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Abstract 

There is a need to be able to estimate the feed intake of dairy cows on pasture. Since feed 

intake is correlated to factors such as the drinking water intake and urine volume, the 

possibility to estimate the pasture intake based on those parameters were investigated. It was 

also investigated whether the pasture intake could be predicted from the estimated K intake 

based on the estimated urine volume when the K concentration in the feed was known. High 

yielding dairy cows of the breeds Swedish Holstein (SH) and Swedish Red (SR) were given 

access to fresh pasture or an exercise area during daytime and kept indoors at night. The cows 

in the experiment were divided into two treatment groups; one experimental group with an 

unknown pasture intake offered new production pasture daily and one control group that only 

had access to a small exercise area. Both groups were offered concentrate supplementation at 

the same level according to the lactation curve, but the group with exercise pasture has access 

to full indoor feeding ad libitum both day and night while the group with production pasture 

had a restricted silage ration (6 kg DM) given only at night. The feed intake of silage and 

concentrates indoors was registered individually in both treatment groups. Intake of feed was 

therefore known in the exercise group while the intake in the pasture group had an unknown 

element: pasture intake during daytime. The daily water intake was registered and measured 

by water meters installed in the water bowls in the feeding area. The daily urine volume was 

predicted in each cow by collecting urine spot samples that were analysed for the content of 

urea and creatinine. The urine volume was thus estimated based on the cow’s weight and 

creatinine concentration in the urine. Grass samples from pasture as well as silage and 

concentrate samples were analysed to determine the content of dry matter (DM), crude protein 

(CP), ash, energy, potassium (K) and other minerals. Based on dry matter intake (DMI), 

mineral intake, water intake and urine volume in the control group, simple linear regression 

and mixed linear regression were made to predict the total feed intake in the experimental 

group and hence pasture intake by subtracting the known amount of silage and concentrate 

intake. Drinking water intake (L/day) and urine volume (L/day) in the control group was 

plotted against the DMI (kg/day) by simple linear regression and gave the equations (y = 

0.167 x + 8.66; R
2
 = 0.448) based on the water intake and (y = 0.459 x + 11.83; R

2
 = 0.307)

based on the urine volume. When plotting the K intake (g/day) against the estimated urine 

volume (L/day) by simple linear regression the following equation could be derived; (y = 

9.321x + 255; R
2
 = 0.334) and by using mixed linear regression the equation resulted in (y =

5.036x + 366.9; R
2
 = 0.468). Based on those equations the pasture DMI was estimated in the

experimental group and gave reasonable intake volumes with the simple linear regression 

based on drinking water intake and urine volume and also by the simple and the mixed linear 

model based on the estimated intake of K. Which method that is preferred depends on the 

conditions since collection of urine spot samples may be more tediously compared to 

automatic registrations of drinking water intake from water bowls.  

Sammanfattning 

Det finns ett behov av att kunna skatta kornas foderintag på bete. Eftersom foderintaget är 

korrelaterat till faktorer som dricksvattenintag och urinvolym undersöktes möjligheten att 

skatta betesintaget baserat på dessa parametrar. Det undersöktes också huruvida foderintaget 

kunde beräknas utifrån det skattade kaliumintaget baserat på en uppskattning av urinvolymen 

när koncentrationen av kalium i fodret var känt. Högavkastande mjölkkor av raserna Svensk 

låglandsboskap (SLB) och Svensk röd och vit boskap (SRB) ingick i ett försök där alla djur 

erbjöds möjlighet till utevistelse dagtid antingen på produktionsbete eller i rasthage och hölls 

inomhus under natten. Korna i experimentet delades in i två grupper; en försöksgrupp som 

erbjöds nytt produktionsbete dagligen och därmed hade ett okänt foderintag på bete och en 



kontrollgrupp som enbart hade tillgång till en mindre rasthage. Kraftfoder utfodrades i samma 

nivå i förhållande till laktationskurvan i båda grupperna men kontrollgruppen som endast fick 

tillgång till en rasthage dagtid erhöll foder ad libitum inne dygnet runt medan korna i 

försöksgruppen utfodrades med en restriktiv ensilagegiva (6 kg DM) enbart under natten. 

Mängden foder (ensilage och kraftfoder) som korna konsumerade i stallet registrerades på 

individnivå i båda grupperna. Foderintaget hos djuren i kontrollgruppen var därför känd 

medan intaget i gruppen med produktionsbete innehöll en okänd faktor, mängden konsumerat 

bete dagtid. Det dagliga vattenintaget registrerades och mättes genom vattenmätare som 

installerades i vattenskålarna i utfodringsområdet. Den dagliga konsumtionen av vatten 

registrerades således. Den dagliga urinvolymen beräknades för varje ko genom att samla 

stickprover av urin som analyserades för innehållet av urea och kreatinin. Urinvolymen 

skattades baserat på kornas vikt och kreatininkoncentrationen i urinen. Betesprover samt 

prover av ensilage och koncentrat analyserades för innehållet av torrsubstans (TS), råprotein 

(RP), aska, energi, kalium (K) samt andra mineraler. Baserat på TS-intag, mineral intag, 

vattenintag och urinvolym kunde enkel linjär regression samt mixed linjär regression 

användas för att förutsäga det totala foderintaget i försöksgruppen och därmed betesintaget 

genom att subtrahera intaget av ensilage och kraftfoder. Dricksvattenintaget (L/dag) och 

urinvolymen (L/dag) i kontrollgruppen plottades mot TS-intaget (kg/dag) genom enkel linjär 

regression och gav ekvationerna (y = 0.167 x + 8.66; R
2
 = 0.448) baserat på vattenintag och (y

= 0.459 x + 11.83; R
2
 = 0.307) baserat på urinvolym. Genom att plotta kaliumintaget (g/dag)

mot den skattade urinvolymen (L/dag) med enkel linjär regression gavs följande ekvation (y = 

9.321x + 255; R
2
 = 0.334) jämfört med mixed linjär regression som resulterade i (y = 5.036x

+ 366.9; R
2
 = 0.468). Baserat på dessa ekvationer kunde TS-intaget på bete skattas i

experimentgruppen och gav rimliga intagsvolymer både med enkel linjär regression baserat på

dricksvattenintag och urin volym samt med enkel och mixed linjär regression baserat på det

skattade intaget av K. Vilken metod som är att föredra beror på förhållandena då insamling av

urinprover kan vara omständligt jämfört med att automatiskt registrera dricksvattenintagen

från vattenkoppar.
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1. Introduction  

The knowledge of dairy cows feed intake on pasture is important for optimization of 

production systems as well as for future milk production that aim for sustainability. Pasture 

utilization is also an important economical aspect in dairy production since grass is a cheap 

feed source compared to concentrates and stored forages. High pasture utilization will reduce 

the cost of the production and thus making it more effective (Holden et al., 1994). The 

knowledge of dairy cows feed intake on pasture gives the producers a tool for making 

practical decisions concerning feeding of the animals which could improve the nutrient 

management (Frame & Laidlaw, 2011). Feeding inside the barn with stored forage must be 

regulated according the herbage intake on pasture (Hellwing et al., 2015). Knowledge of the 

pasture intake is also crucial to be able to balance the feed ration and allocate the right 

proportion of concentrates. Concentrates are needed to maintain the milk yield throughout the 

grazing season, but too high a concentrate allowance will result in lower pasture utilization 

(Frame & Laidlaw, 2011). Utilizing the cow’s ability to transform fibrous non-human 

consumables as pasture grass into high value protein is also an important environmental and 

sustainability aspect (Nousiainen et al., 2004). 

 

The exact individual feed intake of roughage in dairy cows is complicated to measure in 

commercial production systems since dairy cows often are fed ad libitum in larger groups. 

Feed intake on pasture is even more complicated to measure, both under practical and 

experimental conditions. The available methods for estimating dairy cow’s total feed intake 

on pasture are rather complicated. The easy methods are often unreliable and inaccurate and 

to get a more exact estimate more advanced methods must be used that are not applicable in 

commercial herds since they require advanced equipment (Hellwing et al., 2015). Most 

estimations of feed intake involve feeding the cows with tracer substances, collection of 

manure and vast laboratory analyses. Since the dairy cows feed intake on pasture is difficult 

to measure there is a need for accurate prediction equations to be able to make satisfactory 

estimations that can be used both under research and farm conditions (Nennich et al., 2006).  

 

Several studies conclude that the DMI in dairy cows can be used as a factor to predict 

drinking water intake, mineral intake, urine volume and even the excretion of urine 

components such as urea (Maltz & Silanikove, 1996; Bannink et al., 1999; Nennich et al., 

2006). Since these factors are shown to be correlated to each other, the predictions could 

theoretically be used in the opposite direction to estimate the DMI. By measuring the drinking 

water intake, the feed intake could thus be estimated provided that the DM concentration of 

the silage and concentrates is known. The water consumption is a realistic and inexpensive 

measurement that could be registered and used in commercial dairy farms. Urine volume has 

also been shown to be related to the DMI and could theoretically be used to estimate the feed 

intake on pasture. However, total collection of urine is not possible on pasture and hence 

estimations of urine volume require spot sampling procedures (Chizzotti et al., 2008). Even 

urine components such as urea could probably be used to estimate the DMI if the crude 

protein (CP) content in the feed is known, since all excess nitrogen is excreted as urea in the 

urine. Instead of estimating DMI from urine volume, the urine volume could be used to 

predict the total intake of minerals like K, Na and nitrogen. From the estimated total mineral 

intake, combined with the known mineral content in silage, concentrates and pasture, the DMI 

on pasture could then be estimated. This would possibly allow for a more accurate estimation 

of DMI since minerals like K, Na and nitrogen are the main driving force behind urine 

volume (Nennich et al., 2006). In practice, K may be the most influential element under 

Scandinavian conditions. Other minerals like Na may have a bigger impact per see on the 

urine volume, but since dietary K concentration usually is much larger and also varies more 
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than dietary Na concentration under Scandinavian conditions (Åkerlind, 2013) it may also 

have bigger influence on urine volume (Eriksson, 2011). However, the use of urine 

components for DMI estimations would rather be applicable in research than on commercial 

farms.  

 

2. Aims and objectives 

The main objective with this study was to investigate if dairy cows DMI on pasture could be 

predicted by using simple linear regression equations as well as mixed linear regression 

equations based on drinking water intake or urine volume. It was also investigated whether 

the pasture intake could be estimated based on the known K concentrations in the feed 

together with the estimated dietary K intake based on urine volume.  

 

3. Literature Review 

3.1 Feed intake in ruminants on pasture 

According to Swedish law (SJVFS 2010:15, §25, §26) dairy cows should have access to 

pasture both for a certain period of the year and a certain length of time per day. In most 

European countries where pasture access is voluntary, dairy herds with pasture allowance 

have decreased over the two last decades. One reason is that feed intake on pasture is hard to 

estimate which makes optimal feeding based on supplementation of concentrates and silage 

difficult to manage (Hellwing et al., 2015). To be able to use grazing as a major or sole source 

of feed to dairy cows reliable estimations of the DMI on pasture are needed (Holden et al., 

1994). 

 

Feed intake is seldom registered in commercial herds since roughage usually is given ad 

libitum and fed according to appetite (McDonald et al., 2011). There are several factors that 

influence feed intake, ranging from the prerequisites of the animal to the characteristics of the 

feed and also climate conditions (Holden et al., 1994; McDonald et al., 2011). Feed intake 

varies depending of the type of forage, resulting in different feed intake of for example silage 

and pasture herbage. On pasture, the distribution and availability of the herbage are important 

factors affecting the feed intake as well as the cow’s preferences for herbage species (Holden 

et al., 1994). The feed intake on pasture can be described as the grazing time combined with 

the intake rate (Hellwing et al., 2015). The feed intake on pasture can further be described by 

the cows bite size times the bite rate. The bite size is the quantity and weight of DM that the 

cow can harvest in one bite and the bite rate is the number of bites per minute (McDonald et 

al., 2011). According to McDonald et al. (2011) a grazing dairy cow (600 kg) has a bite size 

of approximately 0.6 g DM. The time spent grazing is also important in pasture management. 

Given a bite size of 0.6 g DM combined with a bite rate of 60 times/minute the cows will 

need to graze for at least 7.4 hours/day to be able to achieve an intake of 16 kg DM/day and 

thus get their major feed intake on pasture (McDonald et al., 2011). Feed intake on pasture is 

directly related to sward height and density since this affects the bite size in dairy cows 

(Frame & Laidlaw, 2011). The optimum sward is relatively short, 12-15 cm high (McDonald 

et al., 2011). According to Frame & Laidlaw (2011), the sward height should not be below 10 

cm. Herbage allowance on pasture has a linear impact on intake but at higher allowances the 

impact decreases (Frame & Laidlaw, 2011). Environment and climate conditions have an 

effect on DMI, and the feed intake has been shown to be reduced with an increase in ambient 

temperature and relative humidity (West et al., 2003). However, West et al. (2003) observed 

that the signs of reduction in DMI were delayed since it was most affected by the air 

temperature two days earlier. The delay could probably be explained by the time required for 



5 
 

a cow to consume, digest and metabolize feed (West et al., 2003). Contrary to that, other 

studies have shown that warm temperatures have an immediate negative effect on DMI in 

Holstein cows (Holter et al., 1997). 

