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Abstract 
 

 
This study aimed  at  investigating gene expression patterns  in resistant and 

susceptible clones of Fraxinus excelsior L. (European ash) in response to infection 

with Hymenoscyphus fraxineus. A further objective of this study was to investigate 

the role of ABA8-hydroxylase genes (ABA8H) in European ash under infection with 

H. fraxineus. To address the first aim, bark of susceptible and resistant clones were 

infected with H. fraxineus and samples were taken after 9 months from the margins 

of necrosis. Total RNA was extracted and sequenced by next generation Illumina 

sequencing technique. To identify differentially expressed genes (DEGs), sequences 

were aligned to the European ash draft genome before analyzing in the Cufflinks 

pipeline. The DEGs were then annotated in Blast2go. More than 87,000 transcripts 

were presented in the library. In the inoculated susceptible clones, up-regulation of 

the 2-hydroxyisoflavanone dehydratase-like (HID) gene, associated with formation 

of secondary metabolites, was observed. The over expression of caffeoyl- o- 

methyltransferase (COMT) and farnesyl diphosphate synthase was also detected in 

the inoculated susceptible clones. In the inoculated resistant clones, the defense 

response genes such as 1-aminocyclopropane-1-carboxylate oxidase (ACC), some 

of the ethylene-responsive transcriptional factors (ERFs) and WRKY- 

transcriptional factors (TFs) were up-regulated. The peroxidase-like and pathogen- 

related protein (PR)  genes, secoisolariciresinol dehydrogenase-like, flavonol syn- 

thase flavanone 3-hydroxylase-like, phenylalanine ammonia-lyase and shikimate 

chloroplastic-like genes were up-regulated but ERFs were down-regulated in both 

susceptible and resistant clones in response to H. fraxineus inoculation. Shikimate 

chloroplastic-like acts in the secondary metabolite pathway just like flavonol syn- 

thase flavanone 3-hydroxylase-like. To address the second  aim,  susceptible 

genotypes of the European ash were subjected to biotic stress which included 

wounding and inoculation with H. fraxineus. RNA was extracted from lesions and 

expression of candidate genes, i.e. three ABA8H genes and two encoding NAC-TFs 

was quantified. Some NAC genes are known to have a role in abscisic acid (ABA) 

signaling pathway. The European ash ABA8H and NAC genes were up-regulated 1 

day after inoculation but already by day 7, they had been down-regulated.  It  is 

possible that the NAC genes contribute to the ABA biosynthesis pathway  and 

thereby play roles in the defense mechanism. 

 
Keywords: Hymenoscyphus fraxineus, Fraxinus excelsior, ABA8H, RNA-seq, NAC 
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Abbreviations 
 

ACC 1-aminocyclopropane-1-carboxylate   oxidase 

ABA Abscisic acid 

ABA8H ABA8-hydroxylase 

cDNA complementary DNA 

COMT caffeoyl-  o-methyltransferase 

dpt days post treatment 

ERFs ethylene-responsive-TFs 

ET Ethylene 

ETI effector trigger immunity 

ETS effector trigger susceptibility 

FPKM fragments per kilo base of transcript per million mapped reads 

HID 2-hydroxyisoflavanone   dehydratase-like 

HR hypersensitive  response 

JA Jasmonic acid 

MAMPs microbe associated molecular patterns 

NAC NAC-domain 

ORF open reading frame 

PCR Polymerase chain reaction 

PP2C Protein phosphatate 2C 

PR pathogen-related  protein 

PTI pattern trigger immunity 

qRT-PCR quantitative polymerase chain reaction 
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1 Introduction 
 
 
 

1.1 The Hymenoschypus/Fraxinus pathosystem 
European ash, Fraxinus excelsior L., is an economically important tree in Eu- 

rope, widely spread in Russia, Sweden, Ireland, Spain and Italy. European ash has 

also been found in the northern part of Iran (Fraxigen, 2005). The wood character- 

istics of the tree, i.e. strength and plasticity, make it suitable for usage in furniture 

and sport instruments (Fraxigen, 2005). The European ash is an outcrossing wind 

pollinated species (Fraxigen, 2005; Dobrowolska et al., 2011). Another important 

species of this genus is F. mandshurica known as Asian ash. This species is found 

in the eastern part of Russia but the main region for its growth is the North-East 

China (Drenkhan et al., 2014). 

European ash is currently listed as an endangered species by the Swedish Spe- 

cies Information Centre (http://www.artfakta.se) due to a wide-spread of ash die- 

back disease. The disease is caused by Hymenoscyphus fraxineus, an ascomycete 

fungus (Baral et al., 2014). The H. fraxineus was first found in mid-1990s in Po- 

land and Lithuania (Kowalski, 2006). The disease causes necrotic lesion in barks 

and wilting of leaves, which eventually results in the death  of  tree  (Kowalski, 

2006; Kowalski and Holdenrieder, 2009a; Timmermann et al., 2011). At early 

stages of infection, black necroses can usually be detected on leaf rachies and pet- 

ioles (Bakys et al., 2009). The germination of ascospores from ascocarps results in 

appressoria formation on the leaf surface. The appressoria penetrates through the 

leaf cuticle (Cleary et al., 2013; Baral and Bemman, 2014), resulting in coloniza- 

tion of fungus in rachises and phloem and thereafter, appearance of disease symp- 

toms (Schumacher et al., 2010). 

It is believed that H. fraxineus was introduced from Asia to Europe (Zhao et al., 

2012). Zhao et al. (2012) by phylogenetic  analysis  showed  that  Lambertella  al- 

bida, found on the F. mandshurica with no pathogenic effects, and H. fraxineus 

are indeed conspecific. However, the Lambertella albida has a higher genetic di- 
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versity than the H. fraxineus (Zhao et al., 2012). Other studies also suggested that 

H. fraxineus was most likely originated from East Asia (Queloz et al., 2011). 

H. albidus, a saprophyte, is widely spread in Europe (Kowalski and Holdenried- 

er, 2009b). This species is morphologically similar but genetically different from 

H. fraxineus and cannot cause any disease on European ash (Kowalski and Hold- 

enrieder, 2009b; Bengtsson et al., 2012). Both H. albidus and H. fraxineus form 

ascocarp as a fruit body on necrotic petiole and rachises (Queloz et al., 2011; Baral 

and Bemmann, 2014). However, the ascocarps formed by H. fraxineus are bigger 

than those formed by H. albidus (Queloz et al., 2011; Baral and Bemmann, 2014). 

Another interesting species of the Hymenosyphus genus is H.  albidoides  which 

was first found in East China (Zheng and Zhuang, 2014). This species is morpho- 

logically different from H. albidus and H. fraxineus but has a close genetic simi- 

larity to H. fraxineus (Zheng and Zhuang, 2014). 
 

 
 

1.2 Molecular control of plant-pathogen interaction 
Plant pathogens are generally classified into three classes namely necrotrophs, 

biotrophs and hemibiotrophs. The necrotrophic pathogens obtain their nutrients 

though killing the host cells, often by producing toxins (Smith et al., 2014). On the 

contrary, biotrophic pathogens obtain nutrients from the living cells (Smith et al., 

2014). The hemibiotrophs have an initial biotrophic phase but  switch  to  necrot- 

rophic later during infection (Smith et al., 2014). 

Plant defense system against pathogens, so called Zigzag model, was first de- 

scribed by Jones and Dangl (2006). The first stage includes recognition of microbe 

associated molecular patterns (MAMPs), which is initiated by a signal sent from 

the infection site. This activates the pattern trigger immunity (PTI) (Jones and 

Dangl, 2006). Most biotrophic pathogens have an ability to deactivate PTI by pro- 

ducing effectors, which results in effector trigger susceptibility (ETS). In resistant 

plants, however, these effectors can be recognized by specific proteins known as 

receptor proteins (R-proteins), which lead to effector  trigger  immunity  (ETI) 

(Jones & Dangl, 2006). The ETI results in necrosis and death of cells, which are 

adjacent to the infection site. By this hypersensitive response (HR), the biotrophic 

pathogen is isolated (Jones & Dangl, 2006). However, the molecular interaction 

between necrotrophic pathogens, as H. fraxineus is presumed to be, and host plants 

(Fraxinus excelsior) does not necessarily rely on the production or recognition of 

effectors (Mengiste et al., 2012). In the case of host-specific necrotrophs, inherited 

resistance factors will confer protection in a manner that may be somewhat remi- 

niscent of the Zigzag model, whereas, resistance to broad host-range necrotrophs 

is multifaceted (Mengiste et al., 2012). 
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1.3 Plant hormone regulation in response to pathogen 
Plant hormones such as salicylic acid (SA), jasmonic acid  (JA)  and  ethylene 

(ET) have vital roles in plant defense signaling (Robert-Seilaniantz et al., 2007). 

