

 

2.2.2 RANSAC circle fit 

RANSAC stands for Random Sample Consensus and considers the probability that all observations 
(points) in a random sample belong to a model (Eq. 2) – i.e. the probability that a sample contains no 
outliers. 

Eq. 2 

𝑁𝑁 =
𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑃𝑃)
𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑝𝑝𝑛𝑛) 

Where: 

N = number of iterations required to find at least one sample without outliers with a probability P 

P = confidence level 

n = number of observations in the sample 

p = probability that one point belongs to the model, which is estimated by: 𝑀𝑀
𝐷𝐷

 , with M being the number of inliers 
in the dataset and D the total number of points in the dataset. 
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In this study, the RANSAC algorithm was applied to all output segments from the Hough transformation 
filter, and a least squares circle adjustment was performed by minimizing the root sum squared error 
(Eq. 3) in every iteration. The parameter estimations were then refined through general purpose 
optimization, taking the least squares output as initial parameter estimates. The parameters (x and y 
center coordinates and radius) that yielded the lowest RSSE amongst all iterations were chosen as best 
fit. An example of RANSAC circle fit on a stem segment is given on Figure 4. 

 

Eq. 3 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��(𝑝𝑝𝑖𝑖 − 𝑟𝑟)2
𝑛𝑛

𝑖𝑖

 

Where: 

RSSE = root sum squared error 

di = Euclidean distance from a sample point to the estimated circle center in x and y 

r = estimated radius 
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Figure 4. RANSAC circle fit on sample tree segment – (a) sample tree with highlighted remaining points from the 
pre-filtering phase and cropped segment detached, (b) fitted circles over a trunk segment calculated from different 
samples of 15 points, (c) inliers and outliers according to the best fitted circle. 

 

2.3 Method M2: Spectral decomposition of 3D surfaces and robust cylinder fit 

This method was adapted from Liang et al. (2012). It surveys the point cloud without reducing its 
dimensionality. Its pre-filtering phase searches for approximately flat and vertically oriented surface 
patches, assuming that they belong to the stem. Upon the areas that pass such criteria, a robust cylinder 
model is fitted in an iterated reweighted least squares fashion. 

First, the algorithm evaluates the neighborhood of every point belonging to the point cloud. A point is 
characterized by its k closest neighbors in the 3D space (in terms of Euclidian distance), forming a 
surface. Spectral decomposition (explained below) is carried out over all neighborhoods and two main 
features are extracted based on it: surface flatness and its normal vector direction. 
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2.3.1 Spectral decomposition pre-filtering 

The spectral decomposition extracts the eigenvalues and eigenvectors of a dataset, which are as many 
as the number of variables available (e.g. in the case of xyz coordinates there are 3 variables or 
dimensions). Those values are extracted in such a way that one eigenvector refers to the direction of 
most variability in the dataset, with the condition that it has to be perpendicular to the previously 
extracted eigenvector. An eigenvalue is the variance of the data in the direction of its respective 
eigenvector, therefore the first value represents the direction of highest variability. 

In a flat three-dimensional surface represented by a point cloud, the last eigenvalue is expected to be 
much smaller than the first two, with its eigenvector representing the normal direction to the surface. 
Under those assumptions, the flatness of a 3D point cloud is defined by Eq. 4. An example of surface 
neighborhood is shown in Figure 5. 

 

Eq. 4 

𝐹𝐹𝐹𝐹 = 1 −
𝜆𝜆3

𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3
 

Where: 

FL = point cloud flatness 

λ = eigenvalue, with λ1 ≥ λ2 ≥ λ3 

 

 

Figure 5. Local neighborhood of a point on the surface of a model cylinder point cloud. L1, L2 and L3 represent 
the neighborhood’s eigenvectors that relate to λ1, λ2 and λ3, respectively. Note that L3 is perpendicular to the 
cylinder’s axis, also representing the direction of least variability. 

 

In a point cloud from a scanned tree, sample surfaces belonging to the stem are expected to be 
approximately flat and having normal vectors approximately perpendicular to z = [0,0,1]. In the current 
method, all points whose neighborhoods comply with those properties are kept for further assessment. 

The remaining points are grouped according to their distances in the xyz space. Two points belong to 
the same group if the Euclidean distance between them is smaller than an arbitrary distance d. Further 
on, vectors passing by the center of gravity of each group are projected onto the xy plane, and groups 
whose centers have close projections on xy (less than a distance dxy from each other) are merged. This 
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ensures that groups belonging to the same stem are connected even if large gaps occur in the data set. 
Groups with a large amount of points by the end of this step are considered as part of the trunk – i.e. all 
groups whose number of points is larger than a proportion p of the largest group. 

