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Abstract 
 

Our knowledge on the impact of forest fires on the prevalence (proportion of infected 

individuals in a population) and dynamics of zoonotic pathogens is largely limited. A large 

forest fire in late 2006 at Bodträskfors in northern Sweden provided a unique opportunity to 

investigate the effect of habitat change on disease prevalence. Pummala virus (PUUV) is 

one of the most prominent zoonotic viruses in this northern boreal forests with bank vole as 

its only competent host. Human’s infection occurs by breathing the aerosolized viral 

particles shed through saliva, urine and feces of the infected host. The infection causes 

Nephropathia Epidemia, a milder form of hemorrhagic fever with renal syndrome. The 

disease has relatively low death rates but can cause lifelong symptoms in humans. Here I 

have investigated the prevalence of PUUV in bank voles between spring and autumn of 

2007-2010 and again in 2015. Small mammals were trapped in trapping plots in the 

Bodträskfors forest fire area (n=7), mature reference forests (n=7) and unburned clear-cuts 

(3). 

In total 1048 small mammals were trapped from which 1013 bank voles were autopsied and 

analyzed for anti PUUV antibody with indirect Enzyme Linked Immunosorbent Assay. I 

used generalized linear mixed effect model to compare PUUV prevalence in the three areas. 

All bank voles were also weighed and probable weight’s correlation with PUUV prevalence 

was investigated using nominal logistic fit and univariate ANOVA (analysis of variance). 

Species composition was one of the most striking results of this study. In the burned area, 

there appeared to be a one species system, comprised of bank voles only, between 2008-

2010 and again in 2015. My results suggest a staggering 78 and 73 percent infection 

prevalence in burned forest in 2007 and 2015 compared to respective 55 and 44 percent 

infection prevalence in mature forest. This significant difference was reversed in 2010 with 

the reference area having the highest infection prevalence (65 to 33 percent respectively). 

The low species diversity, along with habitat loss due to direct effect of forest fire are 

suggested to be the two major contributing factors that have led to the very high infection 

prevalence in forest fire area.  

The weight of bank voles was directly correlated with infection prevalence. The weight was 

highest in spring, in all locations. The burned area consistently had the highest weight 

average in spring with the reference sites and clear-cut following it respectively. In autumn 

however, the weight varied slightly between areas without any consistency. 

PUUV prevalence differed between the burned and mature reference forests. To pinpoint 

the exact environmental factors that have resulted in this variation requires further 

environmental studies, which were out of the scope of this study. The one species system in 

the forest fire area along with the described infection prevalence portray a unique 

opportunity for identifying the environment’s effect on infection prevalence and also the 

epidemiologic base of infection prevalence in bank voles with regards to species diversity.   

 

 

 

Keywords: Bank vole, Puumala Virus Prevalence, Forest fire, Habitat Loss 



 
4 

 

Introduction 
The bank vole (Myodes glareolus) is a small rodent (family of Circetidae), with a wide 

Palearctic distribution which extends beyond the Arctic Circle in the north and in south, up 

to northern parts of Turkey and Kazakhstan (Shenbrot and Krasnov 2005). Bank voles 

infected by Pummala Hantavirus (PUUV) are the zoonotic agent of Hemorrhagic Fever 

with Renal Syndrome (HFRS). Nephropatia Epidemia (NE) is a milder form of HFRS 

caused by PUUV. NE has low mortality rate of about 0.4% (Hjertqvist et al. 2010) but it 

can impose long-term effects such as hematuria (with long term consequences), 

hypertension and proteinuria which can be attributed to the acute kidney injury caused in 

the acute phase of disease (Latus et al. 2015). Host rodents’ infection prevalence, defined as 

the proportion of infected individuals in a population, and the abiotic environmental 

properties are the determinant factors of viral load in the environment which are suggested 

to directly influence human infection risk (Miles 2005, Reusken & Heyman 2013). The 

growing list of countries affected by Hantavirus and consequent increase in human 

infection rate has made this disease a public health concern (Kruger et al. 2013). Better 

understanding of host infection prevalence as a function of environmental factors could 

play a significant role in minimizing human infection risks and consequently infection rates 

by better enabling us to understand and control infection in host population and also better 

predicting regional outbreaks.   

 

Bank-vole Ecology 

Communities of voles and lemmings display a large scale seasonal and multiannual 

fluctuation in abundance (Korpimaki et al. 2004). Long term study of these population 

cycles by Hörnfeldt (1994, 2004) suggest the cycles to be of three to five-year interval. The 

magnitude of these population variation is suggested to be up to 500-fold difference 

between the low and high peak seasons (Korpimaki et al. 2004). Multitude of studies have 

investigated this population cycles. Food scarcity, predation by specialists, disease and 

weather pattern are only some of the suggested reasons behind these population cycles 

(Huitu et al. 2003, Korpimäk et al 2004, Soveri et al. 2000, Haukisalmi and Henttonen 

1990). 

Bank vole’s breeding season is between late April to September (Glass et al.1988). A litter 

can be up to 10 pups but it usually averages between four to eight pups. Females reach 

sexual maturity after six weeks and males become mature in eight weeks (Lundrigan et al. 

