Möjliga nya träd för staden
-Tio potentiella nya stadsträd

Possible new trees for the city
-Ten potential new city trees

Sofie Johnsson

Självständigt arbete • 15 hp
Landskapsingenjörsprogrammet
Alnarp 2015
Possible new trees for the city
-Ten potential new city trees

Författarens Sofie Johnsson

Handledare: Johan Östberg, SLU, Institutionen för landskapsarkitektur, planering och förvaltning
Examinator: Cecilia Öxell, SLU, Institutionen för landskapsarkitektur, planering och förvaltning

Omfattning: 15 hp
Nivå och fördjupning: G2E
Kurstitel: Examensarbete i landskapsarkitektur inom landskapsingenjörsprogrammet
Kurskod: EX0793

Program/utbildning: Landskapsingenjörsprogrammet
Examen: Landskapsingenjör, kandidatexamen i landskapsarkitektur
Ämne: Landskapsarkitektur
Utgivningsort: Alnarp
Utgivningsmånad och -år: juni 2015
Omslagsbild: Sofie Johnsson
Elektronisk publicering: http://stud.epsilon.slu.se

Nyckelord: Stadsträd, Stadsmiljö, Torka, Kompaktering, Salt,
Förord
Detta examensarbete inom Landskapsingenjörsprogrammet vid SLU Alnarp omfattar 15 högskolepoäng och har inriktning landskapsarkitektur. Arbetet behandlar potentiella nya träd för användning i städer och var något jag ville få mer kunskap inom. Ifall det fanns fler träd att använda i staden än de få sorterna som dominerar idag.

Jag vill tacka min handledare Johan Östberg för all hjälp med arbetet, mina konstiga frågor och pushandet för att jag skulle bli klar i tid.

Till sist vill jag tacka mina vänner och familj som alltid gett mig stöd under detta arbetes gång.

Sofie Johnsson
Alnarp
Juni 2015
Sammanfattning
Stadens miljö gör den till en komplicerad växtplats som kräver att växtvalet är rätt för rätt plats i staden. Med påfrestningar som torka, värme, kompaktering och salt blir växtplatsen långt ifrån det naturliga. Utöver detta finns det en risk för sjukdomar och skador på träden som gör påfrestningarna för stadsträd ännu större. Med en strävan till bred artdiversitet i staden och friska träd som står på platser de klarar av studeras tio träd för att besvara vissa faktorer. Detta arbete bygger på en litteraturstudie och träden i arbetet är utvalda ur studien ”Diversity and distribution of the urban tree population in ten major Nordic cities” (Sjöman, et al., 2012) och är:

- naverlönn (Acer campestre)
- sykoomörlönn (Acer pseudoplatanus)
- klibbal (Alnus glutinosa)
- ävenbok (Carpinus betulus)
- serbisk gran (Picea omorika)
- tall (Pinus sylvestris)
- asp (Populus tremula)
- fågelbär (Prunus avium)
- skogslind (Tilia cordata)
- bohuslind (Tilia platyphyllos)

Faktorer som har besvarats för varje träd i arbetet är ifall de är torktåliga? Om de är salttåliga? Om de är tåliga mot kompaktering? Hur stora de blir och hur deras habitus ser ut? Vilken svensk växtzon de växer i? Om de har speciella krav på jorden? Om de är drabbade av någon allvarlig sjukdom.

Det som framkommit är att alla träden klarar av en eller flera faktorer för staden och därför lämpar sig för plantering i städer. De bör däremot stå på olika ställen i staden för en optimal utveckling.
Innehållsförteckning

1 Inledning .. 1
 1.1 Bakgrund .. 1
 1.2 Syfte och mål .. 1
 1.3 Metod och material ... 1
 1.4 Frågeställning .. 2
 1.5 Avgränsning .. 2

2 Faktorer för stadståndorten .. 3
 2.1 Torka och värme för träd i staden ... 3
 2.2 Kompakteringens påverkan på träd i staden .. 4
 2.3 Saltets påverkan på träd i staden ... 4
 2.4 Trädens storlek ... 5
 2.5 Trädens habitus ... 5
 2.6 Växtzoner ... 6
 2.7 Jordkrav ... 6
 2.8 Sjukdomar .. 7

3 Resultat .. 8
 3.1 Acer campestre .. 9
 3.2 Acer pseudoplatanus .. 10
 3.3 Alnus glutinosa ... 11
 3.4 Carpinus betulus ... 12
 3.5 Picea omorika ... 13
 3.6 Pinus sylvestris ... 14
 3.7 Populus tremula .. 15
 3.8 Prunus avium .. 16
 3.9 Tilia cordata ... 17
 3.10 Tilia platyphyllos .. 18

4 Analys och sammanställning .. 19

5 Diskussion .. 22

6 Källförteckning ... 24
1 Inledning

1.1 Bakgrund
Träd i stadsmiljö ger oss ekosystemtjänster som ökar människors hälsa och välbefinnande. En av dessa tjänster är den svalkande effekten träden ger i städer under de varma perioderna på året (Kaplan, 1995; Niemela, 1999). Träden höjer den sociala faktorn i städer och det finns uteserveringar under träden där människor vistas på sommarhalvåret (Deak Sjöman, et al., 2015) och på vinterhalvåret lyser många träd upp med hjälp av julbelysning.

Trädens alla utmaningar är svåra att lösa men med ett träval som klarar de utmanande växtförhållanden i staden kan staden bli vackrare, få en större artdiversitet och större motståndskraft mot sjukdomar och skador.

1.2 Syfte och mål
Mitt syfte med detta arbete är att få information om fler lämpliga träd som går att använda som stadsträd för att öka mångfalden av träd i städer.

Målet med detta arbete är att få fram ett dokument som beskriver ett antal föreslagna träd och utreda ifall de lämpar sig i staden. Det ska kunna användas av personer som jobbar i städer med trädfrågor som ett hjälpande dokument i sina val av träd i staden.

Målet med detta arbete är att få fram ett dokument som beskriver ett antal föreslagna träd och utreda ifall de lämpar sig i staden. Det ska kunna användas av personer som jobbar i städer med trädfrågor som ett hjälpande dokument i sina val av träd i staden.

1.3 Metod och material

De valda träden har enligt undersökningen en användning i städer mellan 2 och 0,5 % (Sjöman, et al., 2012) det är dessa träd arbetet utgår ifrån och som information har hittats. Detta har skett genom litteratur i böcker, artiklar, plantskolekataloger och tidsskrifter.
Detta arbete är en litteraturstudie där jag funnit information som besvarar olika faktorer om alla de valda träden ur undersökningen. I arbetet har information om hur stadståndorter ser ut studerats och även de valda träden har studerats utifrån valda frågor.