2.3.2 Robust cylinder fit 

The output cloud from the previous step is subdivided in vertical sections, like in the first method, and 
upon each section a cylinder is fitted. A cylinder in three dimensions is defined by Eq. 5. Five parameters 
(ρ, θ, φ, α, r) are necessary to fit a cylinder, which are shown in equations 5, 6 and 7. The stepwise 
cylinder parameterization procedure is described by Lukács et al. (1998). 

 

Eq. 5 

|(𝑝𝑝 − 𝑞𝑞) × 𝑎𝑎| − 𝑟𝑟 = 0 
Where: 

p = a point on the cylinder’s surface 

q = a point on the cylinder’s axis (Eq. 6) 

a = unitary vector of cylinder’s direction (Eq. 7) 

r = cylinder’s radius 

|…| is the Euclidean norm of the vector and × is the vector cross product 

 

Eq. 6 

𝑞𝑞 = (𝜌𝜌 + 𝑟𝑟) ∙ 𝑛𝑛 

Where: 

ρ = distance from the origin [0,0,0] to the closest point on the cylinder surface 

n = (cos φ sin θ, sin φ sin θ, cos θ) – unitary vector orthogonal to the cylinder’s axis, starting from the origin 

φ = angle between the projection of n on the xy plane and x = [1,0,0] 

θ = angle between n and z = [0,0,1] 

 

Eq. 7 

𝑎𝑎 = 𝑛𝑛𝜃𝜃𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐 + 𝑛𝑛𝜑𝜑𝑐𝑐𝑠𝑠𝑛𝑛 𝑐𝑐 𝑐𝑐𝑠𝑠𝑛𝑛⁄ 𝜃𝜃 

Where: 

α = angle between a and nθ 

nθ and nφ = partial derivatives of n 

 

Figure 6 shows the behavior of vectors n and a when fitting a cylinder in three dimensions. 
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Figure 6. Point cloud cylinder fit using Eq. 5 – n is the dark green vector, it starts at the origin and has length 1, 
being orthogonal to the cylinder’s axis a, shown in red. The starting point for a is q (Eq. 6), which is a point at a 
distance (ρ + r) from the origin to the cylinder’s axis in n’s direction, represented by the light green line. 

 

The output point cloud from 2.2.1 is likely to contain outliers (i.e. points not belonging to the stem). In 
order to reduce the influence of outliers on the cylinder fitting procedure, a point weighting system is 
adopted. A robust estimation is performed in an iterated reweighted total least-squares fashion (IRTLS). 
The best cylinder fit parameters (ρ, θ, φ, α, r) are chosen in a way they minimize the weighted sum of 
squared residuals to the cylinder’s surface (Eq. 8). 

 

Eq. 8 

� 𝑤𝑤𝑖𝑖(𝑗𝑗−1) ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑗𝑗2
𝑛𝑛,𝑚𝑚

𝑖𝑖=1,𝑗𝑗=1
 

 

Where: 

RES = |(𝑝𝑝 − 𝑞𝑞) × 𝑎𝑎| − 𝑟𝑟 

m = number of iterations 

n = number of points in the rough cylinder point cloud 

w = weight 

 

Weights were calculated using M-estimators, more specifically, the Tukey’s biweight function (Eq. 9). 

 

Eq. 9 

𝑤𝑤 = ��1 − �
𝑦𝑦
𝑐𝑐
�
2
�
2

  , 𝑠𝑠𝑖𝑖 𝑦𝑦 ≤ 𝑐𝑐

0                       , 𝑠𝑠𝑖𝑖 𝑦𝑦 > 𝑐𝑐
 

Where: 

w = weight 
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y = 𝑅𝑅𝑅𝑅𝑅𝑅
1.4826∙𝑀𝑀𝑀𝑀𝐷𝐷(𝑅𝑅𝑅𝑅𝑅𝑅)

 

MAD = median absolute deviation 

1.4826 = scale factor that ensures MAD is asymptotically unbiased if RES ~ N(0,σ²) 

c = efficiency constant at the normal distribution (5 corresponds to 95% efficiency) 

 

A general-purpose optimization routine was adopted for minimizing Eq. 8, which doesn’t require initial 
estimation of the right hand side of the model (dependent variable), but good initial estimates for the 
five cylinder parameters are necessary. For the first iteration of the algorithm the parameters are 
estimated based on the point cloud’s center of gravity, and the value of one is assigned to all weights. 
In the following iterations weights and parameters are recalculated, with the parameters calculated in 
one iteration used as initial estimates for the next one. This procedure is repeated until convergence or 
a specified maximum number of iterations is achieved. Figure 7 shows an example of cylinder fitted to 
a stem section by IRTLS. 