2003). Larger litter size would result in lower weight and vice versa (Mappes et al. 1995). 

Females maintain territories and their home range is between 500 -2000 m2 (Haupt et al. 

2010). 

Bank voles reside in a wide range of habitats. However, preferred habitat is dense 

vegetation, forests and woodland’s edges (Viro and Niethammer 1982). Habitat selection is 

strongly influenced by the direct or indirect habitat composition and structure that provides 

food and shelter (Ecke et al. 2002). Bank voles avoid open areas that would expose them to 

predators, as so, underground tunnels and undergrowth paths are most often preferred 

(Lundrigan et al. 2003). In peak years however, they can also reach high densities in clear-

cuts (Ecke et al. 2002). Despite intrinsic habitat preference, the realized habitat niche can 

vary in presence of factors such as predators, high density or existence of other species 

(Lundell et al. 2012). The bank vole as the dominant small mammal species of Swedish 

boreal forests is of crucial importance to the boreal ecosystem by constituting, amongst 
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other species, as the staple food for many mammalian and avian predators (Hörnfeldt et al. 

1990).  

 

Hantavirus  

Hantaviruses are Bunyviruses and have a genome constituted of three negative sense 

single-strand RNA segments (Plyusnin and Vapalahti 1996). The 9th report of International 

Committee on Taxonomy of Viruses (ICTV) identifies 23 established and 30 provisional 

species in the Hantavirus genus (King et al. 2011). Remarkably 51 rodent species are 

associated with these 51 species of Hantavirus in a “one hantavirus-one host” system 

(Plyusnin & Sironen 2014). Hantaviruses are a global health concern. This is in part due to 

their ubiquity, but more so due to their potential in causing sever forms of infection with 

long-term consequences (Schmaljohn and Hjelle 1997). Globally, up to 150,000 diagnosed 

cases of Hantavirus infection are reported each year (Johnsson et al. 2010). Hantavirus 

infection in host animal is through two major pathways, indirectly from the environment by 

inhaling shed viral particles present in feces, urine or saliva of infected rodents, and directly 

by interaction with infected individuals (Hardestam et al. 2008). Pummala virus (PUUV) is 

a species of Hantavirus genus. This negative-sensed, single-strand RNA virus is associated 

with bank vole as the only competent (species with high infection transmission capacity) 

primary host.   

 

Bank vole-PUUV system 

Hantavirus’s transmission is horizontal and occurs through direct interaction or from 

inhaling viral particles from the environment. The infection rate can differ as a result of age 

and sex-specific behavior (Mills et al. 1999). Contaminated aerosol is the main route for 

disease transmission and as such, environmental characteristics can define survival rate of 

the virus and consequent viral load of the environment (Vapalahti et al. 2010). Favorable 

environmental conditions can result in survival of the virus for days or even weeks (Vaheri 

et al. 2012). Low winter temperature (Olsson et al. 2009), moist soil (Linnard et al. 2007), 

low-level UV radiation and humidity are microclimate conditions that favor and thus 

increase the efficiency of indirect transmission by increasing virus’s survival capacity 

(Guiver et al. 2011). Bank voles infected by PUUV disperse virus through their 

oropharyngeal secretion and feces 14 to 130 days after virus inoculation (Hardestam et al. 

2008). However, the virus can be absent in some seropositive animals between 191 and 225 

days post subcutaneous injection of active PUUV (inoculation) (Yangihara et al. 1985). 

IgG antibody response becomes detectable 18 days after inoculation, peaks after 4-5 weeks 

and declines again but persists at moderate levels (Yangihara et al. 1985).   

Adult rodents are generally more susceptible to infection than younger individuals. 

Maternal antibody present in younger individuals postpones infection and improves 

individual’s breeding success (Kallio et al.2006). Individuals become susceptible to 

infection in about three months as sub-adults (Kallio et al.2006). This increase in infection 

rate of individuals older than three months is further magnified by male dispersal and 

consequent higher interaction with potentially infected individuals and aggressive behavior 

(Dolby et al. 2012). Host population density and demographic heterogeneity also have 

significant effect on transmission efficiency and can increase susceptibility to disease (Mills 

2005 & Clay et al. 2009).  
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Environmental driving factors of PUUV prevalence 

The role of habitat and landscape for disease risk is vastly complex. A comprehensive 

literature study by Khalil et al. (2014) found that in 27 out of 30 studies a positive 

correlation has been detected between habitat and disease prevalence. The specific 

relationship between the host and virus makes host ecology the deciding factor in the 

geographic distribution of the virus (Denis and Dearing, 2010).  

It is proposed that landscape composition factors such as forest cover, fragmentation and 

barrow space, influence the dispersal of voles and consequently the epidemiology of PUUV 

(Jonsson et.al 2010, Salvador et al. 2011, Barrios et al. 2012). Field studies in Finland by 

Voutilainen et al. (2012) suggest that highest abundance of PUUV infected bank voles are 

found in forests older than 100 years but the infection rates are highest in young forests 

aging between 25-30 years. This is despite the fact that over-winter survival of the bank 

vole is poor in younger forests (Ecke et al. 2002 & Savola et al. 2013).  