 

Several studies have investigated the DMI on pasture using different methods (see section 

3.2). In a Danish study, Hellwing et al. (2015) compared nine different methods to estimate 

pasture DMI during the spring and the autumn, where the average estimates of the different 

methods was 2.2-7.6 kg DM/day for dairy cows grazing 7 hours/day in addition to TMR 

feeding. According to a North American study by Holden et al. (1994), the total daily DMI in 

dairy cows increased during the pasture season from 21.3 kg DM in the early spring to 22.4 

kg DM in the late spring. The daily DMI on pasture consisted of 11.6-15.6 kg DM. In this 

study, the cows were allowed to pasture fulltime and were only fed concentrates during 

milking and some additional grass silage (2 kg DM/cow/day) (Holden et al., 1994). The total 

feed intake then decreased along with the ongoing lactation. The pasture intake observed by 

Holden et al. (1994) almost corresponds to the intake of 16 kg DM/cow/day that is observed 

by McDonald et al. (2011).  

 

Under Swedish conditions, the nutritional value differs between pasture and stored feeds such 

as silage. Forage tends to have a CP content around 140-150 g/kg DM (Åkerlind, 2013). 

Additionally, fresh grass has a high content of rumen degradable protein even if the levels are 

higher in silage (Frame & Laidlaw, 2011). The ash content in fresh grass range between 65-90 

g/kg DM (Åkerlind, 2013), however, pasture rich in clover and other legumes can have an ash 

content of 85-100 g/kg DM (Åkerlind, 2013). Under Scandinavian conditions, K is the most 

variable mineral in forage and usually range between 20-25 g/kg DM (Åkerlind, 2013). Na 

contents in forage are low and range between 0.5-1.5 g/kg DM (Åkerlind, 2013). The amount 

of Na in grass and forage reflects how close the soil is to the sea and differs depending on 

location. The digestibility of the feed depends on the vegetative state of the grass when the 

forage is harvested and the digestibility is higher in fresh grass compared to silage (Åkerlind, 

2013).  

 

3.2 Methods to estimate feed intake on pasture  

3.2.1 Prediction of feed intake  

There is a need for more simple and elemental estimation methods of feed intake on pasture 

that could be used both in commercial dairy cow herds as well as in research situations. The 

models and methods that currently exist are complicated or insecure and often labour 

demanding and not adapted to the range of quality of the grass. Most methods involve vast 

collection of data, registrations and even laboratory analyses. Because of this, there is no 

method to estimate feed intake on pasture that has been approved to be used as a general 

standard method (Penning, 2004; Hellwing et al., 2015). Feed intake on pasture can be 

estimated with different methods, depending on what purpose the estimations are for. On farm 

level, the best methods to estimate feed intake on pasture are based on animal performance 

records (Hellwing et al., 2015). In experimental studies, animal-based methods may give 

more accurate measurements of feed intake but involve laboratory analysis that are based on 

collection of manure and the use of external or internal markers (Penning, 2004). Feed intake 

on pasture can also be estimated in other ways, by sward measuring methods or by 

observational methods based on grazing behaviour.  
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3.2.2 Animal performance  

Methods to estimate feed intake on pasture based on animal performance include information 

of the cow’s energy requirements and the energy value of the feed (Penning, 2004; Hellwing 

et al., 2015). These methods are often used in commercial farms combined with the known 

intake from barn feeding and daily registrations of milk yield (Hellwing et al., 2015). 

Methods based on animal performance data are less labour demanding and do not require 

advanced equipment. However, these methods require adequate energy standards and accurate 

measurements of the cow’s production. Calculations of energy and nutrient requirements for 

the grazing cow predicted from feeding standards could be used as a measurement of feed 

intake. Careful control of body weight and milk production is needed to confirm the 

calculations and to control systematic and random error bias. The methods based on animal 

performance can give useful, relative measures of herbage intake and pasture productivity. 

These methods are best used as comparison of farm-scale production and performance of 

larger groups and as a control method (cross-check) to other feed intake prediction methods 

and is not recommended to be used in critical studies (Penning, 2004).  

 

Energy requirement in cows is either calculated from the metabolizable energy (ME) or the 

net energy (NE) required for the cows maintenance (W
0.75

), production and physiological 

state and together with the energy required for activities like grazing it will affect the herbage 

intake. Animals will use 10-20 % additional energy when grazing (Penning, 2004) and this is 

often not accounted for in the calculations, leading to inaccurate estimates of herbage intake. 

Another assumption that may result in an underestimation of herbage intake is that the cows 

will have no further live weight gain since requirements for growth in adult animals is 

constant (Penning, 2004; Hellwing et al., 2015). The production of the animal, such as milk 

yield but also gestation, will affect the energy requirement. Milk yield is registered daily in 

automatic milking systems and other values such as milk fat and protein percentage is also 

recorded regularly. The energy value of the herbage can be calculated by predictions based on 

tables or by more precise chemical analysis of the feed (Penning, 2004). However, in a report 

by Andrée et al. (2011) it is concluded that the nutritional value of Swedish semi-natural 

pasture significantly varies depending on the type of vegetation. The variation in nutritional 

value of the pasture could probably also apply to some extent to Swedish production pastures 

for dairy cows because they are commonly mixtures of several grass and legume species. This 

fact will complicate the process of determining the energy and nutritional value of the pasture 

compared to when cows are grazing on mono-cultural pastures that is the case in the United 

Kingdom. There are many prediction equations to link the digestibility and chemical 

composition to the energy value of the feed and the estimation of the herbage intake will 

differ depending on which equation that is used (Penning, 2004).  

 
3.2.3 Comparisons with housed animals  

It is relatively easy to calculate feed intake in housed animals fed in troughs since the forage 

can be weighed and leftovers taken into consideration. One way to calculate herbage intake in 

cows is to feed them known amounts of freshly cut herbage inside to be able to calculate their 

intake. This method gives a low between-cow variance and provides the closest control of 

random error bias in intake measurements. It is a method that is suitable for studies on 

ruminant nutrition but is not fully representative for estimations of herbage intake since the 

feed intake does not occur on pasture and the activity and hence energy requirements differ 

between housed and grazing animals. Those kind of feed intake measurements are often 

combined with measurements of the ingestive behaviour of the cows (Penning, 2004). Under 

Swedish as well as in Scandinavian conditions, there is a large variation of vegetation species 

on pasture. The more available grass and herb species on the pasture, the more will the cows 
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conduct selective behaviour when grazing (Andrée et al., 2011). Cows tend to select more 

energy and protein containing herbage species before species containing high levels of fibre 

(McDonald et al., 2011).  

 

The feed intake can be limited by physiological parameters, both within the animal and based 

on the feed values (Frame & Laidlaw, 2011; McDonald et al., 2011). When using equations 

based on intake capacity to estimate the feed intake in cows, it is of great importance to take 

into consideration different physiological states of the animals, such as age, weight, 

pregnancy and the stage of lactation. For example, it is very easy to overestimate the herbage 

intake in late lactation. DMI calculations based on intake capacity often give higher results of 

intake compared to animal performance methods calculating DMI from energy requirements 

(Hellwing et al., 2015).  

 
3.2.4 Animal-based methods 

Feed intake on pasture can also be estimated by animal-based techniques. Three basic 

techniques are included in the category; faecal output combined with diet digestibility 

techniques (marker methods), weighing methods and energy expenditure (estimates of feed 

intake based on energy requirements are discussed above).   

 

Feed intake (I) can be estimated based on faecal output (FO) and digestibility (D) of the feed 

and is the most widely used method to determine feed intake in ruminants (Penning, 2004; 

Dove & Mayes, 2005).  
 
I = FO / (1-D) 

 

Systematic and random errors tend to occur both when estimating faecal output and 

digestibility of the diet but tend to be more concerning in the latter and can seriously reduce 

the accuracy of the estimated intake (Dove & Mayes, 2005). The faecal output can either be 

measured by quantitative collection or by estimation methods involving markers (Penning, 

2004). Total collection of faeces is not suitable on pasture since it can disturb normal grazing 

behaviour in the ruminants and thus affect feed intake (Dove & Mayes, 2005). Marker 

techniques can be based on natural plant or feed constituents called internal markers, or 

introduced markers and tracer substances, called external markers. The markers or indicators 

consist of non-toxic substances that are not absorbed or retained in the digestive tract and 

could be quantitatively recovered in the faeces. To be able to use the markers the substances 

should also be present in small amounts in the original diet and be easily analyzed by 

laboratory methods. The use of markers allow estimation of herbage intake across a wide 

range of pasture conditions and grazing management systems and allow prediction of feed 

intake even in individual animals (Penning, 2004). To date, internal markers are preferred 

over external markers since no external marker yet has met the criteria required to be 

considered as an ideal marker. Internal markers have an advantage since they can be used 

even if the diet consists of different components with different digestibility, as often is the 

case on pasture and also if the animals are receiving additional supplements. Though, the 

intake and the concentration of the internal marker in the supplemental feed must be known 

(Dove & Mayes, 2005). However, when Hellwing et al. (2015) simultaneously used two 

internal markers (ingestible neutral detergent fiber and acid detergent lignin) to predict DMI 

on pasture the INDF: ADL ratio gave negative estimates of average DMI as well as negative 

intakes for individual cows. This could be explained by that the difference between herbage 

and barn feed in the ratio INDF: ADL was too small. The bigger difference in this ratio 

between pasture herbage and stored forage, the more reliable results of feed intake on pasture 
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(Hellwing et al., 2015). Random error and bias occur with these techniques and should be 

combined with other control procedures (Penning, 2004).  

 

Weighing is an animal-based technique to estimate feed intake in cows over short periods of 

time (hours). This method requires that the animal is weighed before and after grazing, taking 

the weights of faeces, urine, insensible weight loss and the amount of consumed water into 

consideration in the equation (Penning, 2004).  

 
3.2.5 Sward methods  

Sward methods are based on the difference between measurements made on pasture before 

and after grazing. The feed intake thus corresponds to the herbage offered on pasture minus 

the herbage refused (Penning, 2004). The total mass of herbage per unit area of ground, or the 

herbage mass, is estimated at the beginning and the end of the grazing period and it is the 

difference between these two measurements that can give an estimate of the quantity of 

herbage consumed per unit area (Penning, 2004). However, the herbage will grow during the 

pasture period, which gives a need for a correction factor. The intake of animal/day could be 

estimated by dividing the total estimated herbage consumption by the number of animals 

grazing days per unit area. This estimation of individual intake may not be very accurate since 

there is a variance in herbage intake between animals, and to be able to truly estimate the 

individual herbage intake the animals must be kept in individual pens, although, this is labour 

demanding and limits natural grazing behaviour in cows (Penning, 2004). The method 

provides a good control of random variation and the measurements of herbage mass could be 

done with acceptable accuracy, though it can be subject to systematic errors. The method is 

best suited in short grazing periods with larger groups and with a high grazing pressure which 

minimizes the regrowth of grass and thus the bias in estimating herbage intake (Penning, 

2004).  

 
3.2.6 Observational methods of grazing behaviour  

Estimations of feed intake in grazing animals are often based on behavioural data such as 

grazing time and bite size. Analysis of ingestive and grazing behaviour provides better 

understanding of the variation of intake (Penning, 2004). Hellwing et al. (2015) found that 

observation of time spent grazing in dairy cows not is a reliable method to estimate DMI of 

herbage. The observed correlation between grazing time and estimated DMI is often very low 

and the efficiency of grazing differs between cows. Selection of different grass species on 

herbage would affect the results from the methods including intake capacity, digestibility and 

internal markers (Hellwing et al. 2015).  

 

3.3 Water intake and its regulation  

3.3.1 Physiology and water balance  

Water is considered to be the most important nutrient for lactating dairy cows and they 

require large amounts of water each day (NRC, 2001). Water intake is essential for organisms 

and is needed for cell function, osmotic pressure, thermoregulation and the elimination of 

waste products from the body by urine, faeces and respiration (Sjaastad et al., 2010). Cows on 

average meet 83 % (NCR, 2001) of their water demand only by drinking. A restriction in 

water intake will lead to reduced DMI and suppressed milk production (Murphy, 1992; Kume 

et al., 2010; Khelil-Arfa et al., 2012).  

 

The water balance is a concept of homeostasis that is maintained by an approximately equal 

amount of water intake and water loss (Sjaastad et al., 2010). The amount of water in the 
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body can vary between days (Sjaastad et al., 2010) and the live weight of a dairy cow consists 

of 56-81 % water (Khelil-Arfa et al., 2012). Water can be gained through drinking water, 

water in food and metabolic oxidation of body tissue (Sjaastad et al., 2010). Though, 

metabolic water constitutes such an insignificant amount in ruminants that the total water 

intake often is counted as the drinking water intake and the feed water intake only (Kume et 

al., 2010). Kume et al. (2010) found that 79 % of the cows total water intake came from 

intake of drinking water when fed a silage-based diet (51 % DM concentration). In a study by 

Cardot et al. (2008) it was shown that dairy cows consumed water during 7.3 ± 2.8 drinking 

occasions per day with an average intake of 12.9 litres at each drinking occasion, resulting in 

a water intake of approximately 94 L/day. According to Sjaastad et al., (2010) a lactating cow 

needs to drink 84 L of water/day compared to only 23 L during the dry period. Similar results 

of daily water consumption in dairy cows can be found in other studies (Table 1). The 

majority of the drinking occasions happen during day time and the peaks in water intake are 

associated with feeding and milking times (Dahlborn et al., 1998; Cardot et al., 2008). The 

osmolarity of urine is related to the total water intake, and the higher water intake, the lower 

osmolarity and the more diluted urine.  The osmolarity of the urine indicates how much water 

is excreted in the urine and thus describes the water balance within the animal (Sjaastad et al., 

2010). Loss of water from the body occurs through milking, urine and faecal excretion, sweat 

and vapour loss from the lungs (NCR, 2001). In ruminants, loss of water from the digestive 

tract is significant (Khelil-Arfa et al., 2012). Though, it is the loss of water through urination 

that the animal can regulate to maintain water balance (Sjaastad et al., 2010). 

