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ABSTRACT 

The liver fluke Fasciola hepatica is a parasitic trematode prevalent in mammals, primarily in 
sheep and cattle. There is a wide range of methods for diagnosis of F. hepatica infections, such 
as coproscopy, coproantigen ELISA, serum ELISA, PCR and Loop-mediated isothermal 
amplification (LAMP). As with all diagnostic methods, each presents benefits and 
disadvantages. Coproscopy requires no sophisticated equipment, but its robustness is limited 
due to difficulty of species identification and inability to detect early F. hepatica infections. 
Coproantigen ELISA can detect infections during the pre-patent period, yet its sensitivity in 
field applications is still debated. Serum ELISA is a good method for large herd screening, 
although it provides less insight to the infection status. PCR can differentiate between species 
using primers targeting the ITS2 region of F. hepatica genome. LAMP is a molecular method 
based on rapid amplification of target DNA under isothermal conditions. Both PCR and LAMP 
have only recently been attempted for F. hepatica identification in faeces. The aim of the study 
was to develop and set up LAMP and PCR methods for diagnosis of F. hepatica in ruminant 
faeces and to compare these molecular techniques with coproscopy, coproantigen detection and 
serology. A total of 64 faecal and blood samples were collected from 64 sheep and cattle from 
four farms in Sweden. Faecal samples were examined by faecal egg counts (FEC) with a 
sedimentation method and coproantigen ELISA using the Bio-X Bovine Fasciola hepatica 
Antigen ELISA Kit (Bio-X Diagnostics, Belgium). Serologic testing with an in-house ELISA 
was conducted on all serum samples. PCR and LAMP were performed with DNA extracted 
directly using PowerFecal® DNA isolation kit (MO BIO, USA) from faecal samples. F. 
hepatica eggs were present in 28 animals, while coproantigen and antibodies were detected in 
36 and 53 animals respectively. PCR and LAMP managed to amplify only 3 and 6 samples 
respectively. Based on a composite reference standard, results showed that LAMP and PCR 
had a sensitivity of 14% and 8% respectively, which was much lower compared to the 78% 
sensitivity of FEC and 100% sensitivity of both coproantigen and serum ELISA. FEC, 
coproantigen ELISA and PCR all had 100% specificity, while LAMP and serum ELISA had 
96% and 39% specificity respectively. In conclusion, FEC and coproantigen ELISA were good 
diagnostic tools for detection of patent F. hepatica infections. PCR and LAMP results could 
possibly improve with further development of faecal DNA extraction techniques. 
 
Keywords: Fasciola hepatica, faeces, sheep, cattle, diagnosis, loop-mediated isothermal 
amplification, PCR, serology, coprology. 
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1   Introduction 

 

1.1   Background 

The liver fluke Fasciola hepatica is a parasitic trematode of family Fasciolidae (Kassai, 

1999). Fasciolosis, the disease caused by F. hepatica infection, is mostly prevalent in livestock, 

primarily in sheep and cattle (Robinson & Dalton, 2009; Freitas et al., 2014). This liver fluke 

has a wide definitive host spectrum and a cosmopolitan distribution (Mas-Coma et al., 2005; 

Taylor et al., 2007). F. hepatica infections are of high veterinary importance, as it causes 

significant economic losses in livestock industry worldwide (Mezo et al., 2004; Taylor et al., 

2007; Afshan et al., 2013).  

Control of fasciolosis is difficult, due to the lack of diagnostic methods that are sensitive, 

reliable and simple enough for inspection of large herds under field conditions (Mezo et al., 

2004). Identification criteria to distinguish between parasitic trematodes in livestock is mainly 

based on morphological characteristics of adult flukes and eggs, geographical distribution, host 

spectrum and pathological response of the host (Králová-Hromadová et al., 2008). Coproscopy 

is the most widely used method for diagnosis of fasciolosis. However, use of coproscopy is 

limited due to difficulty of morphology-based species identification (Mage et al., 2002) and 

inability to detect early infections with juvenile flukes (until 10-12 weeks post-infection) 

(Taylor et al., 2007; Dusak et al., 2012). Recently, coproantigen ELISA has been reported as a 

suitable coprological method for diagnosis of F. hepatica. It is sensitive in detecting the 

presence of F. hepatica antigens in faeces 6-8 weeks post-infection in cattle (Brockwell et al., 

2013). Some studies, however, showed that coproantigen ELISA is less sensitive compared to 

faecal egg count (FEC) under field conditions (Gordon et al., 2012; Novobilský et al., 2012). 

Serological tests, such as serum ELISA, are highly sensitive in detecting antibodies against F. 

hepatica within the host. These specific antibodies can be detected as early as 3-5 weeks post-

infection (Mezo et al., 2004), but cannot be used to determine drug efficacy as well as patent 

infections or re-infections (Williams et al., 2014). Therefore, novel non-invasive diagnostic 

methods of F. hepatica in live animals are needed for an accurate, early detection of F. hepatica 

infection and also for the assessment of flukicide efficacy. Molecular assays, such as 

polymerase chain reaction (PCR), have been proven to be sensitive and with species specific 

primers can specifically detect F. hepatica infections as early as two weeks post-infection 

(Robles-Pérez et al., 2013). Loop-mediated isothermal amplification (LAMP) assay is a 

molecular method based on rapid amplification of target DNA under isothermal conditions 

(Notomi et al., 2015). This method demonstrated helminth detection in faeces with similar or 
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in some cases higher sensitivity compared to FEC and PCR (Melville et al., 2014; Mugambi et 

al., 2015; Martínez-Valladares & Rojo-Vázquez, 2016) and detection was as early as one week 

post-infection (Fernández-Soto et al., 2014; Martínez-Valladares & Rojo-Vázquez, 2016). 

LAMP can be applied with the use of water baths or heat blocks, and simple end-point detection 

techniques contribute to lower diagnostic costs (Notomi et al., 2000; Mori & Notomi, 2009). 

In addition, LAMP has been shown as an efficient tool in distinguishing different Fasciola 

species (Ai et al., 2010). This method has only recently been tested for detection of F. hepatica 

in faeces (Martínez-Valladares & Rojo-Vázquez, 2016). 

 

1.2   Aim and hypothesis 

The aim of the study was to develop and set up LAMP and PCR methods for diagnosis 

of F. hepatica in ruminant faeces and to compare these molecular techniques with other 

conventional methods such as coproscopy, coproantigen ELISA and serology. The hypothesis 

was that LAMP could be more sensitive and specific in diagnosing F. hepatica infections in 

comparison to coproscopy, coproantigen ELISA, serum ELISA and PCR. Sensitivity and 

specificity of the different diagnostic methods used in this study for detection of F. hepatica 

infection were evaluated.  

 

2   Literature Review 

 

2.1   General description of Fasciola hepatica 

F. hepatica, commonly known as the liver fluke, parasitizes in liver of ruminants, 

especially in sheep and cattle. F. hepatica are digenetic trematodes with a tegument body 

surface covered in spines (Taylor et al., 2007; Williams et al., 2014). An adult F. hepatica is 2-

3.5 cm in length and 1 cm in width, leaf-shaped with grey-brown colouring, and possess a 

ventral and oral sucker (Kassai, 1999; Taylor et al., 2007). F. hepatica is a hermaphroditic 

organism, meaning that each fluke possesses both male and female reproductive organs (Kassai, 

1999; Williams et al., 2014). F. hepatica eggs are ovoid with thin shells and an operculum, 

130-150 µm in length. Eggs are yellowish-brown in colour and are filled with granules when 

excreted in faeces (Taylor et al., 2007). 