 

 
Figure 7. IRTLS cylinder fit for a tree segment – (a) tree cloud with highlighted points from the pre-filtering phase 
and cropped section detached, (b) pre-filtered stem segment point cloud, (c, d, e) fitted cylinder with highlighted 
potential outliers – lowest weights according to Tukey’s biweight function (Eq. 9). 

 

Once the IRTLS fit is done for a section, all points at an orthogonal distance of ds or more from the 
cylinder surface are disregarded. The remaining points for all sections are then merged in a single dataset 
containing only the tree stem. 
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2.4 Method M3: Voxel space neighborhoods and RANSAC cylinder fit 

This method was developed by Raumonen et al. (2013) and was slightly changed to provide a simpler 
assessment of the results expected in this study. In their original algorithm the authors segmented trees 
in more detail, also isolating branches. Here we focus solely on the stem extraction. Furthermore, the 
authors developed a heuristic method to isolate the desired segments and then directly fitted a cylinder 
model to the data segments using the least squares method. In the present study a modified RANSAC 
method for cylinder fitting was applied instead. 

 

 
Figure 8. Stepwise rough noise filtering – (a) sample data taken from a tree point cloud, (b) spheres with 2.5 cm 
radius generated around every point, (c) spheres with 5 cm radius generated around all spheres in b, (d) highlighted 
noise. All points inside spheres in b with less than 2 points or inside spheres in c containing less than 3 smaller 
spheres were assigned as noise. 
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This method has many features in common with M2, described above. At first, on the pre-filtering phase, 
a rough noise filter is applied to remove isolated points, then patches of the point cloud are merged based 
on their distribution in an assembled voxel space. Spectral decomposition is carried out on the point 
neighborhoods and further filtering is done based on flatness, normal vector direction and neighborhood 
size. 

2.4.1 Noise removal and voxel neighborhood aggregation 

The first pre-filtering step uses spheres with radius r1 centered at each point p in the point cloud. All  

points inside spheres with less than m points are considered noise and disregarded. A second, and 
optional, step is to apply the noise filtering a second time, generating spheres with radius r2 (r2 > r1) and 
disregarding all points inside spheres that contain less than n smaller spheres. This procedure is 
illustrated on Figure 8. 

Following the noise removal step, the point cloud is sampled in a regular 3D grid, which serves as base 
for generating a voxel space. The minimum distance d in between sample points is the voxel side length. 
The point cloud is then divided into local point neighborhoods. A neighborhood is defined by u³ 
neighboring voxels, with u being the neighborhood order, or the number of voxels to merge in one 
dimension to construct a neighborhood. All points inside voxels belonging to the same neighborhood 
form a cover set. For u > 1, neighborhoods, and therefore cover sets, will overlap, since every voxel is 
used as center of one neighborhood, as illustrated in Figure 9. Figure 10 shows the stepwise procedure 
on a point cloud sample, after filtered on the previous step. 

 

 

 
Figure 9. Example of three overlapping voxel neighborhoods for u = 3 viewed from 3 different angles. Voxels 
with the same color belong to the same neighborhood. Notice that all neighborhoods have voxels in common – the 
central voxel of one neighborhood becomes an outer voxel of the next neighborhood. Overlapping avoids point 
misclassification on the next step, that classifies stem points based on spectral decomposition of cover sets. 
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Figure 10. Voxel neighborhoods and covers sets construction – (a) sample cloud after rough noise filtering (Figure 
5), (b) construction of voxel space with 3 cm of voxel side length, (c) cover sets originated from neighborhoods 
of order 3, (d) clear view of cover sets. 

 

Spectral decomposition is performed on all cover sets, their flatness (Eq. 4) and normal vector are 
extracted, analogously to M2. All points belonging only to cover sets with flatness and angle between 
its normal vector and z below arbitrary thresholds are disregarded. The voxel space is then reorganized 
into larger neighborhoods and new cover sets are obtained. The largest cover set (with highest number 
of points) is used to estimate a global axis for the stem. In this step the stem is assumed to be parallel to 
z, therefore only x and y coordinates need to be estimated for positioning the axis. Cover sets further 
than da meters from the estimated axis (Euclidian distance) and containing too little points (i.e. lower 
than a specified percentage of the largest cover set) are also disregarded. The remaining point cloud is 
used as input for the next phase. 

20 
 



In the original method proposed by the authors (Raumonen et al. 2013), cover sets are defined according 
to spherical neighborhoods in random coordinates instead of voxels. Here voxels are used in order to 
reduce processing time. 