Disease prevalence can also be affected directly through environmental condition’s effect 

on survival of the virus in the environment (Voutilainen et al. 2012). A study by Linard et 

al. (2007) suggests that low winter temperature is in direct correlation with increased 

disease prevalence in host, while soil moisture is directly correlated with the number of 

HFRS cases. A remarkably large outbreak of PUUV in Sweden in 2007 was also associated 

with peak density season and also reduced snow cover (Olsson et al. 2007 & 2009). All in 

all, habitats structure and quality can dictate the host survival, movement and contact rates, 

and moreover the survival of the virus and accordingly the viral load in environment.  

 

Biodiversity loss and infection prevalence 

All studies on the influence of biodiversity on infection prevalence have consistently found 

a negative correlation between the two (Khalil et al. 2014). The loss of biodiversity is 

suggested to be the main facilitator of increased infection prevalence in vector-borne 

zoonosis (Ostfeld & Keesing 2012). Keesing (2001) termed this effect as “dilution effect” 

predicting that in diverse communities the increase in probability of infection of non-

competent hosts will act as a viral sink reducing the probability of competent hosts 

becoming infected. Biodiversity loss also affects disease transmission by disturbing the 

abundance, behavior and condition of hosts or vectors (Keesing et al. 2006). The review by 

Johnson & Thieltges (2010) suggests disease transmission to be highly dependent on 

species composition and diversity. While the term “dilution effect” is generally used to 

refer to increase in biodiversity of species, Keesing et al. (2010) suggest that the diversity 

of genes, species or even an ecosystem can be expected to influence infection prevalence. 

This view of the dilution effect is important since it includes the intrinsic capacity of 

individuals of the same population in avoiding the disease. Anthropogenic factors can be 

the source of biodiversity loss by inducing local extinction of one or many species, 

resulting in increased population of more generalist species (for examples bank-vole) and 

consequently, increased infection prevalence (Khalil et al. 2014). The amplitude and 

magnitude of HFRS outbreaks has increased in the last 20 years in Europe (Reusken & 

Heyman 2013). The potential of increased or maintained diversity in reduction of zoonotic 

diseases and promotion of health for humans and wildlife is intriguing but needs to be 

further investigated. 
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Forest fire effect on biodiversity and disease prevalence 

Forest structure is positively correlated with species richness and abundance of bank voles 

(Ecke et al. 2002). This correlation is suggested to be with tall vegetation and structural 

heterogeneity of the forest but not with the late successional stages of the forest. Forest fire 

and logging are two major contributors of compositional and structural change in forest 

stands (Hart & Chen 2008). 

Forest fire can affect population density and composition drastically. A study by Martel 

(1984), suggests various responses of different small mammals to fire, from rapid decline to 

rare status in red-backed voles (Clethrionomys gapperi), to drastic increase in population 

size in deer mice (Peromyscus maniculatus). While forest fire can be a negative factor for 

some species, it can also work as a sink for specific species that can cope well with the 

newly found conditions (Martell 1984). Generalist species such as the bank vole can thrive 

in such conditions due to lower interference and competition, resulting in an increased 

population density (Fisher & Wilkinson, 2005). This increase can result in increased 

disease prevalence and consequently increased human risk of infection (Mills 2006).  

A major forest fire occurred in Bodträskfors, Northern Sweden in August 2006 due to a 

spark by a forestry machine. The fire was the largest forest fire recorded in Sweden until 

the 2014th wildfire in Västmanland. In total, in 29 days, 1900 ha of productive forest was 

burned in a total area of 3000 ha (Lundbery et al. 2014). This forest fire was severe and 

burned up to 50 cm of peats and tree roots resulting in some forest patches with 100% tree 

mortality rate (Johansson et al. 2011). In severe forest fires such as that of Bodträskfors, 

primary and secondary succession occurs (Beyers 2004) in presence of a legacy of species 

once present at the location and it will take decades for the area to achieve structure and 

function comparable to its original state (Walker et al. 2007).  

Aim of Study 
The Bodträskfors forest fire provided a unique opportunity to study the effect of forest fire 

and the consequent effect of change in landscape structure, habitat and small mammal 

composition on PUUV prevalence. I hypothesized that loss of habitat would initially induce 

a decrease in population density due to major loss in suitable habitat. However, this was 

speculated to change to an increase in bank vole density due to the absence of other 

competing species and plasticity of bank vole as a generalist species. This increase in 

population, and loss of biodiversity was speculated to cause an increase in PUUV 

prevalence. 

Therefore, this study incorporates two aims. First to analyze the prevalence of PUUV in 

bank voles between spring of 2007 and autumn of 2010 and spring and autumn of 2015 in 

the Bodträskfors forest fire area, in comparison to unburned clear-cuts and mature forest 

located nearby the forest fire. Second, to investigate the possibility of variation in infection 

prevalence as a result of dilution effect.  
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Materials and Method 

Ethical statement 

In order to trap small mammals, permission has been obtained from the Swedish 

Environmental Protection Agency (reference number 412-4009-10 Nv) and Ethical 

Committee on Animal Experiments (reference number A39-14).  