There is a partly antagonistic relationship between JA/ET and SA in response to a 

pathogen (Robert-Seilaniantz et al., 2007). In short, up-regulation of JA/ET is 

generally associated with resistance against necrotrophic pathogens (Robert- 

Seilaniantz et al., 2007). However, responses mediated by SA often promote sus- 

ceptibility against necrotrophic pathogens but are tightly linked to HR  and  re- 

sistance against biotrophic pathogens (Robert-Seilaniantz et al., 2007). 

Abscisic acid (ABA) is also known to be involved in the plant defense mecha- 

nism  (Lim  et  al.,  2015).  Pathogens  invade  plants  via  stomata,  inter-  or  intra- 

cellularly (Lim et al., 2015). Closure/opening of stomata is regulated by ABA. We 

also found that inoculating the European ash with H. fraxineus resulted in the down- 

regulation  of  ABA8-hydroxylase  (ABA8H)  genes  (Eshghi  Sahraei  et  al.,  2015). 

These enzymes degrade the ABA to phaseic acid (Saito et al., 2004; Jensen et al., 

2013;  Lim  et  al.,  2015).  Other  roles  of  ABA  include  plant  growth  and  devel- 

opment, seed dormancy and seed germination (Saito et al., 2004; Lim et al., 2015). 

There are several proteins involved in the upstream regulation of ABA biosyn- 

thesis pathway including Snf1-related protein kinases (SnRK2) and group A pro- 

tein phosphatate 2C (PP2C) (Cutler et al., 2010). A simplified schematic model of 

ABA biosynthesis is shown in Figure 1. The SnRK2 stimulate the ABA produc- 

tion contrary to PP2C which down-regulate it. The PP2C does this by binding to 

SnRK2 which in turn, deactivates the SnRK2 (Cutler et al., 2010). Under stress 

conditions which demand high levels of ABA for the plant, ABA is bound to 

PYR/PYL/RCAR family receptors and this unit is attached to PP2C (Cutler et al., 

2010). This results in the release of SnRK2 and activation of downstream ABA 

biosynthesis (Cutler et al., 2010). Another protein that has a role in regulating 

ABA biosynthesis is Arabidopsis transcription factor ATAF1, belonging to the 

super family of NAC-domain (NAC) transcriptional factors (TFs) (Nuruzzaman et 

al., 2013). ATAF1 regulates the expression of 9-cis-epoxycarotenoid dioxygenase 

(NCED) gene in upstream ABA biosynthesis (Miyazono et  al.,  2009;  Yu  et  al., 

2012; Jensen et al., 2013). NCED triggers the production of ABA by catalysing 9- 

cis-epoxycarotenoids to xanthoxin (Jensen et al., 2013). Genes involved in ABA 

degradation are P450 CYP707A (I-IV), which regulate the production of ABA8H 

enzymes (Saito et al., 2004; Jensen et al., 2013; Lim et al., 2015). 
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Figure 1. A simplified schematic model of ABA biosynthesis. ABA=abscisic acid; 

PYR/PYL/RCAR=Pyrabactin-resistant and related; PP2C=group A protein phosphatate 2C; 

SnRK2=Snf1-related protein kinases; ATAF1= NAC domain transcriptional factors; NCED=9-cis- 

epoxycarotenoid  dioxygenase;  ABA8H=ABA8-hydroxilase. 

 
 
 

1.4 Controversy over virulence factor of H. fraxineus 
Andersson et al. (2010) isolated phytotoxin viridiol from H. fraxineus. When vi- 

ridiol was applied on the European ash, symptoms similar to the infection by the 

fungus itself were observed (Anderson et al., 2010; Cleary et al., 2014). Cleary et 

al. (2014) also observed the accumulation of ABA precursors such as ABA cyste- 

ine and xanthoxin in response to viridiol  treatment.  Applying  viridiol  obtained 

from the H. albidus on the European ash, however, did not result in disease symp- 

toms, suggesting that the viridiol is possbily not pathogenicity factor of H. frax- 

ineus (Junker et al., 2014). It seems more research is needed to resolve this issue. 
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1.5 Profiling and quantifying gene expression 
Several methods can be used to study expression of mRNA such as high- 

throughput sequencing (RNA-seq) and real time quantitative polymerase chain 

reaction (qRT-PCR). In the RNA-seq method, sequences of short fragment mRNA 

(30-400 bp), known as reads, are obtained and data are subjected to bioinfomratic 

analysis (Trapnell et al., 2013). The reads can be aligned to a reference genome or 

assembled by the de-novo assembling method (Wang et al., 2009). The develop- 

ment of next generation sequencing  techniques  such  as  Illumina,  which  are  fast 

and inexpensive, has resulted in popularity of the RNA-seq method (Wang et al., 

2009). A further advantage of this  method  compared  to  other  techniques  is  that 

low amounts of RNA are needed. The disadvantage of the RNA-seq method is 

however that, heavy bioinformatic analyses of data are required (Wang et al., 

2009). The qRT-PCR can also be used for studying gene expression. In this meth- 

od, the extracted RNA is converted to complementary DNA (cDNA), primers are 

designed for genes of interest and expression of these genes is quantified in rela- 

tion to a reference gene (Pfaffl, 2001). 

 

 
 

1.6 Objectives 
The overall aim of this study was to increase understanding of transcriptional 

responses in F. excelsior to infection by H. fraxineus. The study addressed the 

following specific research questions: 

1. How genetically controlled resistance or susceptibility to H. fraxineus is 

reflected in F. excelsior genes expression patterns 

2. How  F.  excelsior  ABA8H genes  and  NAC-TFs  (NAC2  and  NAC72) are 

regulated in responses to H. fraxineus. 

In addition, the sequences of ABA8H genes obtained from cloning were com- 

pared and validated against the reference genome. 
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2 Materials and Methods 
 
 
 

2.1 Inoculation on defined genotype 
In this part of the study, the RNA sequenceing data obtained from susceptible 

(genotypes) and resistant (genotypes) clones of the Fraxinus excelsior growing in 

a common garden at Trolleholm in southern Sweden were analyzed. The experi- 

mental design and sampling procedure was as follows: healthy branches of suscep- 

tible and resistant clones were wounded and inoculated with agar plugs from two 

weeks old H. fraxineus (nf4). After nine months, lesion length was measured (cm) 

and three biological samples were collected from necrotic parts of each clone. 

Samples from uninfected branches of the same clones were taken as control. After 

RNA extraction (see section 2.2.4), cDNA was synthesized and samples were sent 

to SciLifeLab (Stockholm, Sweden) for sequencing on an Illumina  (1.8)  HiS- 

eq2500 (HiSeq Control Software 2.0.12.0/RTA 1.17.21.3). 

 
2.1.1 Bioinformatic analysis 

Data were filtered by Nesonito and  it included  removal of adaptor sequences, 

low quality bases and reads shorter than 55 bp (Harrison and Seemann, 

http://www.vicbioinformatics.com/software.nesoni.shtml). Data  were  then  aligned 

to the European ash draft genome (Harper et al., 2016) using the TopHat softwar. 

After this step, Cufflinks pipeline (http://cufflinks.cbcb.umd.edu/) was used to 

assemble the transcripts (Trapnell et al., 2012). Comparisons were made in cuffd- 

iff to identify differentially expressed genes (DEGs). These included comparisons 

between healthy and inoculation conditions within each clone, comparisons be- 

tween resistant and susceptible clones. Thereafter, data were plotted with cum- 

meRbund and DEGs were identified in R statistical software. Candidate genes in 

each condition were identified in  venny  (http://bioinfogp.cnb.csic.es/tools/venny/) 

and annotated in Blast2Go (Conesa et al., 2005). The expression pattern of frag- 

ments  per  kilo  base  of  transcript  per  million  mapped  reads  (FPKM)  data  from 

http://www.vicbioinformatics.com/software.nesoni.shtml)
http://www.vicbioinformatics.com/software.nesoni.shtml)
http://cufflinks.cbcb.umd.edu/)
http://bioinfogp.cnb.csic.es/tools/venny/)
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 0 1d 7d 14d 21d 
Control 5 - - - 5 
H. fraxinus inoculation - 5 5 5 5 

 

 

DEGs  were  visualized  in  JMP10 software  using  two-way hierarchical clustering 

technique (Ward method). The same procedure was applied to align the data to the 

H. fraxinus draft genome. 
 

 
 
 
 

2.2 Expression of ABA8H genes in response to biotic stress 
 

 

2.2.1 Experimental set-up 
An amount of 800 ml of fungal growth medium was prepared (14 g malt ex- 

tract, 2 g peptone, 16 g agarose gel and milli-Q water). The autoclaved medium 

was poured in petri dish in a sterile-hood. The H. fraxinus (nf 4) was cultured on 

solidified growth medium at 20 °C. Sterile woody plugs (approximately 2×2×7 

mm) were then placed in two weeks old H. fraxinus cultures and after 3 weeks, the 

plugs were fully covered with mycelium 

Ash seedlings were planted in peat (Hasselfors garden, Örebro, Sweden). They 

were kept in a greenhouse on 16 h photoperiod at 20/15°C (day/night) for 7 weeks 

before being subjected to inoculation or wounding (Table 1).  In  short,  the  colo- 

nized woody plugs were placed on wound made in stem with sterile scalpels be- 

fore sealing with parafilm. The same procedure, except inoculation, was done for 

the wounding treatment. Samples were taken at 1, 7, 14 and 21 days post- 

treatment (dpt). For each treatment, five plants were used at each sampling time 

point. For the control treatment, sampling was only done at days zero and 21. The 

samples from sampling days 0, 1 and 7 were subjected to RNA extraction and 

thereafter qRT-PCR. 

