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Abstract 

Computer based simulation models which estimate hydraulic properties of soil usually make use of 

statistical approaches such as multiple regressions that relate hydraulic properties to widely measured 

soil properties like textural fractions, organic matter content and bulk density. The problem is that 

hydraulic properties are usually only weakly correlated to these properties, because it is more strongly 

dependent on the characteristics of larger pores in the soil. The characteristics of macropore in soil 

can be determined by X-ray tomography. The aim of this study was to evaluate the predictive 

performance of X-ray CT derived macropore characteristics for hydraulic properties of soil.   

Twenty undisturbed soil cores were sampled (6 cm high, 6.5 cm diameter) from a soil pit, with 

replicate cores taken at different depths from clay soil in Skuterud catchment, Norway. Hydraulic 

properties’, including saturated hydraulic conductivity, was measured using constant head method and 

unsaturated hydraulic conductivity was measured using Mini-Disk Infiltrometer. Soil columns were 

scanned using X-ray CT scan at a voxel resolution of 40 microns. Minimum automatic threshold 

algorithm method was chosen to segment the images between pore space and soil matrix. The images 

were analyzed for quantifying the macropore characteristics using ImageJ, SoilJ, BoneJ and GeoDict.   

Significant correlations were observed between hydraulic conductivity and most CT derived 

macropore characteristics. Many of the X-ray CT derived macropore characteristics were interrelated. 

Best multiple linear equations for predicting the saturated and unsaturated hydraulic conductivity 

were estimated from macropore characteristics. Among the macropore characteristics critical pore 

diameter largely contributed to the saturated hydraulic conductivity. Macroporosity and connected 

macroporosity mainly controlled the unsaturated hydraulic conductivity. Physics-based approaches 

like percolation models based on critical pore diameter serves better than statistical approaches for 

decision making in soil and water management.   
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Popular Science Summary 

Hydraulic conductivity is the measure of ease by which the soil pores permit the flow of water in soil. 

If the flow of water occur under saturated conditions of the soil it is called saturated hydraulic 

conductivity, otherwise it is called unsaturated hydraulic conductivity. Flow of water in soil 

determines the plant water uptake and transportation of solute in soil. The rate of flow of water in soil 

regulates that either water will infiltrate in soil or evaporate from the soil. Knowledge of hydraulic 

conductivity is useful for hydrologic models like watershed modelling, storm water management and 

land use planning for both urban and agriculture life. Computer based simulation models are used to 

predict the flow of water in soil.  

These models require data regarding hydraulic properties of soil such as hydraulic conductivity and 

unsaturated hydraulic conductivity for predicting the flow of water in soil. These models generally 

relate the flow of water with basic soil properties such as texture and organic matter etc. But in reality 

the fast flow of water is mainly controlled by the larger pores (macropores) in soil. Advancement in 

X-ray computed tomography has made it possible to quantify the characteristics of macropores. X-ray 

computed tomography gives us more reliable, detailed and accurate results which increase our 

understanding about the soil process.  In this study we quantify the characteristics of larger pores in 

soils to predict the flow of water in soil. Our objective was to statistically analyze the relationship 

between saturated and unsaturated hydraulic conductivity with X-ray derived macropore 

characteristics.   

Soil columns (6 cm high, 6.5 cm diameter) were scanned at image resolution of 40 microns. 

Macropore characteristics such as total large pore spaces (macroporosity), connected large pore 

spaces from top to bottom (connected macroporosity) and the smallest diameter at fastest flow path 

(critical pore diameter), mean thickness of the lager pore cluster and anisotropy etc. were measured 

using X-ray computed tomography. Saturated hydraulic conductivity was measured using constant 

head method and a mini-disk infiltrometer was used to measure the unsaturated hydraulic 

conductivity. 

Soil columns were visualized in 3 dimensions. It was observed that larger hydraulic conductivities 

values are associated with larger, less tortuous macropores which are connected from top to bottom. 

Smaller hydraulic conductivity values were associated with smaller macroporosities and lack of 

macropore clusters which are connected from top to bottom.  An earthworm was detected in one of 

the soil column and multiple macropore connection in horizontal and vertical direction presumably 

associated with the movement of the earthworm.  

Strong correlations were observed between macropore characteristics and hydraulic properties of soil. 

It was concluded that saturated hydraulic conductivity is mainly predicted by the critical pore 

diameter and unsaturated hydraulic conductivity is mainly predicted by macroporosity and pore 

spaces which were connected from top to bottom. Strong interrelation between macropore 

characteristics limits their use for predicting the hydraulic conductivity using statistical approaches. 

Therefore models founded on the principal of physics like percolation models based on critical pore 

diameter can be the best alternative. This research gave a vision for future soil characterization and 

future fluid simulation models may use segmented X-ray CT derived data for predicting the hydraulic 

conductivity.   
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1. Introduction 

Computer based simulation models are used in decision-making in soil and water management, 

especially to solve problems related to land use and environment. Quantified soil data is required 

including hydraulic parameters such as saturated hydraulic conductivity to estimate the parameters of 

the computer based simulation models. Since field measurements are time consuming and labor 

demanding, we can measure these hydraulic parameters at some locations, but not everywhere, so we 

need methods to estimate them.  