F. hepatica has an indirect life cycle, which means that it needs an intermediate host. In 

Europe, the intermediate host for F. hepatica is the aquatic snail Galba truncatula (Mas-Coma 

et al., 2005). The pre-patent period of F. hepatica infections usually lasts for 10-12 weeks 

before the mature flukes start laying eggs in the biliary ducts, which are discharged with bile 
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into the digestive system and into faeces (Kaplan, 2001; Taylor et al., 2007; Dusak et al., 2012). 

In the environment, F. hepatica eggs hatch into miracidia which swims and penetrates the snail, 

develops into cercaria, which then leaves the intermediate host to find aquatic vegetation where 

it attaches itself and forms into the infective stage metacercaria (Kaplan, 2001; Taylor et al., 

2007). The whole process of F. hepatica development outside of the definitive host is dependent 

on optimal environmental conditions (Skuce & Zadoks, 2013). 

An increasing prevalence of fasciolosis in Europe might be due to climate change, and 

farming practices that change in accordance with the conditions, e.g. longer grazing seasons. 

Mild winters might have also created an environment more suitable for the intermediate hosts 

of F. hepatica, thereby increasing the snail and parasite population (Fairweather, 2011; Gordon 

et al., 2012). In Sweden, an increase in the prevalence of F. hepatica in Swedish livestock 

production has been reported (Novobilský et al., 2014). 

 

2.2   Diagnostic methods of F. hepatica infections 

Detection of F. hepatica infections can be performed through a range of different 

diagnostic methods. Diagnosis can be determined by adult fluke recovery through post-mortem 

inspection of livers in abattoirs, faecal egg counts (FEC) by coproscopy methods, antibody 

detection in milk of lactating dairy cows and serum of animals, antigen detection in faeces by 

means of an enzyme-linked immunosorbent assay, liver enzyme levels, radiological imaging of 

the liver, and molecular methods (Mezo et al., 2004; Dusak et al., 2012; Robles-Pérez et al., 

2013; Skuce & Zadoks, 2013; Williams et al., 2014; Martínez-Valladares & Rojo-Vázquez, 

2016). 

 

2.2.1   Coproscopy 

Several methods have been used in previous studies for determining the FEC in F. 

hepatica infections. These methods include sedimentation, modified sedimentation with 

McMaster, Kato Katz and flotation methods using zinc sulphate buffer (Conceição et al., 2002; 

Taylor et al., 2007; Duthaler et al., 2010; Kajugu et al., 2015). Since most trematode eggs are 

heavy and large, detection and concentration of trematode eggs in faeces is most commonly 

done through the sedimentation method (Jacobs et al., 2016). FEC is the most widely used 

method in diagnosis of F. hepatica infection, since it is not invasive and only requires the use 

of a microscope (Skuce & Zadoks, 2013). Although it detects patent infections, when the 

parasite burden is low no eggs might be detected (Brockwell et al., 2013). However, eggs could 

also remain in the gall bladder for several weeks after animals have been successfully treated, 
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giving rise to false positive FECs (Fairweather, 2011; Gordon et al., 2012). Furthermore, the 

number of eggs do not represent the infection intensity (Valero et al., 2009a; Fairweather, 2011). 

Extensive differences in egg size within the F. hepatica species itself have previously been 

reported (Düwel, 1982; Mas-Coma et al., 2005; Valero et al., 2009a), complicating the egg 

identification process. 

 

2.2.2   Serological diagnosis 

The enzyme-linked immunosorbent assay, or ELISA for short, is a diagnostic method 

that relies on the interaction between antigen and the specific antibody against it. ELISA has a 

wide application, and one of the best known applications is in the field of parasitology, 

especially in epidemiological studies (Valero et al., 2012). Serological tests, such as bulk milk 

tank ELISA, can be used to monitor herd infection levels in dairy herds at national level (Skuce 

& Zadoks, 2013; Williams et al., 2014). The indirect ELISA using serum samples can detect 

infection of F. hepatica earlier than other diagnostic methods, as early as 3-5 weeks post-

infection (Mezo et al., 2004; Afshan et al., 2013). A disadvantage of serological methods is that 

results do not correspond to current infections, but rather it reflects exposure to the parasite 

(Salimi-Bejestani et al., 2005). 

 

2.2.3   Coproantigen detection 

Coproantigen ELISA detects F. hepatica excretory-secretory antigens, specifically the 

gastrodermal cells, in faeces of infected animals based on a highly sensitive monoclonal MM3 

assay (Mezo et al., 2004; Kajugu et al., 2012). The commercial kit from Bio X Diagnostics 

uses a 96-well microplate sensitised with specific polyclonal antibody against F. hepatica. 

According to Flanagan et al. (2011b) and Martínez-Valladares & Rojo-Vázquez (2016), 

coproantigen ELISA can detect the presence of coproantigen in animal faeces as early as 4-5 

weeks post-infection. Coproantigen ELISA values are also known to represent the fluke burden 

(Skuce & Zadoks, 2013). According to a study by Kajugu et al. (2012), this coproantigen 

ELISA does not cross-react with other trematode infections. As for the sensitivity of 

coproantigen ELISA, there have been disagreements between studies where Palmer et al. (2014) 

regards the test as being highly sensitive while other studies question the sensitivity of the test 

(Charlier et al., 2008; Novobilský et al., 2012). 
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2.2.4   Polymerase chain reaction (PCR) 

Many parasitological researches have used PCR to identify and differentiate helminths 

at the molecular level. Several primers have been designed to recognize a specific region in the 

genome of F. hepatica, more specifically the internal transcribed spacer 2 (ITS2) located 

between the small (5.8S) and large subunit (28S) of ribosomal genes which is highly variable 

between different trematode classes (Ai et al., 2010; Bazsalovicsová et al., 2010; Choe et al., 

2011; Robles-Pérez et al., 2013). Furthermore, two closely relative species F. hepatica and F. 

gigantica differ in six nucleotides with a 2.8% variation when a 213 bp long fragment of the 

ITS2 region of their genomes were compared (Mas-Coma et al., 2005). This shows that the 

ITS2 region is specific to the point of distinguishing between Fasciola species. Majority of 

PCR methods in helminths have been based on DNA extraction from adult worms or eggs 

isolated from faeces of infected animals (Zhan et al., 2001; Bazsalovicsová et al., 2010; Ai et 

al., 2011; Khademvatan et al., 2013). PCR conducted directly on faecal DNA extractions 

(without egg isolation) could decrease the time needed for diagnosis by omitting the laborious 

process of helminth egg isolation and coproscopical procedures. Moreover, the PCR targets 

DNA from tegumental cells of flukes in the liver that are shed into faeces during liver migration, 

rather than eggs found in faeces (Martínez-Pérez et al., 2012). Only a few studies have been 

published on PCR using DNA extracted directly from faecal samples without prior isolation of 

helminth eggs (Verweij et al., 2001; Martínez-Pérez et al., 2012; Robles-Pérez et al., 2013; 

Meurs et al., 2015). 

 

2.2.5   Loop-mediated isothermal amplification (LAMP) 

Loop-mediated isothermal amplification (LAMP) is a relatively new nucleic acid 

amplification method first described by Notomi et al. (2000). The method uses the principle of 

amplification using the strand-displacement activity of a DNA polymerase and the creation of 

loop-structures with the help of four or six primers, resulting in a high number of amplicons 

within a short period of time. A major benefit of this method is that amplification occurs in 

isothermal conditions, therefore excluding the need of a thermocycler. Furthermore, the 

amplification time is considerably faster than that of PCR (Notomi et al., 2015). Detection of 

LAMP products is relatively simple, commonly accomplished by the use of a turbidimeter 

which detects the magnesium pyrophosphate byproduct of LAMP or by addition of 

fluorescence dyes where changes are visible to the naked eye (Mori & Notomi, 2009). The use 

of LAMP has been widely applied in many different fields of biological research (Bakheit et 

al., 2008; Nagdev et al., 2011; Gallas-Lindemann et al., 2016) including diagnosis of 
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Schistosoma mansoni (Fernández-Soto et al., 2014), Haemonchus contortus (Melville et al., 

2014), Necator americanus (Mugambi et al., 2015) and F. hepatica (Ai et al., 2010; Martínez-

Valladares & Rojo-Vázquez, 2016). 