 
3.3.2 Factors affecting drinking water intake  

The drinking water intake is correlated to several factors such as the feed composition, milk 

yield and environmental factors such as heat and additional losses to the surroundings 

(Bannink et al., 1999: Murphy, 1992). Body weight and overstocking of animals are also 

factors that influence the drinking water intake since the animals will have less access to the 

water bowls (Meyer et al., 2004; Cardot et al., 2008). The free water intake most likely varies 

with the stage of lactation since the milk yield and DMI changes with the course of lactation 

(Cardot et al., 2008). The drinking water intake in dairy cows varies between individuals 

(Murphy, 1992). In a study conducted by Murphy et al. (1983) the standard deviation (SD) in 

drinking water intake between cows was 19.1 L/day and exactly the same number was shown 

in another study by Meyer et al. (2004). Similar variations in drinking water intake between 

cows have been found in other studies and Cardot et al. (2008) found a variation of 17.1 

L/day. Dahlborn et al. (1998) also found individual variations of drinking water intake even if 

the cows were maintained in the same environment. 

 

Drinking water intake is highly related to DMI and the DM concentration in the diet (Bannink 

et al., 1999; Kume et al., 2010; Khelil-Arfa et al., 2012). On the other hand, Khelil-Arfa et al. 

(2012) found a weak correlation between the total water intake and the DM concentration of 

the feed. DMI is the factor explaining most of the variation in water intake, even if milk yield 

is closely related (Murphy et al., 1983). Dahlborn et al. (1998) found that an increase in feed 

DM concentration increased the drinking water intake. It was observed that a hay based diet 

(high DM concentration) increased the drinking water intake compared to if the cows were 

fed silage (lower DM concentration). This was also confirmed by Kume et al. (2010) that 

found that the drinking water intake increased when the DM concentration of the feed 

increased and that the cows compensated the lowered feed water intake by drinking more.  

 

The water intake is highly determined by the mineral intake of K and Na from the feed ration 

when other factors remain unchanged (Bannink et al., 1999; Nennich et al., 2006). 
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Additionally, diets rich in protein seem to stimulate drinking water intake in dairy cows and 

this may be related to the increased need to excrete nitrogen with the urine. In both dry and 

lactating cows, there is a relationship between the dietary CP and K content and the total 

water intake, especially between dietary K and total water intake (Kume et al., 2010). Kume 

et al. (2010) concluded in their study that the cows will increase their drinking water intake in 

order to excrete excess nitrogen and K in the urine. There is a positive linear relationship 

between dietary Na content and Na intake and water intake. Murphy et al. (1983) showed that 

the drinking water intake increased with 0.05-0.20 L for every gram of Na added to the diet. 

Spek et al. (2012) concluded that for every gram increase of Na in the diet, the drinking water 

intake would increase by 0.14 L (± 0.017 L)  

 

Drinking water intake is also influenced by the amount of water excreted in milk (Bannink et 

al., 1999). In a study by Murphy et al. (1983) the relationship between milk production and 

water intake showed that a cow will drink 0.9 L of extra water/kg milk produced. Milk 

consists of 85-88 % water and water loss through milking can be up to 10 % of the body 

water in high yielding dairy cows (Dahlborn et al., 1998). The water intake is influenced by 

the fat-percentage in the milk. Dahlborn et al. (1998) showed that cows selected for a low 

milk-fat percentage drank 12 % more water compared to cows producing equal amounts of 

ECM with high milk-fat percentage, independent of diet composition. This can be explained 

by an increased production of lactose in the milk with low fat percentage which acts as an 

osmotic drive of water which in turn increases the milk yield. An increased milk yield will 

result in an increase of water intake.  

 

Environmental factors such as ambient temperature and relative humidity affect water intake 

and water balance in dairy cows (Bannink et al., 1999; Kume et al., 2010). Khelil-Arfa et al. 

(2012) found that prediction equations tended to underestimate the feed water intake and total 

water intake when ambient temperatures increased above 25 °C. This may be due to the 

increased water loss by evaporation that occurs when the ambient temperature rises (Khelil-

Arfa et al., 2012). Meyer et al. (2004) found that for each degree Celsius that the ambient 

temperature exceed 21 °C the drinking water intake in dairy cows increased with 1.52 L/day. 

Murphy et al. (1983) also concluded that temperature and humidity affected the drinking 

water intake in cows. For every degree change in recorded minimum temperature in the 

experiment, the water consumption would increase by 1.20 L.  

 

Murphy (1992) studied factors that affected drinking behaviour in dairy cows and found that 

eating patterns and water temperature had a significant influence. Drinking behaviour was 

also affected if water was consumed in a trough or in a water bowl, and also by the flow rate 

in the water bowl. The number of drinking occasions tends to be higher in cows consuming 

water from bowls compared to from troughs. Since water bowls often are shared, dominant 

cows can restrict submissive cows in their water intake, suggesting that animal dominance 

also affects drinking behaviour (Murphy, 1992). However, water consumption in grazing 

dairy cows does not seem to be affected by the location of the water source (Spörndly & 

Wredle, 2005), and neither by the type of milking system (milking parlour/automatic milking) 

(Meyer et al., 2004). Spörndly & Wredle (2005) found no significant difference in water 

intake if the cows were offered water only inside the barn or both in the barn and on pasture, 

although cows offered water on pasture spend more time grazing compared to cows that had 

to go inside the barn to drink. The availability of water on pasture is important from an animal 

welfare point of view (Spörndly & Wredle, 2005).  
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3.4 Nitrogen metabolism and urine excretion  

3.4.1 Nitrogen metabolism, urea and creatinine  

Nitrogen intake from feed (expressed as CP) is mainly composed of proteins and non-protein 

nitrogen (NPN). Some NPN compounds that can be ingested with the feed are urea, ammonia, 

amides, amines, peptides and amino acids. Dietary protein consists of 160 g N/kg (16 %) and 

by multiplying the nitrogen content by the coefficient 6.25 (1000/160) the CP value of the 

feed can be calculated (McDonald et al., 2011). NPN constitutes 5-15 % (Sjaastad et al., 

2010) of the total nitrogen content in fresh grass but in fermented feed, like silages, a large 

proportion of the proteins are converted into NPN by microorganisms, increasing the NPN 

content to approximately 70 % (Sjaastad et al., 2010). The CP concentration in the feed 

affects nitrogen intake, protein synthesis, nitrogen digestibility and efficiency, plasma urea 

nitrogen, milk urea nitrogen and faecal and urinary excretion of nitrogen (Kauffman & St 

Pierre, 2001). Most of the ingested nitrogen will be used for microbial protein synthesis. In 

ruminants, proteins are degraded and synthesized in the rumen and the components that 

become available for post-ruminal digestion may vary a lot from that originally ingested with 

the feed (McDonald et al., 2011). The microbes in the rumen have the first access to dietary 

proteins and more than two-thirds of the CP intake is ruminally degradable (Frame & 

Laidlaw, 2011). Most of the degradable protein together with NPN will be converted into 

microbial proteins, provided that there is a fermentable energy source available. The 

microbial protein is then absorbed in the duodenum. The protein that does not undergo 

degradation by microbes but goes directly to the duodenum is known as rumen escape 

protein, bypass protein or ruminal un-degradable protein. To be able to use a large amount of 

NPN for protein synthesis, the microbes need access to energy, often from easily fermentable 

carbohydrates. NPN substrates are essential for maintenance of rumen bacteria growth, 

fermentation and the ruminants’ protein and energy supply since feed in ruminants usually 

have a low content of true protein (Sjaastad et al., 2010). 

 

Ammonia in the rumen comprises a dynamic nitrogen pool and is derived from different 

sources. Ammonia can either be a result of degradation of dietary protein or hydrolysis of 

dietary NPN or recycled urea (Owens & Bergen, 1983). The ammonia produced can be used 

by microbes and 50-70 % of the nitrogen content in microbial organisms in the rumen is 

derived from ammonia (McDonald et al., 2011). The ammonia that is not used by the 

microbes diffuses easily through the rumen epithelium into the plasma (Owens & Bergen, 

1983). However, the levels of ammonia in the blood must be kept low since high 

concentrations of ammonia will be toxic to the central nervous system. Therefore nitrogen 

must be removed from peripheral tissues in a non-toxic state so it can be disposed of as urea 

in the liver, which is the major disposal form of ammonia in this organ (Harvey & Ferrier, 

2011). Urea (CO(NH2)2) is a small, soluble nitrogen compound and is also the major end 

product of nitrogen metabolism in ruminants (Nousiainen et al., 2004). Blood urea nitrogen is 

affected by the level of CP intake (Kauffman & St Pierre, 2001). Urea has the ability to 

diffuse into various body fluids such as plasma, milk and urine (Nennich et al., 2006). Urea 

freely diffuses between the blood:milk barrier and hence the plasma urea concentrations affect 

the concentrations of milk urea. Urea can either be excreted in the urine, be transported to the 

milk or recycled and used as a substrate in the rumen (Kauffman & St Pierre, 2001). Between 

23-92 % of the plasma urea is recycled (Owens & Bergen, 1983) depending on the nitrogen 

content of the diet. The amount of nitrogen recycled to the rumen is positively correlated to 

the plasma urea concentrations and negatively correlated to ruminal ammonia concentrations 

(Owens & Bergen, 1983). When ruminants receive feed with low nitrogen content, less urea 

will be excreted in the urine and instead sent to the liver where it can be transferred to the 
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rumen and used for microbial protein synthesis. On the other hand, a high level of protein in 

the feed will allow more urea to be produced, resulting in an increased ability to concentrate 

urine compared to when the amount of protein is low in the feed (Sjaastad et al., 2010). 

Excess of dietary nitrogen will be excreted as urea in the urine (Harvey & Ferrier, 2011). 

After excretion urinary urea is hydrolyzed by the microbial enzyme urease to ammonia and 

carbon dioxide, contributing to environmental emissions from animal production (Bannink et 

al., 1999).   

 

Creatinine (C4H7N3O) (with a molar mass of 113.12 g mol 
-1

), is derived from creatine and 

phosphocreatine in the muscles which are high-energy nitrogen containing compounds that 

provides a small but easily accessible energy reserve during the first minutes of intense 

muscular contraction. Creatinine is excreted in the urine and the excretion is positively 

correlated to the animal’s muscle mass (Harvey & Ferrier, 2011). The excretion has been 

shown to be relatively constant for individual animals when expressed as mmol/kg W
0.75

 

(Chizzotti et al., 2008) and could be used as a urine volume marker since the concentration of 

creatinine should be independent from the urine volume (Chen et al., 2004). In a small study 

(10 Friesian dairy cows) by Bristow et al. (1992) it was shown that the creatinine 

concentration of urine ranged between 540-1750 mg/L with an average of 980 mg/L. Eriksson 

et al. (2009) that fed different rations of silage, fodder beets and potatoes to cows with an 

average body weight of 638 kg reported an average creatinine concentration of 630 mg/L of 

urine with a range of 69-1470 mg/L for individual spot-samples. Since creatinine is correlated 

to the body weight of the animal, creatinine excretion in urine most likely varies with the 

stage of maturity. Chizzotti et al. (2008) showed that the creatinine excretion per kg BW 

decreases linearly as the body weight increases in growing heifers. The reason to why it varies 

in growing animals could be because of change in proportion of tissue over time. However, 

adult animals have less variation in body composition and body weight compared to growing 

animals, making creatinine excretion as a function of body weight less variable and using a 

fixed creatinine excretion index is usable when predicting urine volume (Chizzotti et al., 

2008). The results in the study by Chizzotti et al. (2008) showed that the daily average 

creatinine excretion in high and medium yielding dairy cows with a urine volume of 21.6 

L/day ranged between 127-135 mmol/day.  

 
3.4.2 Excretion of urine and urine volume  

The function of urination is to expel waste material and by-products from cellular metabolism 

in the body such as water, nitrogen, minerals and pigments (Sjaastad et al., 2010). The urinary 

excretion of excess nitrogen and minerals is a way to maintain homeostasis in the body 

(Nennich et al., 2006). In this process the body gets rid of nitrogenous waste products to 

maintain the blood electrolyte balance (Maltz & Silanikove, 1996; Khelil-Arfa et al. 2012). 

Some nitrogenous constituents of urine are allantoin, hippuric acid, creatinine, creatine, uric 

acid, free amino acids and ammonia. However, urea is the dominant form of nitrogen in the 

urine but the proportion of the substance varies with both species and diet (Bristow et al., 

1992). In an experiment by Eriksson et al. (2009) were dairy cows received feed with 

different proportions of potatoes and fodder beets the average urea concentration in urine was 

4187 mg/L and ranged between 545-10824 mg/L of urine. Bristow et al. (1992) examined the 

nitrogenous content in urine and it was concluded that the proportion of the urea and other 

nitrogenous constituents in the urine was highly reflected by the diet (Bristow et al., 1992). 