Study site and Trapping 

Small mammals were trapped in the Bodträskfors area located in Norrbotten county (66°N, 

20°E), northern Sweden, in spring (early-June) and autumn (mid-September) of each year, 

from 2007 to 2010 and in spring and autumn of 2015. For the purpose of this study, I have 

trapped small mammals in 2015; the 2007-2010 trapped small mammals were obtained 

accordingly. Trapping was performed in permanent trapping plots located in mature forest 

(n=7), burned area (n=7), and clear-cuts (n=3). Each trapping plot was 1-ha with its 

position being selected randomly with consideration for avoidance of forest edge, major 

river systems and roads. Each trapping plot was represented by a 90-m trapping line with 

10 stations positioned on an even 10-m distance of the diagonal line of the trapping plot. At 

each trapping station, five traps were positioned within 1-m radius centered on the trapping 

station in runways, crevices and covered spaces according to Hörnfeldt & Westerberg 

(1977). In total 17 plots were trapped using snap traps baited by dried apple and Polish 

wicks (oil-soaked cotton strings) for three consecutive days resulting in a constant trapping 

effort of 150 trap-nights per ha-plot. Each captured animal was species-identified to the 

species level (either in field or in the lab), with time, date and trapping position logged and 

was given a specific identification code. To avoid cross contamination between captured 

small mammals, each capture was packed separately and kept in cold condition until 

transfer to the main holding freezer in which they were kept at -20°C.   

Burned forest TP 

Mature forest TP 

Clear-cut forest TP 

Individual stations in a TP 

 
0        0.8      1.6km 

0          350      700Km 

0                 50             100Meter 

Bodträskfors  

S
w

ed
e

n
 

Figure 1: The Bodträskfors area selected for this project. In total seven 

burned and reference trapping plots and three clear-cut trapping plots 

were selected, each plot was 1-ha with 10 trapping stations placed along 

the diagonal of the ha-plot, each having five traps. TP (trapping plot). 

Study site and trap positioning 
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Autopsy procedure and Tissue handling 

Sample tubes were prepared prior to autopsy procedure by addition of 1 ml of 1% 

Phosphate Buffered Saline (PBS) solution and five to seven steel ball pestles to each 

labeled tube. Bank voles were removed from -20°C freezer and when slightly thawed, 

autopsied using biopsy needle (2*80mm) and 2ml syringe preloaded by 1% PBS solution 

taken from sample tube. Each rodent was sampled four times; two samples were taken 

slightly lower than the clavicle bones on either side of the sternum, in a 45-degree angle 

and two samples at right and left of the approximate location of lower ribs in a 90-degree 

angle. This process was used to provide autopsy of both upper and lower lobes of the lungs. 

Samples were then frozen at -20°C. On the day of ELISA test (see below), samples were 

slightly thawed and fractured twice using Fast Prep shaker with 6.5m/sec frequency for 30 

seconds. The resulting sample was centrifuged at 5000rpm (1957*g) for 60 seconds.  

 

Centrifuged samples were investigated using Indirect Enzyme Linked Immunosorbent 

Assay (ELISA). In this study, Antigen coated plates were prepared in lab. To acquire the 

best concentrations of Antigen (Ag) and conjugate Antibody (c-Ab), multiple dilution 

series were run (1 µl Ag or c-Ab in 5, 8,10,15,20,25,30,35 ml). In the first stage, Dilution 

series of Ag was prepared using Truncated Ag (non-infective) prepared in E-Coli (unknown 

concentration), and diluted in Coating buffer (0.05 M Bicarbonate buffer, PH: 9.6). Affinity 

isolated Anti-Mouse IgG alkaline phosphatase Ab (Sigma-Aldrich) was diluted in 1% 

sterile PBS solution. The titration level, accuracy and precision of the cross dilution series 

were then investigated. Titration graphs, along with visual observation of consistency in 

duplicates were used and Ag, Conjugate Ab concentration of 1/30000µl was selected.  

Flowingly, 100 µl of diluted Ag was used to coat the ELISA plates. To better disperse 

coagulated Ag particles present in stock Ag, diluted Ag samples were sonicated with 

medium power and 50 cycles/min for a total repetition of four times, each consisting of 30 

seconds sonication with 15 seconds rest times in between. Plates were antigen coated in 

every other consecutive row, leaving a blank row for each Ag-coated row. 

 

Controls 

Control samples were prepared by pooling high positive samples from previous studies 

with calculated absorbance higher than one. The pooled sample was then diluted using 1% 

PBS solution. The resulting diluted sample was then tested for its ELISA based absorbance 

value and diluted accordingly to read as close as possible to previous positive control’s 

value of one. Low positive control was based on multiple dilution series of high positive 

control and was run after the cross dilution series.  

To determine the lowest detectable level of positive samples, a serial dilution of high 

positive control was used resulting in a cut-off value of 10 (absorbance of 0.140 at 405nm). 