 
Table 1. Treatment and the number of the samples in each sampling time point. 

Treatment Sampling time & number of samples 

 
 

 
   Wounding - 5 5 5 5   

 
 
 

2.2.2 qPCR primer design 
The open reading frame (ORF) was obtained from 

http://www.bioinformatics.org/sms2/orf_find.html for the following genes: FeA- 

BA8H1 (XLOC-020479), FeABA8H2 (XLOC-040776),  FeABA8H3  (XLOC- 

064553),  NAC  2  (XLOC-048803)  and  NAC  72  (XLOC-039047),  all  identified 

previously in the F. excelsior genome assembly (Eshghi Sahraei et al., 2015). The 

nucleotide sequences residing in the ORF were imported to Primer3 

http://www.bioinformatics.org/sms2/orf_find.html
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(http://bioinfo.ut.ee/primer3-0.4.0/). The forward and reverse primers were de- 

signed for qRT-PCR according to the standard setting of the program. The frag- 

ment length was 70-120 bp and optimal annealing temperature was 60°C. Detailed 

information on primers used are presented in Appendix 1. Primers were also de- 

sign for α-tubulin as the reference gene as above (Appendix 1). 

 
2.2.3 RNA extraction 

The bark samples were milled in a mortar and pestle in liquid  Nitrogen  after 

which, 3 ml extraction buffer was added to the ground materials. The suspension 

was incubated at 65°C for 15 min. Thereafter, 3 ml CHISAM comprising of chlo- 

roform: isoamylalcohol at 24:1 was added before centrifuging at 6793 × g for 10 

minutes at room temperature. The upper phase was transferred into a falcon tube 

and ¼ volume of 8M lithium chloride was added and the mixture was thoroughly 

shaken before storing at 4°C overnight. The samples were then centrifuged at 6793 

× g for 40 min at 4°C. The supernatant was saved for DNA extraction and stored 

in a refrigerator. The pellet was dried at room temperature for 10 minutes before 

dissolving in 100 µl of RNA free water. After this step, 200 µl of cold pure etha- 

nol was added before adding 10 µl of NaAc (3M). Samples were kept at -20°C 

overnight after which, they were centrifuged at 4700 × g for 20 minutes at 4°C. 

The supernatant was discarded and the pellet was washed by 70% ethanol before 

being centrifuged again at 1200 × g for 10 min at 4°C. The pellet was dissolved in 

16 µl RNA free water and treated with DNase I (SIGMA-ALDRICH, St. Louis, 

Missouri USA) according to the manufacturer’s instruction. The quality and quan- 

tity of extracted RNA was measured by BioAnalyzer 2100 (Agilent Technologies, 

Santa Clara, California, USA). Samples were stored at -70°C. 
 

 

2.2.4 cDNA synthesis 
The synthesis of cDNA was done using iScript cDNA Synthesis kits (Bio-Rad, 

Sundbyberg, Sweden). The PCR program was as follows: annealing at 25°C for 5 

min; elongation at 42°C for 30 min; a final elongation at 85°C for 5 min. The 

cDNA was diluted with RNase free water to a concentration of 20 ng/µl. 

 
2.2.5 Standard curve and polymerase chain reaction (PCR) 

The cDNA from 5 randomly chosen samples was used to construct a standard 

curve. A Master mix was prepared by mixing 5 µl green buffer, 5 µl dNTP, 36.35 

µl pure water and 0.25  µl Dream  taq  buffer  (ThermoFisher  Scientific,  Sweden). 

For each 50 µl PCR, 1.2 µl forward and revers primers and 1 µl of cDNA template 

were used. The PCR program used is as follows: initial denaturation at 95°C for 5 

http://bioinfo.ut.ee/primer3-0.4.0/)
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min; 35 cycles of denaturation (95°C for 30 sec), annealing (57 °C for 30 sec) and 

elongation (72°C for 30 sec); a final elongation at 72°C for 7 min. 

Three PCR products for each primer-pair were pooled and purified by E.Z.N.A. 

Cycle pure kit (VWR (OMEGA bio-tek), Radnor, PA, USA). DNA concentration 

was measured by Nano drop. Concentration and length of genes obtained for each 

primer-pair were then fed to an online copy number calculator available at Ther- 

moFisher Scientific, Sweden. 

 
2.2.6 qRT-PCR 

The qRT-PCR was done in duplicate for each gene. Master mix was prepared 

by mixing 10 µl Eva-green SsoFast (Bio-Rad, Sweden), 8 µl RNase free water and 

0.5 µl of 10 mM forward and reverse primers. An amount of 19 µl of Master mix 

was loaded to each well before adding 1 µl cDNA (20 ng/µl). For each primer- 

pair, 1 µl of the serial dilutions, used to construct the standard curve, and samples 

was loaded in wells in duplicate. Then, the qRT-PCR was run according to the 

following protocol: 95 °C for 30 sec; 40 cycles of 95 °C for 5 sec, 60°C for 20 sec. 

The specificity of the primers was checked by obtaining melting curve. The data 

was analyzed by the delta-delta CT method (Livak and Schmittgen, 2001). 

 
2.2.7 Statistical analysis of the lesion length 

The effect of wounding and inoculation with H. fraxinus on lesion length was 

tested by the General Linear Model of  Minitab  16  (Minitab  Inc.,  State  College, 

PA, USA). The significant level was declared at P < 0.05. Data are presented as 

least square mean ± SEM. 
 

 
 

2.3 Validating the sequences of ABA8H genes 
 

 

2.3.1 Primer design 
The ORF were identified for FeABA8H1, FeABA8H2 and FeABA8H3 with 

http://www.bioinformatics.org/sms2/orf_find.html. The nucleotide sequences re- 

siding in the ORF were imported into the MEGA6 software (Tamura et al., 2013) 

together with the sequences of the predicted FeABA8H1, FeABA8H2 and FeA- 

BA8H3 gene models. The sequences were aligned using  the  clustal  W  and  data 

were exported as mega format. The variable sites of the sequences were exported 

into Excel. The predicted ORFs were fed to Primer3 (http://bioinfo.ut.ee/primer3- 

0.4.0/). The forward primer was manually designed based on the variable sites 

identified in the clustal W alignment and the reverse primer was designed accord- 

http://www.bioinformatics.org/sms2/orf_find.html
http://bioinfo.ut.ee/primer3-
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ing to the standard setting of the program. The fragment length was 1000-1200 bp 

and the optimal annealing temperature was 57°C (Appendix1). 
 

 

2.3.2 PCR 
The 25 µl reaction consisted of 1 µl DNA template, 2.5 µl Green buffer, 2.5 µl 

dNTP, 1 µl DreamTaq-polymerase (ThermoFisher Scientific, Sweden), 16.8 µl of 

milli-Q water and 0.6 µl of the forward and reverse primers. The PCR program 

was as follows: initial denaturation at 95°C for 5 min, 35 cycles of denaturation 

(95°C for 30 sec), annealing (55°C or 50 °C for 30 sec) and elongation (72°C for 

30 sec) and a final elongation at 72°C for 7 min. An amount of 20 µl of PCR 

products was visualized in 1% agarose gel. The  PCR  products  were  harvested 

from the gel and purified by the Gene JET Gel Extraction Kit (ThermoFisher Sci- 

entific, Sweden) before cloning. 
 