Litteraturen har ibland nämnt motsägande fakta och detta har redovisats och diskuterats för att få fram ett så brett resultat som möjligt. Varje träd har sammanfattats med hjälp av tabeller och frågorna ifall det är ett rekommenderat stadsträd har besvarats i analysen.

Frågor på varje träd som har besvarats är:
- Är trädet saltåligt?
- Är trädet torkåligt?
- Klarar det kompaktering?
- Hur stort kan det bli?
- Zon
- Habitus
- Jordkrav
- Sjukdomar

1.4 Frågeställning

Frågeställningen för att kunna genomföra detta arbete är övergripande:
Vilka trädarter används i liten utsträckning i nordiska städer och hur kan dessa fungera i gatumiljö?

1.5 Avgränsning

De träd som studerats omfattar 11st träd och ligger mellan 2 - 0,5 % användning i städer enligt undersökningen gjord av Sjöman, Östberg & Bühler (2012).

Ett av dessa träd var ask (Fraxinus excelsior) som har den allvarliga sjukdomen askskottsjukan och det är inte lämpligt att plantera den rena arten. På grund av sjukdomen valde jag att inte studera asken djupare.
2 Faktorer för stadståndorten

Staden som ståndort och växtplats är krävande och ibland ogästvänlig för träd att växa i. De ska klara av årstider, miljöpåverkan och påverkan av människor. I detta kapitel kommer faktorerna som varje träd ska undersökas med förklaras.

Faktorerna som ska förklaras är:

- Torka och värme för träd i staden
- Kompakterings påverkan på träd i staden
- Saltets påverkan på träd i staden
- Trädets storlek
- Trädets habitus
- Växtzoner
- Jordkrav
- Sjukdomar

2.1 Torka och värme för träd i staden

2.2 Kompakteringens påverkan på träd i staden

2.3 Saltets påverkan på träd i staden

För att undvika och förebygga saltskador på träden kan olika sorts stänkskydd sättas upp runt växtbäddarna under vinterhalvåret. Dessa skydd har en yta som salt och andra föroreningar rinner av och bort ifrån växtbädden, de kan exempelvis vara gjorda i plast (Deak Sjöman, et al., 2015). Träd som ska planteras vid dessa utsatta lägen bör ha en motståndskraft eller
tolerans mot luftburet och markburet salt. Beroende på växtplats behöver inte träden alltid tåla båda sorterna av salt påverkan.

2.4 Trädens storlek
I stadsmiljö är utrymmet begränsat åt alla håll både ovan och under mark. Gaturummet är smalt och kantas ofta av byggnader som gör det komplicerat att plantera träd som blir väldigt stora eller med bred krona. Därför bör man ta reda på den uppskattade storleken på träd som ska planteras in i gatumiljö för att inte riskera skador på byggnader, klagomål eller träd som blir svåra att beskära. Ska trädens ställning vara tillräcklig för att alla fordon ska kunna passera under. Över gång- och cykelbanor ska kronorna höjas till 2,5 meter för att cyklister och gångtrafikanter ska kunna passera under utan att få en gren i huvudet (Mebus, 2014). Detta gör att träden som väljs för en sådan miljö bör kunna bli höga nog att de har en krona kvar efter beskärning.

I torgmiljö kan valda träden få lov att bli höga och stora eftersom de ofta inte står klämda mellan fasader på byggnader och gaturum men man bör man kontrollera vilken storlek trädens krona kommer få hän ändå (Johnander, 2010). Detta eftersom träd i torgmiljö ofta blir en social samlingspunkt i städer där man söker skygg mot sol och värme.

2.5 Trädens habitus

Träd som placeras i en torgmiljö har större utrymme och kan därmed ha en större krona som breder ut sig om de inte står intill en byggnad. Träd som ska rama in en torgplats och se enhetlig ut bör även ha valda träd som inte skiljer sig ifrån varandra och då kan det vara en fördel om habitus på dessa träd är lika (Johnander, 2010).
2.6 Växtzoner

Hela världen är indelad i växtzoner dock finns det inte en växtzonskarta för hela världen utan olika kontinenter och länder har olika indelningar. I Sverige använder vi en växtzonskarta som delar in landet i zon 1-8 plus en fjällregion (Figur 1).

Zonangivelser på träd anger var i Sverige som träden kan överleva och få en bra utveckling. Träd har olika härdighet för olika klimat och detta gör att vissa träd endast kan leva och utvecklas i varma klimat och vissa träd kan leva i ett kallt klimat. Det är alltså deras härdighet som sedan anges med hjälp av zoner (Riksförbundet Svensk Trädgård, 2015).

Det är viktigt att veta vilken zon träden klarar att växa på när man gör ett artval, detta för att inte råka välja ett träd som inte är härdigt och klarar klimatet på platsen.

2.7 Jordkrav

Träd har olika preferenser för vilken sorts jord de vill stå i eller var de får en optimal utveckling i. Vissa träd har anspråkslösa krav på vilken jord de står i och kan i princip växa var som helst medan andra träd har specifika krav för var de vill leva i för jord. Det kan vara ett träd som kräver mycket näring i marken för att utvecklas bra och bör därmed inte placeras på jord som är näringsfattig då detta träd inte kommer få en optimal utveckling. I plantskolekataloger kan det stå hur trädet vill stå exempelvis humusrikt medan det i facklitteratur står beskrivet vilken jord trädet står på i sina naturliga ståndor. Jorden i stadsmiljö är väldigt olik den naturliga jorden på landsbygden och det är denna naturliga jord man vill eftersträva i städerna (Hartman, et al., 2000).

Vid plantering av träd i hårdgjorda ytor är det viktigt att försöka tillgodose trädens naturliga ståndort detta för att uppnå en så bra utveckling som möjligt för träden. Exempelvis kan detta handla om tillgången på organiskt material, fukt, pH och tillräcklig jordvolym.
2.8 Sjukdomar

När nya träd i städer projekteras och planeras in bör de väljas ifrån arter där det finns en liten eller ingen sjukdomsbild detta för att få friska träd som kan stå på platsen länge och vara vackra.
3 Resultat
De studerade träderna i detta arbete är tio stycken som används väldigt sparsamt som stadsträd i våra nordiska städer.
De är:

- naverlönn (*Acer campestre*)
- sykomorlönn (*Acer pseudoplatanus*)
- klibbal (*Alnus glutinosa*)
- avenbok (*Carpinus betulus*)
- serbisk gran (*Picea omorika*)
- tall (*Pinus sylvestris*)
- asp (*Populus tremula*)
- fågelbär (*Prunus avium*)
- skogslind (*Tilia cordata*)
- bohuslind (*Tilia platyphyllos*)

3.1 Acer campestre

Naverlönn (*Acer campestre*) är ett medelstort träd mellan 7 till 15 meter högt och 6 till 10 meter brett (*Tabell 1*). Trädets habitus är runt till brett konformigt.