 

3   Methods 

 

3.1   Sample collection 

Samples were collected from two sheep farms Kållekärr and Töllås, and two cattle farms 

Henån and Binninge in Sweden during early December 2015. All four farms have a history of 

animals naturally infected by F. hepatica. Faecal and blood samples were obtained from 39 

sheep (10 ewes and 29 lambs) and 25 cattle. All faecal samples were immediately frozen at -

20°C for further analysis. Blood samples were centrifuged, and sera was collected and frozen 

at -20°C for further analysis. 

 

3.2   Faecal egg counts 

Faecal egg count (FEC) using sedimentation method was performed on all 64 faecal 

samples. Samples were defrosted one day before the faecal examination. Three grams of each 

sheep and ten grams of each cattle faecal sample were used in the sedimentation process. The 

sedimentation protocol was as follows: Each individual faecal sample was weighed and placed 

in a labelled beaker glass. The samples were suspended in water, homogenized, and filtered 

through a 150 µm sieve to get rid of large faecal particles. The filtrate was then subjected to 

washing after sedimentation for 5-6 min. Washing was done by removing filtrate from the 

beakers with a vacuum pump, leaving 1.5 cm (±0.5 cm) of filtrate sedimentation at the bottom 

and refilling the beakers with water again. This process was repeated 4-5 times depending on 

the clearness of the filtrate. Entire sediments were then placed on small petri discs and 

observation was performed using a microscope with 40x magnification (Olympus BX40). Eggs 

were counted and calculated as the number of eggs per gram of faeces (EPG) with the following 

formula: 

 

EPG = Number of eggs counted by coproscopy / amount of faeces (g) 
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3.3   Serum ELISA 

An indirect ELISA was performed on all 64 sera samples using an in-house protocol. 

Serum from cattle and sheep previously tested positive for F. hepatica infection were used as 

positive controls and serum from cattle and sheep previously tested negative for F. hepatica 

and positive for Haemonchus contortus infection were used as negative controls. All samples 

were analysed in duplicates. 96-well plates were coated with F. hepatica antigen with a 

concentration of 1:400 in coating buffer (Sodium carbonate 0.05 M in distilled water) and stored 

at 4°C one day before the assay was performed. Phosphate buffer saline (PBS) 10% was made 

using PBS 10x without calcium (SVA, code: 992442) in distilled water. PBS Tween, or washing 

buffer, was made by adding 0.5 ml Tween 20 into 1000 ml of the PBS solution. Blocking and 

dilution buffers were made using skim milk with concentrations of 10% and 5% in PBS Tween 

each respectively. For the assay, wells were first washed three times with washing buffer to 

remove any free F. hepatica antigens. Blocking buffer was added and plates were incubated for 

30 min at 37°C. Every serum sample was diluted 1:50 in dilution buffer before being used in 

the assay. The plates were washed once after the 30 min incubation and 100 µl of the diluted 

serum was added per well. Wells were incubated for 60 min at 37°C, followed by washing three 

times with washing buffer. Secondary peroxidase-conjugated antibodies used were anti-bovine 

monoclonal antibodies (SVANOVA) for the bovine assay and anti-sheep IgG produced in 

donkey (Sigma-Aldrich) for the ovine assay. The secondary conjugated antibodies were diluted 

in a concentration of 1:10000 for bovine and 1:3000 for ovine before being used in the assay. 

100 µl of the diluted secondary antibodies were added into each well and allowed to incubate 

for 60 min at 37°C. Following the incubation, three times washing with washing buffer was 

performed again. 100 µl of substrate was then added into each well. The substrate used was 

Tetramethylbenzidine (TMB) 20 mM (SVA, code: 382512) in Potassium citrate buffer 0.1 M 

(SVA, code: 381660) with a proportion of 1 TMB + 19 Potassium citrate buffer. Reaction was 

stopped by adding 100 µl of sulphuric acid (H2SO4) per well after 15 min of incubation in the 

dark. Absorbance was read immediately with a spectrophotometer (Multiskan FC, 

Thermoscientific) at 450 nm and the average OD values were calculated for each sample. Serum 

ELISA was considered positive when bovine samples had a sample-to-positive (S/P) ratio ≥15% 

and ovine samples ≥10% according to Novobilský et al. (2014). S/P ratios were calculated in 

Ms Excel with the following formulas (Novobilský et al., 2014): 

 
ODi = ODii / ODneg 

Sample-to-positive (S/P) ratio of sample i = (ODi / ODpos) x 100% 
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Note: 

ODii = mean Optical Density of sample i read at 450 nm (average OD of the duplicate samples). 

ODi = Optical Density of sample i after adjustment with the mean OD of negative control. 

ODneg = mean Optical Density of negative control read at 450 nm. 

ODpos = mean Optical Density of positive control read at 450 nm. 

 

3.4   Coproantigen ELISA 

A sandwich ELISA using Bio-X Bovine Fasciola hepatica Antigen ELISA Kit (Bio K 

201, Bio-X Diagnostics, Belgium) was performed on all faecal samples. Each individual faecal 

sample was homogenized with 2 ml dilution buffer (Bio K 201, Bio-X Diagnostics, Belgium) 

by mixing with a pipette and vortexing. For cattle 2 g of each faecal sample was used, and for 

sheep 0.5 g of each faecal sample was used. The homogenized samples were incubated 

overnight at 4°C. Supernatant was collected from all samples after centrifugation for 10 min at 

1000 g and stored at -20°C. Further analysis was carried out according to the Bio-X Bovine 

Fasciola hepatica Antigen ELISA Kit (Bio K 201, Bio-X Diagnostics, Belgium) protocol with 

minor changes as follows: Faecal antigen extraction was done overnight. Washing buffer used 

was in house PBS Tween and the plates were not agitated during the first incubation step. 

Following the protocol completion, absorbance was read with a spectrophotometer (Multiskan 

FC, Thermoscientific) at 450 nm and the sample-to-positive (S/P) ratios were calculated in Ms 

Excel based on the optical density (OD) using formulas as previously described for serum 

ELISA. Coproantigen ELISA results were determined positive using a sample-to-positive ratio 

(S/P) cut-off from a previous research where samples with 1.6% positivity were considered 

positive (Novobilský & Höglund, 2015). 

 

3.5   DNA extraction 

DNA was extracted from all faecal samples using PowerFecal® DNA isolation kit (MO 

BIO, USA) according to manufacturer’s protocol. Briefly, 250 mg of homogenized faeces was 

added into the dry bead tubes along with lysis buffer and incubated at 65°C for 10 min. The 

tubes were then subjected to severe shaking by horizontal vortexing, which was conducted by 

taping the dry bead tubes on a TTS 3 control shaker (Skafte MedLab) or a flat-bed vortex. After 

shaking, tubes were centrifuged (13,000 x g for 1 min) and supernatant was transferred into 

new tubes. An inhibitor removal solution (for precipitation of inorganic material, e.g. 

polysaccharides) was added and tubes were incubated at 4°C for 5 min. Tubes were then 



	
   13 

centrifuged again, supernatant transferred into new tubes and salt solution was added to 

facilitate DNA binding to silica. Each solution mixture was then transferred to a new spin 

column and subjected to washing by ethanol. For the DNA elution process, 80 µl of elution 

buffer was added and left to incubate in the spin columns for 5 min before centrifugation. The 

elution process was performed twice on each spin column. DNA was stored at -20°C for further 

analyses. In addition, 3 randomly selected samples that tested negative by coproscopy, 

coproantigen ELISA and serum ELISA were taken twice and served as control for amplification 

inhibitors. 20 µl of DNA from adult F. hepatica was added to these three “spiked” samples 

before commencing the DNA extraction procedure mentioned above. 