2.4.2 RANSAC cylinder fit 

This method intertwines the fitting phases on M1 and M2. Here the RANSAC approach is used to fit 
cylinder parameters (Eq. 5, 6 and 7) in a total least squares fashion. In order to do so, the output trunk 
point cloud from previous stem is segmented in intervals of length l in z’s direction. A general-purpose 
optimization method is then iteratively applied on at least N random point samples (Eq. 2) of every 
vertical segment, aiming to minimize the sum of squared residuals in Eq. 10. Figure 11 shows an 
example of the RANSAC cylinder fit on a sample stem segment. 

 

Eq. 10 

�𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 

Where: 

RES = |(𝑝𝑝 − 𝑞𝑞) × 𝑎𝑎| − 𝑟𝑟 

n = size of random sample 

 
Figure 11. RANSAC cylinder fit on a TLS tree cloud segment – (a) tree cloud with highlighted points from the 
pre-filtering phase and cropped section detached, (b) pre-filtered segment point cloud, (c, d) fitted cylinders over 
samples of 20 points with the adapted RANSAC cylinder fit algorithm, (e) outliers – points further than 1 cm from 
the cylinder surface. 
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A baseline segment is defined, in analogy to what is described for M1, upon which minimization of Eq. 
10 is performed, taking as initial parameters estimates based on its center of gravity. The parameters 
that yield the best fit for a segment are used as initial estimates for the next one, fitting cylinders of 
length l from bottom to top of the tree. 

2.5 Functions parameterization  

2.5.1 M1: Hough transformation and RANSAC circle fit 

For the pre-filtering phase, the trees were segmented into vertical sections of l = 0.5 m. Each segment 
was converted to a raster layer with 2.5 cm of pixel size, over which the Hough transformation was 
applied, generating circles centered in all raster cells with point density pd > 0.3.  

In the fitting phase, the chosen parameters for the RANSAC number of iterations were n = 15, p = 0.8 
(estimated, same value was used by Olofsson et al. 2014), P = 0.99, and thus N = 129. N×5 = 645 
iterations were carried out in every circle fitting procedure. Tree segments with less than 15 points were 
ignored. 

2.5.2 M2: Spectral decomposition of 3D surfaces and robust cylinder fit 

On the pre-filtering phase all points belonging to surfaces (k = 30 closest neighbors) with FL < 0.9 or 
whose normal vector presented angle with z outside the 80° - 100° interval were ignored. Points with 
less than 10 cm (d < 0.1 m) apart in the xyz space were grouped, and groups less than 20 cm apart (dxy < 
0.2 m) in the xy plane were merged. All groups with p > 0.25 the amount of points of the largest group 
were retained in the output of the pre-filtering phase. For some trees, though, the relative amount of 
points had to be reduced, otherwise significant portions of the stem would be lost, thus the largest group 
proportion criterion was reduced to p > 0.1. 

On the fitting phase, cylinders were fitted from bottom to top in segments of 0.5 m in z’s direction. The 
IRTLS algorithm ran until the difference in the weighted sum of squares (Eq. 8) between consecutive 
iterations was lower than 0.001 m or until 10 iterations were reached. If a cylinder had estimated radius 
of more than 0.5 m, its fitted parameters were ignored and the ones from the segment below were 
adopted. All points with Euclidean distance ds > 0.01 m from the cylinder surface were considered 
outliers. 

2.5.3 M3: Voxel space neighborhoods and RANSAC cylinder fit 

On the pre-filtering phase, the following values were adopted for the rough noise removal: r1 = 0.05 m, 
m = 2 points, r2 = 0.1 m, n = 3. Following, a voxel space with d = 0.03 m of spatial resolution was 
generated for the point clouds and neighborhoods of order u = 3 were merged. Spectral decomposition 
was performed on all cover sets originated on the previous step. All points belonging exclusively to 
cover sets with FL < 0.9 or whose normal vectors’ angle with z lied outside the 80° - 100° interval were 
disregarded. Over the remaining points, a new voxel space with spatial resolution d = 0.05 m was built 
and neighborhoods of order u = 4 were merged. Cover sets smaller than an arbitrary threshold pn, or 
with geometric center further than da = 0.5 m from an estimated global axis for the tree were further 
disregarded. An automated method for estimation of pn based on cover set size distribution was applied 
– once defined for a tree, all cover sets are sorted according to their amount of points, the largest and 
smallest covers sets are then connected by a straight line, and the cover set which is further away from 
the line gives the size threshold for keeping or eliminating cover sets from the point cloud, i.e. threshold 
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equals point of maximum curvature (pn) in Figure 12. For leaning trees the distance from the global axis 
had to be increased, thus da = 1.5 m was used. 