Tabell 1 Faktorer för *Acer campestre*

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Är trädet salttåligt</td>
<td>Ja</td>
<td>Ja</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4st Ja</td>
</tr>
<tr>
<td>Är trädet torktåligt</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>5st Ja</td>
</tr>
<tr>
<td>Klarar det kompaktering</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Näringsrik ej</td>
</tr>
<tr>
<td>Hur stort blir det</td>
<td>10-15m högt</td>
<td>8-10m brett</td>
<td>7-10m högt</td>
<td>6-8m brett</td>
<td>7-11m</td>
<td>7-11m</td>
<td>9-12m</td>
<td>15m högt</td>
<td>15-25m Högt</td>
</tr>
<tr>
<td></td>
<td>1-4</td>
<td>1-4</td>
<td>1-3</td>
<td>1-4</td>
<td>1-4</td>
<td>1-4</td>
<td>1-4</td>
<td>1-4</td>
<td>7-25m högt 6-10m Brott</td>
</tr>
<tr>
<td>Viket habitus har det</td>
<td>Rund krona</td>
<td>Rund krona</td>
<td>Rund krona</td>
<td>Bred konform</td>
<td>Medelform</td>
<td>Rund krona</td>
<td>-</td>
<td>Rund krona</td>
<td>3st Rund krona</td>
</tr>
<tr>
<td>Vikta krav på jorden har det</td>
<td>Näringsrik och Kalkhaltigt</td>
<td>Näringsrik och Kalkhaltigt</td>
<td>-</td>
<td>Valdränerat Kalkhaltigt</td>
<td>-</td>
<td>Valdränerat Kalkhaltigt</td>
<td>-</td>
<td>3st Valdränerat Kalkhaltigt</td>
<td></td>
</tr>
<tr>
<td>År det drabbat av sjukdomar</td>
<td>-</td>
<td>-</td>
<td>Mjöldagg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Mjöldagg ej</td>
</tr>
</tbody>
</table>
3.2 Acer pseudoplatanus

Sykomorlönnen (*Acer pseudoplatanus*) är ett stort träd som utmärker sig där det står planterat med en höjd på 15 upp till hela 30 meter (*Tabell 2*). Det har en tät kroma med brett pyramidalt habitus (*Figur 3*) och kronans bredd och kan bli mellan 10 till 25 meter.

Detta träds bark på stammen flagnar och ramlar av vilket ger ett karakteristiskt utseende (Splendorplant, 2014; Stångbyplantskola, 2013-2014; Tönnersjöplantskola, 2014; Bengtsson, 1998; Anderberg & Anderberg, 2015; Ulriksdals Trädgård på Kivik, 2015).

Det finns lite forskning i Sverige på sykomorlönnen och dess växtsätt (Sjöstedt, 2012).

Tabell 2 Faktorer för *Acer pseudoplatanus*

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Är trädet salttåligt?</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja luftburet</td>
<td>2st Ja</td>
<td>1st Ja luftburet</td>
<td>5st Närmins ej</td>
</tr>
<tr>
<td>Är trädet torktåligt?</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1st Ja</td>
<td>7st Närmins ej</td>
<td>Närmins ej</td>
</tr>
<tr>
<td>Klarar det kompaktering?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1-3(4)</td>
<td>1-3(4)</td>
<td></td>
</tr>
<tr>
<td>Hur stort blir det?</td>
<td>20-25m Högt, 10-15m Brett</td>
<td>15-20m Högt, 10-12m Brett</td>
<td>25m</td>
<td>25-30m</td>
<td>25m</td>
<td>15-20m, 30m Högt, 20m Brett</td>
<td>30m</td>
<td>15-30m Högt, 10-20m Brett</td>
<td></td>
</tr>
<tr>
<td>Växzon</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
<td>1-4</td>
<td>-</td>
<td>1-3(4)</td>
<td></td>
</tr>
<tr>
<td>Vilket habitus har det?</td>
<td>Brett pyramidalt</td>
<td>Tät krona</td>
<td>-</td>
<td>Tät krona</td>
<td>Medelform</td>
<td>Bred krona</td>
<td>2st Tät krona, Brett pyramidalt, Medelform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vilka krav på jorden har det?</td>
<td>Anspråkslös</td>
<td>Anspråkslös</td>
<td>Anspråkslös</td>
<td>Anspråkslös</td>
<td>Anspråkslös</td>
<td>Anspråkslös</td>
<td>Anspråkslös, Dränerat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar det drabbat av sjukdomar?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Närmins ej</td>
</tr>
</tbody>
</table>

3.3 Alnus glutinosa
Klibbalen (Alnus glutinosa) är ett medelstort träd (Figu 4) med en höjd på 12 till 25 meter. Trädets bredd är beroende på om det är planterat trångt eller om det är friväxande. Vid fall där det växer fritt blir det 6 till 12 meter brett (Tabell 3).

Klibbalens blad är glansigt mörkgröna under hela vegetationsperioden och på hösten faller de av utan att ha fått någon höstfärg (Coombes, 2004; Plantarum, 2015; Anderberg & Anderberg, 2015).

Trädets rötter är kvävefixerande och kan på detta vis öka näringen i marken där det står (Savill, 2003).