DNA was also extracted from an adult F. hepatica using QIAamp® DNA Mini Kit 

(Qiagen) following the manufacturer’s protocol with the following modifications: 200 µl of 

elution buffer was used instead of 400 µl. The DNA was stored at -20°C for further analyses. 

 

3.6   DNA concentration measurement 

Concentration of F. hepatica DNA extracted from an adult fluke was measured using 

Qubit® 2.0 Fluorometer (Thermo Fisher Scientific). The DNA concentration was used to 

measure the sensitivity of PCR and LAMP in detecting F. hepatica DNA by creating serial 

dilutions of DNA concentrations. Quality and concentration of faecal DNA extractions was 

measured using PicodropTM. 

 

3.7   Primer design 

Primers for LAMP were designed to target the internal transcribed spacer 2 (ITS2) region 

of the F. hepatica genome. The primers were designed from a consensus of F. hepatica ITS2 

sequences (Genbank accession numbers DQ683546.1, JF824668.1, KJ200622.1, AB207148.1) 

aligned with MUSCLE using the free open-source bioinformatics software UGENE 

(Okonechnikov et al., 2012) and Primer Explorer v.4 (https://primerexplorer.jp/e/). The 

sequences of the newly designed primer (Primer 1) and the 187 bp target DNA sequence are 

shown in Table 3.1. and Figure 3.1, respectively. Primer 1 was also tested in silico for their 

specificity through BLAST alignment searches and comparison with other trematode’s ITS2 

sequences (EF534992.1, EF534993.1, EF612486.1, EU260079.1, HM026462.1, JQ966973.1, 

AY790883.1, KF543340.1) using UGENE. 
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Table 3.1. LAMP Primer 1 sequences designed and used in this study. 

Primer Length (bp) Sequence (5’ - 3’) 

F3 19 GCTGGCGTGATCTCCTCTA 

B3 18 TAAGTGTGCCGACTAGGG 

FIP (F1c-F2) 41 TCTGCCAAGACAAGGGTGCAT-GTGAGGTGCCAGATCTATGG 

BIP (B1c-B2) 40 GTGCAGTGGCGGAATCGTGG-GATCGCCAAACACACTGACA 

 

 
Figure 3.1. ITS2 region target sequence (187 bp) and binding sites of Primer 1 (picture 

produced using UGENE bioinformatics software). 

 

3.8   Polymerase chain reaction (PCR) 

 

3.8.1   PCR specificity and sensitivity test 

The outer primers of the LAMP primer designed in this study (the F3 and B3 primers) 

were tested for their specificity in PCR. DNA from adult trematodes which comprised of F. 

hepatica, Dicrocoelium dendriticum, Paramphistomum cervi, Calicophoron daubneyi, 

Haplometra cylindracea, and three nematodes Haemonchus sp., Cooperia sp. and Ostertagia 

sp. were used in a 1:10 dilution as the DNA templates for the specificity test. Each PCR reaction 

was based on a 25 µl volume containing 1x PCR Buffer, 2.0 mM MgCl2, 10 mg/ml BSA, 0.2 

mM dNTP, 0.4 µM forward and reverse primers each (or F3 and B3 outer primers from LAMP 

primer sets), 1.25 U AmpliTaq Gold Polymerase, and 2 µl template DNA. Cycling conditions 

for the PCR was as follows: initial denaturation at 95°C for 2 min, followed by 40 cycles of 

denaturation at 95°C for 30s, annealing at 58°C for 30s, elongation at 72°C for 45s, and a final 

extension at 72°C for 10 min. All products were stored at 4°C for further analyses. The 

sensitivity of PCR in detecting F. hepatica DNA was tested by performing PCR on serial ten-

fold dilutions of DNA from an adult F. hepatica fluke (1 ng/µl to 1 ng/µl x 10-7) using the same 

procedure as previously mentioned. 
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3.8.2   PCR of all samples 

PCR was conducted on all faecal samples collected in the current study using LAMP 

Primer 1 outer primers (F3 and B3). Faecal samples with addition of F. hepatica DNA before 

the DNA extraction process (“spiked samples”) were also included in the run. 2 µl template 

DNA from each faecal sample was used. PCR master mix composition and cycling conditions 

were as previously described in the PCR specificity and sensitivity test. 

 

3.9   Loop-mediated isothermal amplification (LAMP) 

 

3.9.1   LAMP optimization with Primer 1 

Optimization of LAMP with Primer 1 was conducted using two different Mg2+ 

concentrations 8 mM and 10 mM, and three different cycling temperatures 61°C, 63°C, and 

65°C. Each LAMP reaction was based on a 25 µl reaction containing 2.5 µl of 10x Isothermal 

Amplification Buffer (contains 2 mM MgSO4) (BioLabs, England), 1 M Betaine, 1.4 mM dNTP 

mix, 6 mM or 8 mM MgSO4, 1.6 µM of each FIP and BIP primers, 0.2 µM of each F3 and B3 

primers, 8 U 2.0 Warm Start Bst-DNA Polymerase (BioLabs, England) and 2 µl template DNA 

from adult F. hepatica. The cycling conditions were amplification for 60 min at either 61°C, 

63°C, or 65°C and termination of reaction at 80°C for 10 min. Another optimization was 

conducted using the same protocol but with two different amplification times, 60 min and 120 

min, at 63°C with 8 mM Mg2+ concentration. All LAMP products were stored at 4°C for further 

analyses. 

 

3.9.2   LAMP specificity and sensitivity test 

A specificity test for Primer 1 was conducted using DNA templates from the same 

trematode samples previously used in the PCR specificity test. Each LAMP reaction was based 

on a 25 µl reaction containing 2.5µl of 10x Isothermal Amplification Buffer (BioLabs, England), 

1 M Betaine, 1.4 mM dNTP mix, 8 mM MgSO4, 1.6 µM of each FIP and BIP primers, 0.2 µM 

of each F3 and B3 primers, 8 U 2.0 Warm Start Bst-DNA Polymerase (BioLabs, England) and 

2 µl template DNA. The cycling conditions were amplification for 60 min at 63°C and 

termination of reaction at 80°C for 10 min. All LAMP products were stored at 4°C for further 

analyses. Sensitivity of LAMP in detecting F. hepatica DNA was conducted using DNA 

dilutions as previously mentioned in the PCR sensitivity test, with cycling conditions as 

previously mentioned for LAMP specificity test. 
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3.9.3   LAMP of all samples 

LAMP was conducted on all faecal samples collected in the current study using LAMP 

Primer 1 within two consecutive days. The “spiked samples” were also included in the run. 2 

µl template DNA from each faecal sample was used. LAMP reaction mixture and cycling 

conditions were as previously described in the LAMP specificity test. 

 

3.10   Colorimetric detection of LAMP products with fluorescence dye 

Fluorescence of LAMP products was visualised by adding 2 µl of 10,000x SYBR® 

Green I Nucleic Acid Gel Stain (Invitrogen™, S7563) (diluted 1:10 in 0.5 x TBE buffer). 

Products were observed by naked eye under normal light and pictures of reaction tubes were 

taken using a camera (Canon EOS) on a dark background. LAMP products were considered 

positive when a green fluorescence was present and negative when it remained orange. 