The difference in nitrogen excretion between diets can be explained by the differences in 

ammonia and CP content of the feed (Frame & Laidlaw, 2011). The ability to concentrate 

urine is a way to handle limited water intake, however, this ability is poor in cattle compared 

to other species (Sjaastad et al., 2010). Cattle rather seem to be specialized towards nitrogen 
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conservation instead of water conservation (Maltz & Silanikove, 1996). Cows have a so 

called urinary fixed osmotic ceiling meaning that unlike humans and dogs, they cannot 

enhance urine osmolarity by the excretion of high amount of urea. During high intakes of 

protein rich diets a larger amount of nitrogen needs to be excreted, leading to an increase in 

urinary volume instead of an increased concentration of urine (Maltz & Silanikove, 1996).  

 

DMI, dietary CP intake and mineral intake of K and Na have been directly linked to the urine 

volume in dairy cows (Maltz & Silanikove, 1996; Bannink et al., 1999; Nennich et al., 2006). 

Dairy cows that consume a large amount of nitrogen in the diet will get an increased water 

intake and thus an increased urine volume and nitrogen excretion (Bannink et al., 1999; 

Eriksson et al., 2004). Nennich et al. (2006) concluded that the urine volume is greater when 

dairy cows are fed diets rich in protein compared to diets with a low protein content. The 

study showed that an increase of dietary CP content in the feed by 3.3 % units (from 15.1 % 

to 18.4 % of DM) increased the urinary volume by 6.5 L/day (Nennich et al., 2006). 

However, the CP content in feed does not explain the variation in urinary volume alone. 

Khelil-Arfa et al. (2012) suggests that variations in urine volume can be explained by the 

variation of CP in the forage associated with DMI (Khelil-Arfa et al., 2012). Further, Spek et 

al. (2013) found that an increased CP intake not always had an effect on urine volume. In this 

study with incremental dietary Na concentration, the urine volume was closer associated to 

the Na content of the diet rather than the CP content, even if the urinary urea nitrogen 

excretion was positively correlated to the CP intake (Spek et al., 2013).  

 

Urine excretion is the main mechanism to maintain homeostasis for K and Na in the body. 

Thus, intake of those minerals will directly affect the urine volume (Nennich et al., 2006; 

Leiber et al., 2009). Under practical conditions, high yielding dairy cows are often fed rations 

containing excess minerals that must be excreted in the urine. The kidneys are limited in 

increasing the concentrations of minerals that need to be excreted, causing the urine volume 

to increase instead (Bannink et al., 1999). Measurements of dietary intake and concentration 

and excretion of K and Na in the urine have successfully been used to predict urine volume in 

dairy cows (Nennich et al., 2006). According to Bannink et al. (1999) the mineral 

concentrations in urine are better to use when predicting urine volume compared to the 

mineral intake. When predicting urine volume from mineral intake, the estimations could be 

improved if digestion and milk production is taken into account (Bannink et al., 1999). What 

mineral that affects urine volume the most depends on which mineral that is most variable 

within the feed ration or experiment. Bannink et al. (1999) found that Na has a bigger effect 

on urine volume compared to K, giving a urine volume twice as high per unit weight. This is 

probably correlated to the molar mass of the two different minerals with K (39.1 g/mol) 

having almost twice the mass compared to Na (23.0 g/mol). This was confirmed by Nennich 

et al. (2006) that found that Na intake had a greater effect (ml urine/g Na) on urine excretion 

than nitrogen and K intake. Spek et al. (2012) showed a linear relationship between Na intake 

and urine volume and concluded that for every additional gram of Na intake, the urine volume 

would increase with 0.136 kg (Spek et al., 2012). The reasons to why the urine volume 

increases with a higher Na intake is because of the dilation of blood vessels that cause an 

increase in the kidneys glomerular filtration rate as well as a reduction of the release of ADH 

that will lead to a decrease in renal reabsorption of water (Spek et al., 2012). Even if Na is a 

mineral that has a strong influence on the urine excretion, some studies claim that predicting 

urine volume by assessing Na intake is an unreliable method when mineral blocks are 

available, making the variation increase within individuals (Khelil-Arfa et al., 2012). In a 

study by Leiber et al. (2009) the K concentration and urine volume was compared in dairy 

cows that received feeds that differed in fibre and K content. The high K diet consisted of 
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lowland hay (28.7 g K/kg DM) and the low K diet consisted of alpine hay (10.1 g K/kg DM). 

The concentration of urinary K varied with the K intake with 15.2 g K/L urine for the lowland 

hay and 12.8 g K/L urine for the alpine hay (Leiber et al., 2009). If urinary K concentration 

reaches an asymptote, as has been suggested by studies where K concentration leveled out at 

approximately 13 g/L (Kume, 2008; Eriksson & Rustas, 2014), K intake would above this 

asymptote regulate urine volume linearly. A compilation of Swedish cattle feeding trials 

(Eriksson, 2011) suggested that urinary volume is predominantly regulated by the dietary 

intake of K in Swedish Red cattle fed typically local feed in form of grass-legume forages. In 

an experiment by Eriksson & Rustas, (2014) dairy cows were fed three different diets 

containing low, medium or high amounts of K. The results showed the urinary volume 

increased linearly with increasing K intake. A relationship between K intake and urine 

excretion that has been confirmed by Eriksson (2011) and Bannink et al. (1999) is 0.056 L 

urine/ g K intake. Nennich et al. (2006) also found that the concentration of K in urine was a 

good indicator for urine volume but that in the case of Na (and nitrogen) the total excretion in 

the urine was better to use compared to the concentrations.  

 

Urine volume is also affected by the water intake in dairy cows. A high water intake results in 

a reduction of the protein-osmotic pressure and the concentration of ADH. This will lead to an 

increase in arterial blood pressure which in turn increases the urine volume (Sjaastad et al., 

2010). The large day-to-day variation in urine volume within cows can be explained by the 

large variation in water intake between days. Changes in water consumption are immediately 

reflected in the urine production (Bannink et al., 1999). When high quality drinking water is 

not restricted, urine volume is considered to be in excess compared to the amount needed to 

excrete body wastes (Bannink et al., 1999). Urine production has not been shown to be 

indirectly predicted from water intake (Bannink et al., 1999). However, Kume et al. (2010) 

found that there was also a strong positive correlation between N and K intake or urine 

volume and total water intake (rather than drinking water intake) in dry and lactating cows.  

 
3.4.3 Estimation of urine volume  

The exact urine volume in dairy cows takes an extensive amount of time to measure. Total 

collection of urine allows a direct measurement of the urine volume but often involves the use 

of urine sampling funnels or catheters that may cause discomfort in the animals. Additionally, 

total collection of urine is hard to perform on pasture since it requires that the cows are kept in 

tied-up barns (Eriksson et al., 2004; Chizzotti et al., 2008). The use of total collection of urine 

is restricted under commercial farm conditions due to it being too complicated (Chen et al., 

2004). Another method is to estimate the daily urine volume by measuring the creatinine 

concentrations in spot samples of urine (Chizzotti et al., 2008). The excretion of creatinine is 

correlated to the urine volume at a certain body weight and therefore the body weight of the 

cows is needed when predicting urine volume (Maltz & Silanikove, 1996). Chizzotti et al. 

(2008) found that the average creatinine excretion in lactating dairy cows was 0.212-0.213 

mmol/kg BW (or 1.06-1.07 mmol/kg BW
0.75

). The average creatinine excretion 0.213 

mmol/kg BW (Chizzotti et al., 2008) corresponds to 24.1 mg creatinine/kg BW. In another 

study by Valadares et al. (1999) the average creatinine excretion in the urine was 29 mg 

creatinine/kg BW. The urine volume can thus be estimated from the average BW of the cow 

and the mean concentration of creatinine mg/L. The use of the coefficient 24.1 mg/kg BW in 

the equation (Chizzotti et al., 2008) is justified by similar results obtained in total collection 

studies performed at the same facility and analysed by the same techniques( Eriksson, 2010; 

Eriksson and Rustas, 2014).  
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Spot sampling procedure of urine is often used in studies of ruminal microbial protein 

synthesis that aim to predict the purine derivatives (that is used as a marker) excretion in cows 

based on the estimated urine volume from the daily creatinine excretion. To be able to use 

spot sampling of urine to predict urine volume the excretion of creatinine must be constant. 

Several studies have investigated this and Chen et al. (2004) concluded that there was a 

diurnal variation of creatinine. However, other studies like Chizzotti et al. (2008), indicates 

that the rate of creatinine excretion in lactating dairy cows is constant over the day. Valadares 

et al. (1999) concluded that the excretion of urinary creatinine did not vary between the time 

intervals from 05:00-17:00 but there was 5 % increase in creatinine excretion between the 

hours 17:00-05:00. However, the apparent increase in creatinine excretion during night could 

in that study be due to a loss of urine (total collection) when cows were moved for the 

morning milking. Eriksson et al. (2009) recommend that spot sampling of urine should be 

done multiple times within the same day to be sure to minimize variations associated to 

animal, sampling day and time. Valadares et al. (1999) also concluded that there was no 

significant difference when estimating the purine derivatives when comparing urine volume 

from total collection and estimations from spot sampling. The excretion of creatinine in the 

urine has been showed not to be influenced by the diet, minerals or lactational stage of cattle 

(Valadares et al., 1999; Chizzotti et al., 2008; Eriksson & Rustas, 2014). Valadares et al. 

(1999) found that the creatinine excretion in urine was unaffected by diet when comparing 

different moisture content in alfalfa silage and different proportion of silage and concentrates. 

However, the urine creatinine concentrations are higher during the prepartum period (10.5 

mmol/L) compared to during the lactation period (5.0 mmol/L) but this is probably caused by 

differences in urine volume (Maltz & Silanikove, 1996). 

 

Automated weighing systems are useful tools when calculating the body weights of cows. 

However, registrations of body weight can contain systematic errors and show daily 

variations for individual cows. The body weight has a diurnal variation within cow and will 

vary with the level of gut- , udder- and bladder fill (Mäntysaari & Mäntysaari, 2015). 

Mäntysaari & Mäntysaari (2015) concluded in their study that the morning body weight on 

average was 7.3 kg less compared to the afternoon body weight in Nordic red cattle. It was 

also concluded that the within-cow variation of body weight was 6.4 % of the total variance 

and could be reduced with different modelling methods. Modelling methods can thus be used 

to make predicted values and increase the reliability of the body weight measurements. 

 

3.5 Predicting DMI from water intake, urine volume and K intake  

Several studies have investigated the possibility to predict drinking water intake and urine 

volume from DMI (Bannink et al., 1999). Since those factors have been found to be 

correlated there should be a reversed method to be able to predict the DMI from water intake 

and urine volume. Cardot et al. (2008) found that the ratio between drinking water intake and 

DMI in cows was 4.1 L water/kg DMI and this is similar to the results from other studies; 4.7 

L/kg DMI (Murphy et al., 1983), 4.0 L/kg DMI (Meyer et al., 2004) and 3.7 L/kg DMI 

(Kume et al., 2010). Khelil-Arfa et al. (2012) predicted the water intake in Holstein dairy 

cows by several equations. In most equations the DMI was an important parameter and when 

not including DMI in the equation to predict water intake the dataset would need to come 

from cows with a narrow range of milk yield and dietary DM variation. 
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Table 1. Summary of result from different studies showing the average DMI, DM concentration of the 

feed, the daily milk yield, drinking water intake and urine volume  

Study DMI 

(kg/day) 

DM content 

(%) 

Milk yield 

(l/day)  

Drinking water 

intake (l/day) 

Urine volume 

(l/day) 

Paquay et al. 

(1970) 
  

 

15.0 
 

 

34.0 

Murphy et al. 

(1983) 
19.0 62.0 33.1 89.2  

Dahlborn et al. 

(1998) 
18.4 46.0  61.1 16.0 

Bannink et al. 

(1999) 
19.4 67.8 25.2  30.9 

Meyer et al. 

(2004) 
20.5 54.5 31.1 81.5  

Nennich et al. 

(2006) 
22.2  32.7  24.1 

Cardot et al. 

(2008) 
20.6 47.9 26.5 83.6  

Kume et al. 

(2010) 
20.7 51.2 29.9 77.6 21.9 

Gustafson 

(2001) 
16.8 46.0 22.3 62.0 17.3 

Khelil-Arfa et 

al. (2012) 
17.3 57.4 28.8 62.7 21.5 

 

Nennich et al. (2006) found that DMI was one among several factors that affected the urine 

volume in dairy cows. No study has reported that urine volume can be predicted from DMI 

alone (or vice versa) but that the equation needs additional factors to be valid. Other factors 

such as the CP intake, mineral intake and the concentration of milk urea nitrogen has been 

found to be more closely related to urine excretion than the DMI (Nennich et al., 2006). 

Leiber et al. (2009) made a regression on urinary excretion on DMI (kg/100 kg BW) (y = 

1.321x + 0.789; R
2
 = 0.58) and found a correlation when the cow were fed lowland hay 

containing a high amount of K. The K intake was correlated to the DMI when cows had a 

high intake of K corresponding to 576 g K/day but not when they had a lower K intake of 198 

g K/day (Leiber et al., 2009). This suggests that the correlation between urine volume and 

DMI is dependent on other factors such as mineral intake.  

 
Table 2. Coefficients and relationship between K intake and urine volume 

Study Slope, urine (L)/K intake (g/d) g K intake/ L urine 

Bannink et al. (1999) 0.056  

Gustafson (2001)  12.0 

Kume et al. (2008)   

Leiber  et al. (2009) 0.041 15.2 

Eriksson et al. (2011) 0.056 17.7 

 

Eriksson (2011) produced an equation based on a simple linear regression allowing the urine 

volume to be estimated from the known K intake (y = 1.9 + 0.056x) (coefficients of g K/L 

urine volume from different studies are shown in Table 2). By using the equation in the other 

direction, the total dietary K intake could be estimated from the urine volume. When 
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combining the total intake of K with the known concentrations of K/ kg DM in the feed, 

estimations of the feed intake based on the K intake can be done. 