 

2.3.3 Cloning 
Cloning was done by the TOPO-TA kit (ThermoFisher Scientific, Sweden). Ac- 

cordingly, an amount of 0.5 µl of vector was added to 1 µl of salt solution before 

adding 4.5 µl of the purified DNA. The suspension was incubated at room temper- 

ature for 30 min before storing at -20°C overnight. 

 
2.3.4 Plasmid preparation 

An  amount  of  2  µl  of  the  cloning  reaction  was  gently  mixed  with  one 

shot
®
chemically component E.coli (ThermoFisher Scientific,   Sweden).   The   mix- 

ture was incubated in ice for 30 min before heating at 42°C for 30 sec. Samples 

were then immediately placed in ice and 250 µl of S.O.S medium was added. The 

tubes were shaken at 37°C for 1 h and 100 µl was spread on pre-warmed LB plates 

containing kanamycin  at 50µg/ml. The  plates were incubated at 37 °C  overnight 

after which they were stored at 4°C. From each plate, 8 white colonies were ran- 

domly chosen and cultured on LB plates. The colonies were then subjected to PCR 

using M13 forward (5´-GTAAAACGACGGCCAG-3´) and reverse (5´- 

CAGGAAACAGCTATGAC-3´) universal  primers.  The  PCR  was  run  according 

to the program stated above. The colonies with strongest bands in the gel electro- 

phoresis assay were chosen, grown into bacterial culture and purified by E.Z.N.A. 

Cycle pure kit (VWR (OMEGA bio-tek)), Radnor, PA, USA) before sequencing at 

Macrogen (Humanizing Genomics Macrogen, Seoul, South Korea). 
 

 

2.3.5 Bioinformatics 
Vector sequences were removed by DNASTAR: Seq Man PRO software 

(http://www.dnastar.com/t-seqmanpro.aspx)  before  aligning  the  sequences  by  the 

http://www.dnastar.com/t-seqmanpro.aspx)
http://www.dnastar.com/t-seqmanpro.aspx)
http://www.dnastar.com/t-seqmanpro.aspx)
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clustal W in MEGA 6 software (Tamura et al., 2013). The conserved sites of the 

sequences were identified. Thereafter, the amino acid sequences of the ORF were 

obtained (http://www.bioinformatics.org/sms2/orf_find.html). These amino acid 

sequences were then blasted (blastp, database Non-redundant protein sequences 

(nr)) in the National Centre for Biological information (NCBI: 

http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the amino acid sequences of Solanum 

tuberosum, Solanum lycoperiscon and Erythrantha guttatus which were in a same 

clade as the F. excelsior, i.e. Astrid clade, were also  obtained.  Thereafter,  these 

amino acid sequences were aligned by the clustal W in MEGA 6 software and a 

phylogenetic tree was formed using the maximum likelihood method  and  boot- 

strap of 1000. The partial deletion option (95%) of the MEGA 6 was used to deal 

with missing data. The alignment length,  identity and  similarity  of  the  compari- 

sons conducted between amino acid sequences of FeABA8H1, FeABA8H2 and 

FeABA8H3  were  obtained   from 

http://www.bioinformatics.org/sms2/ident_sim.html. 

http://www.bioinformatics.org/sms2/orf_find.html)
http://blast.ncbi.nlm.nih.gov/Blast.cgi)
http://www.bioinformatics.org/sms2/ident_sim.html
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ID clones Lesion length (cm) 
100 Resistant 7 
8 Resistant 8.5 
76 Susceptible 32 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

3 Results 
 
 
 

3.1 Inoculations on defined genotypes 
 

 

3.1.1 Lesion length 
The necrotic length after inoculation with H. fraxinus for each clone is present- 

ed in Table 2. As it was expected the lesion length was greater in the susceptible 

clones than in the resistant clones. 

Table 2. The lesion length in the barks of the European ash clones 9 months after 
inoculation with H. fraxinus. 

 
Table 2. The lesion length in the barks of the European ash clones 9 months after inoculation with H. 

fraxinus. 

 

 
 
 

   9 Susceptible    70   
 

 
 

3.1.2 Identification of DEGs 
In the bioinformatics analysis, after aligning the samples to the ash reference 

genome, 87,413 transcripts were presented in the library. The average read map- 

ping frequency was 80% and the average of aligned pairs was 7,086,883.  After 

aligning the RNA sequencing data to the H. fraxinus reference genome, the read 

mapping frequency varied from 0.1% to 6.6%. 

The resistant clones had the highest number of DEGs. A total number of 6,039 

DEGs was presented in clone 8 from which, 3,579 were up-regulated and 2,460 

were down-regulated in the inoculation condition  with  H.  fraxinus  (Table3).  A 

total number of 3,709 DEGs was also presented in clone 100 from which, 2,061 

and 1,648 were up- and down-regulated respectively in the inoculation condition 
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(Table3). However, in the susceptible clones, 1,216 and 1,070 DEGs  were  pre- 

sented in clone 9 and 76, respectively. The number of DEGs up-regulated in clone 

9 and 76 were 640 and 727 respectively while, 576 and 343 DEGs were down- 

regulated in clone 9 and 76 in the inoculation condition respectively. 

The bioinformatics analysis of inoculation treatment identified more than 3,500 

DEGs in the resistant clones. The numbers of up-regulated and down-regulated 

DEGs were 2,097 and 1,418 respectively. However, only 193 DEGs were identi- 

fied in the susceptible clones of which, 139 were up- and 54 were down-regulated, 

respectively  (Table3). 

 
Table 3. The number of differentially expressed genes (DEGs) expressed in each clone after infection 

with H. fraxinus 

Total DEGs Up-regulated Down-regulated 
 

Clone 8 (R) 6,039 3579 2460 
Clone 100 (R) 3,709 2061 1648 
Clone 9 (S) 1,216 640 576 
Clone 76 (S) 1,070 727 343 
Resistant clones (8 & 3,515 2,097 1,418 
100) 

Susceptible clones (9 
 

193 
 

140 
 

54 
&76)    
R=resistant; S=susceptible. ID 8 and 100 are resistant clones and 9 and 76 are susceptible clones 

 

 

3.1.3 Two-way hierarchical clusters 
The two-way hierarchical clustering of the FPKM data from DEGs between in- 

oculation and healthy conditions in each clone (the first four rows in Table3) is 

shown in Figure 2. The green and red colors indicate the lowest and highest FPKM 

values, respectively. In the cluster 3c, 6 and 11, higher gene expression was ob- 

served in the inoculation condition compared to healthy condition  whereas;  in 

cluster 4 and 7, higher gene expression was found in the healthy condition. None 

of the clusters showed clear differences in gene expression between resistant and 

susceptible clones. Genes associated with defense response and JA were expressed 

in the inoculation treatment. However, genes associated with transport and protein 

metabolic processes were expressed in cluster 4 for the control treatment. Clone 9 

showed a clustering pattern different from the other 3 clones. The inoculated sam- 

ples in this clone were clustered with the healthy samples rather than with the in- 

oculated samples of the other 3 clones. Genes presented in the cluster 4, 6, 7 and 

11 were then annotated with Blast2go. 
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Figure 2. Two-way hierarchical clusters of the FPKM data obtained from deferentially expressed 

genes of susceptible and resistance clones. Green, black and red colors show low, moderate and high 

expression, respectively. From left to right 1_76, I_8, I_100, H_76, H_8, H_100, I_9 and H_9. 

H=Healthy; I= Inoculation. FPKM= fragments per kilo base of transcript per million mapped reads. 
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3.1.4 Annotated DEGs 
The Venny diagram was formed from DEGs that were up- and down-regulated 

in each clones (see Table 3). Those genes presented only  in  the  intercept  were 

chosen to be annotated with Blast2go (Figure 3), as they were more likely 

regulated in response to infection. After inoculation, 625 genes were up-regulated 

in the resistant clones compared to only 6 genes in the susceptible clones (Figure 

3). The numbers of DEGs down-regulated after inoculation in the resistant and 

susceptible clones were respectively 527 and 13 (Figure 3). The up-regulation of 1- 

aminocyclopropane-1-carboxylate oxidase (ACC), some ethylene-responsive- TFs 

(ERFs) and WRKY-TFs was detected in the inoculation treatment  in  resistant 

clones (Appendix 2). However, photosystem i subunit o (PS I) as well  as  ERFs 

were up-regulated in healthy condition meaning that, these genes were down- 

regulated in the inoculation treatment in resistant clones (Appendix 3). The 

expression of 2-hydroxyisoflavanone dehydratase-like (HID), caffeoyl- o- 

methyltransferase (COMT) and farnesyl diphosphate synthase was observed in the 

inoculated susceptible clones (Appendix 5). However, ERFs were down-regulated 

in the inoculation treatment in susceptible clones (Appendix 6). In both resistant 

and susceptible clones, the up-regulation of peroxidase like and pathogen-related 

protein (PR), secoisolariciresinol dehydrogenase-like, flavonol synthase flavanone 3-

hydroxylase-like, phenylalanine ammonia-lyase, shikimate chloroplastic-like 

(Appendix 4) and down-regulation of ERFs (Appendix 7) were observed. The 

description of some genes with the highest fold change and best blast hit is pre- 

sented in Appendixes 2-7. 
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Figure 3. The Venny diagram of up-regulated (a) and down-regulated (b) genes in inoculation 

condition in the resistant (R) clones (100, 8) and susceptible (S) clones (76, 9). 