 

3.11   Gel electrophoresis and UV detection 

All PCR products were run on a 1.5% agarose gel in 0.5 x TBE buffer for 45 min at 100 

V. All LAMP products were run on a 2% agarose gel in 0.5 x TBE buffer for 45-60 min at 50-

60V followed by 20-30 min at 100V in order to obtain better separation of bands with small 

differences in length. Gels were pre-stained with GelRed™ Nucleic Acid Gel Stain (Biotium, 

USA) in a concentration of 1:10000. For both PCR and LAMP, 5 µl of product with 1 µl of 6x 

Loading Dye (Fermentas) was loaded to the wells. Bands were visualized under UV light (Gel 

Doc 2000, Bio-Rad). LAMP products were run on the gel after addition of fluorescence dye to 

the tubes, which resulted in better band intensity when observed under UV light. LAMP tubes 

were also viewed under UV light (Gel Doc 2000, Bio-Rad) after addition of dye and was 

considered positive when a strong light was emitted. 

 

3.12   Statistical analysis 

Method sensitivity and specificity, including confidence intervals, were analysed using a 

Fisher’s exact test (Charlier et al., 2008) using Ms Excel and the GraphPad Prism statistical 

software. Calculations were based on the following formulas: 

 

Sensitivity = True Positive / (True Positive + False Negative) 

Specificity = True Negative / (True Negative + False Positive) 
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Note: 

Sensitivity = The probability that a ‘diseased’ subject will test positive with the diagnostic method*. 

Specificity = The probability that a ‘healthy’ subject will test negative with the diagnostic method*. 

True Positive a = Number of samples positive for method a, and faecal egg count or coproantigen ELISA. 

False Negative a = Number of samples negative for method a, but positive for faecal egg count or 

coproantigen ELISA. 

True Negative a = Number of samples negative for method a, and faecal egg count or coproantigen ELISA. 

False Positive a = Number of samples positive for method a, but negative for faecal egg count or 

coproantigen ELISA. 

* ‘Diseased’ here refers to subjects with the target disorder/disease and ‘healthy’ refers to subjects without 

the target disorder/disease. 

Formulas and definitions were adapted from Raslich et al. (2007) and Charlier et al. (2008). 

 

 Since it was not possible to slaughter animals in the current study and examine livers for 

presence of adult flukes, the composite reference model was used to determine the ‘gold’ 

reference for calculating the sensitivity and specificity of the diagnostic methods (Naaktgeboren 

et al., 2013). Two diagnostic methods used as the composite reference were FEC and 

coproantigen ELISA, where a positive result by either one of the two methods was determined 

as positive for the disease. This was based on the theory that FEC and coproantigen ELISA 

both reflect the presence of current fluke infections by detection of eggs and fluke antigens in 

the faeces (Valero et al., 2009b; Gordon et al., 2012). Correlation between FEC, coproantigen 

ELISA and serum ELISA results was done with the Spearman rank correlation algorithm using 

the GraphPad Prism statistical software. 

 

4   Results 

 

4.1   Faecal Egg Count (FEC) 

Out of the 64 faecal samples, 13 sheep and 15 cattle faecal samples were positive with FEC 

using the sedimentation method. The Fasciola hepatica egg counts ranged from 0.1 – 16.6 eggs 

per gram (EPG) with an average of 4.04 EPG for all FEC positive samples (Table 4.1; Appendix 

Table 1). Photo of a F. hepatica egg found in one of the faecal samples in this study is shown 

in Figure 4.1. 
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Figure 4.1. Fasciola hepatica egg filled with granules as seen using a microscope. 

 

4.2   Serum ELISA 

Out of the 64 serum samples, 29 sheep and 24 cattle sera were positive by serum ELISA. 

The range of S/P ratios were 11.7% to 140.2%, with an average of 63.5% for all serum positive 

samples (Table 4.1; Appendix Table 1). 

 

4.3   Coproantigen ELISA 

Out of the 64 faecal samples, 18 sheep and 18 cattle faecal samples were positive by 

coproantigen ELISA. The range of S/P ratios were 1.6% to 105.3%, with an average of 22.3% 

for all coproantigen positive samples (Table 4.1; Appendix Table 1). 

 

4.4   DNA concentration 

Concentration of F. hepatica DNA extracted from an adult fluke as measured by Qubit® 

2.0 Fluorometer (Thermo Fisher Scientific) was 2.02 ng/µL. Concentration of faecal DNA 

extraction ranged from 14.30 ng/µl to 102.90 ng/µl. The 260/280 ratios of faecal DNA 

extractions ranged between 1.61-2.00 (Appendix Table 2). 

 

4.5   PCR 

 

4.5.1   PCR specificity and sensitivity test 

The PCR specificity test using F3 and B3 primers of LAMP Primer 1 amplified DNA 

from F. hepatica with an amplicon length of around 200 bp (visualized by gel electrophoresis 

and UV detection). No amplification of DNA from any of the other trematode and nematode 

DNAs used in the test was observed (Appendix Figure 1). The PCR sensitivity test resulted in 

amplification of F. hepatica DNA from DNA dilutions of 1 ng/µl to 1 ng/µl x 10-4. No 
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amplification was observed on DNA dilutions of 1 ng/µl x 10-5 to 1 ng/µl x 10-7 (Appendix 

Figure 2). 

 

4.5.2   PCR of all samples 

Out of the 64 samples, 3 cattle samples (Henån 2, 5 and 8) were positive by PCR. All 

positive controls (adult F. hepatica DNA) and spiked samples were also positive by PCR (Table 

4.1; Appendix Table 1). 

 

4.6   LAMP 

4.6.1   LAMP optimization with Primer 1 

The first LAMP optimization using two different Mg2+ concentrations of 6 mM and 8 

mM as well as three different cycling temperatures, 61°C, 63°C and 65°C did not result in any 

amplification. The second LAMP optimization using two different amplification times of 60 

min and 120 min at 63°C with 8 mM Mg2+ concentration resulted in amplification of F. hepatica 

DNA after 60 min and both F. hepatica and F. magna DNA when the LAMP was run for 120 

min (Appendix Figure 3). Since the most optimum result was obtained with 8 mM Mg2+ and 

amplification for 60 min at 63°C, this cycling protocol was used for further LAMP analyses. 

 

4.6.2   LAMP specificity and sensitivity test 

LAMP using Primer 1 amplified DNA from adult F. hepatica fluke. No amplification 

was observed for the other trematode and nematode DNAs used in this specificity test 

(Appendix Figure 4). The LAMP sensitivity test resulted in amplification of F. hepatica DNA 

from DNA dilutions of 1 ng/µl to 1 ng/µl x 10-3. No amplification was observed in DNA 

dilutions of 1 ng/µl x 10-4 to 10-7 (Appendix Figure 5). 

 

4.6.3   LAMP of all samples 

Out of the 64 samples, 1 sheep sample (Töllås 15015) and 5 cattle samples (Henån 2, 5, 

8, 9 and 11) were positive by LAMP. All positive controls (adult F. hepatica DNA) and spiked 

samples were also positive by LAMP (Table 4.1; Appendix Table 1). 

 

The number of positive results obtained by each diagnostic method used in the study are shown 

in Table 4.1. 
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Table 4.1. Overall result summary. 

Method Positive samples Negative samples 

FEC 28 (43.75%) 36 (56.25%) 

Serum ELISA 53 (82.81%) 11 (17.19%) 

Coproantigen ELISA 36 (56.25%) 28 (43.75%) 

PCR 3 (4.69%) 61 (95.31%) 

LAMP 6 (9.38%) 58 (90.63%) 

 

4.7   Statistical analysis 

 

4.7.1   Analysis of diagnostic method sensitivity and specificity 

Based on the composite reference, methods with the highest sensitivity were 

coproantigen ELISA and serum ELISA with 100% (90.3-100%) sensitivity for both methods. 