 

4. Material and Methods  

4.1 Animals, housing and treatments  

This experiment was part of a larger study that examined a pasture model during 7 weeks with 

part-time pasture allowance for dairy cows in an automated milking system. In total, 43 

lactating cows of the breeds Swedish Holstein (SH) and Swedish Red (SR) from the Swedish 

livestock research centre at Lövsta (Swedish University of Agriculture) were used in the 

experiment, of which one cow left the experiment in the middle of the sampling periods 

because of health reasons. Cows included were both primiparous (25 %) and multiparous (75 

%) with DIM (days in milk) ranging between 102-192 days (9
th

 of June). The cows were 

selected based on previously registered DIM and health and the groups were formed to get an 

even distribution between breeds, milk yield and lactation number. The experimental design 

of the study consisted of one experimental treatment that was compared with one control 

treatment.   

 

The cows were kept in an automatic, voluntary milking system (VMS™, DeLaval 

International AB, Tumba, Sweden), in a feed first system. The housing consisted of cubicles 

with rubber mats and sawdust bedding in the lying area. In the feeding area the cows where 

fed grass-silage from individual troughs with automatic registration of feed intake in a 

database (BioControl AS, Rakkestad, Norway). There were in total seven water bowls that 

were located in the feeding area that were equipped with custom-made water flow meters that 

registered individual water consumption (BioControl AS, Rakkestad, Norway). Concentrates 

were distributed from three different stations placed in the lying area as well as in the milking 

unit (DeLaval International AB, Tumba, Sweden).  

 

The cows were divided into two groups, either the experimental group (22 cows) or the 

control group (21 cows). The experimental group received a restricted grass-silage ration (6 

kg of DM/day/cow) and commercial concentrates, Solid 620 and Unik 82 (Lantmännen, 

Stockholm, Sweden) indoors and had access to pasture during 8.5 hours/day between 06:00-

10:30 h and between 16:00-20:00 h. The experimental group was given access to fresh 

pasture daily with a pasture allowance of 15 kg DM/cow/day. The cows in the experimental 

group were assumed to eat at least 12 kg roughage daily with 6 kg DM silage allowance 

indoors during non-grazing hours at night and the remaining intake was assumed to come 

from pasture. The pasture allowance of 15 kg DM/cow/day could therefore without 

difficulties support an intake of 7.5-10.5 kg DM pasture/day in the range of 50-70 % pasture 

utilization. The control group received grass-silage ad libitum inside the barn, and were only 

allowed an exercise pasture with little or no grass available. The expected pasture intake in 

the control group was 0 kg DM/cow/day. To ensure that the cows on the exercise pasture 

(control group) would not consume any pasture, the sward on the exercise pasture was cut at 

ground level before intake estimations, leaving no green grass and virtually no stubble for the 

animals to consume. The control group had access to the same exercise paddock (0.2 ha) 

throughout the whole experiment. Dairy cows at the research facility were routinely 

supplemented with minerals and NaCl by mixing it into the silage before distributing the feed 

in the troughs, but during this experiment the supplementation was turned off. Both the 

control group and experimental groups were given concentrates according to production 

before experimental onset at the same levels. The concentrate Solid 620 was fed at a 

maximum allowance of 16 kg/cow/day (as fed) but was adjusted to a standardized lactation 
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curve (NorFor, Aarhus, Denmark) with an assumed drop in milk yield by 0.33 L/week for 

multiparous cows and 0.125 L/week for primiparous cow. Thus the concentrate allowance 

changed weekly during the experimental procedure for each individual cow. Cows milking 

>40 kg milk/day received extra concentrate, Unik 82 at a maximum allowance of 2.5 

kg/cow/day. The dairy cows could consume the concentrates in the feeding stations inside the 

barn and also twice a day during milking in the robot. The nutritional values of the silage, 

pasture and concentrates are presented in Table 3. 

  
Table 3. Chemical composition and metabolizable energy in three period samples (P1-P3) of pasture 

and silage. The results from the analysis of the concentrates were pooled into a total mean for the 

whole experimental period 

  Pasture   Silage  Concentrate 

 P1 P2 P3 P1 P2 P3 Solid 620 Unik 82 

DM % 22.0 21.7 23.2 33.4 31.3 32.3 89.5 89.0 

g/kg DM         

Ash 99.4 100.2 105.7 93.2 89.7 87.4 69.0 85.0 

CP 187 152 171 160 154 157 178.0 296.0 

NDF 353 425 373 433 437 419 282.0 243.0 

ME MJ/kg 

DM 
11.3 10.9 11.0 11.4 11.6 11.8 13.2 14.0 

         

K 28.3 24.2 32.6 30.9 30.3 29.0 8.7 13.3 

Na 0.2 0.1 0.1 1.9 1.9 1.2 3.7 3.5 

Ca 8.6 6.8 10.1 5.4 5.0 4.5 8.9 12.1 

Mg 1.6 1.3 1.7 1.7 1.8 1.6 4.0 4.6 

P 3.3 3.0 3.1 3.2 3.2 3.1 5.7 7.4 

S 2.1 2.1 2.2 2.2 2.2 2.1 3.2 5.0 

 

4.2 Data sampling procedure  

Spot sampling of urine was performed to be able to estimate the total urine volume. The main 

sampling procedure was preceded by a covariate period in April and May when the sampling 

method was tested and evaluated. To get a covariance value from the indoor feeding season 

with completely known feed intake, one urine sample from each cow in the experiment was 

collected on the 4
th

 of May. 

 

The main sampling was done during three periods, the first period ranging between 9 – 13 of 

June, the second period ranging between 22 - 26 of June and the third period ranging between 

29 of June – 3 of July. The samples were taken during day time (07:00-13:00) when the cows 

were inside the barn and since both groups (control and experimental) had access to pasture 

until 10:30 samples from the animals were taken when they on free will entered the barn. 

Urine was collected in buckets from voluntary urinations. Samples were then taken using a 

3.7 ml tube that was transferred to a Saarstedt tube containing 30 ml of 0.10 M HCl (resulting 

in a dilution factor of 33.7/3.7 = 9.11) . The tubes were marked with cow ID, date and time. 
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After collection, each urine sample was further divided into three smaller (ca 10 ml) replicate 

samples in storage tubes before stored in a freezer at -30 °C until analysis of urea and 

creatinine. A total of 781 urine samples were collected during the main sampling period with 

a mean of 6 samples/cow/period (range of 2-10 samples/cow/period), of which 769 samples 

were entered into the final dataset after discarding samples with outlier results or that 

belonged to cows not assigned to the experiment. 

 

Pasture samples were taken four times daily in connection to when the cows were let out and 

in from pasture (06:00, 10:30, 16:00 and 20:00). The fresh pasture samples were weighed and 

dried in an oven at 60 °C for 12-24 hours. The preliminary DM concentration was then 

calculated by dividing the weight of the dried pasture sample with the fresh pasture sample 

weight. Silage samples were collected daily from the feeding troughs and stored in a freezer -

30 °C until analyzing. Concentrate samples were also collected and stored until analyzing. 

The temperature and relative humidity was registered daily outside on pasture with a digital 

thermometer (Clas Ohlson AB, Insjön, Sweden). Due to some misunderstandings, barn 

temperature and humidity was only registered once a day during the third experimental 

period. A weather station close to the barn also registered the ambient temperature and 

relative humidity outside on an hourly basis. 

 

The consumption of grass-silage from the troughs, concentrates and water intake for each 

individual cow in both treatment groups was registered. The flow meters in the water bowls 

registered the water consumption with some bias that was corrected for in the calculations 

with a calibration factor for each water bowl based on controls. The body weights of the cows 

were registered with an automatic weighing system 4.2 times daily (mean based on data from 

the first sampling period) (AWS100; ALPRO™, DeLaval International AB, Tumba, Sweden) 

when passing a selection gate on the way to milking in the robot or to the lying area. The milk 

yield was registered during milking in the robot (Delpro™, DeLaval International AB, 

Tumba, Sweden). Cows were test milked for three consecutive days during each of the three 

sampling periods and samples were analyzed for fat, crude protein and lactose by FTIR 

spectroscopy. 

 

4.3 Laboratory analysis  

The concentration of urea and creatinine was analyzed on an AutoAnalyser III (SEAL 

Analytical GmbH, Nordstedt, Germany). The urine samples were defrosted and firmly shaken 

before dilution. Each urine sample was diluted 2 times before analysis (0.75 ml sample + 0.75 

ml dilution) and placed on a rack following the serial numbers. In the analyser the samples 

were mixed with colour reagents that reacted with either urea (diacetylmonoxime, Technicon 

methodNo. SE40001FD4) or creatinine (picric acid, Technicon method No. SE4-0011FH4). 

The absorbance was then measured in a colorimeter and the absorbance correlated to the 

concentration of urea and creatinine. The results were registered and multiplied with the 

dilution factor of 18.22 (9.11 * 2) to get the concentration (mg/l) of urea and creatinine in the 

urine.  

 

The daily silage samples were defrosted and weighed before they were dried at 60 °C in a 

drying cabinet for at least 24 h. The dry samples were then left to stabilize in room 

temperature for a minimum of 4 h. The silage samples were then weighed again to calculate a 

preliminary DM concentration. A hammer mill (KAMAS AB, Malmö, Sweden) with a 1.0 

mm screen was used to mill the samples and ca 100 ml of each sample was put in a jar for 

further laboratory analysis. A portion of each daily sample was used for pooling together 

weekly samples of 15 g. Those weekly silage samples were then analyzed as described by 
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Åkerlind et al. (2011) for DM at 60 °C (with correction for losses of volatiles), ash, CP, NDF 

and in vitro organic matter digestibility by the method of Lindgren (1979) for calculation of 

metabolizable energy. Minerals (Ca, K, Mg, Na, P and S) were analysed at Agri-Lab, Uppsala 

by inductively coupled plasma atomic emissionspectroscopy (Spectroflame; Spectro 

GmbH,Kleve, Germany) after digestion with nitric acid. Samples collected in the actual 

bunker silo during the experiment were used for obtaining liquid for subsequent pH 

measurement, analysis of fermentation products with chromatography (Ericson & André, 

2010) and ammonia analysis with flow injection (FOSS-Tecator, 1992). The pasture samples 

were prepared in a similar way as silage samples and analyzed for the same content (except 

for analysis of fermentation products and ammonia). Samples of the concentrates were also 

analyzed for DM, ash, NDF, CP and minerals as described for silage samples. The energy 

value for the concentrate was adapted from the product declaration of the manufacturer 

(Lantmännen, Stockholm, Sweden). The results for the concentrate samples were averaged 

into an experimental mean before further intake calculations.  

 

4.4 Calculations and statistical analysis  

All data including drinking water intake, silage intake, concentrate intake, DMI, urea 

excretion and creatinine concentration, body weight, urine volume and milk yield was 

calculated to weekly means for each cow and experimental period together with standard 

deviations (SD) for the different treatment groups. The variation within cow was also 

calculated for drinking water intake and silage intake. The experimental periods included the 

three weeks that comprised the main sampling period as well as the covariate period in the 

spring (1 covariate sampling period + 3 main sampling periods). The covariate period only 

included one day of urine sampling (4
th

 of May) but the weekly means of silage and water 

consumption was calculated for four days (1
st
-4

th
 of May) and the milk yield for five days (2

nd
 

-6
th

 of May). Registrations of ambient temperature and relative humidity from the weather 

station were calculated to an AM/PM average (corresponding to when the cows were allowed 

to pasture) for each experimental period. To calculate the combined effects of ambient 

temperature and relative humidity a temperature-humidity index (THI) was calculated 

according to Mader et al. (2006): 

 
0.8 × ambient temperature+ [(% relative humidity ÷ 100) × (ambient temperature − 14.4)] + 46.4 

 

When calculating the weekly means of body weight for each cow, numbers that differed more 

than ± 50 kg from the cow’s mean weight from each experimental period were considered to 

be outliers and were excluded from the calculations. After excluding the outlier numbers the 

average weekly weights were recalculated. The outlier numbers could be the cause of the cow 

not standing properly with all four claws on the scale or that another cow partly stood on the 

scale as well resulting in an inaccurate registration of body weight. When calculating the 

urine volume from the creatinine concentration and body weight the formula derived from 

Chizzotti et al. (2008) was used:  

 
L urine/day = (24.1 × BW) / (mg creatinine/L urine) 

 

Numbers that were considered outliers were excluded when calculating the period means of 

water intake and silage intake. For example, feeding sessions exceeding over 30 g of 

consumed silage per second were excluded. The feed intake of silage was then multiplied 

with the DM concentration derived from the feed analysis to get the total weekly DMI from 

silage for each cow. The same was done to calculate the intake of concentrates. Milk yield 
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was compiled from the detailed log files of the milking unit after careful examination for 

possible erroneous registrations.  

 

Preliminary statistical analysis was done with the application Analysis ToolPak in Microsoft 

Office Excel 2007 (ver. 12.0.4518.10.14, Microsoft Corporation, Redmond, WA, USA) and 

results were then verified by using the appropriate procedures in SAS (Ver. 9.3, SAS Institute 

Inc., Cary, USA). SAS was also used for mixed model analyses and stepwise regressions. 