This value was used as the cut-off value of positive samples. All samples with absorbance 

lower than these were considered negative (Crowther 1995). 

 

ELISA test 

Samples, control blanks, negative and low positive controls were run in duplicates while 

high positive control was run in quadruples. 50µl of centrifuged sample was added to Ag 

coated plates in duplicates and left overnight, the plates were washed four times (200µl 
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PBS 1 %) and 100µl of diluted conjugate AB was added and samples were incubated for 

one hour at 37°C. After incubation, plates were washed three times (200µl PBS 1 %), 100 

µl substrate solutions (Sigma Aldrich, phosphatase substrate) was added and samples were 

incubated at 37°C for 30min, after which 5µl one molar NaOH was used as stopping 

solution and samples were read at 405 nm wavelength using Thermo-scientific plate reader.   

To ensure low artifact effect on test results, absorbance adjustment was performed 

automatically by programing the ELISA reader to use the following formula. 

1) 
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑚𝑝𝑙𝑒 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒−𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑟 𝑏𝑙𝑎𝑛𝑘 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒)

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑟 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒− 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐵𝑙𝑎𝑛𝑘𝑠 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒)
∗ 100 

 

To run the numbers in this formula, the average of Blank duplicates was deducted from all 

other cells’ absorption value. This deduction ensures that increased absorbance due to Ag 

binding process and possible coloration of plate does not result in false positives. After this 

step, the formula was run, in which, average of each sample’s blank tests (cells without Ag 

binding) were deducted from the average of the samples test results (cells with bounded 

Ag). This step ensured that the plate coloration due to high color content of autopsied 

sample did not produce false positives. Each resulting sample’s value was then divided by 

the mean of the absorbance of known high positive control and the result is multiplied by 

100. Since the positive control has a value of one, if the test has perfect conditions, the 

division would not cause a difference, however if the test has had a subnormal condition 

resulting in low absorption readout of controls and other samples, the test samples value is 

divided by a smaller the smaller value of positive control, which would increase the readout 

of all samples accordingly. Vice versa, a high readout of control would result in adjustment 

of test samples, by making them smaller. This step ensured that small variations in time and 

other variants that could affect the test were eliminated and that samples were run in a 

uniform scale. In case a positive control was misread, all samples were recalculated 

manually. Since perfect and consistent readout of positive control was required for 

successful measurement, the entire plate test was performed again if two or more positive 

samples were misread or read inconsistently.  

 

Removal of Maternal Ab effect 

A study by Kallio et al. (2010) suggests presence of high degree of maternal antibody in 

individuals with weights lower than 16 g, while Voutilainen et al. (2012) suggest this effect 

to be prominent in bank voles with weights lower than 14.4g. In this study, 14.4g was used 

as the threshold, and bank voles weighting less than14.4g were removed from the 

prevalence studies. 

 

Data Analysis 

Species diversity was calculated using the Shannon index to obtain a number that 

accurately reflects the species composition. The following formula was used in which Pi is 

the relative abundance of species i in the community (Whitlock & Schluter, 2009). 

2) 𝐻 = ∑(𝑃𝑖)|𝑙𝑛 𝑝𝑖| 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Voutilainen%20L%5Bauth%5D
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The data on diversity was not further investigated statistically. Since multitude of the 

results were that of a one species system and no meaningful statistical analysis could be 

based on them. 

Normal distribution of the data was tested using distribution quantile plots and Shapiro-

Wilk W test in JMP-Pro (Version 12.1). In spring of all years, weight was normally 

distributed. In autumn however, the distribution of the data was slightly skewed to the left. 

This however was present for all sampling groups in autumn. I considered these deviations 

from normality to be of insignificance value in my statistical analysis. Firstly, according to 

Box & Andersson, (1995) in large sample sizes, based on central limit theorem, sampling 

distribution of means behaves correctly for the samples to be tested by parametric tests. 

Second, according to Whitlock and Schluter (2002) comparing data groups that are 

similarly skewed to one side should be considered to have normal distribution.   

My data passed the four main assumptions of binomial function of generalized linear mixed 

effect model in SPSS (SPSS Technical report, 2005). First, the dependent variable was 

measured in a dichotomous scale of zero and one. Second, there was more than one variable 

(time and weight). Third, the observations were independent and fourth, a linear 

relationship was present between the variables. The last assumption was tested by SPSS 

software itself for each set of tests. The SPSS based (V23) generalized linear mixed effect 

model with binomial distribution, logit link (f(x) =log (x / (1−x)), random effect of habitat 

and unbounded variance component was used by location and weight for each year. Cox & 

Snell R square value was used to evaluate the goodness of fit test of the model. The Wald 

test results were used to determine the statistical significance for each tested variable, and 

the resulting p values were then used as an indicator of the significance in variation. An 

SPSS based univariate analysis of variance using SSTYPE 3 method and Post Hoc Tests 

were used with weight as the dependent variable to identify mean difference from each 

other in different weight groups in each year and also, in each location. The weight 

comparison between PUUV positive rodents in each year and location was done using One-

way ANOVA analysis of weight as a function of infection and further validated but chi-

square test using JMP PRO (Version 12.1).  
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Results 