Saturated hydraulic conductivity is important physical parameter for defining the transport of solute 

and water in soil. Knowledge of saturated hydraulic conductivity is useful in hydrologic models 

including watershed modelling, storm water management, land use planning and designing septic 

systems (Arrington et al., 2013). Saturated hydraulic conductivity is rarely included in routine soil 

survey as it is expensive to measure, consume a lot of time and have high degree of spatial variability. 

As results saturated hydraulic conductivity is being estimated by the pedotransfer functions (Minasny 

& McBratney, 2000). 

Empirical models have been developed which use statistical approaches such as multiple regression to 

relate saturated hydraulic conductivity to widely measured soil properties like texture fractions, bulk 

density and organic matter content (Jabro, 1992) (Rawls et al., 1998). The problem is that saturated 

hydraulic conductivity is usually only weakly correlated to these properties (Vereecken et al., 2010), 

because it is more strongly dependent on the characteristics of larger pores in the soil, termed 

macropores. 

Macropores in soils are formed from the borrowing of earthworm, decomposing of plant roots, 

swelling-shrinkage of soils (cracks), and agriculture management practices like ploughing (Jarvis, 

2007). Macropores (cylindrical diameter > 0.3-0.5mm ) normally constitute a small fraction of the soil 

but still contribute to the major flow of water in soil at saturation (Jarvis, 2007). 

Some pedotransfer functions which account for the soil structure for predicting the saturated and near 

saturated hydraulic conductivity have been developed. For example, soil structure is a key parameter 

for predicting the hydraulic properties of the soil in macropore flow region (Lin et al., 1999) and 

saturated hydraulic conductivity can be reasonably predicted from the effective porosity in clay soils 

(Messing, 1989). Minasny & McBratney. (2000) developed some pedotransfer function for predicting 

hydraulic conductivity by using fractal dimension and effective porosity. Iversen et al. (2012) found a 

strong correlation between saturated hydraulic conductivity and macropore density.  

 X-ray CT scanning can be used to quantify macropore characteristics non-destructively in three 

dimensions. X-ray CT technology gives more reliable, detailed and accurate information which 

increase our understanding about the soil process (Viggiani et al., 2015). Over the last decades 

various studies on the characterization of macropore structure were conducted (Pierret et al., 2002; 

Udawatta et al., 2008; San José Martínez et al., 2010; Wildenschild & Sheppard, 2013; Paradelo et 

al., 2016 ) and  X-ray CT is considered as reliable and accepted technique for studying and 

characterizing the complex process of the soil. Larsbo et al. (2014) and Paradelo et al. (2016) have 

observed a good correlation between X-ray imaged macropore characteristics and flow of water in 

soil.  

The objective of this thesis is to statistically relate the X-ray CT derived macropore network 

characteristics with the hydraulic conductivity and to evaluate which characteristics that best predict 

the hydraulic conductivity. Our results might increase our confidence in one of these characteristics 
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used for predicting the hydraulic conductivity.  The work is done as the part of the project 

“Quantifying Soil Structure to Augment the Relevance of Laboratory‐Based Soil Hydraulic Properties 

for Environmental Modelling” (SoilSpace). 

2. Review of literature 

2.1.  Hydraulic properties  

Hydraulic conductivity, K, is the measure of the ease by which soil pores permit the flow of water. If 

the water is flowing under saturated soil conditions then it is called saturated hydraulic conductivity 

(Ksat) otherwise it is called unsaturated or near saturated hydraulic conductivity (Kunsat). The flow of 

water in soil is important for both urban and agriculture life.  The rate of flow of water in soil plays an 

important role determining whether water evaporates or infiltrates, its movement to plant roots, drains 

and wells (Black et al., 2006). 

 

Saturated and unsaturated hydraulic conductivity can be measured in both the laboratory (Klute et al., 

1986a) and in the field (Klute et al., 1986b). Measuring the hydraulic properties of soil is, however, 

difficult, expensive and time consuming which is why it is not usually included in routine soil 

surveys. The widespread need for knowledge of hydraulic conductivity (K) in solving agricultural and 

environmental problems means that indirect methods are needed to estimate K (Bouma, 1989).  

2.2.  Pedotransfer functions  

Pedotransfer functions provide the means of estimating Ksat values from basic soil properties. The 

estimated hydraulic properties then can be used in solving problems related to agricultural 

management and the environment. For example, Smettem et al. (1999) used hydraulic properties 

predicted by pedotransfer functions in spatial modelling of water storage to estimate the yield of 

wheat crops. Soil texture was the first parameter to be used in estimating Ksat as it provides 

information about poorly drained or freely drained pore spaces available for water flow. Soil texture is 

easy to measure and readily available from soil surveys for particular areas of interest. Rawls et al. 