Tabell 3 Faktorer för Alnus glutinosa

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Är trädet salttåligt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>Ja luftsalt</td>
<td>1st Ja</td>
<td>1st luftsalt 6st Nämns ej</td>
</tr>
<tr>
<td>Är trädet torktåligt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>1st Ja</td>
<td>7st Nämns ej</td>
</tr>
<tr>
<td>Klarar det kompaktering</td>
<td>Ja</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>4st Ja</td>
<td>4st Nämns ej</td>
</tr>
<tr>
<td>Hur stort blir det</td>
<td>15-20m högt 8-10m brett</td>
<td>12-15m högt 6-8m brett</td>
<td>-</td>
<td>12-15m</td>
<td>25m</td>
<td>15-20m</td>
<td>25m högt 12m brett</td>
<td>25m</td>
<td>12-25m högt 6-12m brett</td>
</tr>
<tr>
<td>Växtzon</td>
<td>1-5</td>
<td>1-5</td>
<td>1-5</td>
<td>1-5</td>
<td>-</td>
<td>1-6</td>
<td>-</td>
<td>1-5(-6)</td>
<td></td>
</tr>
<tr>
<td>Vilket habitus har det</td>
<td>Konformig</td>
<td>Bred krona</td>
<td>-</td>
<td>-</td>
<td>Välvd krona</td>
<td>Medelform</td>
<td>Konformig</td>
<td>2st Konformig Bred krona Välvd krona Medelform 3st Nämns ej</td>
<td></td>
</tr>
<tr>
<td>Vilka krav på jorden har det</td>
<td>-</td>
<td>Fukt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anspråkslös</td>
<td>-</td>
<td>2st Fukt</td>
<td>1st Anspråkslös 5st Nämns ej</td>
</tr>
<tr>
<td>År det drabbat av sjukdomar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Nämns ej</td>
<td></td>
</tr>
</tbody>
</table>
3.4 Carpinus betulus

Avenboken (*Carpinus betulus*) blir ett stort träd med en höjd på 15 till 30 meter högt och 8 till 25 meter brett (*Tabell 4*).

Figur 5 Publicerat genom CC licens fotograf Jean-Pol GRANDMONT, *Carpinus betulus*, https://commons.wikimedia.org/wiki/Carpinus_betulus#/media/File:Asquillie_s_Chp1aIPG.jpg

Tabell 4 Faktorer för Carpinus betulus

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Är trädet salttåligt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Nämns ej</td>
</tr>
<tr>
<td>Är trädet torktåligt</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>2st Ja 6st Nämns ej</td>
</tr>
<tr>
<td>Klarar det kompaktering</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Nämns ej</td>
</tr>
<tr>
<td>Hur stort blir det</td>
<td>15-18m högt 8-10m brett</td>
<td>15-18m högt 8-10m brett</td>
<td>-</td>
<td>15-20m</td>
<td>-</td>
<td>15-20m</td>
<td>30m högt 25m brett</td>
<td>25m</td>
<td>15-30m högt 8-25m brett</td>
</tr>
<tr>
<td>Växtzon</td>
<td>1-4</td>
<td>1-4</td>
<td>1-4</td>
<td>1-4</td>
<td>-</td>
<td>1-4</td>
<td>-</td>
<td>-</td>
<td>1-4</td>
</tr>
<tr>
<td>Vilket habitus har det</td>
<td>Pyramidal som övergår i rund krona</td>
<td>Pyramidal övergår till rund krona</td>
<td>Bred rund krona</td>
<td>Pyramidal krona övergår till bred rund</td>
<td>Rund krona</td>
<td>Medelform</td>
<td>Pyramidal</td>
<td>-</td>
<td>4st Pyramidal 3st övergår i rund 1st bred rund 1st Rund 1st Medelform 1st nämns ej</td>
</tr>
<tr>
<td>Vilka krav på jorden har det</td>
<td>-</td>
<td>Näringsrik</td>
<td>Anspråkslös</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anspråkslös</td>
<td>2st Anspråkslös 1st näringsrikt 5st Nämns ej</td>
</tr>
<tr>
<td>Är det drabbat av sjukdomar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Nämns ej</td>
</tr>
</tbody>
</table>

12
3.5 Picea omorika
Serbisk gran (*Picea omorika*) är ett smalt upprätt pellarformigt barrträd som blir mellan 15 till 30 meter högt (*Tabell 5*).

Den serbiska granens kottar är små runt 4-5 cm långa och 1,5cm breda (Coombes, 2004).

Det klarar av att växa på torra platser utöver tillväxtperioden i juni där det kräver fukt för att få en tillväxt (Splendorplant, 2014; Sjöman, 2003).

Tabell 5 Faktorer för Picea omorika

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>År trädet salttåligt</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>Närns ej</td>
</tr>
<tr>
<td>År trädet torktåligt</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>1st Ja 5st Närns ej</td>
</tr>
<tr>
<td>Klarar det kompaktering</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>Nej</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>1st Nej 5st Närns ej</td>
</tr>
<tr>
<td>Hur stort blir det</td>
<td>*</td>
<td>15-20m högt 4-6m brett</td>
<td>20-25m högt 2m brett</td>
<td>20-25m</td>
<td>20 m</td>
<td>15-20m</td>
<td>30m högt 10m brett</td>
<td>*</td>
<td>15-30m högt 2-10m brett</td>
</tr>
<tr>
<td>Växtzon</td>
<td>*</td>
<td>1-5</td>
<td>1-5</td>
<td>1-5</td>
<td>1-5</td>
<td>1-5</td>
<td>-</td>
<td>*</td>
<td>1-5</td>
</tr>
<tr>
<td>Vilket habitus har det</td>
<td>*</td>
<td>Upprätt</td>
<td>Upprätt</td>
<td>Pellarform</td>
<td>Smalt</td>
<td>Koniskt</td>
<td>Smalt</td>
<td>*</td>
<td>2st upprätt 2st smalt 1st pellarformigt 1st koniskt</td>
</tr>
<tr>
<td>Vilka krav på jorden har det</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>Närns ej</td>
</tr>
<tr>
<td>År det drabbat av sjukdomar</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>Närns ej</td>
</tr>
</tbody>
</table>

Finns inte med i källan
3.6 Pinus sylvestris

Det klarar även att stå på kompakterad mark då det har kraftiga rötter som bryter upp och skapar luftfickor i marken (Bengtsson, 1998; Plantarum, 2015).

Det är ett friskt träd som sällan drabbas av sjukdomar dock finns det en sjukdom som kan drabba det vilket är törskatesvamp (*Peridermium pini*). Törskatesvampen angriper unga tallar som sedan gulnar och dör men detta tar några år (Savill, 2003; Skogsstyrelsen, 2015).