 

 
 

3.2 Expression of ABA8H genes in response to H. fraxinus 
Inoculation with H. fraxinus resulted in significantly  longer  necrotic  lesions 

than wounding alone (Table 4). This could suggest that lesion was developed in 

the first week and then the progress was slowed down. There was also a 

substantial variation within replicates, which is illustrated by the  lack  of 

significance at the 5% level at 14 dpt despite the numerical difference between the 

two treatments. 

 
Table 4. The effect of wounding or inoculation with H. fraxinus on lesion length (mm) in the Euro- 

   pean ash.   
 

  Treatment   
 

   Sampling time (day) Wounding Inoculation SEM P-value   
 

1 3 3.6 0.9 0.64 

7 1.2 7.8 1.2 0.004 

14 0.8 6.8 1.9 0.06 

   21 0 2.6 0.8 0.04   

 

 

The expression of the three ABA8H genes as measured with qRT-PCR indicates 

that the FeABA8H3 and FeABA8H2 genes showed the highest expression already 

at the first sampling, i.e. 1 dpt (Figure 4 b and c). These two genes had clearly a 
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lower expression at 7 dpt The regulation of FeABA8H1 was not as strong but this 

gene too showed higher steady-state mRNA levels at 1 dpt (Figure 4a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.The relative expression of the three ABA-8 hydroxylase genes in the Fraxinus excelsior 

subjected to no-treatment (C), inoculation with H. fraxineus (H.fr) and wounding (W) at days 1 (1d), 

7 (7d) and 21 (21d) post-treatment. 

 
The relative expression of two NAC genes, NAC72 and NAC2, potentially 

involved in controlling the ABA signaling pathway, was also quantified by qRT- 

PCR. NAC72 appeared to be down-regulated in the wounding treatment at 7 dpt 

(Figure 5a). Both genes showed the highest steady-state mRNA levels at  1  dpt 

with H. fraxineus (Figure 5a and b) while, the expression levels reached to pre- 

treatment level (control) at 7 dpt. 
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Figure 5. Expression of two NAC genes (NAC domain-containing protein 72-like (NAC72) (a) and 

2-like (NAC2) (b)) in the European ash subjected to no-treatment (C), inoculation with H. fraxineus 

(H.fr) and wounding (W) at days 1 (1d), 7 (7d) and 21 (21d) post-treatment. 

 
 
 

3.3 Validating the sequences of ABA8H genes 
The FeABA8H2 had the longest sequence with 451 amino  acids.  The  FeA- 

BA8H1 and FeABA8H3 had a partial transcript with 239 and 336 amino acids, 

respectively. The amino acid sequences of FeABA8H2  and  FeABA8H3  showed 

high degree of identity (96%) and  similarity  (97.3%)  (Figure  6).  FeABA8H1 

shared 239 and 184 amino  acids  with  FeABA8H2  and  FeABA8H3,  respectively. 

The FeABA8H1 had 71% similarity and 55% identity with the FeABA8H2 and 

66% similarity and 51% identity with the FeABA8H3 (Figure 6). The conserved 

sites among the three ABA8H amino acid sequences are presented in Figure 6. It 

appeared most parts of the sequences were similar. 
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Figure 6. The alignment of three ABA8H amino acid sequences (FeABA8H1, FeABA8H2, FeA- 

BA8H3). The grey color shows the conserved sites. 
 

 

3.3.1 The phylogenetic tree 
The phylogenetic tree constructed from amino acid sequences  of  ABA8H  in 

tomato (Solanum lycopersicum), potato (Solanum tuberosum), Erythrantha (Ery- 

thrantha guttatus) and Fraxinus excelsior is presented in Figure 7. The scale num- 

ber was 0.1 and the shortest branch was observed between ABA8H of tomato and 

potato. FeABA8H2 and FeABA8H3 were diverged with 100 % support from the 

other branches. Among the three ABA8H genes of the European ash, the shortest 

branch was also observed between FeABA8H2 and FeABA8H3. 
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Figure 7. The maximum likelihood radial phylogenetic tree constructed based on amino acid se- 

quences of three ABA8H proteins of the European ash (FeABA8H1, FeABA8H2, FeABA8H3) and 

four ABA8H proteins of tomato (Solanum lycopersicum), potato (Solanum tuberosum), Erythrantha 

(Erythrantha guttatus). Bootstrap: 1000, partial deletion option: 95%. 
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4 Discussion 
 
 
 
 
 

4.1 Inoculation on defined genotypes 
The low mapping coverage of samples to H. fraxineus draft genome (0.1% to 

6.6%) was most likely due to a low fungus activity in the sampling areas. This low 

activity of fungus was also observed in our pervious study (Eshghi Sahraei et al., 

2015). The fungus activity might be to very low levels by the plant defense mech- 

anism at the time of sampling, which was 9 months after inoculation. On the other 

hand, H. fraxineus is an invasive pathogen. Therefore, the low activity of fungus 

seems to be enough to induce disease (Gross et al., 2014). 

The bioinformatic analysis revealed the presence of more  than  87,000  tran- 

scripts in the libraries. An interesting observation is that the two  resistant geno- 

types showed a higher number of regulated genes than the two susceptible geno- 

types. This can be partly explained by the deviating gene expression pattern of the 

clone 9, susceptible genotype, in response to H. fraxineus infection. However, the 

higher numbers of DEGs in the resistant compared to susceptible, clones is some- 

how expected. These results suggest that when a plant is encountered with a path- 

ogen, some non-vital activities are switched off in the expense of initiating the 

defense mechanism and that the resistant genotypes possess a genetic component 

that allows them to activate a consistent defense. 

The two-way hierarchical clustering (Figure 2) indicates that gene expression 

was divided into two categories as expected, highlighting differences in gene ex- 

pression between healthy and inoculation conditions. 

The up-regulation of ERFs and ACC oxidase which are involved in ET pathway 

and the up-regulation of WRKY-TFs in inoculated resistant clones  could  be 

viewed as signs of activation of defense to H. fraxineus, and an indication of mo- 

lecular signaling components of this defense responses.  Both  ACC Oxidase  and 

ERFs act in the ET signaling pathway (Van Loon et al., 2006). ET is produced in 
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response to abiotic and biotic stress (Wang et al., 2002) The transcriptional re- 

sponses to H. fraxineus therefore suggest that ET signaling might be important to 

activate resistance to H. fraxineus. However, it is obvious that the regulation of the 

members of the F. excelsior ERFs in response to H. fraxineus is complex as other 

members of the gene family were down-regulated in H.  fraxineus inoculated re- 

sistant and susceptible clones. The regulation of the ET pathway is complex and 

still not fully understood (Guo and Ecker, 2004). Detailed studies on the regulation 

of F. excelsior ERFs in response to H. fraxineus infection or  other  stresses  are 

needed to improve our understanding. 

Members of the WRKY-TFs gene family are known to control responses to 

several types of stress and the members of this gene family have a conserved DNA 

binding site namely the W-box (Eulgem et al., 2000; Dong et al., 2003). The im- 

portance of WRKY-TFs in the regulation of genes involved in the defense mecha- 

nism has been established in Arabidopsis (Eulgem et al., 2000; Dong et al., 2003). 

Interestingly enough, a previous transcriptomics study on Fraxinus phloem aiming 

to profile the responses to emerald ash borer (Bai et al., 2011) identified a WRKY- 

TF, which accumulated to higher levels in F. mandschurica than in other Fraxinus 

taxa. It remains to be investigated whether the WRKY-TF that we identified, is 

identical to this WRKY-TF or not. 