(1998) added bulk density as a predictor variable in the pedotransfer functions as it also provides 

information regarding soil porosity. Soils of the same texture class but greater porosity (smaller bulk 

density) will have larger hydraulic conductivity. The assumption with these relationships is that soils 

with similar soil texture will develop similar pore architecture, but in reality this may not hold true as 

soil structure and pore architecture may differ, depending, for example, on climate and frequency of 

soil drought. Wagner et al., (1998) reported poor relationships between soil texture and the hydraulic 

properties of soil. Arrington et al., (2013) found that including non-soil parameters such as elevation, 

slope, aspect with basic soil properties to predict the hydraulic properties of soil did not improve the 

accuracy of the estimation. Jarvis et al. (2013) found that besides soil texture and bulk density, 

organic carbon, land use and soil management practices were important factors determining K in soil . 

 

Soil structure strongly influences the hydraulic properties of soil. The presence of macropores in soil 

complicates the estimation of hydraulic properties. Messing (1989) found significant relationship 

between spatial distribution of saturated hydraulic conductivity and effective porosity determined 

from soil water retention characteristics in clay soils. Organic matter has been used in predicting the 

hydraulic properties of soil as it affects soil structure (Nemes et al., 2005). Furthermore, soil 

morphological features and pedological descriptions from soil survey have also been included as soil 

structure parameters to predict the hydraulic properties of soil. For example, Lin et al. (1999) found 

that the abundance and size of the macropores were crucial parameters for estimating saturated 

hydraulic conductivity. 



12 
 

2.3.   X-ray CT scanning  

X-ray tomography provides a convenient way of quantifying at high resolution the 3D geometry and 

connectivity of the macropore structures which contribute to the hydraulic properties of soil (Pierret et 

al., 2002; Viggiani et al., 2015).  Several studies have used X-ray measurements of the characteristics 

of macropores to predict the flow of water in soil.  Luo et al., (2010) found that macropore 

characteristics such as macroporosity, hydraulic radius and path number were correlated with 

saturated hydraulic conductivity. Iversen et al. (2012) found that the flow of water in macropores is 

significantly related with macropore density at saturated condition of the soil. Larsbo et al. (2014) 

found significant correlations of macropore characteristics measured by X-ray (macroporosity, 

macropore surface area, aggregate thickness and connectivity) with near-saturated hydraulic 

conductivity of soil. The study also confirms the interrelation of many macropore characteristics.  

Most recently, Paradelo et al. (2016) reported that X-ray CT derived macropore characteristics such 

as macroporosity and limiting macroporosity (soil macroporosity along the vertical axis) had 

significant correlations with saturated hydraulic conductivity. The soil layers with smallest 

macroporosity control the macropore flow and restrict the flow of water from the whole soil column.  

3. Materials and Methods 

3.1.  Site details, soil sampling and preparation 

The soil was sampled from the Skuterud catchment which is located in the Ås municipality, 

approximately 30 km south of Oslo in southern Norway. The total area of the Skuterud catchment is 

4.5 km
2
 and the altitude above sea level varies from 85 to 150 m. The mean annual precipitation of the 

catchment is 785 mm with the mean annual temperature of 5.3° C (Starkloff & Stolte, 2014). The 

soils of the sampling area can be classified as Stagnosols (FAO soil classification system) which were 

formed from marine sediments and have large amounts of silt and clay (Haraldsen, 2015, pers. 

comm., 23 October). The major land use in the Skuterud catchment is cereal production, which covers 

approximately 60 % of the total catchment area. The land use in the remaining area consists of a pine 

plantation (33%) and built-up areas (7%) (Kværnø et al., 2007).  

Twenty undisturbed soil cores were sampled in aluminum pipes (6 cm high, 6.5 cm diameter) on 

September 9, 2015 after wheat harvest from a soil pit, with replicate cores taken at different depths 

(Table 1). A hammer was used to push the aluminum cores (with sharp bottom cutting edge) vertically 

into the soil. Samples were weighed in Norway and transported to Sweden as it was planned to X-ray 

them in Uppsala.  

Table 1 Frequency of sampling at each depth and their corresponding weights (grams). 

 

 

 

 

 

 

 

Depth Soil type 
Number of 

samples 

Average weight at each depth (grams) soil+ 

aluminum ring 

   

After soil 

sampling 

At -100 cm 

matric potential 
At  saturating 

state 

      

05-10 cm Clay 5 508.64 506.76 523.76 

20-25 cm Clay 3 486.84 485.05 533.59 

30-35 cm Clay 6 510.30 508.94 531.77 

50-55 cm Clay 2 544.52 543.79 559.62 

70-75 cm Clay 4 549.78 548.93 565.10 
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On arrival in Uppsala on January 12
th
, 2016, the soil inside the cores was secured by placing two 

plastic caps at each end and wrapping the cores with two rubber bands. The samples were placed on a 

sand bed after removing the caps, to equilibrate for approximately two weeks at a matric potential of -

100 cm. The samples were kept on the sand bed until there was no change in weight. This was done to 

ensure that pores larger than about 30 microns would be air-filled. This makes it easier to distinguish 

the pore space during segmentation of the X-ray images. Any dirt around the soil sample was 

removed to ease the process of finding the column outline and for better contrast between soil and 

column. 