Effects of the fixed variables covariate value, treatment, parity (primiparous or multiparous), 

breed, week and the interaction treatment*week were examined in a model in Proc MIXED 

that also included cow as a repeated variable. Covariance structure was autoregressive (AR1). 

Non-significant (P > 0.05) factors were successively deleted from the model, starting with the 

factor with largest P, except for the factor treatment that always was retained. Results are 

presented as arithmetic means for treatments and treatment*week with significance for 

treatment differences obtained by the final mixed model for each variable.  

 

Correlations between different factors were calculated for the control group with Proc CORR. 

Stepwise regressions were done with Proc REG on factors affecting water intake and urine 

excretion. Variables were allowed to enter the model if P < 0.15 and to stay in the model if P 

< 0.15. 

 

Simple and mixed linear regressions for the control group were done with Proc REG and with 

a Proc MIXED model with random intercept and slope for individual cows. Results were 

expressed with “adjusted y:s” (St-Pierre, 2001) to obtain R
2
 values. The total daily DMI in the 

control group was regressed against daily drinking water intake and also against daily urine 

excretion. Daily K intake was also regressed against daily urine excretion. The results are 

presented in figure 1 and 2. 

 

The regressions for total DMI intake in the control group were directly applied on water 

intake and urine excretion, respectively, for the experimental group so that a total DMI could 

be estimated for each cow in each period. Pasture DMI was then calculated by deducting 

intake of silage and concentrates. The simple and the mixed linear regressions with K intake 

on urine excretion were applied in a similar manner on the experimental group to estimate a 

total K intake. After deducting K intake with silage and concentrates, the remaining K 

estimate was divided by pasture K concentration to obtain an estimate of pasture DMI. DMI 

based on total K intake estimated from urine volume was also calculated by rearranging the 

simple linear regression equation obtained from previous N balance trials (Eriksson, 2011): 

 
Urinary excretion (L/D) = 1.9 + 0.056 K intake (g/d) 

 

After rearranging, the equation read: 

 
K intake = (Urinary excretion -1.9)/0.056 

 

This equation was applied on urinary excretion estimates from the experimental group and 

pasture intake was then calculated after deducting K intake from silage and concentrates as 

previously described.  
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5. Results 

Table 4. Daily mean values of DMI, water intake, milk yield, urine volume, body weight, excretion of 

creatinine and urea and K intake for the entire experiment and for each experimental period (P1-P3). 

The total DMI of silage and concentrates is equal to the total DMI for the control group; however, in 

the experimental group the DMI from pasture is not included. The P-value indicates the difference 

between the two groups during all the three periods. P value not calculated for total DMI and silage 

DMI because of intended difference in experimental design. The standard deviation (SD) is calculated 

between each observation during all sampling periods for the two treatments  

 Experimental group Control group P value 

 P1 P2 P3 Total SD P1 P2 P3 Total SD  

DMI silage kg 5.05 4.77 5.77 5.20 1.0 12.79 14.14 13.75 13.56 2.2  

DMI conc. kg 10.95 10.87 10.72 10.85 2.9 10.51 10.23 9.82 10.19 2.8 n.s. 

Total DMI  

(excl. pasture) 
16.00 15.64 16.49 16.05 3.5 23.30 24.37 23.57 23.75 3.9  

Water intake L 83.6 75.7 89.4 82.9 18.6 92.0 86.4 93.1 90.5 15.5 ** 

Milk yield L 37.8 37.6 36.9 37.4 9.3 36.5 35.8 34.8 35.7 7.8 n.s. 

Urine volume L 26.6 25.6 25.1 25.8 4.6 25.8 27.1 25.0 26.0 4.7 n.s. 

Body weight kg 666 674 671 671 74 653 667 674 665 73 n.s. 

Creatinine mg/L 628 649 664 647 134 621 598 667 629 94 n.s 

Urea-N g 141 153 146 147 23.0 124 129 125 126 24.6 *** 

K intake g 

(excl. pasture) 
253 252 251 253 46 495 496 497 497 75  

    * P < 0.05 

  ** P < 0.01 

*** P < 0.001  

 

5.1 Pasture, silage and concentrate samples  

The results from the feed analysis are presented in Table 3. The pasture samples varied in DM 

concentration, both within and between days as well as between weeks. The total DM mean in 

the pasture samples was estimated to be 22.3 % and the K concentration was 28.4 g/kg DM 

for all the three experimental periods. The DM concentration in the silage varied between 

days and also between the three experimental weeks with a total mean of 32.3 %. The average 

content of K in the silage samples was 30.1 g/kg DM for the three experimental periods. The 

results from the analysis of the concentrates were pooled into a total mean for the whole 

experimental period. 

 

5.2 Silage and concentrate intake  

The daily mean consumption of silage in the control group was in line with what the cows 

were expected to consume with ad libitum feeding (12 kg DM/day) and the intake ranged 

between 9.37-20.50 kg DM/day. The experimental group had a restricted allowance of silage 

of 6 kg DM/day and the intake ranged between 2.10-6.98 kg DM/day. The average within 

cow standard variation of daily silage intake was higher in the control group (1.26-3.55 kg 

DM in the control group, with a variation mean of 2.18 kg DM) compared to the experimental 

group ( 0.62-2.41 kg DM with a variation mean of 1.18 kg DM). The concentrate ration was 
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the same for both the experimental and the control group and the consumption of concentrates 

did not significantly differ (P < 0.05) between the two treatments.  

 

5.3 Drinking water intake  

Experimental period means for daily drinking water intake of individual cows ranged between 

46.2-123.4 L. The total mean for both treatment groups were 86.6 ± 17.5 L/day. The drinking 

water intake differed significantly (P = 0.01) between the experimental group and the control 

group. The daily average water consumption in the experimental group was 82.9 ± 18.6 L and 

the corresponding number in the control group was 90.5 ± 15.5 L. The weekly within cow 

variation of daily drinking water consumption varied between 1.3-30.9 L/day and the mean 

within cow variation in both groups were 11.2 L/day. The coefficient of variation was 

estimated to 13.4 %.    
 

5.4 Urine volume, urine components and body weight 

The weekly urine volume was estimated based on the creatinine concentrations in the urine 

samples and the weekly body weight of the cows. The estimations showed that the daily urine 

volume ranged between 11.9-39.5 litres with an overall mean of 25.9 ± 4.6 L/day/cow. The 

urine volume did not significantly differ (P > 0.05) between the experimental group (25.8 

L/day) and the control group (26.0 L/day).  

 

The average daily concentration of creatinine and excretion of urea in the urine for the two 

treatment groups is presented in Table 4. In total, the mean concentration of creatinine in the 

urine was 638.0 ± 116.1 mg/L/day and ranged between 441.7-1139.9 mg/L. The mean 

concentration of urea N was 5.3 ± 0.92 g/L in both treatment groups and the mean excretion 

was 136.8 ± 25.9 g/day. The excretion of urea N ranged between 87.2-195.5 g/day in the 

experimental group and 83.9-183.4 g/day in the control group and differed significantly (P < 

0.001) between the groups.  

 

In general, the cows increased their body weight with 10 kg from the first sampling period (9 

– 13 of June) to the second sampling period (22 - 26 of June) and with 2 kg between the 

second and the third sampling period (29 of June – 3 of July). The average weight of all cows 

during the whole experiment was 667.6 ± 72.9 kg. 

 

5.5 Milk yield  

The milk yields were calculated from registrations from a database, however, some data 

needed to be adjusted and some milking occasions (23) were not registered because the cows 

were milked > 4 times/day.  The cows milked on average 2.5 times a day during the three 

sampling periods and had a total average milk yield of 36.6 ± 8.5 L/day with a range of 19.4-

55.4 L/day. There was no significant difference (P < 0.05) in milk yield between the two 

treatment groups.  

 

5.6 Temperature and Humidity  

The ambient temperature and relative humidity varied between the different experimental 

weeks with slightly warmer conditions outside on pasture during the third period (Table 5). 

Calculations of THI also showed highest values during this period. Barn temperature was only 

measured during the last experimental week and gives thus no possibility to compare the 

temperature inside between the different periods.  
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Table 5. The ambient temperature (degree Celsius) and the relative humidity (%) registered in the 

weather station close to the barn and the calculated THI. The results are presented as an AM and PM 

value for each of the three experimental periods (P1-P3)  

 P1 AM P1 PM P2 AM P2 PM P3 AM P3 PM 

Pasture temp C° 14.2 19.7 12.3 16.8 18.0 23.5 

Pasture RH % 56.8 41.9 82.9 61.5 71.5 48.0 

Pasture THI
1 57.6 64.4 54.5 61.3 63.4 69.6 

Barn temp C°     19.2 22.8 

Barn RH %     56.0 60.0 
1
Temperature-humidity index according to Mader et al. (2006) 

 

5.7 Statistical analysis  

The effect that different experimental factors had on each other showed that there were effects 

of the covariate value on milk yield, drinking water intake and urine excretion (Table 6).  

 
Table 6. Effects of experimental factors. Treatment differences were assessed by retaining factors 

with P < 0.05 in the model. 

 

Covariate 

period 

 

 

 

Parity Breed Treatment Week Week*Treatment 

Milk, kg/d <.0001 NS 0.01 NS NS NS 

Drinking water, L/d <.0001 0.009 0.02 <.0001 <.0001 0.02 

Urine excretion, L/d 0.007 NS NS NS NS NS 

Urinary urea N, g/d 0.0001 0.02 NS 0.0004 0.0005 NS 

Creatinine, mg/L  NS 0.04 NS NS 0.011 NS 

 

The results showed that there were correlations between total DMI and drinking water intake 

as well as between total DMI and urine volume. The K intake also had significant correlations 

both to total DMI and urine volume (Table 7). 

 

The results from the stepwise regression showed that the factors significantly affecting 

drinking water intake and urinary excretion were DMI, K intake, Na intake, CP intake, milk 

yield, body weight and water intake in the covariate period (Table 8). Some factors entering 

late in the regression equation such as DMI showed negative coefficients to drinking water 

intake. The results also showed that the CP intake was important in explaining the variation in 

drinking water intake and the K intake was important in explaining the variation of urine 

volume.  
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Table 7. Correlations between different factors obtained from the control group and their significance 

  

Total 

DMI 

Water 

intake 

Urine 

volume 

Milk 

yield 

Total 

DM % 

MJ 

ME CP UUN  K 

Water intake 

*** 

0.67 
        

Urine volume 

*** 

0.55 

** 

0.36 
       

Milk yield 

*** 

0.79 

*** 

0.60 

*** 

0.42 
      

Total DM % 

** 

0.36 

** 

0.38 

n.s 

0.04 

*** 

0.69 
     

MJ ME 

*** 

1.00 

*** 

0.68 

*** 

0.54 

*** 

0.81 

** 

0.39 
    

CP intake 

*** 

0.99 

*** 

0.70 

*** 

0.55 

*** 

0.84 

*** 

0.45 

*** 

1.00 
   

UUN, g/d 
1 

*** 

0.70 

** 

0.37 

*** 

0.71 

*** 

0.55 

*** 

0.22 

*** 

0.69 

*** 

0.70 
  

K intake 

*** 

0.90 

*** 

0.55 

*** 

0.58 

*** 

0.52 

n.s 

-0.03 

*** 

0.87 

*** 

0.86 

*** 

0.63 
 

Na intake 

*** 

0.88 

*** 

0.57 

*** 

0.50 

*** 

0.84 

*** 

0.58 

*** 

0.88 

*** 

0.90 

*** 

0.61 

*** 

0.72 

  
1
UUN = Urinary urea N 

 * P < 0.05 

 ** P < 0.01 

 *** P < 0.001  
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Table 8. Stepwise regressions for factors affecting drinking water intake and urinary excretion. 

Variables allowed to enter the model if P < 0.15 were: DMI, K intake, Na intake, CP intake, milk 

yield, body weight and water intake in the covariate period 

 
Intercept/slope SE P value R

2
 cumulative 

Drinking water intake, L/day 
    

Intercept 35.56 11.04 0.002 
 

Water intake covariate period 0.47 0.10 <.0001 0.51 

CP intake, g/d 0.06 0.02 0.001 0.64 

DMI, kg/d -6.28 2.69 0.02 0.66 

Na intake, g/d -0.67 0.22 0.00 0.69 

Body weight, kg -0.05 0.02 0.03 0.71 

     

Drinking water intake, L/day (covariate value not allowed) 

Intercept 38.93 8.94 <.0001 
 

CP intake, g/d 0.08 0.02 <.0001 0.49 

Na intake, g/d -0.65 0.25 0.01 0.53 

DMI, kg/d -9.76 3.11 0.003 0.58 

     

Urine, L/d 
    

Intercept 1.60 4.34 0.71 
 

K intake, g/d 0.022 0.01 0.01 0.33 

Body weight 0.020 0.01 0.03 0.38 

 

5.8 Prediction of pasture intake in the experimental group  

In the control group, the DMI explained 44.8 % of the variation of the drinking water intake 

and 30.7 % of the variation of the urine volume. The simple linear regression models based on 

data from the experimental period means in the control group had slopes of 0.167 kg DM/L 

water and 0.459 kg DM/L of urine, respectively (Fig. 1) (P < 0.001 for both). The intercept 

for the water intake regression was 8.66 and 11.83 for the urine volume regression and both 

were significant (P < 0.001). Using the equations from the simple linear regression analysis of 

the control group, the total DMI in the experimental group was estimated to 22.6 kg/day or 

23.7 kg/day for the water and urine regression, respectively. With a total DMI of 16.1 kg/day 

of silage and concentrates for the cows in experimental group, the pasture intake could be 

expected to be 6.5 kg DM/day and 7.6 kg DM/day for the water and urine regression, 

respectively. The estimated pasture DMI for each regression and period is presented in Table 

9.  
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Figure 1. DMI (kg/day) in the control group plotted against drinking water intake (L/day) and urine 

volume (L/day) by simple linear regression. Left: (y = 0.167 x + 8.66; R
2
 = 0.448). Right: (y = 0.459 x 

+ 11.83; R
2
 = 0.307). Both the slopes and intercept in both equations are significant (P < 0.001) 

 

The mixed linear regression was used to adjust for the variation within individual in the 

control group. Both the regressions based on drinking water intake and urine volume had non-

significant slopes of 0.032 kg DM/L of water (P = 0.20) and 0.112 kg DM/L of urine (P = 

0.13), respectively. However, intercepts were both significant for the mixed linear model 

equations (P < 0.001). In the mixed linear model the results was adjusted for variation within 

individual. The mixed linear regression based on drinking water intake gave the following 

equation; (y = 0.032x +20.97; R
2
 = 0.255), while the mixed linear regression based on the urine 

volume resulted in; (y = 0.112x +20.70; R
2
 = 0.358).  