 
Figure 12. Rough estimation of maximum curvature (pn) for cover sets sorted by size. Relative cover set size is the 
ratio between the number of points in a cover set and the number of points in the largest cover set. 

 

The fitting phase was carried out on tree segments of l = 0.5 m. The following parameters were adopted 
for the RANSAC: n = 20, p = 0.9, P = 0.99, thus N = 36 and N×2 = 72 iterations were carried out for 
every stem segment. 

2.6 Performance evaluation 

The performance of the methods was assessed by analysis of residuals, comparing TLS estimated 
diameters with field measurements of diameters along the stems (taper). Root mean square error and 
bias were calculated for each method, according to Eq. 11 and 12, as well as Pearson’s correlation 
between estimated and measured diameters. Results were first split in between boreal and tropical 
datasets, and then amongst tree species. 

 

Eq. 11 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑛𝑛
�(𝑝𝑝𝚤𝚤� − 𝑝𝑝𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1
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Eq. 12 

𝑏𝑏𝑠𝑠𝑎𝑎𝑐𝑐 =
1
𝑛𝑛
�(𝑝𝑝𝚤𝚤� − 𝑝𝑝𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

Where: 

RMSE = root mean square error 

𝑝𝑝 �= estimated diameter at the ith observation 

d = observed diameter at the ith observation 

n = number of observations (fitted cylinders/circles)  

 

Benchmarking tests were also performed with reduced point cloud densities to assess quality of 
estimation and processing time in R for all three methods. 
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3 Results and discussion 
All described methods on the section above were applied on the same TLS point clouds containing 
single trees. In order to reduce computation time, all TLS clouds had their original densities reduced to 
a maximum of 104 points per meter in z’s direction (above ground) – resulting in 105 to 3×105 points per 
tree. Ten trees were randomly selected from the boreal datasets for the benchmarking tests, having their 
point cloud densities further reduced to 50% and 20% of the previously stated one – to a maximum of 
5×103 and 2×10³ points per meter above ground, respectively. TLS point clouds are generally very dense 
and all tree geometrical features can be represented by much smaller samples without significant losses 
in accuracy (Raumonen et al. 2013).  

All sample trees were measured on field and several diameters along the stem were obtained. For a given 
diameter measured at a specific height, a cylinder of 0.5 m of length was cropped from the stem point 
cloud, centered at the same height, and a circle or cylinder was fitted using only the points on the cropped 
segment. 

Unfeasibly large diameters obtained from this procedure were re-estimated by local linear functions. 
The linear functions were built based solely on the laser data of individual trees. Radii were estimated 
from bottom to top, every 0.5 m along z. A reference taper function was used to detect large radii along 
the stems (Eq. 13) – a reference cone with radius of 30 cm at the ground level and same height as the 
tree’s total height. All radii larger than the value at correspondent height on the reference cone were 
disregarded, and a linear model estimating radius from height above ground was fitted by ordinary least 
squares using the remaining estimates. These models (one per tree) were further used to re-estimate 
previously disregarded diameters when comparing TLS and field measurements. 

 

Eq. 13 

𝑟𝑟ℎ = 𝑟𝑟𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏�(
𝐻𝐻 − ℎ
𝐻𝐻

)𝑏𝑏 

Where: 

rh = maximum radius tolerated at a given height h 

rbase = maximum radius tolerated at ground level 

H = total tree height 

b = form factor: 0 for cylinder, 1 for paraboloid, 2 for cone and 3 for neiloid 

 

3.1 Quality of estimation 

3.1.1 Boreal species 

The estimated diameters from TLS are plotted against field measurements on Figure 13. All methods 
had overall good estimates of diameters with RMSE values lower than 3 cm in all methods. The Hough 
transformation followed by RANSAC circle fit had the best performance in terms of RMSE, bias and 
linear correlation to field measurements (Figure 13 - M1). Such an outcome was possible since Pine and 
Spruce trees are generally straight, thus stem cross sections parallel to the ground are well approximated 
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by circular shapes on the xy plane. The method’s assumption of vertical straight stems in both pre-
filtering and fitting phases corresponds well to the natural geometry of those species. Furthermore, on 
the fitting phase, good initial estimates for the cylinder and circle parameters are required for enhanced 
performance. For cylinders those values were roughly estimated using the gravity center of trunk 
segments, while for two-dimensional circles, good initial parameter estimates are easily obtained 
through least squares fit. 

All methods performed slightly better on Pine clouds, rather than Spruce. As seen in Figure 13, most of 
the values far from the red line (representing a perfect fit) belong to spruce trees, especially for the 
second method. Spruce trees present denser canopy, making it harder for a laser pulse to reach the stem, 
thus causing occluded patches to happen more often in Spruce point clouds (Figure 14). The pre-filtering 
phase of the second method relies on surface reconstruction and requires a high frequency of returns 
belonging to the stem in order to be effective, making estimates of occluded segments less accurate. 