3.2.   X-ray Scanning 

X-ray CT scan has three common parts: X-ray source, sample holder and a detector. X-rays are 

directed on the sample at multiple angles, sample becomes a source of electron and X-rays due to 

atomic interaction. Some of the primary X-rays from the source get absorbed or scattered from the 

sample. The change in primary X-ray intensity reaching at detector is called attenuated X-rays. This 

attenuation of X-rays is described by Beer’s law and by the use of special algorithm like Feldkamp 

algorithm (Feldkamp et al., 1984) the distribution of X-ray attenuation is reconstructed as scanned 

image. 

3.2.1. X-ray machine 

The X-ray scanner (GE phoenix v| tome| x m) at the Swedish University of Agricultural Sciences in 

Uppsala was used for scanning the soil samples. The CT system is a cone-beam micro-focus (spot size 

normally placed in the range of 1-10µm) installed with DXR250 Real-time (RT) digital detector array 

(DDA). DXR250RT detector enables consistent imaging with less calibration under temperature 

controlled environment. 

3.2.2.  Parameters for scanning 

 The soil core was placed in the sample holder in the scanner. A thick copper sheet of 0.7 mm was 

used as filter and placed in front of the detector screen to minimize beam hardening effects. The 

manipulator was moved on the z-axis to +0163.517 mm and on y-axis to +0372.834 mm for obtaining 

a voxel resolution of 40 microns. The density of the sample and its diameter determine the voltage, 

current, timing and sensitivity of the detector crystals used for sending the X-ray from the sample.  

X-ray power can be defined as the product of voltage and current as shown in equation 1. 

 

 

                                           𝑃𝑜𝑤𝑒𝑟(𝑝) = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝐼)                                (1) 

Voltage has a direct relationship with the speed of electrons and higher voltage means that electrons 

will pass through without interaction with sample. Current is directly related with the number of 

electrons and higher current means more photons will be generated to interact with the sample which 

reduces the time of exposure for scanning.  

Lower X-ray power results in an improved contrast of the X-ray image. But if a too low power setting 

is chosen, there are not enough X-ray photons passing through the densest parts of the imaged object 

to the DXR250 sensor array. This will lead to underexposed X-ray images. The power of the X-ray 

scan was adjusted to 42 watt by adjusting the voltage to 150KV and current 280µA.  

The crystals in the detector normally shows an after-glow which require sometime to decline. It’s 

important to not consider at least one image after the manipulator has moved to the new position. 

During scanning, four radiographs were acquired from the same angle and then three of them were 

averaged. The total number of the scanned radiograph was 2000. The detector sensitivity was 
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adjusted to 2 and the total scanned area was set to 2014 by 2014 pixels. Sensor calibration was 

done to minimize the ring artifacts and the Auto SCO (scan optimizer) function was activated to 

remove the artifacts relating movement of the sample (deformation) during scanning. The sensor shift 

function was also activated to remove the ring artifacts.   

3.2.3. Image reconstruction 

Image reconstruction was done with the Phoenix datos |x CT software. The software combines the 

2000 radiographs from different angles using the Feldkamp algorithm (Feldkamp et al., 1984) to 

create a 3-D image. The output type of the reconstructed 3-D image was set to 16 bit. Beam hardening 

correction (bhc+) and Scan optimizer functions were applied for removing the drift effect. After 

reconstructing, the 3-D image was exported as a tagged image file format (TIFF-file) and saved for 

image processing.  

3.3.   Image processing 

3.3.1.    Scaling 

Image processing was mainly done in ImageJ (Abràmoff et al., 2004) by using SoilJ plugin (Koestel, 

2016). The images were scaled to a resolution of 80 µm, since the larger pores (Pores diameter > 0.16 

mm) were the main interest in this study. This also decreases the processing time for the scanned 

images.  Bilinear interpolation was applied on the entire stack of the image during scaling.  

3.3.2.  Straighten and Centering 

This algorithm in SoilJ reads the image and searches for the location and orientation of the image and 

places the image straight and moves it to the center of the canvas.  

3.3.3. Column outline 

Next the columns’ inner and outer perimeter as well as the top and bottom of the aluminum columns 

were automatically determined using the ‘column outline’ function of SoilJ. This information was 

used in specifying the region of interest (ROI) for image analyzing. The results of the ‘column 

outline’ function were confirmed by using the debug mode of the same function. 

3.3.4. Normalization 

The gray values of the images were normalized for the illumination correction in the vertical 

direction. Normalization algorithm went through each slice of the image and scaled the gray values of 

the image with respect to standard values for air-phase and the aluminum wall of the column. The 

gray values of the air change outside the column due to artifact so the reference value of the air was 

selected from inside the column. Air is associated with less gray value being less dense material in 

image. Gray values of the air and column were detected around 5000 and 20000 in each column so the 

reference grey values of the air and wall of the column were adjusted to 5000 and 20000 respectively.   
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3.3.5. Histogrammer 

A joint histogram of all the images, as shown in Fig. 1, was obtained by running the histogrammer 

algorithm on all the scanned soil images. 