The lowest sensitivity was obtained for PCR with 8% (1.8-22.5%) sensitivity. FEC, 

coproantigen ELISA and PCR had the highest specificity with 100% (87.7-100%) specificity 

for each method, and serum ELISA had the lowest specificity with 39% (21.5-59.4%) 

specificity. Data are shown in Table 4.2. 

 

Table 4.2. Method sensitivity and specificity with a 95% Confidence Interval (CI). 

Method Sensitivity (95% CI) Specificity (95% CI) 

FEC 78% (60.9-89.9%) 100% (87.7-100%) 

Serum ELISA 100% (90.3-100%) 39% (21.5-59.4%) 

Coproantigen ELISA 100% (90.3-100%) 100% (87.7-100%) 

PCR 8% (1.8-22.5%) 100% (87.7-100%) 

LAMP 14% (4.7-29.5%) 96% (81.7-99.9%) 

 

4.7.2   Relationship between FEC, coproantigen ELISA and serum ELISA data 

FEC and coproantigen ELISA values correlated significantly (Spearman R-

value=0.8077; p<0.0001). Furthermore, significant correlation (Spearman R-value=0.5502; 

p<0.0001) was also observed between FEC and serum ELISA values (Figure 4.2.). 
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5   Discussion 

 

The goal of the study was to develop LAMP and PCR for detection of Fasciola hepatica in 

faeces of animals, and evaluate and compare results obtained between the different methods 

used. The majority of samples in this study (82.81%) were positive for antibodies against F. 

hepatica. It is generally accepted that serological tests such as serum ELISA could detect 

circulating antibodies against F. hepatica weeks before the infection becomes patent (Mezo et 

al., 2004; Afshan et al., 2013; Skuce & Zadoks, 2013). Regardless of serology’s early detection 

ability, it does not necessarily mean that all serum ELISA-positive animals were in the pre-

patent period of F. hepatica infection. Presence of antibodies against F. hepatica reflects 

exposure to the parasite, rather than the infection status itself (Salimi-Bejestani et al., 2005). 

Thus there was a possibility that the 17 animals positive by serum ELISA but negative for FEC 

and coproantigen ELISA in this study were not currently infected, but have had previous 

exposure to F. hepatica. Moreover, it has been reported that antibodies against F. hepatica can 

remain in the circulation for several months even after treatment (Salimi-Bejestani et al., 2005; 

Brockwell et al., 2013). However, there were 10 lambs in the current study that were positive 

only for serum ELISA. These results reflect current infections, since the lambs were in their 

first grazing period and had no prior exposure to F. hepatica (Novobilský et al., 2014). Maternal 

antibodies, if present at all, would have disappeared from circulation when lambs reached 11 

weeks of age (Novobilský et al., 2014). Hence it could be concluded that antibodies detected 

in this study were a result of the lambs’ immunological response to current F. hepatica infection. 

Patent infections can be diagnosed by FEC and coproantigen ELISA, as both methods detect 

the presence of flukes by identification of eggs and detection of F. hepatica antigen in faecal 

matter (Kajugu et al., 2015). In this study, F. hepatica eggs and coproantigen were present in 

43.75% and 56.25% of samples respectively. F. hepatica coproantigen can be detected in faeces 

as early as 4-7 weeks post-infection in sheep (Valero et al., 2009b) and 6-8 weeks post-infection 

in cattle according to a study by Brockwell et al. (2013), therefore enabling detection during 

the pre-patent period before eggs are shed into faeces (Gordon et al., 2012). Based on the 

information above, the 8 animals in the current study with coproantigen detected but no eggs 

found in their faeces were most likely in the pre-patent period of F. hepatica infection, or 

number of eggs released were too low for detection by coproscopy (Avcioglu et al., 2014). 

However, several studies have shown coproantigen ELISA can give false negatives (Charlier 

et al., 2008; Gordon et al., 2012; Novobilský et al., 2012), which may be due to egg residues 
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in the gall bladder resulting in false positive FECs (Fairweather, 2011) or cut-off values that 

were too high for detecting infections with low fluke burdens (Brockwell et al., 2013). 

Both PCR and LAMP in the current study did not provide results as expected. Among the 

64 faecal samples, F. hepatica coproantigen were found in 36 of them, out of which 28 also 

showed the presence of eggs. PCR and LAMP were expected to be positive for these 36 samples, 

since both methods reflect the presence of liver flukes within the host. Moreover, the molecular 

methods were expected to be more sensitive with detection targeted at cellular material from 

the fluke’s tegument that are shed into faeces during the migration phase in liver (Martínez-

Pérez et al., 2012). In this study, PCR and LAMP only successfully amplified 3 and 6 samples 

each respectively. DNA extractions from faecal samples spiked with F. hepatica DNA was 

included in the PCR and LAMP runs, and results were positive for these samples. For that 

reason, amplification inhibitors can be disregarded as the cause of PCR and LAMP failure to 

detect F. hepatica DNA in the current study (Schrader et al., 2012). Additionally, faecal DNA 

concentration measurements showed that some DNA was successfully extracted from faecal 

samples (concentrations ranging from 14.30 ng/µl to 102.90 ng/µl) and the quality of DNA was 

pure enough as seen by the 260/280 ratios of 1.61-2.00 (Desjardins & Conklin, 2010). However, 

no relationship was observed between the DNA concentrations and success of PCR and LAMP, 

since the DNA concentrations did not only represent F. hepatica DNA but DNA from various 

organisms in faecal matter. A reasonable explanation to the unsuccessful PCR and LAMP is 

that F. hepatica cells and eggs were absent in the low amount of faecal material (250 mg) taken 

from the total amount of faeces for the DNA extraction process. In addition, the amount of F. 

hepatica DNA extracted from faeces might have been insufficient for amplification by PCR 

and LAMP (Desneux & Pourcher, 2014). In contrary to the less successful PCR and LAMP in 

the current study, Ai et al. (2010) and Martínez-Valladares & Rojo-Vázquez (2016) have found 

PCR and LAMP to be successful in detecting F. hepatica DNA from faecal samples. In this 

study, we have followed a similar PCR and LAMP protocol as described in Martínez-

Valladares & Rojo-Vázquez (2016), with the only difference being the use of different primers 

and DNA extraction procedure. Nonetheless, these factors might have contributed to the 

different results obtained. However, in a recent abstract by Kamaludeen et al. (2015), failure of 

PCR in detecting F. hepatica DNA from faecal samples was also reported. In the current study, 

LAMP successfully amplified more samples than PCR, which was unexpected since PCR was 

able to detect DNA concentrations 100-fold lower than LAMP. In addition, LAMP amplified 

one faecal sample from a lamb that contained no coproantigen and eggs. Antibodies against F. 

hepatica was detected in this lamb, showing that it was undergoing patent infection. Thus, there 
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could have been very low numbers of F. hepatica cells shed in the faeces which were detectable 

by LAMP, since LAMP has been known to be highly sensitive and can detect very low DNA 

concentrations (Mugambi et al., 2015). Another explanation could be that a slight 

contamination occurred during the LAMP process, for inconsistent results due to high 

contamination rates or unspecific amplifications have been reported when using LAMP (Goto 

et al., 2009; Nagdev et al., 2011). High precaution measures were applied throughout the whole 

process when running LAMP in the current study, including the use of different pipettes and 

filtered pipette tips in all stages, and different rooms for pre and post LAMP reactions. 