 
Figure 13. Estimated vs field measured diameters for boreal species (D = diameter; r = Pearson’s linear 
correlation). 
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Figure 14. TLS point clouds from (a) a young Spruce, (b) an older Spruce and (c) a Pine tree. Pre-filtering and 
fitting phase outputs are shown in pink and green, respectively. Methods M2, M1 and M3 were applied, 
respectively. 
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The algorithms presented poorer performance on segments of lower diameters, with estimations tending 
to be more upwardly biased for stem segments smaller than 10 cm in diameter (Figure 15). As the top 
height of a tree is approached, its stem diameter decreases, and its occlusion by the canopy as well as 
distance from the LiDAR sensor increase, therefore the poorer performance is not entirely related to 
diameter size, but is more likely to happen due to the latter two stated reasons. Figure 16 shows residuals 
distributed in accordance to the portion of the tree from which the diameters were obtained. 

 

 
Figure 15. Estimated vs measured diameters distributed in different classes for boreal species. 

 

 

 
Figure 16. Residuals distribution according to relative tree height, which is the ratio between the height on which 
a diameter was measured and the tree’s top height. 

3.1.2 Tropical species 

Scanned plots of Eucalypt trees were heavily affected by wind during the TLS survey, which associated 
to the young, slender trees, yielded some point clouds of poor quality. In order to overcome this issue, 
the trees were manually “cleaned” prior to any tests, mainly to remove “ghost stems” that largely inflate 
diameter estimations by the algorithms, due to difficulties in distinguishing overlapping cylinders. 
Further research should be carried out to automate the cleaning step for defective point clouds. 
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The fitting quality assessment for the tropical trees point clouds is seen on Figure 17. For all methods 
the accuracy was lower when compared to the fitted boreal species, but RMSEs remained smaller than 
5 cm for all methods. M2 was slightly more precise than the other methods, but presented the highest 
bias (overestimation). M1 was the least precise method, but on the other hand it presented the least bias 
(around half of the other methods). The tropical trees often presented stems not as straight as the boreal 
ones, leaning specially at higher portions (Figure 18). This reflects on a better performance of the 
cylinder-based fitting methods in comparison to the horizontal cross section circle-fit (M1). 

The observed overestimation, for the Eucalypt, is likely to be a residual effect of the wind, enlarging 
some stem cross-sections in the point cloud due to sideways movement during laser scanning. As for 
the Pine trees, notice that the measured diameters were manually extracted from the point clouds and 
not from field inventory, thus unknown errors may have been introduced. 

 

 

 
Figure 17. Estimated vs field measured diameters for tropical species (D = diameter; r = Pearson’s linear 
correlation). 

 

29 
 



 
Figure 18. Eucalyptus sp. (a) and Pinus taeda (b) TLS point clouds. 

 

The quality of estimation was similar throughout all diameter classes (Figure 19) and relative height 
intervals (Figure 20). Notice that for M2, however, overestimation at the lowest diameters outstands. 
Both species have sparse canopies and no lower foliage, which relates to their silvicultural treatments, 
since those species are planted in high densities, which promotes fast growth in height and persistence 
of canopy only (or mainly) at the highest portions of the tree. Stem occlusion, therefore, is not a big 
issue when scanning those species, allowing the algorithms to perform alike regardless of height. 
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Figure 19. Estimated vs measured diameters distributed in different classes for tropical species. 

Figure 20. Residuals distribution according to relative tree height, which is the ratio between the height on which 
a diameter was measured and the tree’s top height. 

 

3.1.3 Summarized results 

The results are summarized per species on Table 1. Best performance was achieved for Pinus sylvestris, 
followed by Picea abies, Pinus taeda and Eucalyptus sp., respectively. The Hough transformation 
followed by RANSAC circle fit (M1) had best performance overall, presenting the least bias for all 
species and often the least RMSE, except when fitting Pinus taeda trees. 
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Table 1. Summarized assessment measures by method and species. Relative values are related to the average 
measured diameter for the species. 