Figure 1 A joint histogram of all soil images with colored line showing several automatic thresholding 

algorithms. Scale bar showing the color codes for each threshold algorithm. 

3.3.6. Segmentation 

By looking at the joint histogram of the images as shown in fig 1, a clear minimum peak between air 

and matrix density at 9216 gray value, minimum automatic threshold method (Prewitt & Mendelsohn, 

1966) was chosen to segment the image between pore space and soil matrix. This threshold level was 

applied on all the images and it gave good results as compared to the other methods. It was observed 

that a slight increase in the threshold value resulted in segmenting organic matter as pore space. 

3.3.7. Soil Surface Finder 

Function of soil surface finder was applied which look from top to bottom and make a topographic 

map from the top surface and bottom surface. It was done to specify identical soil volume in each 

column.   

3.3.8. Quantification of macroporosity 

Macropore morphologies in the binary images were quantified using the “pore space analyzer” 

available in SoilJ, which for the last part relies on the BoneJ plugin (Doube et al., 2010). Pore space 

analyzer provides the opportunity to look at whole image or to look at the each macropore cluster 

individually. Mean thickness of the macropore network were calculated by using BoneJ, a plugin in 

ImageJ. The “zero” values of connected macroporosity was replaced with the minimum recorded 

value. The binary tiff stack image was saved as an image sequence to process in GeoDict 

(http://www.geodict.com) for determining the critical pore diameter. The zero value of critical pore 

diameter was replaced by the image resolution (80 microns). A brief description of the macropore 

characteristics measured on each sample is given in Table 2.  
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Table 2 Measured characteristics of the macropore network. 

Characteristics of macropore Description 

Macroporosity (cm
3
cm

-3
) The total volume of macropores divided by the total volume 

of soil sample.  

Connected macroporosity (cm
3
cm

-3
) The total volume of the pore space that is connected from top 

to bottom of the sample divided by the total volume of the 

soil sample. 

Critical pore diameter (µm) The smallest “bottleneck” diameter at the fastest flow path 

connected from top to bottom. 

Mean thickness (mm) Mean thickness of the pore space  (i.e. mean pore size) 

Fractal dimension A measure characterizing the mass fractal pattern of 

macropore network.   

Euler number A measure used for local macropore connectivity. 

Anisotropy index A measure of anisotropy varying from zero (random) to 1. 

Higher values mean that the pore space is not randomly 

oriented, but has a preferred direction. 

3.4.   Hydraulic properties  

3.4.1. Saturated hydraulic conductivity (Ksat) 

After completion of X-ray scanning, the soil samples were saturated from the bottom with a 

stepwise addition of 5 mm of water per day for two weeks. Water used for saturating the soil 

samples was boiled and kept in a closed container for overnight to remove the dissolved air 

from the water. The degassed water was gently poured into the sample container to avoid the 

air mixing in water. Saturated hydraulic conductivity was then measured using the constant head 

method (as shown in figure 2) in a temperature controlled laboratory. 
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Figure 2 Saturated hydraulic conductivity (Ksat) measuring device by using Constant head method adapted from 

the laboratory manual (Soil Properties Laboratory - Ksat Lab procedures.pdf) 

Three readings of the flow rate Q (cm
3
 hour

-1
) through the sample under a known hydraulic gradient 

were taken for each sample. The mean value of Q was then used to calculate saturated hydraulic 

conductivity, Ksat (cm hour
-1

) from Darcy’s Law as  

                                                            𝐾𝑠𝑎𝑡 =
𝑄

𝐴
(

∆𝐿

∆𝐻
)                                                   (2) 

where A (cm
2
) is the area of the sample, ΔH (m) is the change in total hydraulic head and Δ L (m) is 

the change in length of the soil sample. The “zero” recorded value of saturated hydraulic conductivity 

was replaced with the minimum recorded value. 

3.4.2. Unsaturated Hydraulic conductivity (Kunsat) 

Prior to determining unsaturated hydraulic conductivity, the soil samples were first drained on a sand 

bed at -100 cm matric potential for a few days. A mini-disk tension infiltrometer was used to infiltrate 

water into the soil using a supply matric potential of -6 cm (see fig. 3). According to the capillary rise 

equation, supplying water to soil at this matric potential will exclude water flow through pores larger 

than ca. 0.5 mm diameter during infiltration.  

 

 

Figure 3 Mini-Disk tension Infiltrometer used for measuring unsaturated hydraulic conductivity. 

A small amount of fine sand was added on the top surface of the soil sample to enhance the contact of 

the porous stainless steel disk with the soil sample during infiltration. The volume of the water in 

water reservoir tube was noted at time zero and the change in the water volume was recorded at 

regular intervals in order to calculate infiltration rate. The measurements continued until steady-state 

was reached. The diameter of the infiltrometer is 3.1 cm which is only slightly smaller than the core 
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diameter. One-dimensional vertical flow could therefore be assumed, so that the measured steady 

infiltration rate is equivalent to the unsaturated hydraulic conductivity at a matric potential of -6 cm.  