Small mammals trapped 

In total 1048 small mammals of which 1013 bank voles were trapped in the five sampling 

years of this study (2007-2010, 2015). Of these, 131 (12.7%) small mammals captured, had 

a weight lower than or equal to 14.4 gr and were considered to hold maternal antibodies 

which would result in false positive. These samples were removed from the analyses. In 

general, highest numbers of bank voles were captured in the autumn in all locations and all 

years. The total number of bank voles captured in autumn constituted 80.3 percent of all 

bank-voles captured in this study. Highest numbers of bank voles were captured in autumn 

2007, 2010 and 2015 with 191, 233 and 247 bank voles, respectively, representing a 4-year 

cycle of the bank vole, even though no trapping was performed between 2011 and 2014. 

Total trap-night effort for burned, reference and clear-cut were 1050, 1050 and 450 trap-

nights. Clear-cuts had the highest trapping index (number of trapped specimens per 100 

trap-nights) in autumn of the peak years of 2007 and 2010 (figure 2 & 3). In both seasons of 

2008 and 2009 trappings resulted in very low number of captures. To avoid statistical 

insignificance, all sampling occasions with sample numbers lower than 10 were removed 

from the statistical analyses.  
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Figure 2: Trapping index measured for 100 trap nights for spring. 

Highest captures were in peak years (2007, 2010, 2015). 
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Figure 3: Trapping index for 100 trap nights for Autumn. Similar 

to spring, highest capture numbers were in peak years in clear-cuts. 
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Species Diversity and community structure 

Species diversity was highest in the burned area at the start of the study (spring, 2007) but 

became 0.0 in subsequent years (table 1 and figure 4). On the other hand, the reference area 

showed a relatively low species diversity in 2007 but it increased slightly in the coming 

years. Diversity in the clear-cut area fluctuated from 0.5 to 0.0 to 0.4. All in all, species 

diversity was low in the study area with the bank vole as the dominating species present in 

all years and all seasons. 

The bank vole was the most dominant species captured for all years, seasons and locations 

(99% of all trapped specimens). Apodemus flavicollis, Sorex araneus, Myodes rufocanus 

and Sorex araneus were also captured but comprised less than 1% of the total number of 

small mammals trapped. One of the main surprising characteristics of the species 

community structure was the presence of very few individuals of other species than bank 

vole in the five-year duration of this study. This was especially true in the burned area. In 

this area, in the last 4 years of sampling only bank voles have been captured (table 1). This 

is particularly interesting considering that burned forest had the highest species diversity at 

the start of the study.  

 

  

Table 1: Species composition of the three areas suggests an abnormally low presence of other 

rodent species in the fire area for four consecutive years. MG (Myodes glareolus), AF 

(Apodemus flavicollis), SA (Sorex araneus), MR (Myodes rufocanus). 

Species Composition by Area & Year (In percentage) 

 Burned  Clear-cut  Reference  

2007 95 MG/ 2.5 AF/ 2.5 MR 98MG/ 1AF/ 1CR 99MG/ 1MS 

2008 100 MG 100 MG 100 MG 

2009 100 MG 100 MG 98 MG/ 2 MR 

2010 100 MG 100 MG 98 MG/ 1 MS/ 1 SA 

2015 100 MG 97 MG/ 3 MR 96 MG/ 4 MR 

Figure 4: Species diversity index measured for the three years of 

study with significant capture numbers.  
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PUUV prevalence 

PUUV infection prevalence was exceptionally high in spring of 2007 in the burned area 

(78%) compared to the reference area (55%). This pattern was reversed in 2010 with 

reference area having the highest infection rate (65%) compared to that of burned area 

(33%). In spring 2015 however, the original pattern found in 2007 is repeated with 73 % 

and 44% for burned area and reference area respectively. In autumn, all samples had 

considerably lower infection prevalence that was relatively similar amongst all locations. In 

autumn 2009, the burned area had a higher infection rate (25%) compared to the reference 

(21%) but reverse was observed in 2010 and 2015 (figure 5).  

 

Weight correlation with PUUV infection prevalence 

Univariate analysis of PUUV variance by weight for all years, seasons and locations (figure 

6), supports the proposed positive correlation of weight with infection prevalence. Rate of 

infection increased drastically as weight 

increased from 15 to 29-g, from there on 

however, the infection prevalence 

remains stable at high levels and even 

decreased slightly in the last group 

weighting between 35 and 39 g. The 

pattern strongly resembles described 

infection test by Yangihara et al. (1985). 

Seasonal based correlation between bank 

vole weight and PUUV prevalence 

suggests low significant correlation in 

spring and strong correlation in autumn. 

It is notable that despite the insignificant 

p value, the slight increase of PUUV 

prevalence with weight is apparent 

(figure 7).  
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Figure 5: Prevalence of PUUV positive samples per area, location, year and season. 