Figur 7 Publicerat genom CC licens fotograf Kallema, Pinus sylvestris, https://commons.wikimedia.org/wiki/Pinus_sylvestris#/media/File:Pinus_sylvestris_in_Yyteri.jpg

Tabell 6 Faktorer för Pinus sylvestris

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>År trädet salttåligt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>Ej</td>
<td>1st Ja</td>
<td>1st Ej luftburet</td>
</tr>
<tr>
<td>År trädet torktåligt</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>Ja</td>
<td>6st Ja</td>
<td>2st Nämns ej</td>
</tr>
<tr>
<td>Klarar det kompaktering</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>2st Ja</td>
<td>6st Nämns ej</td>
</tr>
<tr>
<td>Har storl(steps)</td>
<td>15-30m högt</td>
<td>25-30m högt</td>
<td>15-20m</td>
<td>30m</td>
<td>25m</td>
<td>30m högt</td>
<td>35m</td>
<td>15-35m högt</td>
<td>7-15m brent</td>
</tr>
<tr>
<td>Växtzon</td>
<td>1-7</td>
<td>1-7</td>
<td>1-8</td>
<td>1-7</td>
<td>1-8</td>
<td>1-8</td>
<td>-</td>
<td>-</td>
<td>1-7(8)</td>
</tr>
<tr>
<td>Vilket habitus har det</td>
<td>-</td>
<td>Öppet</td>
<td>Konisk</td>
<td>Medelform</td>
<td>Konisk till Utbredd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vilka krav på jorden har det</td>
<td>-</td>
<td>-</td>
<td>Anspråkslös</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Anspråkslös</td>
<td>-</td>
<td>7st Nämns ej</td>
</tr>
<tr>
<td>År det drabbat av sjukdomar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Törskatesvamp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Törskatesvamp</td>
<td>7st Nämns ej</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 6 Faktorer för Pinus sylvestris
3.7 Populus tremula

Asp (Populus tremula) blir ett medelstort träd mellan 15 till 25 meter högt och 8 till 15 meter brett (Tabell 7).

Trädet har en gles kroka (Figur 8) som är något rundad (Splendorplant, 2014). Det har sina karakteristiska blad som ser ut att darra i vinden med en grön ovensida och nästan silvrig undersida. På hösten övergår bladen till en klargul färg (Bengtsson, 1998; Plantarum, 2015; Splendorplant, 2014).

Aspen skjuter mycket rotskott som bryter upp marken och motverkar kompaktering (Bengtsson, 1998; Coombes, 2004; Plantarum, 2015; Splendorplant, 2014; Tönnersjöplantskola, 2014; Anderberg & Anderberg, 2015).

Trädet kan drabbas av bladrost (melampsora spp.) och aspticka (Phellinus tremulae) (Savill, 2003).

![Figur 8 Publicerat genom CC licens fotograf Willow, Populus tremula, https://commons.wikimedia.org/wiki/Populus_tremula#/media/File:Populus_tremula_007.jpg](image)

Tabell 7 Faktorer för Populus tremula

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar trädet salttåligt</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>1st Ja</td>
</tr>
<tr>
<td>Ar trädet torktåligt</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>1st Ja</td>
</tr>
<tr>
<td>Klarar det kompaktering</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>-</td>
<td>1st Ja</td>
</tr>
<tr>
<td>Hur stort blir det</td>
<td>15-20m högt, 8-10m brett</td>
<td>*</td>
<td>15-20m</td>
<td>15-20m</td>
<td>25m</td>
<td>15-20m</td>
<td>20m</td>
<td>20m</td>
<td>15-25m högt, 8-15m brett</td>
</tr>
<tr>
<td>Växtzon</td>
<td>1-5</td>
<td>*</td>
<td>1-3</td>
<td>1-6</td>
<td>1-8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1-3, 1-5, 1-6, 1-8</td>
</tr>
<tr>
<td>Vilket habitus har det</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Rundad krona</td>
<td>Dränering</td>
<td>Markfukt</td>
<td>Rundad krona, Oregelbunden, Medelform</td>
</tr>
<tr>
<td>Vilka krav på jorden har det</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Dränering</td>
<td>Anspråkslös</td>
<td>Anspråkslös</td>
<td>Anspråkslös, Dränering, Markfukt</td>
</tr>
<tr>
<td>Ar det drabbat av sjukdomar</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Bladrost</td>
<td>Bladrost</td>
<td>Aspticka</td>
<td>Bladrost, Aspticka</td>
</tr>
</tbody>
</table>

*Finns inte i källan
3.8 *Prunus avium*

Fågelbäret (*Prunus avium*) är snabbväxande och blir ett stort träd med en höjd på 15 till 25 meter och en bredd på 10 till 15 meter (*Tabell 8*).

Trädet har ett koniskt till brett habitus i ung ålder som ibland övergår till en oregelbunden form (*Figur 9*).

Fågelbäret kan drabbas av gummiflöde och häxkvastor som orsakas av häxkvastsvampen (*Taphrina cerasi*) (*Bengtsson*, 1998).

Figur 10 Publicerat genom CC licens fotograf Rainer Lippert, *Prunus avium*, https://commons.wikimedia.org/wiki/Prunus_avium#/media/File:Kirsche_Margets_h%C3%Bchheim_2.jpg

Figur 9 Publicerat genom CC licens fotograf Konrad Lackerbeck, *Prunus avium*, https://commons.wikimedia.org/wiki/Prunus_avium#/media/File:S%C3%BC%C3%9Fkirsche_Prunus_avium.jpg

Tabell 8 Faktorer för *Prunus avium*

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Är trädet salttåligt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Nämns ej</td>
</tr>
<tr>
<td>Är trädet toktåligt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Nämns ej</td>
</tr>
<tr>
<td>Klarar det kompaktering</td>
<td>Känslig mot</td>
<td>Känslig mot</td>
<td>Känslig mot</td>
<td>Känslig mot</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4st känslig mot</td>
</tr>
<tr>
<td>Hur stort blir det</td>
<td>15-20m högt, 10-15m brett</td>
<td>15-20m högt, 10-15m brett</td>
<td>20m</td>
<td>15-20m högt, 10-15m brett</td>
<td>-</td>
<td>15-20m</td>
<td>25m högt</td>
<td>25m</td>
<td>15-25m högt, 10-15m brett</td>
</tr>
<tr>
<td>Växtzon</td>
<td>1-4</td>
<td>1-4</td>
<td>1-4</td>
<td>1-4</td>
<td>-</td>
<td>1-5</td>
<td>-</td>
<td>-</td>
<td>1-6(5)</td>
</tr>
<tr>
<td>Vilket habitus har det</td>
<td>Bred krona</td>
<td>Aggformat</td>
<td>Konformigt</td>
<td>Bred krona</td>
<td>-</td>
<td>Medelform</td>
<td>Konformigt</td>
<td>-</td>
<td>2st Konformigt</td>
</tr>
<tr>
<td>Vilka krav på jorden har det</td>
<td>Allt jordan utom styv lera</td>
<td>-</td>
<td>Allt jordan utom styv lera</td>
<td>Allt jordan utom styv lera</td>
<td>-</td>
<td>Dränerat Kalk</td>
<td>-</td>
<td>Dränerat Kalk</td>
<td>3st Ej styv lera, 2st Dränerat & kalk</td>
</tr>
<tr>
<td>Är det drabbat av sjukdomar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Gummiflöde</td>
<td>7st Nämns ej</td>
</tr>
</tbody>
</table>
3.9 **Tilia cordata**

Skogslinden (*Tilia cordata*) blir ett stort träd på 20 till 30 meter högt och 10 till 20 meter brett (*Tabell 9*).