4. Results and discussion 

4.1.  3-D visualization of pore space 

Fig 3. shows example images of soil columns from different depths generated by X-ray tomography 

with their respective measured hydraulic conductivities. The red color in soil columns represents 

macropores of thicknesses greater than 0.16 mm. Visual inspection of the soil columns shows that the 

macropores are well connected in both horizontal and vertical directions. Decreasing macroporosities 

with depth are often reported (e.g. Naveed et al., 2013) but we did not observe any clear trends with 

depth for macropore characteristics and hydraulic conductivity. Looking at the soil columns shown in 

Fig 3. we may infer that larger hydraulic conductivities associated with Column 6, shown in (3b), is 

due to the one large, less tortuous, macropore which is connected from top to bottom. Smaller 

hydraulic conductivities in column 19, shown in (3e), and column 20, shown in (3f), are due to the 

smaller macroporosities and lack of macropore clusters that connect from top to bottom. An 

earthworm was detected in column 1, shown in (3a), with multiple macropore connections in 

horizontal and vertical directions, presumably associated with the movement of this earthworm.   

 

Figure 4 Example 3-D visualizations of pore space in soil columns sampled at different depths, together with 

measured saturated (Ksat) and unsaturated hydraulic conductivity (Kunsat). (a) column 1 (depth 5-10 cm) (b) 

column 6 (depth 20-25 cm) (c) column 9 (depth 30-35 cm) (d) column 15 (depth 50-55 cm) (e) column 19 (depth 

70-75 cm) (f) column 20 (depth 70-75 cm). 
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4.2. Descriptive Statistics 

Table 3 shows descriptive statistics for X-ray CT scanned macropore characteristics and hydraulic 

properties. 

Table 3 Descriptive Statistics of CT measured macropore characteristics and hydraulic properties of soil.1 

Variables Mean Minimum Median Maximum Kurtosis Skewness Range S2 SE 

Ksat (cm/h)     20.35 0.2 6.19 145.35 10.74 2.99 145.15 1116.45 7.47 

Kunsat (cm/h)     0.3 0.015 0.04 1.42 1.71 1.57 1.41 0.18 0.09 

MP (cm
3
cm

-3
) 0.04 0.01 0.03 0.08 0.68 1.15 0.07 0.0003 0.004 

MPC (cm
3
cm

-3
) 0.02 0.001 0.01 0.07 0.51 1.16 0.07 0.0005 0.005 

Dcrit (µm) 351.75 80 357.77 800 -1.09 0.32 720 54684.27 52.28 

Aniso 0.23 0.09 0.2 0.58 2.85 1.47 0.49 0.01 0.02 

FracD 2.35 2.17 2.32 2.58 -0.1 0.43 0.41 0.01 0.02 

MeanT (mm) 60.48 33.39 54.05 127.71 2.15 1.53 94.31 691.27 5.87 

Euler no. 20955.6 1875 19486 35088 -0.92 -0.26 33213 1.0E+08 2241.78 

 

The large differences in mean and median values of the hydraulic conductivities of soil indicate that 

the data was not normally distributed, with some  extreme values. Therefore hydraulic conductivities 

of the soil was log transformed in order to have normal distribution before applying statistics.  

4.3. Correlations among variables 

Pearson correlation coefficients (r) were calculated to assess the relationships between CT derived 

macropore characteristics and log of hydraulic conductivity. These are shown in Table 4. Significant 

correlations were observed between log of hydraulic conductivities and most CT- derived macropore 

characteristics. Very strong pearson correlations were observed for log of saturated hydraulic 

conductivity with critical pore diameter, mean thickness, macroporosity and connected macroporosity. 

In the case of log of  unsaturated hydraulic conductivity, very strong correlations were found for 

macroporosity, connected macroporosity and fractal dimension. Many of the X-ray CT derived 

macropore characteristics were interrelated, which agrees with the findings of Larsbo et al. (2014). 

Connected macroporosity was strongly correlated with macroporosity. Larger macroporosities are 

associated with more homogeneous macropore distribution, which are well connected from top to 

bottom and have high surface area.  

 

 

 

 

 

 

                                                      
1
 X-ray CT scanned macropore characteristics includes macroporosity (MP), connected macroporosity (MPC), 

critical pore diameter (Dcrit), anisotropy index (Aniso), fractal dimension (FracD), mean thickness of the largest 

pore cluster (MeanT) and Euler number (Euler no.).  Hydraulic properties include saturated hydraulic 

conductivity (Ksat) and unsaturated hydraulic conductivity (Kunsat). 
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Table 4 Pearson correlation matrix for the CT derived macropore characteristics and log of measured hydraulic 

properties of soil. (Significant correlation at p value less than 0.01***, 0.05** and 0.1* is indicated) 

Variables Log Ksat Log Kunsat MP MPC Dcrit Aniso FracD MeanT Euler no. 