Method 
RMSE 
(cm) 

Rel RMSE 
Bias 
(cm) 

Rel bias r 

  Eucalyptus sp. 
M1 3.50 35.3% 1.09 11.0% 0.69 
M2 3.82 38.4% 2.39 24.0% 0.69 
M3 4.55 45.8% 2.61 26.2% 0.65 

  Picea abies 
M1 1.75 9.3% 0.84 4.5% 0.99 
M2 3.15 16.7% 1.63 8.6% 0.96 
M3 2.28 12.1% 0.99 5.2% 0.98 

  Pinus sylvestris 
M1 1.53 7.5% 0.38 1.9% 0.99 
M2 1.92 9.4% 0.98 4.8% 0.99 
M3 2.22 10.9% 0.92 4.5% 0.98 

  Pinus taeda 
M1 7.54 31.3% 1.83 7.6% 0.82 
M2 5.31 22.0% 3.49 14.5% 0.91 
M3 5.48 22.7% 2.15 8.9% 0.85 

 

3.2 Processing time benchmarking in R 

Ten point clouds were randomly selected among the boreal trees, which underwent two extra point cloud 
density reductions. Most of the function parameters were kept the same, but for much lower densities, 
when applying M2, k was reduced from 30 to 10 points, and when applying M3, the sphere radii for the 
rough noise filtering were increased to r1 = 0.1 m and r2 = 0.2 m. All tests were carried out using a 
processor Intel® Core™ i7-6500U, base frequency of 2.5 GHz and 16 GB of RAM. 

Figure 21 shows the time necessary to process one tree depending on its point cloud size. M2 presented 
significant improvement in time processing for reduced point cloud size, in special at the pre-filtering 
phase, being 3 times faster for a density reduction of 50% and 8 times faster for 80% of density reduction. 
This method evaluates the neighborhood of every point belonging to the point cloud, performing spectral 
decomposition as many times as the total number of points. By reducing the cloud size, significant time 
reduction is achieved due to a smaller number of neighborhoods on which spectral decomposition is 
performed. At the pre-filtering phase, considering the tested point cloud densities as 100%, 50% and 
20%, respectively, average processing time was: 68s, 53s and 48s for M1; 703s, 231s and 87s for M2; 
and 241s, 138s and 108s for M3. Time efficiency for M1 depends more on the pixel size adopted for the 
Hough transformation, rather than the point cloud size, and since the pixel size was kept as 2.5 cm in all 
cases, no noteworthy processing time improvement was shown. M3 shares many similarities with M2, 
but the spectral decomposition is performed on pre-selected neighborhoods from early steps of the 
algorithm, instead of all possible point neighborhoods, making it more time efficient. 

On the fitting phase, there was no time difference for different point cloud densities for the RANSAC 
based methods (M1 and M3), since the speed is dependent on the number of iterations performed and 
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not on the point cloud size. All RANSAC parameters were kept the same, thus no change in processing 
speed was detected. For the cylinder fit based on IRTLS (M2), processing time decreased, in average, 
by factors of 1.4 and 2.2, for 50% and 20% of point cloud size, respectively. 

 

 
Figure 21. Processing time of the three different methods applied on point clouds of different size. 

 

Estimation quality was checked for the reduced point clouds for all methods (Figure 22). Reducing the 
point cloud density from 104 to 5×10³ points per meter above ground had little effect on the estimation 
quality. Reducing it further, to 2×10³ points per meter above ground, had no effect on quality for M1, 
but increased the RMSE by 59% on M3. For M2, the latter density reduction unveiled poor overall 
performance, yielding a 9 times higher RMSE (from 2.75 cm to 25 cm). The values on Figure 17 
considers 10 trees combined, but all the observed outliers belong to estimates made for Spruce. For Pine 
trees, all methods, regardless of point cloud density, performed well, with all RMSE values below 2.5 
cm and bias below 1 cm – e.g. M2, 2×10³ pts/m above ground, Spruce: RMSE = 0.2983 m, bias = 0.0942 
m and r = 0.0688; Pine: RMSE = 0.0149 m, bias = 0.0065 m and r = 0.9845. This outcome is, again, 
probably due to more frequent stem occlusion in LiDAR point clouds taken from Spruce trees, in special 
young ones that have also persistent lower canopy, decreasing estimation quality alongside spatial 
resolution. M2 presented better fitting statistics for a density of 5×10³ pts/m than 104 pts/m (Figure 13), 
which is consequence of the reduced tree sample, that ended up removing some of the hardest trees to 
model. 
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Figure 22. Estimated vs field measured diameters for different point cloud densities (D = diameter; r = Pearson’s 
linear correlation). 

 

No tests were performed on further reduced cloud densities, but for point clouds with a clear view of the 
lower parts of the bole (i.e. first two meters) it may still be possible to perform accurate stem extraction 
in even smaller point clouds, since all estimations are made from bottom to top, taking estimates made 
for one tree section as input for the next one, in a heuristic manner. 