Nevertheless, unexpected contamination might have occurred and it should not be ruled out as 

a possibility. For an efficient and ‘safe’ LAMP, detection of LAMP products without of opening 

tubes is recommended (Goto et al., 2009). Other than SYBR Green, intercalating dyes such as 

Eva Green and dyes that bind to magnesium (a by-product of the LAMP amplification process) 

such as Calcein and hydroxyl napthol blue (HNB) can be used, as they do not inhibit 

amplification when added before the LAMP reaction (Fischbach et al., 2015). Other options of 

LAMP detection without opening tubes include using a turbidimeter to measure the real-time 

turbidity during LAMP reactions (Goto et al., 2009). 

Faecal and blood samples in the current study were collected in early December 2015. 

Infection in one of the sheep farms (Kållekärr) could be estimated to occur at different periods 

throughout August-October 2015, as F. hepatica eggs and coproantigen were detected in faeces 

of most ewes and lambs, while several animals were only positive for serum ELISA. In lambs 

from another sheep farm (Töllås) only antibodies were detected while coproantigen was 

negative in all but one animal and all faecal egg counts were negative, which shows that F. 

hepatica infections probably occurred in late October 2015. Infection times are in agreement to 

previous studies on F. hepatica infection periods in pasture which usually occurs between 

August and October (Taylor et al., 2007; Novobilský et al., 2014). 

In this study, an animal was considered as ‘diseased’ (or with patent infection) when either 

eggs or coproantigen were detected. This so called ‘any positive’ composite reference was used 

as the ‘gold standard’ (Naaktgeboren et al., 2013). The presence of either eggs or coproantigen 

indicates presence of flukes, whereas serum antibodies do not necessarily reflect ongoing 

infection (Salimi-Bejestani et al., 2005; Kajugu et al., 2015). For that reason, serum ELISA 

was not included in the reference standard. The hypothesis of this study was that LAMP could 

have higher sensitivity and specificity compared to other methods. This hypothesis was 

disproven, as LAMP had a sensitivity of 14%, which was much lower compared to the 78% 

sensitivity of FEC and 100% sensitivity of both coproantigen and serum ELISA. PCR’s 
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sensitivity (8%) was even lower than that of LAMP. However, it cannot be directly assumed 

that these two molecular methods have poor sensitivity. Many factors contribute to the success 

of molecular methods, such as good DNA extraction techniques, sampling procedures and 

sample preservation (Wehausen et al., 2004; Panasci et al., 2011). Therefore, further 

development of these procedures could possibly increase the sensitivity of LAMP and PCR for 

F. hepatica detection. Serum ELISA had the lowest specificity (39%) in the current study, but 

it does not necessarily prove that serum ELISA is poor method. As previously mentioned, 

serum ELISA detects circulating antibodies and is beneficial for early diagnosis (Mezo et al., 

2004). Hence, when blood and faecal samples were collected prior to release of coproantigen 

and eggs in faeces of animals with patent infections, serum ELISA will seem to have low 

specificity when compared to coproantigen ELISA and FEC. 

Coproantigen was detected in faecal samples where eggs were also present (28 samples) 

and in some where no eggs were found (8 samples). However, none of the coproantigen-

negative samples (28 samples) were positive for eggs. Consequently, coproantigen ELISA data 

indirectly represented the composite reference standard, since animals were ‘diseased’ when 

either coproantigen or eggs were present. Naaktgeboren et al. (2013) mentioned in their article 

that composite reference is only useful when the methods incorporated cover each other’s flaws, 

otherwise the sensitivity of the composite reference standard will not be higher than the 

methods comprising it. For this reason, coproantigen ELISA had 100% sensitivity and 

specificity in this study. Other statistical methods that have been applied in conditions where it 

is difficult to choose a single method as the reference standard for diagnosing infections or 

diseases include the Hui-Walter model, latent class models and Bayesian approaches (Rapsch 

et al., 2006; Bronsvoort et al., 2010; Louzada et al., 2014). It is also important to note that a 

diagnostic test’s sensitivity and specificity is dependent on the population where it is used, and 

cannot be inferred to other populations easily (Charlier et al., 2008). 

A positive correlation was found between FEC and sample-to-positive (S/P) ratio of 

coproantigen ELISA, in agreement to previous studies (Brockwell et al., 2013; Hanna et al., 

2015; Kajugu et al., 2015). In a study by Novobilský & Höglund (2015) a positive correlation 

between FEC and coproantigen ELISA was also seen 21 days post-treatment. Even though 

flukes were not recovered in this study for fluke burden estimation in the subjects, other studies 

showed that coproantigen ELISA correlates positively with infection intensity (Charlier et al., 

2008; Brockwell et al., 2013). An animal in the current study with a coproantigen ELISA S/P 

ratio of 105.3% most likely suffered from heavier fluke burden compared to those with S/P 

ratios of less than 10%. Furthermore, FEC and coproantigen ELISA reduction tests for 
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determining drug efficacy or resistance in F. hepatica have shown to have good correlation in 

a previous study (Flanagan et al., 2011a). A positive correlation between fluke burden and 

serum ELISA in untreated animals was also reported in a study by Brockwell et al. (2013). 

Overall, both FEC and coproantigen ELISA are good diagnostic tools for detection of F. 

hepatica patent infections. 

 

6   Conclusion 

Taking everything into account, it can be concluded that traditional methods in the current 

study were more sensitive in detecting Fasciola hepatica in faeces compared to the molecular 

methods. Determining method sensitivity and specificity based on a composite reference 

standard was reasonable, although results were highly dependent on the methods comprising it. 

Even though PCR and LAMP were highly specific, further development of faecal DNA 

extraction for diagnostic purposes is needed for better results. 
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9   Appendix 

 

Appendix Table 1. Results obtained from all diagnostic methods used in the study. 

Farm ID 
Animal 

Group 

FEC 

(EPG) 

Serum ELISA 

S/P ratio (%) 

Coproantigen ELISA 

S/P ratio (%) 
PCR LAMP 

Kållekärr 9024 Ewe 0 119.9 6.4 - - 

Kållekärr 11014 Ewe 0 24.4 0.9 - - 

Kållekärr 11078 Ewe 2.3 97.2 25.3 - - 

Kållekärr 11088 Ewe 3 113.0 38.5 - - 

Kållekärr 12017 Ewe 0 25.3 2.8 - - 

Kållekärr 12024 Ewe 16.6 109.1 105.3 - - 

Kållekärr 13062 Ewe 5.3 111.9 78.5 - - 

Kållekärr 13077 Ewe 2.3 130.3 60.8 - - 

Kållekärr 13115 Ewe 1 128.9 32.6 - - 

Kållekärr 14030 Ewe 4 78.5 53.8 - - 

Kållekärr 15022 Lamb 2.3 46.2 24.0 - - 

Kållekärr 15023 Lamb 0 122.1 9.9 - - 

Kållekärr 15030 Lamb 0 39.4 47.6 - - 

Kållekärr 15031 Lamb 8 55.0 69.0 - - 

Kållekärr 15032 Lamb 0.67 74.3 36.7 - - 

Kållekärr 15036 Lamb 0 12.0 0.2 - - 

Kållekärr 15041 Lamb 0 2.5 0.9 - - 

Kållekärr 15043 Lamb 0 7.5 1.0 - - 

Kållekärr 15044 Lamb 5 72.2 56.5 - - 

Kållekärr 15048 Lamb 4.67 52.8 28.2 - - 

Kållekärr 15053 Lamb 0 30.8 1.1 - - 

Kållekärr 15057 Lamb 0.67 88.9 8.6 - - 

Kållekärr 15061 Lamb 0 7.0 1.0 - - 

Töllås 15011 Lamb 0 51.5 2.2 - - 

Töllås 15012 Lamb 0 5.7 0.6 - - 

Töllås 15014 Lamb 0 33.5 0.5 - - 

Töllås 15015 Lamb 0 57.8 -0.2 - X 

Töllås 15018 Lamb 0 4.7 0.9 - - 
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Töllås 15021 Lamb 0 1.4 0.8 - - 