The HID2 enzyme synthesizes isoflavonoids, a group of secondary metabolites 

produced  by plants  in  response  to  biotic  and  abiotic  stress (Akashi et al., 2005; 

Nascimento  and  Fett-Neto,  2010).  The  HID2  gene  was  not  expressed  in  the  re- 

sistant clones, but it was expressed in the inoculated susceptible clones suggesting 

that the expression of this gene is associated with the development of disease. The 

concomitant  induction  of  a  COMT  and  a  farnesyl  diphosphate  synthase  in  the 

susceptible  genotypes  in response  to  H. fraxinus  further supports  the  possibility 

that   particular   metabolites   accumulate   in   association   with   disease   symptoms 

(Cleary et al., 2014). The up-regulation of HID2 gene in the inoculated suscepti- 

ble clones would have possibly resulted in an increased level of isoflavonoids. Our 

previous  study  showed  that  the  flavonoids  kaempferol  and  quercetin  are  major 

components  of  the  F.  excelsior  metabolome  and  that  both  components  were 

repressed  after  viridiol  treatment  in  resistant  genotypes  but  not  in  susceptible 

genotypes that developed disease symptoms (Cleary et al.,  2014). 

The over expression of flavonol synthase flavanone 3-hydroxylase-like, phenyl- 

alanine ammonia-lyase, shikimate chloroplastic-like were observed in both sus- 

ceptible and resistant clones in response to inoculation with H. fraxineus. The two 

first components, flavonol synthase flavanone 3-hydroxylase-like and  phenylala- 

nine ammonia-lyase, are part of secondary and flavonoid metabolic pathway 

(Hahlbrock and Grisebach, 1979). The phenylalanine ammonia-lyase produced 

phenilalanyne   which   is   also   a   precursor   for   many   secondary   metabolites 
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(Hahlbrock and Grisebach, 1979). It appears that a potential link between 

secondary metabolites, such as isoflavonoids, and development of disease 

symptoms should further be studied. The up-regulation of secoisolariciresinol 

dehydrogenase-like was also detected in both resistant and susceptible clones after 

inoculation with H. fraxineus.  Secoisolariciresinol  dehydrogenase  is  an   enzyme 

that catalyzes secoisolariciresinol into matairesinol and has a role in some inter- 

mediate steps, which produce components of defense mechanism in vascular plant 

(Moinuddin et al., 2006). The xanthoxin dehydrogenase catalyzes Xanthoxin to 

abscisic aldehyde and is a sub group of secoisolariciresinol dehydrogenase-like 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=187587). Secoisolar- 

iciresinol dehydrogenase-like is tightly associated with the Xanthoxin and abscisic 

aldehyde, which are intermediate components in ABA  biosynthesise.  The  Xan- 

thoxin and abscisic aldehyde were detected after application of viridiol, produced 

from H. fraxineus, on the Fraxinus excelsior (Cleary et al., 2014). This observa- 

tion and the ABA8H genes down regulation detected after inoculation with H. 

fraxinus suggest that ABA plays important roles in defense mechanism (Eshghi 

Sahraei et al., 2015). 

The defense mechanism in plants is a complex process, which is regulated by 

the cross-talk between ET, SA and JA pathways (Almagro et al., 2008). Secondary 

metabolites and reactive oxygen species (ROS) are also produced in plant in re- 

sponse to invasion by a pathogen, resulting in HR in the infection site (Almagro et 

al., 2008). Peroxidases are involved in the production of ROS (Almagro et al., 

2008). The expression of peroxidase and PR protein in both  susceptible  and  re- 

sistant clones could be indicative of activation of the SA, JA and ET pathways 

(Almagro et al., 2008). 

Overall, up-regulation of proteins involved in the defense mechanism was ob- 

served in both susceptible and resistant clones, with the resistant clones showing a 

higher up-regulation. The down-regulation of PS I, with a function in transporting 

light-driven electrons, could be due to a reduced activity of pathways responsible 

for the plant growth at the time of defense mechanism activation (Scheller et al., 

2001). 
 

 
 

4.2 Expression of ABA8H genes in response to biotic stress 
The down-regulation of the ABA8H genes in response to inoculation with H. 

fraxinus is in accordance with our previous  observations  (Cleary et  al.,  2014; 

Eshghi Sahraei et al., 2015). As the concentration of ABA is negatively correlated 

to ABA8H gene expression (Saito et al., 2004), we could expect that the level of 

ABA was increased in the inoculation treatment but, unfortunately, we did not 

measure the ABA level in the inoculated tissues. 

http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=187587)
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The similar fold change of FeABA8H2 and FeABA8H3 in response to H. frax- 

ineus could be due to the high similarity of these two genes. A high similarity was 

also observed after aligning the amino acid sequences of these genes (Figure 6) 

suggesting that these genes have a same function in F.excelsior. 

Based on our previous observation (Eshghi Sahraei et al., 2015) and the results 

from qRT-PCR study, it seems that ABA8H genes are first up-regulated and then 

down-regulated in response to inoculation with H. fraxinus. This was also support- 

ed from the transcriptomics study on samples obtained 9 month after inoculation. 

In the green-house experiment, it seems that there was a correlation between lesion 

length and the activity of ABA8H genes. The increase in the lesion length in the 

inoculated samples in day 7 of the treatment was coincided with a down-regulation 

of ABA8H genes, indicating a possible increase in ABA level in the tissue. How- 

ever, the large variation found in the results makes it difficult to draw firm conclu- 

sions. A possible explanation for this variability is that the plants used in this ex- 

periment had an infection to H. fraxineus prior to the study, which became evident 

at the end of the experiment. Possibly, the individual plants were at different infec- 

tion stages and as a result, response to treatment differed among biological repli- 

cates. 

A similar expression pattern was observed in the qRT-PCR study between 

ABA8H3 and NAC2. A same expression pattern was also found  between NAC72 

and ABA8H1 and ABA8H2.The increased expression of NAC72 and NAC2 in re- 

sponse to inoculation and wounding could be expected  because it is known  that 

this particular group of NAC gene family members often are involved in mitigating 

the biotic and abiotic stress (Puranik et al., 2012; Nuruzzaman et al., 2013). These 

genes are responsible for the regulation of genes encoding  precursor  enzymes 

needed for the ABA formation (Puranik et al., 2012). In addition, the NAC genes 

regulate positively the JA/ET pathway and negatively the ABA signaling pathway 

in stress (Puranik et al., 2012). 
 

 
 

4.3 Validating the sequences of ABA8H genes 

In the current experiment and our earlier study (Eshghi Sahraei et al., 2015), we 

found that FeABA8H1, FeABA8H2 and FeABA8H3 are down-regulated after inoc- 

ulation with H. fraxineus. The initial qRT-PCR primers were based on predicted 

gene models obtained from the ash draft genome (Harper et al., 2016). The genes 

were re-sequenced to validate the predicted sequences of ABA8H. The results from 

data similarity and identity as well as the phylogenetic tree (Figure 6 & 7) suggest 

that FeABA8H2 and FeABA8H3 are paralogous in F.excelsior and that they share a 

common evolutionary ancestor with  their  ortholog,  which  is  Erythrantha  (Figure 

7). The length of branch in phylogenetic tree indicates extent of genetic changes 
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over time (http://epidemic.bio.ed.ac.uk/how_to_read_a_phylogeny).  Therefore,  a 

short length of branch between ABA8H of tomato and potato suggests a high ami- 

no acid similarity (Figure 7). The high similarity and identity between FeABA8H2 

and FeABA8H3 (96% and 97.3% respectively) suggest that may be the result of a 

gene duplication. Sub-functionalization and neo-functionalization are the main 

reasons for keeping duplicate genes in biological systems (Rastogi and  Liberles, 

2005). In neo-functionalization, one of the copies becomes responsible for a dif- 

ferent function but in sub-functionalization, these duplicated genes become partial- 

ly involved in a same function (Rastogi and Liberles, 2005). It is also possible that 

several genes become responsible for the production of a same enzyme due to the 

need of plant (personal communication- Magnus Karlsson) 
 

 

In conclusions, genes were differentially expressed in  resistant and susceptible 

clones in response to inoculation with H. fraxinus. Genes responsible for the de- 

fense mechanism were up-regulated in both resistant and susceptible clones. Most 

genes with a role in the defense mechanism such as ACC, ER-TFs and WRKY- 

TFs were presented in the inoculated resistant clones. The number of DEGs in the 

resistant clones was higher than in the susceptible clones. The longest lesions were 

observed in the inoculated barks and at 7 dpt and 14 dpt. The ABA8H  had  the 

highest expression at day 1 dpt. 

Due to the high similarity between FeABA8H2  and  FeABA8H3,  we  believe 

gene duplication  has  occurred in the genus of Fraxinus. The phylogeny analysis 

revealed ABA8H in the F.excelsior has a high similarity with the ABA8H in Ery- 

thrantha. 

http://epidemic.bio.ed.ac.uk/how_to_read_a_phylogeny)
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Appendix 
 

Appendix 1. Primers used for the sequencing and the real time quantitative polymerase chain reaction (qRT-PCR). 
 