3.3 Further discussion and remarks 

Overall, the fitting quality observed can be considered satisfactory in most cases. Liang et al. (2014) 
compiled results from circle and cylinder fitting methods for stem isolation in TLS point clouds 
published between 2008 and 2012, finding that circle based techniques, with RMSEs ranging from 1.48 
to 5.69 cm, were generally more precise than cylinder based ones, with RMSEs ranging from 3.7 to 9.17 
cm. Olofsson et al. (2014) found diameter RMSE values in the range of 2.4 cm to 7.5 cm. They tested 
their adapted circle fit RANSAC algorithm in boreal species point clouds, obtaining best results for Pine 
(RMSE = 2.38 cm, bias = -0.6 cm), followed by Spruce (RMSE = 6.18 cm, bias = 1.54 cm) and 
deciduous species (RMSE = 7.48 cm, bias = 2.52 cm). Liang et al. (2014) also compared the TLS 
automated estimations with field taper measurements, finding a bias of 0.15 cm and RMSE values of 
1.17 cm and 1.08 cm for Pine and Spruce, respectively. Furthermore, they also reported that automated 
estimations were as precise as manual measurements made on the point cloud, and around 3 times less 
biased. Hackenberg et al. (2015) tested the method described by Raumonen et al. (2013) to estimate 
above ground biomass for different species, obtaining an average deviation from ground truth 
measurements ranging from 2% to 21% for whole trees. 
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In the current study, all methods were applied on point clouds with reduced spatial resolution, with no 
more than 3×105 points per cloud and good accuracy was still achieved. On the referenced studies, the 
authors processed clouds with much higher resolutions, up to several million points per cloud. Kelbe et 
al. (2015) estimated DBH from single scan low resolution TLS point clouds, achieving an RMSE of 6.4 
cm. Further improvement in TLS-based estimation of tree attributes could be achieved by using higher 
resolutions (Liang et al. 2014), but this study suggests that reduced point clouds can already provide 
precise estimates, and rather than increasing resolution globally, keeping higher resolutions only at 
higher portions of the trees may improve the algorithms overall performance. 

Further errors may be introduced by sources not taken into account during the scanning. Other than 
wind, as already stated, the distance from the trees to the sensor may affect the quality of derived models 
and estimations based on the point cloud. Olofsson et al. (2014) observed that the precision of estimation 
decreases the further the trees are from the sensor, which is likely due to shading from neighboring trees 
closer to the sensors. On the present study, the effect of distance from the trees to the LiDAR sensors 
was not investigated – all studied single trees were located between 0 and 10 meters away from the laser 
scanner. 

Fitting circles or cylinders on narrow features is troublesome, since the algorithms tend to falsely 
identify those patterns in small diameters. Here we observed that estimations made for stem segments 
below 7 cm of diameter are generally not accurate, with modelling being required for those stem 
portions. 

An advantage of method M1, as seen on Figure 20, is that it’s processing time is not dependent on the 
point cloud size, and it can be applied over point clouds denser than 105 pts/m above ground. This 
method has proven to be precise in most cases. When fitting crooked or leaning stems, in order to take 
advantage of M1’s time efficiency, circles can be fitted in shorter height intervals, on denser point 
clouds. Some precision is likely to be lost depending on how much a cylinder is tilted, but it’s a potential 
time saving alternative for methods M2 and M3. 

The pre-filtering phase on M2, based on spectral decomposition of flat surfaces, was first proposed as a 
stem mapping technique by the original authors (Liang et al. 2012). Thus, an advantage of method M2 
is the possibility of using its pre-filtering phase for stem mapping and single tree isolation on plot derived 
point clouds. The pre-filtering phase in M1, for instance, was tuned to return only the main circle found 
in the point cloud, thus only being applicable for single tree point clouds. Stem mapping can also be 
performed by M3, by removing the distance from the main axis criterion from the pre-filtering phase. 

Further research will contribute to enhance the quality of TLS-based tree measurements, for instance, 
allowing implementation of functions to automatically clean point clouds heavily affected by wind; 
automated best choice of function parameters according to distance from the tree to the laser scanner 
and point cloud density; simultaneous fitting of forking stems etc. The combination of different pre-
filtering and fitting phases should also be evaluated, which will potentially enhance estimation quality 
for different scenarios. 
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4. Conclusions 
All tested methods have proven to be accurate and precise on good quality single tree point clouds. They 
perform generally better at lower portions of the stem. The Hough transformation followed by the 
RANSAC circle fit method presented best overall performance for most species. 

All functions developed during this study are available as an open source package on GitHub: 
https://github.com/tiagodc/TreeLS. Currently the package provides basic functions for manipulation of 
TLS point clouds, automatic stem isolation from individualized trees and taper extraction. 
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