Skogslindens habitus är oregelbundet (*Figur 11*) och är inte lämplig att plantera i enhetliga planteringar det är bättre som solitärträd (Bengtsson, 1998; Tönnersjöplantskola, 2014).

Skogslinden kan få bladlöss producerar honungsdagg, detta droppar ner på allt under träden (Almgren, et al., 2003; Bengtsson, 1998).

Tabell 9 Faktorier för Tilia cordata

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Är trädet salttåligt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ja Futuret</td>
<td>-</td>
<td>-</td>
<td>1st ja</td>
<td>7st Nämns ej</td>
</tr>
<tr>
<td>Är trädet torktåligt</td>
<td>-</td>
<td>Till viss del</td>
<td>-</td>
<td>-</td>
<td>Ja Futuret</td>
<td>-</td>
<td>-</td>
<td>1st ja</td>
<td>1st Till viss del 6st Nämns ej</td>
</tr>
<tr>
<td>Klarar det kompaktering</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ja</td>
<td>-</td>
<td>1st ja</td>
<td>7st Nämns ej</td>
</tr>
<tr>
<td>Hur stort blir det</td>
<td>20-25m högt 10-15m brett</td>
<td>20-25m högt 10-15m brett</td>
<td>20-25m</td>
<td>20-25m</td>
<td>22m</td>
<td>20-25m</td>
<td>30m högt 20m brett</td>
<td>20-30m</td>
<td>20-30m högt 10-15m brett</td>
</tr>
<tr>
<td>Växtzon</td>
<td>1-5</td>
<td>1-5</td>
<td>1-5</td>
<td>1-4(5)</td>
<td>-</td>
<td>1-5</td>
<td>-</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>Vilket habitus har det</td>
<td>Oregelbunden</td>
<td>Brett konisk</td>
<td>oregelbundet</td>
<td>Välvd tät krona</td>
<td>-</td>
<td>Medelform</td>
<td>-</td>
<td>-</td>
<td>2st oregelbundet Brett konisk Välvd tät krona Medelform 3st Nämns ej</td>
</tr>
<tr>
<td>Vilka krav på jorden har det</td>
<td>Anspråkslös</td>
<td>Näringsrika lerjordar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Dränering Markfukt</td>
<td>Kalk</td>
<td>Anspråkslös</td>
<td>2st Anspråkslös Näringsrika lerjordar Dränering & fukt Kalk 3st Nämns ej</td>
</tr>
<tr>
<td>Är det drabbat av sjukdomar</td>
<td>-</td>
<td>Bladlöss</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Bladlöss</td>
<td>7st Nämns ej</td>
</tr>
</tbody>
</table>
3.10 Tilia platyphyllos

Bohuslinden (Tilia platyphyllos) är ett stort träd med en höjd på 20 till hela 40 meter och med en bredd på 8 till 20 meter. Bohuslinden har till viss del ett oregelbundet växtsätt vissa träd har en bred pyramidal krona (Figur 12) och i vissa fall bred rund krona (Tabell 10).

En kalkrik jord är något bohuslinden uppskattar då det är på dessa jordar det hittas i naturen (Bengtsson, 1998; Plantarum, 2015).

Bohuslinden är mycket motståndskraftig mot vindutsatta lägen (Tönnersjöplantskola, 2014) men även skugga (Plantarum, 2015).

![Figur 12](Publicerat genom CC licens fotograf Georges Janssoone, Tilia platyphyllos. https://commons.wikimedia.org/wiki/Tilia_platyphyllos#/media/File:Tilia_platyphyllos11.JPEG)

Tabell 10 Faktorer för Tilia platyphyllos

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Är trädet salttåligt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ja Luftsalt</td>
<td>-</td>
<td>-</td>
<td>1st Ja luftsalt 7st Nämns ej</td>
</tr>
<tr>
<td>Är trädet torktåligt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Nämns ej</td>
</tr>
<tr>
<td>Klarar det kompakttering</td>
<td>Nej</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1st Nej 7st Nämns ej</td>
</tr>
<tr>
<td>Hur stort blir det</td>
<td>20-25m högt 15-20m brett</td>
<td>20-25m högt 15-20m brett</td>
<td>40m</td>
<td>20-25m högt 8-10m brett</td>
<td>25m</td>
<td>20-25m</td>
<td>30m högt 20brett 20-30m 20-40m högt 8-20m brett</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Växzon</td>
<td>1-4</td>
<td>1-4</td>
<td>1-4(5)</td>
<td>1-4(5)</td>
<td>1-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1-4(5)</td>
</tr>
<tr>
<td>Vilket habitus har det</td>
<td>Bred kupolformad</td>
<td>Brett pyramidal till rundat</td>
<td>Brett pyramidalt</td>
<td>Bred rund krona</td>
<td>-</td>
<td>Medelform</td>
<td>-</td>
<td>-</td>
<td>2st brett pyramidalt 1st till rundat 1st bred kupilform 1st bred rund 1st Medelform 1st Nämns ej</td>
</tr>
<tr>
<td>Vilka krav på jorden har det</td>
<td>Anspräktslös uppskattar näring</td>
<td>-</td>
<td>Närings och fukt</td>
<td>Näring och fukt</td>
<td>-</td>
<td>Dränering och fukt</td>
<td>-</td>
<td>-</td>
<td>2st Närings & fukt 1st Dränering & fukt 1st Anspräktslös & näring 4st Nämns ej</td>
</tr>
<tr>
<td>Är det drabbat av sjukdomar</td>
<td>-</td>
<td>Bladlöss</td>
<td>Bladlöss</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2st Bladlöss 6st Nämns ej</td>
</tr>
</tbody>
</table>
4 Analys och sammanställning

Alla träden i studien klarar någon eller några av faktorerna som finns i stadens miljö. Vissa träd klarar torka bra medan andra inte klarar torkan utan istället någon annan faktor. Här kommer en sammanställning och analys av det som framkommit i resultatlappen av detta arbete (Tabell 11).