Log Ksat 1.000 

        Log Kunsat 0.613*** 1.000 

       MP 0.663*** 0.824*** 1.000 

      MPC 0.662*** 0.824*** 0.989*** 1.000 

     Dcrit 0.773*** 0.358 0.470** 0.479** 1.000 

    Aniso -0.168 -0.355 -0.145 -0.150 -0.126 1.000 

   FracD 0.409* 0.806*** 0.813*** 0.791*** 0.239 -0.081 1.000 

  MeanT 0.557** -0.002 0.206 0.235 0.724*** -0.014 -0.175 1.000 

 Euler no. -0.422* -0.117 -0.267 -0.283 -0.276 0.350 0.248 -0.455** 1.000 

 

Selected correlations (significant at p < 0.05) were graphically displayed for X-ray CT derived 

macropore characteristics and saturated hydraulic conductivity. The log of saturated hydraulic 

conductivity [log10(Ksat)] was plotted as function of X-ray CT derived macroporosity, connected 

macroporosity, critical pore diameter and mean thickness as shown in Fig 5. The strongest 

relationship was observed between critical pore diameter and saturated hydraulic conductivity with 

“r” of 0.77. 



21 
 

 

Figure 5 Graphical representation of selected correlations (significant at p < 0.05) of [log10 (Ksat)] against X-

ray CT derived macroporosity, connected macroporosity, critical pore diameter and mean thickness. 

Selected correlations were graphically displayed for X-ray CT derived macropore characteristics and 

unsaturated hydraulic conductivity. The log of unsaturated hydraulic conductivity [log10 (Kunsat)] was 

plotted as function of X-ray CT derived macroporosity, connected macroporosity, critical pore 

diameter and fractal dimension, as shown in Fig 6. The strongest relationships with log of unsaturated 

hydraulic conductivity [log10 (Kunsat)] were observed for macroporosity (r = 0.82), connected 

macroporosity (r = 0.82) and fractal dimension (r = 0.80).   
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Figure 6 Graphical representation of selected correlation of [log10 (Kunsat)] against X-ray CT derived 

macroporosity, connected macroporosity, critical pore diameter and fractal dimension. 

Selected correlations (significant at p < 0.05) were graphically displayed for X-ray CT derived 

macropore characteristics showing interrelation (Fig 7). Strong linear regression between fractal 

dimension and macroporosity shows that the large macroporosities were associated with better 

macropore connectivity and larger macropore surface area. This space filling property of soil column 

with larger macroporosities is further indicated by the strong linear regression between macroporosity 

and connected macroporosity.   
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Figure 7 Graphical representation of selected correlation (significant at p < 0.05) showing interrelation of 

macropore characteristics (connected macroporosity against macroporosity, critical pore diameter against 

mean thickness, and macroporosity against fractal dimension and critical pore diameter against connected 

macroporosity). 

4.4. Prediction of hydraulic properties based on macropore characteristics  

The relationships between hydraulic conductivity and CT- derived macropore characteristics were 

developed using simple and multiple linear regression equations. 

4.4.1. Saturated hydraulic conductivity 

Table 5 shows the parameters of regression equation for predicting the log of saturated hydraulic 

conductivity from macropore characteristics.  The p- value and r
2 
suggest that critical pore diameter, 

macroporosity and connected macroporosity are the best parameters to predict the log of saturated 

hydraulic conductivity.  
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Table 5 Parameter of regression equation for predicting the log of saturated hydraulic conductivity from the CT 

derived macropore characteristics 

 

 

Best subset linear regression was performed to calculate the best multiple linear regression equation 

for predicting the log of saturated hydraulic conductivity from the macropore characteristics as shown 

in Table 6.  

Table 6 Best multiple linear regression equation for predicting logarithm of the saturated hydraulic conductivity 

[log10 (Ksat)] using CT derived macropore characteristics 

Dependent Variable Best model equation r
2
 

p-value 

MPC Dcrit 

Log of Ksat (cm/h) 16.409*(MPC) + 0.002*(Dcrit) - 0.695 0.71 0.0215 0.0009 

 
  

MP Dcrit 

Log of Ksat (cm/h) 19.404*(MP) + 0.002*(Dcrit) - 1.037 0.71 0.0184 0.0008 

 

It was observed that among many macropore characteristics, critical pore diameter gave the best 

results. The addition of macroporosity and connected macroporosity in a multiple linear regression 

with critical pore diameter improved the model performance as shown in Table 6. Macroporosity and 

connected macroporosity are not significant (at p < 0.01) so we may say that it is only the critical pore 

diameter that largely explains variation in the saturated hydraulic conductivity. Luo et al., (2010) 

found that path number (the number of paths connected from top to bottom in a soil sample in the 

vertical direction) and macroporosity were the best predictor macropore parameters for saturated 

hydraulic conductivity.  The fact that the critical pore diameter was the best macropore characteristic 

for predicting saturated hydraulic conductivity suggests that models based on percolation theory may 

give reliable predictions of Ksat. Percolation theory states that the bottleneck pores along the fastest 

connected flow path offers most of the resistance to flow. Thus these bottleneck pores can be 

considered to characterize the flow through the porous medium (Ewing & Hunt, 2009). 