 

By using simple linear regression to plot the K intake in the control group against the urine 

volume the following equation could be derived; (y = 9.321x + 255; R
2
 = 0.334). The slope and 

the intercept were both significant (P < 0.001) (Fig. 2). Plotting the K intake against the urine 

volume by mixed linear regression gave the equation (y = 5.036x + 366.9; R
2
 = 0.468) with a 

significant slope of 5.036 g K/L of urine (P < 0.01) as well as a significant intercept (P < 

0.001) (Fig. 2). The K intake explained 33 % of the variation of urine volume in the control 

group according to the simple linear equation and 47 % of the variation according the mixed 

linear equation. The estimation of pasture intake based on the concentration of K in the feed 

and the estimated K intake based on urine volume resulted in an overall pasture DMI mean of 

8.72 DM/day based on the simple linear regression, 8.78 kg DM/day based on the mixed 

linear model and 6.26 kg DM/day based on the simple linear regression equation (Eriksson, 

2011). Since the mean DMI of silage and concentrates in the experimental group was 16.1 kg 

this results in a total DMI of 24.9 kg/cow/day and 22.4 kg/cow/day respectively.   
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Figure 2. K intake in the control group plotted against urine volume (L/day). Left: Simple linear 

regression (y = 9.321x + 255; R
2
 = 0.334). Right: Mixed linear regression (y = 5.036x + 366.9; R

2
 = 

0.468). Both the slope for the simple linear regression (P < 0.001) and the mixed linear regression (P < 

0.01) and the intercepts (P < 0.001) are significant 

 
Table 9. The estimated pasture intake (kg DM/cow/day) in the experimental group based on the 

simple linear regressions and mixed linear regressions calculated from the control group. Period values 

as well as overall means are presented. The min and max values refer to the lowest and the highest 

estimated value for an individual cow during all the three experimental periods  

 Pasture intake kg DM simple linear 

regression 

Pasture intake kg DM mixed linear 

regression 

Regression based on;  

 P1 P2 P3 
Total 

Mean 
Min Max P1 P2 P3 

Total 

Mean 
Min Max 

Water 

intake 
6.62 5.65 7.09 6.46 0.56 10.42       

Urine 

volume 
8.04 7.96 6.83 7.61 -0.33 15.46       

K 

intake
 8.80 10.45 6.92 8.72 4.00 16.32 8.73 10.53 7.07 8.78 4.56 14.46 

K 

intake
1
 

6.62 7.55 4.62 6.26 0.20 17.31       

1
 Simple linear regression based on the total K intake estimated from urine volume using previously 

mentioned equation (y = 1.9 + 0.056x; R
2
 = 0.956) (Eriksson, 2011)  

 

6. Discussion  

6.1 Prediction of pasture DMI  

The total DMI consisting of both silage and concentrates in the control group was 23.8 ± 3.9 

kg DM/cow/day for the whole experimental period. This number can be used as a guideline of 

how much the total DMI of silage, pasture and concentrate could be in the experimental 

group. The total DMI of silage and concentrates excluding pasture intake in the experimental 

group was 16.1 ± 3.5 kg DM/cow/day for the whole experimental period. This will lead to an 

assumption of a pasture DMI consisting of 23.8-16.1 = 7.7 kg/cow/day in the experimental 

group, given that the cows in both groups consumed the same amount of kg DM and that the 

experimental group complemented their restricted silage intake with pasture. This is a 

credible amount of herbage intake and is in line with what has been found in earlier studies 
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conducted under Scandinavian conditions (Hellwing et al., 2015). The estimations of pasture 

DMI from the different regression models in Table 9 are close to what was expected and lies 

within the range of estimated DMI in the study by Hellwing et al. (2015). However, the 

estimated intake is lower compared to the pasture intake suggested by Holden et al. (1994) 

and McDonald et al. (2011) which can be expected since the cows in these experiments had 

almost their solitary feed intake from pasture with no additional feeding. It is also important 

to consider the geographical difference of where the studies have been conducted which gives 

different conditions for animal production with respect to climate and the length of the pasture 

season. Therefore these references may not be applicable to Swedish or Scandinavian 

conditions. 

 

The slopes in the mixed linear regression for both water intake and urine volume were not 

significant (P > 0.05) and hence the equations should not be used when estimating the pasture 

DMI in the experimental group. When using the simple linear regression equations, 

estimations of the pasture DMI in the experimental cows sometimes gave a negative 

individual value. The same cow could be estimated to have a negative pasture intake with one 

of the simple regression and a very high pasture intake based on another simple regression for 

the same week. This tendency can be viewed as one of the consequences of applying 

regression equations as prediction methods. The negative intake values are consistent with 

some of the results in the study by Hellwing et al. (2015) that also got negative intake values 

when using regression equations. It is suggested that when the cows are fed forage and 

concentrates inside the barn as a supplement to grazing, this can result in variations in the 

estimated DMI on pasture (Hellwing et al., 2015). In could also be of interest to investigate 

whether the estimation equations would give reasonable predictions of DMI in cows with a 

wider range and larger variation in drinking water intake and urine volume. The case may be 

that the estimations only fit cows within a certain range of feed intake, water intake and urine 

volume.  

 

To get a correlation between urine volume and DMI it seems like other factors such as high K 

intake are important (Nennich et al., 2006; Leiber et al., 2009). The estimations of pasture 

DMI based on the concentration of K in the feed and the estimated total K intake from urine 

volume resulted in a total pasture intake of 8.72 kg DM/day based on the simple linear 

regression 8.78 kg DM/day based on the mixed linear regression and 6.26 kg DM/day based 

on the simple linear regression equation derived from Eriksson (2011) as can be seen in Table 

9. Both the simple and the mixed linear regression equations derived from this experiment 

gave similar estimations of pasture intake and the estimations gave a higher pasture intake 

compared when using the simple linear equation derived from Eriksson (2011). Another 

important difference is the R
2
 values that are much lower in the regression equations based on 

this experiment compared to the one from Eriksson (2011). According to the results from the 

statistical analysis the K intake did not explain as much of the variation in urine volume that 

could have been expected from the earlier study. The correlation between K intake and urine 

volume was 0.58 suggesting a moderate relationship between these factors but it strengthens 

the fact that it is possible to estimate one of the factors based on the other. Additionally, when 

plotting K intake against urine volume in a mixed linear regression equation the slope was 

significant (P < 0.01) and this suggests that the method is useful when estimating pasture 

DMI. The results can be compared with other studies shown in Table 1.  

 

The statistical analysis showed that the correlation between total DMI and drinking water was 

0.67 and the correlation between total DMI and urine volume was 0.55. This could be seen as 

a moderately strong correlation and supports the method of estimating the dairy cow’s DMI 
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based on their drinking water intake or urine volume. The total DMI had also strong 

correlations (Table 7) with the total intake of CP, K and Na in the feed suggesting that it 

would be possible to estimate DMI given the intake of these factors are known. There was a 

strong positive correlation (0.79) between milk yield and DMI in the control group. This 

corresponds to earlier studies that also have found significant correlations between DMI and 

milk yield (Murphy et al., 1983). However, the strong correlation between milk yield and 

DMI is expected since the concentrate allowance was adjusted after the milk yield and an 

expected intake of silage and pasture.  

 

The stepwise regressions for factors affecting drinking water intake and urinary excretion that 

can be seen in Table 8 did show that DMI, K intake, Na intake, CP intake, milk yield, body 

weight and water intake in the covariate period were all significant. This is in line with what 

have been found in earlier studies (Maltz & Silanikove, 1996; Bannink et al., 1999; Nennich 

et al., 2006). However, many of the factors that were added last in the regression equations 

had negative coefficients. For example, when it comes to drinking water intake the cows 

should have consumed 6.28 L/day less for each kg of DM consumed, which is in opposite 

with what have been found in earlier studies where there is a clear positive correlation 

between drinking water intake and DMI (Bannink et al., 1999; Kume et al., 2010; Khelil-Arfa 

et al., 2012). The reason for the negative coefficients is that the factors added last to the 

regression explains such as small part of the variation and that previously added factors 

already explained most of the variation.  

 

6.2 Silage intake and feed samples 

The cows in the experimental group had an average silage intake of 5.2 kg DM/day as shown 

in Table 4. The allowance was 6.0 kg DM/day which means that the cows consumed less 

silage than expected. This is probably due to that there was a lack of silage during the nights 

which was concluded after observations of the troughs before the morning feeding. Results 

from the behavioural study showed that there was a significant difference (P < 0.001) 

between how much time the cows in the experimental group (5.6 h/day) and the control group 

(2.6 h/day) spent on pasture which shows that there was very little or no grass available, 

suggesting that when there is no feed available the pasture gets very unattractive. The 

observation further suggests that the cows in the control group really consumed virtually all 

their feed indoors from the troughs and concentrate feed stations and that the measurements of 

their total feed intake is plausible. This is also strengthened by the fact that the cows in the 

control group on average consumed more silage than expected (13.6 kg DM/day compared to 

12 kg DM/day). However, some within cow variation of daily silage intake occurred and was 

larger in the control group compared to the experimental group. This is expected since the 

control group had access to silage ad libitum while the experimental group had a restricted 

silage allowance. According to some observations of silage stealing that occurred when more 

dominant cows from the experimental group (that received a restricted forage ration) could 

push away cows with lower ranks from their through, the following feed consumption would 

be registered on the wrong individual. This does not seem to have affected the results since 

the within cow variation of the daily silage intake was very low.  

 

The results from the feed analysis (Table 3) can be compared with the average results for the 

years 2010-2013 from Swedish commercial farms connected to the advisory service company 

Växa Sverige (Åkerlind, 2013). The CP content of the silage and the pasture is similar to 

earlier reports (Åkerlind, 2013). The relatively high ash content in the pasture samples can be 

an indication that there was a high inclusion of legumes in the sward or that a lot of dirt 

followed with the pasture samples. However, the latter is not too credible since the pasture 
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samples were carefully cut to not include too much soil. The K and Na content in the silage 

samples are somewhat higher compared to the mean of analyzed Swedish farm samples used 

as a comparison (Åkerlind, 2013) but are well in line when looking at the pasture samples. It 

can be very hard to get representative samples of the grass on pasture. Since pasture samples 

were collected four times a day the possible change in grass quality can be considered to be 

corrected for. Further, cattle tend to select between the species in the grass sward making it 

harder to get a representative pasture sample only containing the herbage species that the 

cows actually consume (Penning, 2004). Cows may not actually consume the same herbage 

species as present in the pasture samples, making the digestibility of herbage hard to measure 

(Hellwing et al., 2015).  

 

The DM concentration in the silage differed much within weeks. The biggest variation in 

silage DM concentration was during the first and the second sampling period (variation with 6 

% units within both weeks). The third sampling period gave less variation (3 % units within 

the week) and could thus provide more accurate results. The variation of DM concentration 

during the second sampling period was probably due to that the cows received silage from a 

newly opened silo, and the silage in the first part of the silo was probably of varying quality 

and DM concentration.  

 

6.3 Water intake  

The results showed a significant difference (P = 0.01) in drinking water consumption from the 

water bowls between the experimental group (82.9 L/cow/day) that had access to pasture and 

the control group (90.5 L/cow/day) that only consumed silage and concentrates. The daily 

drinking water consumption in the treatment groups can be compared to the recorded drinking 

water intake during the covariate period that corresponded to 83.4 L/cow/day. During the 

covariate period the cows received silage ad libitum similar to the treatment in the control 

group during the experiment which can lead to the assumption that the drinking water intake 

hence should have been the same. However, the drinking water intake during the covariate 

period is more similar to the intake in the experimental group receiving a different feed ration 

including pasture. The conclusion that could be drawn is that there must have been a variation 

in DM content since this is an important factor affecting drinking water intake (Bannink et al., 

1999; Kume et al., 2010; Khelil-Arfa et al., 2012). The difference in drinking water intake 

between the experimental group and the control group could be an effect of the difference in 

DM concentration in pasture (23.6 %) and silage (33.0 %) which resulted in that the cows in 

the experimental group had a higher feed water intake. Based on the DM content in the silage 

and the pasture grass and given the total feed intake of silage, concentrate and pasture, the 

control group received 28.7 kg water with the feed per day compared to the cows in the 

experimental group that received 32.7 kg water with the feed (including pasture) per day 

assumed that the pasture intake was 6.46 kg DM/day (the average estimated pasture intake 

during the experimental period based on the drinking water intake simple linear regression). 