Exceptionally high infection prevalence was detected in spring in the burned and 

reference area. The clear-cut area did not gain enough or any samples for reliable 

prevalence measurements and is shown as zero in this graph. 
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correlated with increased infection rate. 
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Figure 8 represents weight as a function of location and year. As expected, spring bank 

voles were generally heavier than those of autumn. However, in spring, bank voles in the 

burned area were consistently heavier than bank voles from both reference sites and clear-

cuts. One-way ANOVA test of weight between locations suggested high level of difference 

between weights in different locations in both spring and autumn season. Bank voles in 

clear-cuts showed constantly lower weight compared to the other two locations; however, 
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Figure 7: PUUV prevalence by season, measured using nominal logistic fit. 

Weight was positively correlated with PUUV prevalence in Autumn season. 
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in spring of 2015 this difference became minimized between the burned area and clear-cuts 

with both of them containing heavier individuals than the reference area.  

Location based difference in PUUV prevalence 

Generalized linear mixed effect model in SPSS was used to identify significant differences 

between PUUV prevalence of the burned and clear-cut area, respectively with the reference 

area in each year. The result suggested a considerable difference between bank vole 

infection prevalence in burned forest and reference forest in spring of 2007 and 2015. This 

difference was minimalized in autumn of all years. And no difference was found in spring 

of 2010. The same comparison was not possible between clear-cut bank voles and those of 

reference sites in spring season due to low bank vole number in the clear-cuts. In autumn, 

the test revealed no significant difference in PUUV prevalence in bank voles when 

comparing the reference area with the burned area and clear-cuts. 

Comparison of infection prevalence in burned and clear-cut with reference area’s bank 

voles without separation of the data by time (year), suggested high differences between 

burned and reference area’s infection prevalence in spring and no difference in autumn. No 

difference was found between the clear-cut and mature forest.  

As expected, weight appeared to have a significant effect on PUUV prevalence both when 

it was considered for each season of each year separately and also when considered without 

separation of years. The spring of 2010 and 2015 however appear to be an exception, with 

no significant effect on infection prevalence.  

 

Table 2: PUUV prevalence in burned and clear-cut area tested against mature 

forest. Given P values resulted from linear mixed effect model. Individual tests 

were run for each season of each year and also, without consideration of time 

constrain (year). Location (randomized) and weight were both considered as 

model effects. 

 

 Linear mixed effect model test evaluation of reference area against burned 

area and clear-cuts 

P Estimates  

 individual areas compared to 

reference 

Across three areas 

Year Season Burned Clear-cut Weight 

2007 Spring 0.08 NA 0.003 

 Autumn 0.323 0.381 0.0001 

2010 Spring 0.29 NA 0.29 

 Autumn 0.49 0.1 0.0001 

2015 Spring 0.04 NA 0.136 

 Autumn 0.12 0.885 0.004 

Across study 

Period 

Spring    0.06             NA                         0.0001            

Autumn     0.4               0.9                         0.0001            
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Discussions 
The large number of small mammals trapped in 2007 with the highest PUUV prevalence 

coincided with the large outbreak of PUUV infection in humans predicted and reported by 

Olsson et al. (2009). The results from 2007 support the results of Olsson et al. (2007, 2009) 

of expected high infection prevalence in bank voles as a result of high population density of 

voles in that year. Olsson et al. (2009) also suggested warmer winter weather as a major 

contributing factor to the increased PUUV prevalence in bank voles. Investigation of 

weather pattern in my trapping locations was out of the scope of this study, however, it can 

be noted that 2007 has had the highest infection prevalence in comparison to 2010 and 2015 

in which high population density of voles were also present. 

Clear-cuts showed high trapping indices in the autumn of all years. This seasonal increase 

in capture of small mammals can probably be attributed to the high population density in 

adjacent mature forest (core habitat). Habitat selection is strongly influenced by structural 

habitat factors that provide food and shelter (Hansson 1978, 1997 and Ecke et al. 2002). 

Young forests have a higher heterogeneity and better cover of tall vegetation providing 

shelter and food for small mammals (Ecke et al. 2002). High population density in core 

habitat along with presence of a heterogeneous and suitable habitat leads to the source sink 

scenario described by Ecke et al. (2002) in which younger individuals of the population 

primarily born in the old growth forest migrate to the younger forests to breed despite the 

poor winter survival probabilities associated with this habitat. Similarly, low abundance of 

individuals in the spring season can be a result of harsher winter conditions, which leads to 

lower survival rate.  

In the burned area, large numbers of small mammals were captured in all years, which 

might be attributed to the increased heterogeneity of the area as a result of non-uniform fire 

effect on the forest stands due to increased amount of coarse and fine woody debris. This 

however, does not explain the low species richness among the small mammal’s species 

found in the last four years of trapping. This drastic decrease could be due to better 

suitability of bank voles as a generalist small mammal in re-populating and using a changed 

habitat compared to other small mammals found in the area.  