Annealing 

Primers Sequence temperature (°C) Product size (bp) Aim of design 
 

20478-F CAATGGGGTGGCCTTATA 56.78 722 Sequencing 

20478-R TGCAAAAAGTACTCCGATGA 56.94  Sequencing 

40775 F CTCTCAGTCTTTCTGTACTGTCC 54.96 1392 Sequencing 

40775 R GAAGAGCAAAGGGTGCATAC 57.42  Sequencing 

64553-F CAGCAAATCAAATCTCTTCA 54.01 1013 Sequencing 

64553 R TGGTCAGGTGATGTACAAGG 56.90  Sequencing 

40775 F2_1501 CATGAATGCGCGCAGAACTA 59.35  qRT-PCR 
 

40775 R2_1501 
 

TCCCTGCAAGCAAAGAGAGA 
 

58.94 
101  

qRT-PCR 
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Appendix 1. (cont.) 

Primers Sequence Annealing 

temperature (°C) Product size (bp) Aim of design 
 

64552 F2_1501 GCATGATACTCGCCCTGATGA 60.00  qRT-PCR 
 

64552R2_1501 
 

TTCAAGCCCACATTCCCTGC 
 

60.90 
80  

qRT-PCR 
 

20478_F 
 

TTGCAGCACAAGACACGACT 
 

60.66  
 

qRT-PCR 
 

20478_R 
 

CCTTCTGTTCTGCCCTTGAC 
 

59.84 100  

qRT-PCR 

48802-F GCGCCTTACCAGCATAAAAC 59.75  qRT-PCR 
 

48802-R 
 

CTGGGAGTGGGTACTGGAAG 
 

59.57 
102  

qRT-PCR 

39046-F TGAAGAGCTCATGGTGCAAT 59.40  qRT-PCR 
 

39046-R 
 

GGAAGTTCCCATGGATCAAA 
 

59.73 
108  

qRT-PCR 

α-Tubulin-F CACCTCCTCCAACGGTCTTA 60.10  qRT-PCR 
 

α-Tubulin-R 
 

GGCTGGTATTCAGGTTGGAA 
 

59.93 
104  

qRT-PCR 
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Appendix 2. The genes with highest fold change were up regulated in inoculation condition in resistant clones 
 

Locus Log FC best blastX hit Bit-Score E-Value 
 

XLOC_006133_TCONS_00010496 -inf cysteine-rich repeat secretory protein 39-like 238.424 1.63E-73 
XLOC_007763_TCONS_00013361 -inf non-symbiotic hemoglobin class 1 291.197 2.34E-96 

XLOC_009072_TCONS_00015657 -inf eugenol synthase 1-like 452.595 9.91E-156 

XLOC_009510_TCONS_00016410 -inf stem-specific protein tsjt1-like 154.451 1.34E-55 

XLOC_012110_TCONS_00020893 -inf ethylene-responsive transcription factor erf096-like 145.976 2.56E-40 

XLOC_014574_TCONS_00025151 -inf 7-deoxyloganetin  glucosyltransferase-like 239.195 1.20E-101 

XLOC_014593_TCONS_00025184 -inf 7-deoxyloganetin  glucosyltransferase-like 239.195 1.32E-106 

XLOC_014962_TCONS_00025829 -inf viridiflorene  synthase 93.2041 5.21E-31 

XLOC_015003_TCONS_00025898 -inf ethylene-responsive transcription factor erf098-like 125.176 4.64E-32 

XLOC_015502_TCONS_00026749 -inf glyoxylate hydroxypyruvate reductase hpr3-like 192.586 1.69E-56 

XLOC_018570_TCONS_00032009 -inf germacrene a 241.121 2.07E-73 

XLOC_019287_TCONS_00033230 -inf cytochrome p450 71d95-like 81.2629 3.36E-16 

XLOC_019288_TCONS_00033231 -inf premnaspirodiene  oxygenase-like 98.5969 3.37E-22 

XLOC_022097_TCONS_00038102 -inf hypothetical protein VITISV_014759 142.124 3.34E-35 

XLOC_022764_TCONS_00039332 -inf nac domain-containing protein 21 22-like 97.0561 1.41E-19 

XLOC_022884_TCONS_00039543 -inf hypothetical protein JCGZ_00710 62.003 9.08E-10 

XLOC_026611_TCONS_00046198 -inf copal-8-ol  diphosphate chloroplastic-like 880.937 0 

XLOC_026680_TCONS_00046306 -inf dirigent protein 21-like 214.542 1.69E-66 

XLOC_026927_TCONS_00046765 -inf respiratory burst oxidase homolog protein a 138.272 2.63E-33 

XLOC_028981_TCONS_00050332 -inf bon1-associated protein 2-like 172.94 1.00E-48 
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Appendix 2. (cont.) 
 

Locus Log FC best blastX hit Bit-Score E-Value 
 

XLOC_031266_TCONS_00054438 -inf PREDICTED: uncharacterized protein LOC105176650 78.1814 2.21E-14 
XLOC_031711_TCONS_00055210 -inf e3 ubiquitin-protein ligase rha2a-like 125.946 4.87E-32 

XLOC_032640_TCONS_00056866 -inf beta-amyrin synthase 219.55 1.33E-70 

XLOC_033068_TCONS_00057646 -inf probable galactinol--sucrose galactosyltransferase 1 205.682 1.59E-59 

XLOC_033809_TCONS_00058977 -inf cannabidiolic acid synthase-like 821.617 0 

XLOC_034414_TCONS_00060035 -inf nac domain-containing protein 100-like 413.69 6.03E-139 

XLOC_045813_TCONS_00079964 -inf ethylene-responsive transcription factor 1b 220.32 3.54E-68 

XLOC_049524_TCONS_00086395 -inf wall-associated receptor kinase 2-like 174.481 3.46E-47 

XLOC_057734_TCONS_00100443 -inf receptor-like protein kinase hsl1 1300.8 0 

XLOC_072968_TCONS_00126361 -inf probable wrky transcription factor 75 218.009 6.03E-68 
XLOC_035858_TCONS_00062570 6.52261 1-aminocyclopropane-1-carboxylate  oxidase 415.616 2.12E-140 
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Appendix 3. The genes with highest fold change were down regulated in resistant clones. 
 

Locus Log FC best blastX hit Bit-Score E-Value 

XLOC_000087_TCONS_00000152 Inf photosystem i reaction center subunit chloroplastic-like 216.468 8.24E-66 
XLOC_002414_TCONS_00004125 Inf probable lrr receptor-like serine threonine-protein kinase at3g47570 233.417 3.49E-67 

XLOC_004766_TCONS_00008183 Inf ring-h2 finger protein atl67-like 228.024 1.15E-71 

XLOC_006139_TCONS_00010504 Inf protein walls are thin 1-like 652.514 0 

XLOC_013490_TCONS_00023262 Inf della protein rgl1-like 492.271 2.00E-163 

XLOC_020304_TCONS_00034972 Inf shoot meristemless-like protein 119.398 5.55E-32 

XLOC_029697_TCONS_00051588 Inf nuclear transcription factor y subunit a-3-like isoform x1 118.627 3.97E-29 

XLOC_032542_TCONS_00056679 Inf sugar transport protein 8-like 219.55 5.23E-66 

XLOC_039428_TCONS_00068741 Inf vetispiradiene synthase 3-like 831.247 0 

XLOC_040858_TCONS_00071349 Inf ty1-copia-like  retrotransposon 111.309 1.52E-27 

XLOC_042092_TCONS_00073400 Inf probable cellulose synthase a catalytic subunit 5 287.73 1.42E-128 

XLOC_043220_TCONS_00075464 Inf cytochrome p450 94c1-like 259.225 7.81E-81 

XLOC_044773_TCONS_00078180 Inf spx domain-containing membrane protein at4g22990-like 790.801 0 

XLOC_052052_TCONS_00090680 Inf ethylene-responsive transcription factor erf034 244.202 9.88E-75 

XLOC_054117_TCONS_00094197 Inf udp-sugar transporter sqv-7-like 141.739 4.37E-37 

XLOC_055643_TCONS_00096803 Inf glucan endo- -beta-glucosidase 12 398.667 7.59E-131 

XLOC_058674_TCONS_00102098 Inf stress responsive a b barrel domain family protein 149.828 1.57E-42 

XLOC_062742_TCONS_00109015 Inf dna binding isoform 1 200.29 1.24E-57 

XLOC_062744_TCONS_00109019 Inf heat stress transcription factor a-6b-like 169.474 2.14E-46 

XLOC_063003_TCONS_00109446 Inf ap2-like ethylene-responsive transcription factor ant 352.443 1.29E-114 

XLOC_063565_TCONS_00110420 Inf sulfate thiosulfate import atp-binding protein 359.762 9.41E-117 
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   Appendix 3. (cont.)   
 