Tall (Pinus sylvestris) klarar torka enligt källorna och därmed skulle det kunna placeras på de ställen i städer där det är störst problem med torka. Tallen är inte bara torktålig utan klarar även kompaktering i städer bra vilket gör att det kan placeras på fler ställen där det även finns risk för att marken kompakteras. Detta träd klarar flest faktorer i detta arbete med sin tolerans mot salt, torka och kompaktering. Att det sedan inte har några krav på vilken jord vilken jord gör detta träd ännu mer mångsidigt i var det går att plantera i städer. Sjukdomen törskatesvamp angriper endast unga träd små träd och inte stora äldre (Skogsstyrelsen, 2015).

Den serbiska granen (Picea omorika) är ett av de smalaste träden i arbetet och det nämns även att det kan hantera torka. En placering i städer där det inte finns mycket utrymme för en krona att breda ut sig kan vara att rekommendera för detta träd. Det kan även användas på ställen där man vill att bilda en rumskänsla eftersom trädet påstår vara så i marken. Utöver den serbiska granen är även naverlönnen ett smalt träd som går att placera på ställen där utrymmet är begränsat. Ännu ett träd som har en smal krona enligt arbetet är naverlönnens (Acer campestre) som också anses att det kan hantera torka och salt.

Sykomorlönnen (Acer pseudoplatanus) tål både salt och torka liksom naverlönnen men det blir ett betydligt större träd med en karakteristisk stam. Placeringen i städer skulle kunna vara på en öppen yta där trädet kan breda ut sig. Då det inte nämns i några källor om
sykomorlön är tålig mot kompaktering bör trädet planteras i skelettjord som säkerställer att trädet klarar sig om planteringsplatsen riskerar att utsättas för kompaktering. Det kan även få en placering i städer där det inte finns risk för någon större kompaktering. Då detta träd blir stort går även kronan att höja till de 4,7 meter som det krävs längsmed en gata. Skelettjord eller en större yta för rötterna kombinerat med sykomorlönens tålighet mot torka och salt kan göra detta träd till ett bra träd längsmed vägarna i städer. Något som talar emot sykomorlön är att det sätter stora mängder frön som gror väldigt lätt och kan bilda sly vilket kräver sin skötsel för att bli av med.

Vissa av träden är inte optimala i städer eftersom de är mer krävande än vissa av de andra träden exempelvis är de känsligaste träden i detta arbete fågebläbet (Prunus avium) och bohuslinden (Tilia platyphyllos). De är känsliga mot kompaktering och det nämns inte i någon källa ifall de klarar att stå torrt. De vill även stå näringsrikt och dränerat vilket är svåra kriterier att uppfylla i en stad men med en stor växtbädd eller en växtbädd anlagd med skelettjord går det att lösa. Dessa träd kan klara sig mycket bra i städer bara det får en bra start och bra förutsättningar att leva i staden.

Klibbalen (Alnus glutinosa) och aspen (Populus tremula) klarar enligt källorna stadsmiljöns påfrestningar men deras rötter kan göra skada på beläggningarna i staden om de tar sig ut i dessa. Aspen har en tendens att skjuta rotskott vilket inte är uppskattat i stadsmiljö med beläggningar som ska ligga stilla och vara säkra. Detta träd kan därmed bli ett stort skötselproblem och en stor kostnad. Därför bör de inte placeras i hårdgjorda ytor utan istället i grönytor så som gräsmattor.
<table>
<thead>
<tr>
<th>Frågor</th>
<th>Acer campestre</th>
<th>Acer pseudoplatanus</th>
<th>Alnus glutinosa</th>
<th>Carpinus betulus</th>
<th>Picea omorika</th>
<th>Pinus sylvestris</th>
<th>Populus tremula</th>
<th>Prunus avium</th>
<th>Tilia cordata</th>
<th>Tilia platyphyllos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar trädet salttäligt</td>
<td>4st Ja 4st Närms ej</td>
<td>2st Ja 1st Ja luftburet 5st Närms ej</td>
<td>1st Ja 1st Ja luftsalt 6st Närms ej</td>
<td>Närms ej</td>
<td>Närms ej</td>
<td>1st Ja 1st Ja luftburet 6st Närms ej</td>
<td>Närms ej</td>
<td>1st Ja luftburet 7st Närms ej</td>
<td>Närms ej</td>
<td>1st Ja luftsalt 7st Närms ej</td>
</tr>
<tr>
<td>Ar trädet torktäligt</td>
<td>5st Ja 3st Närms ej</td>
<td>1st Ja 7st Närms ej</td>
<td>2st Ja 1st Ja luftburet 6st Närms ej</td>
<td>1st Ja 5st Närms ej</td>
<td>Närms ej</td>
<td>6st Ja 2st Närms ej</td>
<td>Närms ej</td>
<td>1st Ja 6st Närms ej</td>
<td>Närms ej</td>
<td>1st Ja luftburet 6st Närms ej</td>
</tr>
<tr>
<td>Klara det kompacktering</td>
<td>Närms ej</td>
<td>Närms ej</td>
<td>4st Ja 4st Närms ej</td>
<td>Närms ej</td>
<td>1st Nej 5st Närms ej</td>
<td>2st Ja 6st Närms ej</td>
<td>1st Ja 6st Närms ej</td>
<td>4st känslig mot 4st Närms ej</td>
<td>1st Ja 7st Närms ej</td>
<td>1st Nej 7st Närms ej</td>
</tr>
<tr>
<td>Hur stor blir det</td>
<td>Närms ej 6-10m Bred 7-25m Högt</td>
<td>15-30m Högt</td>
<td>12-25m Högt</td>
<td>15-30m Högt</td>
<td>15-35m Högt 7-15m brett</td>
<td>15-25m högt 10-15m brett</td>
<td>20-30m högt 15-20m brett</td>
<td>1st Nej 6st Närms ej</td>
<td>1st Nej 6st Närms ej</td>
<td></td>
</tr>
<tr>
<td>Växtzon</td>
<td>Närms ej 1st Ja 7st Närms ej</td>
<td>1st Ja 7st Närms ej</td>
<td>2st Ja 1st Ja luftburet 6st Närms ej</td>
<td>1st Ja 5st Närms ej</td>
<td>Närms ej</td>
<td>6st Ja 2st Närms ej</td>
<td>Närms ej</td>
<td>1st Ja 6st Närms ej</td>
<td>Närms ej</td>
<td>1st Ja luftburet 6st Närms ej</td>
</tr>
<tr>
<td>Vilka krav på jorden har det</td>
<td>1st Konformig 1st Medelform 2st Närms ej</td>
<td>Närms ej</td>
<td>Koniskt 1st Medelform 2st Närms ej</td>
<td></td>
</tr>
<tr>
<td>Vilka krav på jorden har det</td>
<td>4st Anspråkslös 1st Dränerat 3st Närms ej</td>
<td>1st Anspråkslös 1st Dränerat 5st Närms ej</td>
<td></td>
</tr>
<tr>
<td>Ar det drabbat av sykdommar</td>
<td>Mjoldagg 7st Närms ej</td>
<td>Närms ej</td>
<td>Närms ej</td>
<td>Torskatesvamp 7st Närms ej</td>
<td>Närms ej</td>
<td>Torskatesvamp 7st Närms ej</td>
<td>Närms ej</td>
<td>Bladrostop Aspticka 6st Närms ej</td>
<td>Gummiflöde 7st Närms ej</td>
<td>Bladrostop 6st Närms ej</td>
</tr>
</tbody>
</table>
5 Diskussion