Töllås 15024 Lamb 0 30.5 0.8 - - 

Töllås 15025 Lamb 0 60.5 0.2 - - 

Töllås 15026 Lamb 0 34.0 1.2 - - 

Töllås 15028 Lamb 0 3.2 0.6 - - 

Töllås 15029 Lamb 0 11.7 0.5 - - 

Töllås 15031 Lamb 0 16.2 -0.2 - - 

Töllås 15034 Lamb 0 4.2 1.0 - - 

Töllås 15036 Lamb 0 46.3 1.4 - - 

Töllås 15041 Lamb 0 3.5 0.0 - - 

Töllås 15044 Lamb 0 2.6 -0.6 - - 

Henån 1 Cattle 3.5 87.9 14.3 - - 

Henån 2 Cattle 0.3 62.7 2.0 X X 

Henån 3 Cattle 0.2 71.4 1.9 - - 

Henån 4 Cattle 1.1 21.1 11.0 - - 

Henån 5 Cattle 16.5 58.5 14.7 X X 

Henån 6 Cattle 0 28.0 1.8 - - 

Henån 7 Cattle 10.3 91.4 14.3 - - 

Henån 8 Cattle 4 54.8 6.3 X X 

Henån 9 Cattle 1.2 51.6 4.2 - X 

Henån 10 Cattle 4.2 59.8 10.7 - - 

Henån 11 Cattle 12.6 57.0 15.7 - X 

Henån 12 Cattle 0 26.1 1.4 - - 

Henån 13 Cattle 1.5 140.2 8.4 - - 

Henån 14 Cattle 1.6 46.2 2.9 - - 

Henån 15 Cattle 0.2 43.8 2.1 - - 

Binninge 428 Cattle 0 62.8 1.6 - - 

Binninge 461 Cattle 0.1 61.0 1.6 - - 

Binninge 466 Cattle 0 2.3 0.8 - - 

Binninge 517 Cattle 0 17.9 0.2 - - 

Binninge 518 Cattle 0 109.1 1.3 - - 

Binninge 526 Cattle 0 102.3 1.3 - - 

Binninge 605 Cattle 0 58.4 0.9 - - 
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Binninge 617 Cattle 0 63.6 0.7 - - 

Binninge 630 Cattle 0.1 93.5 2.6 - - 

Binninge 631 Cattle 0 24.5 1.8 - - 

Note: Sheep (ewe and lamb) serum ELISA S/P ratio cut-off = 10.0; Cattle serum ELISA S/P ratio cut-off = 

15.0; Coproantigen ELISA S/P ratio cut-off = 1.6 (Novobilský et al., 2014; Novobilský & Höglund, 2015). 

For PCR and LAMP, an ‘X’ indicates positive samples and a ‘-’ indicates negative samples. Positive samples 

are highlighted in bold red. EPG (eggs per gram) = number of eggs found by coproscopy / amount of faeces 

used (g). 

 

Appendix Table 2. Faecal DNA concentration measurements by PicodropTM. 

Farm Sample ID DNA concentration A260/A280 

Kållekärr 12024 28.3 ng/µL 1.966 

Kållekärr 13062 102.9 ng/µL 1.921 

Töllås 15011 70.1 ng/µL 1.938 

Töllås 15012 14.3 ng/µL 1.908 

Henån 1 23.0 ng/µL 2.004 

Henån 5 42.1 ng/µL 2.002 

Binninge 461 41.9 ng/µL 1.613 

Binninge 630 31.6 ng/µL 1.78 

Töllås 15012 (spiked) 24.3 ng/µL 1.697 

Henån 15 (spiked) 32.0 ng/µL 1.719 

Binninge 518 (spiked) 20.8 ng/µL 1.744 

 

Appendix Figure 1. Gel electrophoresis picture of PCR specificity test. 

 
Well loading order = MM: 100bp ladder; P: F. hepatica; 1: D. dendriticum; 2: P.cervi; 3: C. daubnyei; 4: 
H. cylindracea; 5: Haemonchus sp.; 6: Cooperia sp.; 7: Ostertagia sp.; N: blank; MM: 100bp ladder. 
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Appendix Figure 2. Gel electrophoresis picture of PCR sensitivity test. 

 
Well loading order = MM: 100bp ladder; 1-8: F. hepatica DNA dilutions of 1 ng/µL to 1 ng/µL x 10-7 
respectively; 9: blank. 
 

Appendix Figure 3. Gel and tube pictures of LAMP optimization. 

A.   Gel electrophoresis of LAMP products from optimization test. 

 
Well loading order: 11-15: 60 min; 16-20: 120 min; 11, 16: F. hepatica DNA, undiluted; 12, 17: F. 
hepatica DNA, diluted 1:100; 13, 18: F. magna DNA, diluted 1:10; 14, 19: positive cattle faecal sample 
(Henån 5), undiluted; 15, 20: Blank; MM: 50bp ladder. 
 
B.   LAMP reaction tubes of optimization test viewed under normal light. 

 
Tube order: 11-15: 60 min; 16-20: 120 min; 11, 16: F. hepatica DNA, undiluted; 12, 17: F. hepatica DNA, 
diluted 1:100; 13, 18: F. magna DNA, diluted 1:10; 14, 19: positive cattle faecal sample (Henån 5), 
undiluted; 15, 20: Blank. 
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C.   LAMP reaction tubes of optimization test viewed under UV light. 

 
Tube order: 11-15: 60 min; 16-20: 120 min; 11,16: F. hepatica DNA, undiluted; 12,17: F. hepatica DNA, 
diluted 1:100; 13,18: F. magna DNA, diluted 1:10; 14,19: positive cattle faecal sample (Henån 5), 
undiluted; 15,20: Blank 
 

Appendix Figure 4. Gel and tube pictures of LAMP specificity test. 

A.   Gel electrophoresis of LAMP products from specificity test. 

 
Well loading order = MM: 50bp ladder; P: F. hepatica; N: blank; 1: D. dendriticum; 2: P.cervi; 3: C. 
daubnyei; 4: H. cylindracea; 5: Haemonchus sp.; 6: Cooperia sp.; 7: Ostertagia sp.; MM: 50bp ladder. 
 
B.   LAMP reaction tubes of specificity test viewed under normal light. 

 
Tube order = 1: F. hepatica; 2: D. dendriticum; 3: P.cervi; 4: C. daubnyei; 5: H. cylindracea; 6: 
Haemonchus sp.; 7: Cooperia sp.; 8: Ostertagia sp; 9: Blank. 
 
C.   LAMP reaction tubes of specificity test viewed under UV light. 
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Tube order = 1: F. hepatica; 2: D. dendriticum; 3: P.cervi; 4: C. daubnyei; 5: H. cylindracea; 6: 
Haemonchus sp.; 7: Cooperia sp.; 8: Ostertagia sp; 9: Blank. 
 
Appendix Figure 5. Gel and tube pictures of LAMP sensitivity test. 

A.   Gel electrophoresis of LAMP products from sensitivity test. 

 
Well loading order = MM: 50bp ladder; 1-8: F. hepatica DNA dilutions of 1 ng/µL to 1 ng/µL x 10-7 
respectively; N: blank; MM: 50bp ladder. 
 
B.   LAMP reaction tubes of sensitivity test viewed under normal light. 

 
Tube order = 1-8: Fasciola hepatica DNA dilutions of 1 ng/µL to 1 ng/µL x 10-7 respectively; B: blank 
 
C.   LAMP reaction tubes of sensitivity test viewed under UV light. 

 
Tube order = 1-8: Fasciola hepatica DNA dilutions of 1 ng/µL to 1 ng/µL x 10-7 respectively; B: blank 
 