Locus Log FC best blastX hit Bit-Score E-Value 

XLOC_063954_TCONS_00111099 Inf copia partial 106.301 6.16E-40 

XLOC_064483_TCONS_00112018 Inf PREDICTED: uncharacterized protein LOC103456039 60.4622 2.10E-07 

XLOC_065070_TCONS_00113053 Inf sericin 1-like 281.952 6.92E-86 

XLOC_065631_TCONS_00114028 Inf protein iq-domain 14 357.066 4.10E-117 

XLOC_066274_TCONS_00115081 Inf protein  scarecrow-like 345.895 8.64E-110 

XLOC_066736_TCONS_00115850 Inf odontogenic  ameloblast-associated 124.02 3.82E-32 

XLOC_067775_TCONS_00117643 Inf PREDICTED: uncharacterized protein LOC104596423 58.151 7.82E-08 

XLOC_067780_TCONS_00117651 Inf PREDICTED: uncharacterized protein LOC104596423 58.151 5.28E-08 
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Appendix 4. The genes with highest fold change were up regulated in both susceptible and resistant clones in response to H. fraxineus infection 
 

Locus Log FC best blastX hit Bit-Score E-Value 

XLOC_017222_TCONS_00029640 6.05402 polyphenol oxidase chloroplastic-like 841.647 0 
XLOC_066018_TCONS_00114639 5.69566 peroxidase 12-like 457.603 1.88E-157 

XLOC_032284_TCONS_00056219 5.08033 hypothetical protein L484_011462 106.686 1.37E-25 

XLOC_045728_TCONS_00079815 5.07811 tetraketide alpha-pyrone reductase 1-like 503.827 7.41E-175 

XLOC_024935_TCONS_00043210 4.8516 pathogen-related  protein 392.889 2.70E-134 

XLOC_001413_TCONS_00002492 4.27279 pectate lyase-like 688.337 0 

XLOC_009763_TCONS_00016851 4.08676 septum-promoting gtp-binding protein 1-like 392.504 1.11E-130 

XLOC_083556_TCONS_00144060 3.99429 secoisolariciresinol  dehydrogenase-like 253.062 1.17E-81 

XLOC_023212_TCONS_00040115 3.95319 beta- -galactosyltransferase 7 isoform x1 461.84 2.94E-159 

XLOC_008342_TCONS_00014342 3.91484 glycosyltransferase 7 335.109 4.18E-171 

XLOC_027430_TCONS_00047630 3.90662 ole e 5 olive pollen allergen 289.656 1.13E-95 

XLOC_032374_TCONS_00056375 3.79042 geraniol  dehydrogenase 504.982 6.41E-175 

XLOC_075513_TCONS_00130734 3.7396 flavonol synthase flavanone 3-hydroxylase-like 532.332 0 

XLOC_035381_TCONS_00061730 3.69402 phenylalanine  ammonia-lyase 236.113 8.66E-69 

XLOC_086929_TCONS_00149810 3.59717 probable protein s-acyltransferase 14 382.874 4.18E-126 

XLOC_025513_TCONS_00044155 3.59273 abc transporter g family member 35-like 1447.57 0 

XLOC_017247_TCONS_00029668 3.55523 aldolase-type tim barrel family protein isoform 1 664.07 0 

XLOC_001565_TCONS_00002743 3.51909 udp-glycosyltransferase  87a1-like 248.825 2.69E-75 

XLOC_042820_TCONS_00074747 3.45658 shikimate  chloroplastic-like 270.011 5.24E-86 

XLOC_041759_TCONS_00072836 3.44375 PREDICTED: uncharacterized protein LOC104221096 289.271 6.28E-94 
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Appendix 5. The genes with highest fold change up regulated in susceptible clones in response to H. fraxineus infection 
 

Locus Log FC best blastX hit Bit-Score E-Value 
 

XLOC_029892_TCONS_00051933 4.22221 2-hydroxyisoflavanone  dehydratase-like 462.225 6.80E-158 
XLOC_081268_TCONS_00140275 3.43026 caffeoyl-  o-methyltransferase 481.871 3.40E-169 

XLOC_013177_TCONS_00022721 2.84388 methylesterase  chloroplastic 228.024 6.35E-69 

XLOC_075548_TCONS_00130778 2.74928 probable pectate lyase 8 721.465 0 

XLOC_037171_TCONS_00064912 2.43327 farnesyl diphosphate synthase 546.969 0 
 

 

Appendix 6. The genes with highest fold change were down regulated in susceptible clones in response to H. fraxineus infection 
 

Locus Log FC best blastX hit Bit-Score E-Value 
 

XLOC_077476_TCONS_00134037 3.90252 laccase-14-like 714.916 0 

XLOC_021054_TCONS_00036307 3.12166 ethylene-responsive transcription factor 5-like 197.593 2.48E-55 

XLOC_085606_TCONS_00147634 3.05935 low affinity sulfate transporter 3 265.003 8.53E-80 

XLOC_009899_TCONS_00017075 2.97609 vacuolar-processing  enzyme 574.704 0 

XLOC_046270_TCONS_00080773 2.76108 protein tify 10b-like 227.254 1.79E-65 

XLOC_055641_TCONS_00096801 2.65917 calcium-transporting atpase  plasma membrane-type-like 324.709 6.55E-98 

XLOC_030407_TCONS_00052827 2.40128 plastid-targeted protein 2 154.836 9.92E-42 

XLOC_018383_TCONS_00031669 2.20534 mitogen-activated protein kinase kinase 5-like isoform x4 190.66 2.37E-50 

XLOC_033558_TCONS_00058578 2.17488 calmodulin-binding family protein 746.503 0 

XLOC_031518_TCONS_00054910 2.10841 probable e3 ubiquitin-protein ligase rha2b 173.711 9.58E-50 
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Appendix 7. The genes with highest fold change were down regulated in both susceptible and resistant clones in response to H. fraxineus infection 
 

Locus Log FC best blastX hit Bit-Score E-Value 

XLOC_022125_TCONS_00038138 3.97762 phospholipase a1- chloroplastic-like 860.907 0 

XLOC_062857_TCONS_00109218 3.56667 protein tify 10b-like 223.016 7.21E-65 

XLOC_030086_TCONS_00052237 3.38428 fk506-binding protein 4-like 107.842 3.61E-25 

XLOC_060449_TCONS_00105135 3.24324 poly polymerase 168.318 1.53E-47 

XLOC_068050_TCONS_00118132 2.97728 transcription factor bhlh36-like 178.718 5.57E-50 

XLOC_000577_TCONS_00001017 2.93593 btb poz domain-containing protein at5g41330 433.335 4.65E-146 

XLOC_054121_TCONS_00094214 2.73374 PREDICTED: uncharacterized protein LOC105161463 650.203 0 

XLOC_012088_TCONS_00020856 2.69476 protein tify 10b-like 241.121 2.72E-71 

XLOC_016588_TCONS_00028600 2.59843 polyketide cyclase dehydrase and lipid transport superfamily protein 631.713 0 

XLOC_085093_TCONS_00146775 2.58072 PREDICTED: uncharacterized protein LOC105156865 isoform X1 415.616 1.24E-141 

XLOC_031339_TCONS_00054571 2.23917 major latex-like protein 201.445 2.70E-60 

XLOC_079277_TCONS_00136993 2.23082 ethylene-responsive transcription factor erf017-like 204.527 1.61E-60 

XLOC_061562_TCONS_00107016 2.21894 protein spiral1-like 5 88.1965 1.94E-18 

XLOC_064856_TCONS_00112687 2.20384 probable sucrose-phosphate synthase 4 478.404 1.08E-153 

XLOC_047146_TCONS_00082312 2.13957 auxin-responsive protein iaa26-like 350.517 1.63E-113 

XLOC_058264_TCONS_00101364 2.12713 probable alpha-amylase 2 364.385 3.74E-118 

XLOC_056992_TCONS_00099101 2.12224 probable lrr receptor-like serine threonine-protein kinase at5g63710 855.899 0 

XLOC_014848_TCONS_00025635 2.12198 protein sym-1 270.396 4.68E-84 

XLOC_007459_TCONS_00012839 2.01788 transcription factor bhlh35-like 321.242 1.81E-104 

XLOC_050921_TCONS_00088776 2.00463 dof zinc finger 129.413 1.41E-34 

 