Faktorerna

De faktorer som arbetet bygger på är sådana som jag tyckt varit viktiga men som man i efterhand hade kunnat utöka med vindtolerans och ifall de tåler föroreningar eftersom gatumiljön är vindpåverkad och förorenad av partiklar. De viktigaste faktorerna i detta arbete har ändå varit ifall träden varit torktåliga, salttåliga, ifall de klarade klimatförändringarna och ifall de lidit av några sjukdomar. De övriga faktorerna är bra att känna till och vissa känns självklara som att veta växtzon men de kräver inte samma tyngd i val av träden för stadståndorten.

Vad är ett stadsträd?

Att ett träd är ett bra stadsträd beror på många faktorer och en stor faktor är att det ska klara av klimatet det blir placerat i. Är det bara torrt på den plats där trädet ska placeras så kan det vara bra att leda ner dagvatten så det får infiltrera i växtbädden samtidigt som man gör ett val av träden som kan hantera just torka. Alltså åter igen rätt träd för rätt plats och inte försöka sätta ett träd som är superkänsligt för torka på en torr plats och förvänta sig att det ska överleva utan hjälp. I framtid kan vi behöva ändra våra perspektiv över vad ett bra stadsträd är. Vi ser redan nu att klimatet ändras och blir varmare och vi vet även att klimatförändringarna inte kommer försvinna utan påverka oss ännu mer. Detta gör behovet av grönska i städerna viktigare och viktigare för att kunna motverka och bromsa den största effekten av klimatförändringarna i just stadens miljö. Att det kommer bli varmare i städerna kommer antagligen även göra att fler torktåliga träd behövs i städerna vilket gör att definitionen av ett bra stadsträd alltid kommer förändras. Vi kommer kanske i framtid behöva leta efter träd i världen som står väldigt torrt under långa perioder av året.

Träden i arbetet

Tallen (Pinus sylvestris) blev det träd som klarar flest faktorer i stadsklimatet och det förvånar mig inte då de ofta hittas på torra sandiga jordar längsmed stränder där det är varmt och de utsätts för salt. Det som förvånar mig är att det inte används mer i städer än vad det just gör. Tallen har en skir genomsläpplig krona som släpper igenom solljus i måttliga mängder. Det bildar skugga samtidigt som det fortfarande är ljus.

I arbetet finns det flera träd som källorna anser är torktåliga ett av dessa träd är aspen (Populus tremula) detta träd skulle kunna vara ett bra stadsträd men det skjuter mycket roskott. Alltså är det även om vissa källor säger att det är torktåligt, salttåligt och klarar kompaktering inte det bästa valet av träd att sätta in i en hårdgjord miljö. Detta för att det
antagligen kommer kosta mer än det är värt med lagning av beläggningar och en förhöjd skötsel runt just aspen.

Det finns två träd till och det är skogslinden (*Tilia cordata*) och bohuslinden (*Tilia platyphyllos*) som jag inte skulle rekommendera att plantera in i några större mängder då dagens användning av parklind (*Tilia europea*) och övriga lindar (*Tilia ssp.*) toppar listan över mest använda träd i städer (Sjöman, et al., 2012). Då detta arbetet vill öka uppmärksamheten om att det behövs en större artdiversitet i städer bör det inte planteras in några större mängder lind till i städer.

Källor
Vissa av träden är vackra och borde få ta mer plats i staden då de blir ett blickfång med mycket karaktär i både krona och stam. Städer behöver mer grönska dels för att minska värmeöffekten och dels för att öka människors hälsa och välbefinnande. Anledningen till att det skiljer mycket i storleksangivelserna på alla träd kan bero på var källorna har för referensträd. I vissa sammanhang är det träd som varit placerade i skogsparter och trångt. Det blir då en konkurrens om ljus och träd blir högre än vad det skulle blivit om de stått fritt och utan konkurrens. Vissa av källorna nämner ett medel på vad trädna brukar bli medan exempelvis (Savill, 2003) nämner att det har hittats träd med en maximal höjd på ett visst antal meter. Den trädarten kanske endast blir så stort under de mest optimala och gynnsamma förhållanden som det går att hitta vilket stadens klimat inte är. Exempelvis har viss fakta om trädna hittats i plantskolekataloger, det är tre plantskolor som använts och inga fler. Anledningen till att inte fler plantskolor använts är att det var dessa tre som det fanns tillgång till vid tillfället för litteratursökningen och det var tre stora svenska plantskolor. Det kan ifrågasättas ifall plantskolekataloger är pålitliga källor eftersom de är skapade för att visa upp ett sortiment i en plantskola som vill sälja sina varor. Förhoppningsvis har de inte förskonat fakta om träden för att få sälja mycket men visst kan det finnas en risk som jag är medveten om. Då källorna i arbetet är både svenska och utländska finns det en viss skillnad i hur de förklarat trädens växtplatser och ståndort. Detta har ibland varit svårt att tolka då de utländska källorna ofta beskrivit träden i sina skogar och med andra utgångspunkter än vad de svenska källorna har haft. De utländska källorna har ett annat klimat än det svenska vilket kan göra att deras träd växer på lite annorlunda ställen än vad samma trädet gör i Sverige.

Vid val av träd
For någon som ska välja nya träd till en stad rekommenderar jag att först kontrollera vad det är för träd som redan finns i staden för att kunna öka sin artdiversitet. Att sedan gå vidare och se var i staden trädna ska placeras och se vilken ståndort det just på den platsen och vilka faktorer som kommer påverka träden när de väl står där. Sen gå vidare med att försöka finna träd som passar in på det stället och som antagligen har det formspråk som man vill ha på platsen.
6 Källförteckning