This would result in a total water intake of 119.2 L/cow/day in the control group compared to 

115.6 L/cow/day in the experimental group. This suggests that a higher feed water intake is 

not compensated for by an increase in urine volume since there was no significant difference 

in urine volume between the two groups. However, cows tend to compensate an increase of 

feed water intake by reducing the intake of drinking water (Dahlborn et al., 1998; Kume et 

al., 2010). Unlike urine volume, the drinking water intake seems to follow the DM 

concentration in the feed.  
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The variation of daily drinking water intake between cows (SD 17.5 L) can be considered 

normal since the drinking water intake in cows is related to milk yield, DMI, DM 

concentration in food and also to environmental factors (Murphy, 1992: Bannink et al., 1999). 

The number 17.5 L corresponds to result from other studies (Murphy et al., 1983; Meyer et 

al., 2004; Cardot et al., 2008). However, the weekly variation within cows in drinking water 

intake is an important factor to look at. The standard deviation within cow within week 

ranged between 1.3-30.9 L with a mean SD of 11.2 L. Some cows had a larger daily variation 

in drinking water intake compared to others and the covariate of drinking water intake 

comprised 13.4 % of the individual weekly mean consumption. However, it has been noted 

earlier that cows have a large variation in water intake between days (Bannink et al., 1999), 

hence the variation in drinking water intake found in this experiment seem to be reasonable. 

The ratio between drinking water intake and DMI also agrees with previous studies (Murphy 

et al., 1983; Meyer et al., 2004; Cardot et al., 2008; Kume et al., 2010).  

 

The cows showed a tendency to leave water in the bowl after drinking (ca 600 grams, but 

sometimes up to 1400 grams). This could have affected the registrations and resulted in an 

over-estimation of drinking water intake since there was residual water left in the bowls. 

However, it can be assumed that the residual water was somewhat similar for every cow 

which minimizes the error. 

 

There were positive correlations between drinking water intake and milk yield (0.60), CP 

intake (0.70) and intake of K (0.55) and Na (0.57). Since the amount of Na in the diet affects 

the intake of drinking water (Murphy et al., 1983; Spek et al., 2012) salt was excluded from 

the silage mix. However, because of misunderstanding with the farm workers, NaCl was 

included in the silage during one day of the experiment (9
th

 of June). This is shown in the 

silage analysis by a higher level of ash and may have affected the drinking water intake that 

day. It can be discussed however, if the NaCl inclusion in the silage could have affected the 

results of the study by increasing the drinking water consumption the following days. When 

comparing the mean drinking water intake in the groups that day with the rest of the week this 

did not seem to be the case. The mean consumption of water the 9
th

 of June was 99.4 L/cow in 

the control group and the corresponding number in the experimental group was 85.1 L/cow. 

The mean drinking water intake for the day when there was Na mixed in the silage did not 

significantly differ (P = 0.1 in the control group and P = 0.8 in the experimental group) from 

the mean drinking water intake the rest of the week.  

 

The effect of different experimental factors that can be viewed in Table 6 which shows that 

the covariate period, treatment and sampling week had the biggest effects on drinking water 

intake. This suggests that the DM concentration in the feed that differed between the 

treatments had an effect on drinking water intake and that the cows in the experimental group 

that had a lower water intake received more water from the feed (pasture herbage compared to 

silage). This is also in line with the measured DM concentration in the pasture and silage 

samples as can be seen in Table 3.  

 

6.4 Weather conditions   

The ambient temperature and relative humidity was calculated to weekly experimental period 

means and presented as a morning (AM) and an afternoon (PM) average as can be seen in 

Table 5. However, the results of the registrations from the weather station could have 

underestimated the temperature that the cows were exposed to since the station was placed in 

a bushy area on the side on the pasture and was sometimes shadowed unlike the pasture where 

the cows grazed. Therefore the cows were exposed to direct sunlight and the radiant energy 
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and temperature was probably higher at the pasture. Since environmental factors such as 

ambient temperature and relative humidity can affect the drinking water intake (Murphy, 

1992) it is important to consider this when looking at the results. It can be observed that the 

cows in the experimental group had a higher drinking water intake during the third 

experimental period (89 L/cow/day compared to 84 and 76 L/cow/day during the previous 

experimental periods) and this was certainly an effect of the higher ambient temperature 

during this time (an average of 23.5 C° in the afternoon, Table 5). The weather conditions 

could in turn affect the pasture intake of the cows since high ambient temperature and 

humidity has been shown to affect DMI negatively (Holter et al., 1997; West et al., 2003). As 

can be seen in Table 6, sampling week had a significant effect on drinking water intake, 

suggesting that the different weather conditions during the experimental periods had an effect 

on drinking water intake. If comparing the estimated DM pasture intake between the weeks, 

predictions based on the urine volume regression and the total K intake regression shows that 

the cows had a lower feed intake during the third experimental period (Table 9). On the other 

hand, the regression model based on water intake shows an increased feed intake during this 

period. This is due to the increase in drinking water intake that occurs during warmer 

temperatures and hence the estimation of DMI based on drinking water intake could be 

overestimated during those circumstances.  

 
6.5 Urine sampling, volume, components and body weight  

In this experiment urine volume was estimated based on collection of urine by a spot 

sampling procedure. According to earlier studies, the estimations of urine volume based on 

spot sampling procedure may not be as reliable as the total collection method and may have 

influenced the results. Chen et al. (2004) discuss the weaknesses with using spot sampling of 

urine compared to total collection and states that the sensitivity of the method is low because 

of high variability and could thus only be used to detect larger differences among urine 

components. Additionally, the method requires a lot of urine samples (Chen et al., 2004). 

There is also a discussion whether or not there is a diurnal variation of creatinine excretion, 

which requires many samples to lower the variability (Chen et al., 2004; Chizzotti et al., 

2008). However, the urine volume estimated in this experiment is similar to results from 

studies using total collection of urine and suggests that spot sampling of urine and then 

estimation of the urine volume by the creatinine concentration and body weight of the cow is 

a usable method. Additionally, collecting urine by spot sampling technique inflicts less 

discomfort of the animals and does not require them to be tied-up (Chizzotti et al., 2008). The 

procedure is also applicable both on farm-level and on pasture (Chen et al., 2004). The 

estimated mean of daily urine volume of 25.9 L is a credible result and close to the values 

found on the literature (Table 1). The urine volume did not significantly differ (P < 0.05) 

between the experimental group (25.8 L/cow/day) and the control group (26.0 L/cow/day) and 

there was neither a significant difference (P < 0.01) in urine volume during the covariate 

period (29.8 L/cow/day) and the main sampling period.  

 

In total, the daily mean concentration of creatinine in the urine (638.0 mg/L) lay between the 

average concentrations of creatinine in the studies by Bristow et al. (1992) (980 mg/L) and 

Eriksson et al. (2009) (565 mg/L). In comparison, in this study 769 urine samples were used 

compared to 10 in the study by Bristow et al. (1992) and 356 in the study by Eriksson et al. 

(2009).  

 

There was a great significant difference (P < 0.001) in the urinary urea excretion between the 

control group and the experimental group. The mean urea excretion in the control group was 

146.9 g/day compared to the experimental group that had an excretion of 126.2 g/day. The 
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cows in the experimental group that had access to pasture unlike the cows in the control group 

that only were fed silage. These results suggest that the cows in the experimental group had a 

higher nitrogen and CP intake than the cows in the control group. The results from the 

analysis of the pasture samples showed that the CP content of the grass differed between the 

experimental periods, ranging between 152-187 g/kg DM. This is probably due to the 

difference in composition of plant species between the different pastures where the amount of 

legumes differed. The CP content in the silage varied less than that in the pasture and ranged 

between 154-160 g/DM during the whole experimental period. Even if the CP content in the 

pasture grass were slightly higher compared to the silage it is probably not enough to solely 

give the significant difference in urea excretion between the two groups. The difference in 

urea excretion could be explained by diurnal variation and by looking at when the urine 

samples were taken during the day an explanation could be found. If the cows in the 

experimental group would have had a significant higher intake of CP in the diet, this would 

probably have been shown by a higher urine volume compared to the control group since 

dietary nitrogen gives an increased excretion of urine (Bannink et al., 1999; Nennich et al., 

2006). As mentioned earlier, the urine volume did not significantly differ between the two 

treatment groups. However, the high excretion of urea shows that the cows in the 

experimental group had an unnecessary high intake of nitrogen since all excess dietary 

nitrogen will be excreted as urea in the urine (Harvey & Ferrier, 2011). This is considered a 

problem from an environmental point of view where excess nitrogen causes eutrophication 

(Bannink et al., 1999; Nennich et al., 2006). The correlation between CP intake and the total 

excretion of urea in the urine was 0.70 and corresponds to earlier studies that have concluded 

that the nitrogen excretion in the urine is correlated to nitrogen intake and is directly reflected 

by CP content of the diet (Eriksson et al., 2004). 

 

The results showed a positive correlation between urea excretion and urine volume (0.71). 

The urine volume also showed positive correlations with the intake of CP (0.55), K (0.58) and 

Na (0.50) and these relationships correspond to earlier studies (Maltz & Silanikove, 1996; 

Bannink et al., 1999; Nennich et al., 2006). The fact that urine volume had a slightly stronger 

correlation with K intake compared to Na intake is supported by Eriksson (2011) that suggests 

that K is the mineral that predominantly regulates urine volume in dairy cows in Scandinavian 

conditions fed grass-legume forages. The effect of K intake on urine volume is based on the 

assumption that the urinary K concentration has reached an asymptotic value and hence is 

constant and regulating the urine volume linearly. Further analysis of the K content in the 

urine could have contributed to more accurate results. However, the correlation between urine 

volume and Na intake could have been stronger if it was not for the low variation of Na 

content in the feed. The variation of Na intake between the cows was low and the addition of 

NaCl in the grass-silage mix was also reduced on purpose. In the results from the feed 

analysis, K is the most abundant mineral.  

 

The estimations of urine volume were dependent on that the body weights of the cows were 

somewhat accurate. Some cows varied a lot in weight between and within weeks and the 

accuracy of the measurement could be questioned. Earlier studies have concluded that cows 

show a diurnal variation in body weight depending of the fill of the gut and the udder 

(Mäntysaari & Mäntysaari, 2015). The accuracy of the body weight measurements could be 

increased if weighing is performed after milking, however, this was not the case in this 

experiment since the cows had to pass the scale both before and after milking. This could be 

one of the reasons to the large variation of body weight within cow. There is a need to 

standardise a method to calculate the body weights of the cows when the results from the 

scale gives large variations. The reliability of body weight measurements from automated 
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weighing systems has been evaluated by Mäntysaari & Mäntysaari (2015) that concluded that 

the reliability of the measurements could be increased with modeling methods since 

unprocessed data of body weight often show some variation. In this experiment, the 

registrations of body weights for each week were calculated into a mean value. The mean 

value was then corrected by exclusion of weights varying more than ± 50 kg from the mean 

weight and then a new mean value was recalculated. This may not be the most accurate 

method to calculate body weights, however, the results gave satisfying estimations of the 

urine volume and the weights could be considered as plausible for this experiment. 

 

7. Conclusions  

As concluded in earlier studies, there are positive correlations between the DMI and drinking 

water intake and urine volume in dairy cows. This is confirmed in this experiment and 

strengthens the fact that the DMI on pasture can be estimated based on these factors when the 

intake of silage and concentrates are known. The results suggest that the DMI on pasture in 

dairy cows can be estimated when applying the equations based on the simple and the mixed 

linear regressions. The DMI estimations gave reasonable intake volumes with the simple 

linear regression based on drinking water intake and urine volume and also by the simple and 

the mixed linear model based on the estimated intake of K.
 
It is hard to conclude which 

method that gave the most accurate estimation of pasture DMI because the study did not 

include a treatment with known pasture intake. Basing the pasture DMI estimations on the 

drinking water intake may be more applicable in commercial farms since registration is 

possible in individual water bowls. However, the drinking water intake may be affected 

during warmer weather conditions as well as by the variation of DM concentration in pasture 

herbage. Because of this, estimations of pasture intake based on urine volume can be more 

accurate since it is not affected by temperature, climate or the DM concentration in the diet. 

The DMI can also be predicted based on the estimated total intake of K from urine volume if 

the K concentration of the feed is known. The method gave reasonable estimated of pasture 

DMI both based on the mixed and the simple linear regression. There was also a positive, 

significant correlation between K intake and urine volume which further strengthens the usage 

of this method. Still, the methods based on urine volume require collection of urine as well as 

laboratory analysis of urine components and should therefore be less applicable in 

commercial farms and more suited for experimental situations. Further it can be concluded 

that the spot sampling procedure of urine seem to be reliable since the estimated urine 

volumes in this experiment agreed with other studies were total collection of urine was 

performed. The estimations of pasture DMI was reasonable when it comes to pasture intake in 

dairy cows in Scandinavian conditions. In future research it could be of interest to investigate 

whether the pasture DMI could be estimated from the known CP intake since results from the 

experiment both showed strong positive correlation between those factors as well did the CP 

intake explain a large proportion of the variation of DMI according to the stepwise regression.  
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