My results are suggestive of presence of exceptionally high PUUV prevalence in bank 

voles living in the burned area in spring 2007 and 2015 compared to reference area. The 

apparent similarity of total number of bank voles caught in the burned and reference area 

suggests presence of factors other than mere population density in PUUV prevalence. It is 

notable that a study by Voutilainen et al. (2012) investigating four-year forest succession 

pattern, found the prevalence to be 46% in average. Interestingly, their study (Voutilainen 

et al. 2012) also found prevalence as high as 80 percent but only when sampling numbers 

were very few. In this study, sample numbers lower than 10 were removed from the study 

resulting in higher statistical power and reliability. 

The high infection rate in the burned area can also be attributed to the current and previous 

patchiness of suitable habitats for bank voles, which could result in aggregation of bank 

voles, higher contact rate and aggressive behavior. It also needs to be noted that in 2010 the 

PUUV prevalence decreased drastically in the burned area (from 78% to 33%). This 

however is most probably a stochastic effect of low number of bank voles captured in 

spring of 2010 (10 individuals). It can also be speculated that absence of other competing 

species has enabled the bank-voles to roam freely, this should also be true since the fire 

area is expected to have considerably lower food source availability and as such bank voles 
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are expected to travel higher distances increasing the chances of aggressive interactions. In 

accordance with theory, the lack of incompetent hosts results in higher chance of bank vole 

infection, supporting the notion of a potential dilution effect on PUUV prevalence (Keesing 

et al. 2009). Better knowledge on vegetation composition, landscape structure and change 

in microclimate would further our understanding on why and how bank voles have re-

populated the burned forest. 

In this study weight measurements were used as a determinant factor of age. Weight was 

directly related to infection rate, this is speculated to be due to the simple fact that heavier 

individuals are older and as such have had a higher chance of becoming infected in their 

longer life span (Olsson et al. 2002). Weight distribution of bank voles provided further 

information about the underlying population structure of bank voles. As expected, 

individuals present in the clear-cut area had the lowest weight compared to that of both 

burned and reference area. Also the spring population was heavier and older across the 

study period and locations. Bank voles present in the spring season in the burned area were 

significantly heavier than that of the reference area. Furthermore, in spring, PUUV-infected 

bank voles in the burned area had higher weights compared to bank voles in the reference 

areas. This means probable higher over-winter survival of voles in the burned area or better 

fire-induced food quality. It can also be speculated that lower top canopy vegetation cover 

in the burned area had resulted in earlier warming of the forest ground leading to higher 

winter survival and higher infection based on the same factors that resulted in spring 2007’s 

high PUUV prevalence. Molar tooth investigation of the studied bank voles and providing 

information on age (Viro 1974) can provide a better answer in this regard.  

In autumn, the burned and reference area did not differ in PUUV prevalence across all three 

years; however, the clear-cut area was highly different with lower PUUV prevalence 

compared to both burned and reference area. This is expected to be a result of forced 

movement of younger individuals of the population from core habitat to the clear-cuts, 

which explains the lower weight associated with the clear-cut area and lower PUUV 

prevalence associated with the clear-cuts. The total number of samples captured in the 

autumn is considerably higher than that of spring and as so, the input of high number of 

bank voles into the population, along with the immunity of newborns against infection by 

PUUV means that a large proportion of individuals with weights over 14.4 g haven’t lived 

without the maternal antibodies protection for long enough time to become infected. Hence, 

in autumn, burned, reference and clear-cut areas appear to be similar regarding vole weight 

and PUUV prevalence.  

Understanding the individual environmental factors involved in the mentioned variations 

was out of the scope of this thesis paper. However, the results of this study portray a unique 

opportunity, from which, follow-ups and further detailed studies can help to identify 

environmental effects and dilution effect and also provide further knowledge of the 

epidemiology of PUUV in bank voles. 
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Future research, 
All in all, this study has resulted in two important results that require immediate follow ups. 

First, for the first time a one-species system has been identified that provides a unique 

opportunity for understanding adaptation behavior and dilution effect in a natural system. 

This system has been identified as a one-species system not immediately after the fire but 

rather with a two-year delay period. Following this forest system as the succession pattern 

takes place and other small mammals and vegetation return to this system can provide a 

unique study of environmental heterogeneity and dilution effect on bank vole population 

and consequent PUUV prevalence. PUUV prevalence can also be affected by the genetic 

diversity of the bank vole alongside the environmental factors. In fact, this effect, which is 

briefly mentioned in Ostfeld et al. (2010), has never been studied. If this forest fire has had 

a reasonable effect on the genetic structure of this population, it could also provide a unique 

opportunity for studying the dilution effect due to genetic diversity. 

Second, this study suggests extremely high PUUV prevalence that needs to be investigated 

and understood in the epidemiologic aspect of it. The single fact that a forest fire of such 

magnitude could have triggered such high PUUV prevalence needs to be understood to 

prevent probable increase in human infection rates. This study confirms previously proven 

factors such as weight and yearly cycles in regards to PUUV prevalence. It fails however to 

point out any exact reasons behind the remarkable PUUV prevalence variations that are 

unique to this study. Environmental conditions of the burned area need to be investigated. It 

is suggested to evaluate winter temperatures, UV penetration and humidity as the main 

factors that could affect PUUV survival in the environment. 
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