4.4.2. Unsaturated hydraulic conductivity 

Table 7 shows the parameters of regression equation for predicting the log of unsaturated hydraulic 

conductivity from the macropore characteristics. The p- value and r
2 
suggest that macroporosity, 

connected macroporosity and fractal dimension are the best parameters to predict the log of 

unsaturated hydraulic conductivity. 

Variables Intercept Slope r
2
 p-value n 

MP (cm
3
cm

-3
) -0.67 33.50914 0.44 0.00144 20 

MPC (cm
3
cm

-3
) -0.09 28.74174 0.44 0.00149 20 

Dcrit    (µm) -0.58 0.00300 0.60 0.00006 20 

Aniso 0.92 -1.43437 0.03 0.47888 20 

FracD -8.80 3.99214 0.17 0.07352 20 

MeanT (mm) -0.70 0.02125 0.31 0.01074 20 

Eular no. 1.47 -0.00004 0.18 0.06382 20 
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Table 7 Parameter of regression equation for predicting the log of unsaturated hydraulic conductivity from the 

CT derived macropore characteristics 

Variables Intercept Slope r
2
 p-value n 

MP (cm
3
cm

-3
) -2.11712 29.40487 0.678709 0.00001 20 

MPC (cm
3
cm

-3
) -1.60921 25.29183 0.679718 0.00001 20 

Dcrit (µm) -1.39188 0.001084 0.128223 0.12109 20 

Aniso -0.50792 -2.13807 0.125797 0.12493 20 

FracD -14.0795 5.559199 0.649831 0.00002 20 

MeanT (mm) -1.00705 -5.6E-05 0.000004 0.99308 20 

Eular no. -0.83712 -8.3E-06 0.013707 0.62302 20 

 

Best subset linear regression was performed to find the best multiple linear regression equation for 

predicting the log of unsaturated hydraulic conductivity from the macropore characteristics as shown 

in Table 8.  

Table 8 Best multiple linear regression equation for predicting logarithm of the unsaturated hydraulic 

conductivity [log10 (Kunsat)] using CT derived macropore characteristics 

Dependent Variable Best model equation r
2
 

p-value 

MP FracD 

Log of Kunsat (cm/h) 17.73*(MP) + 2.77*(FracD) - 8.19 0.73 0.033 0.078 

 
  

MPC FracD 

Log of Kunsat (cm/h) 15.31*(MPC) + 2.83*(FracD) - 8.04 0.74 0.023 0.056 

 

It was observed that none of the macropore characteristics combinations that excluded macroporosity 

and connected macroporosity gave better results than macroporosity and connected macroporosity. 

The addition of fractal dimension with macroporosity and connected macroporosity increased the 

prediction from (r
2
 =

 
68) to (r

2 
=

 
74) in case of connected macroporosity and (r

2
 =68) to (r

2
 =73) for 

macroporosity. Fractal dimension is not significant (at p < 0.05), so we may conclude that only the 

macroporosity and connected macroporosity contributes significantly to unsaturated hydraulic 

conductivity. 

5. Limitations 

5.1.  Saturated hydraulic conductivity 

The connected macroporosity for column 17 (depth 70-75cm) was zero, but it had a saturated 

hydraulic conductivity of 0.2 cm/hour. This can be explained by the fact that connected pores smaller 

than our image resolution of 80 microns will have contributed to the saturated hydraulic conductivity. 

In contrast, some CT imaged pores were connected from top to bottom in column 19 (depth 70-

75cm), but we did not record any saturated hydraulic conductivity. This can be explained by air 

entrapment in larger pores which obstructs the flow of water.   
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5.2. Unsaturated hydraulic conductivity 

According to the capillary rise equation in case of unsaturated hydraulic conductivity, supplying water 

to the soil at -6 cm matric potential will exclude water flow through pores larger than 0.5 mm 

diameter during infiltration. But our images include larger pores that would not have contributed to 

the flow. The algorithm “pore thickness images” can be used to delete pores larger than 0.5 mm 

diameter using ImageJ. This should be done in future studies. It would also be interesting to identify 

changes in pore space characteristics after measuring hydraulic conductivity. 

6. Conclusions 

Strong correlations were found between near-saturated and saturated hydraulic conductivity of soil 

and X-ray CT derived macropore network characteristics. Among the macropore characteristics 

analyzed, saturated hydraulic conductivity is mainly controlled by the critical pore diameter (Dcrit). 

Unsaturated hydraulic conductivity at -6 cm matric potential is mainly predicted by macroporosity 

and connected macroporosity. This result suggests that percolation-based models may be useful for 

predicting saturated hydraulic conductivity. 

For predicting hydraulic properties of soil, the statistical approaches have a limited use for modelling 

purpose because of strong correlation between macropore characteristics. Therefore physics-based 

approaches like percolation models based on critical pore diameter provides best alternatives. We 

need more data to better identify which parameters are most important. In the future standard 

laboratory soil characterization can be complemented by X-ray CT derived data. X-ray CT derived 

macropore characteristics can be used for predicting the hydraulic properties of soil. This can lead 

towards digital soil physics laboratories in future.  
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