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Abstract 

Baculoviruses manipulate insect larval behaviour by inducing increased activity and by 

enhancing the movement to the top of the host plant. The Spodoptera littoralis 

nucleopolyhedrovirus (SpliNPV) may have a large impact on larval populations and is 

currently used as a control method. Dispersal of NPVs is fairly limited since foliage or 

infected larvae need to be ingested for transmission. S. littoralis is cannibalistic under high 

population densities or low food availability conditions. We hypothesized that healthy larvae 

recognize and are attracted to virus-infected cadavers. Dual choice experiments in petri dish 

arenas, involving infected and uninfected larval cadaver suspensions revealed no significant 

differences in neonate larval attraction. In contrast, fourth instar larvae fed significantly more 

on infected larval cadavers than on cadavers of uninfected larvae. Although mortality of 

larvae that fed on infected cadavers was increased, high mortality in both groups suggests 

vertical transmission of the virus in this species. Our results show that that virus-killed 

cadavers increase attraction and feeding by healthy larvae. Consumption of conspecific 

cadavers increases viral dissemination. Our results suggest that larvae killed by NPV infection 

emit chemical cues, which make them more attractive to conspecific larvae, thereby 

promoting in viral transmission.  
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Introduction 
 

The Baculoviridae are one of the major families of insect pathogenic viruses and are the most 

commonly found and well studied (Inceoglu et al., 2006). The family Baculoviridae has been 

isolated mainly from insects, including Lepidoptera, Hymenoptera, Diptera, Coleoptera, 

Neuroptera, Trichoptera, Thysanura, but has also been described in Crustaceae (Possee et al., 

1997; Moscardi, 1999; King et al., 2000). Due to their congenital host killing activity, 

naturally occurring baculoviruses have been developed as safe and effective tools for the 

protection of crop and forest in Europe, America and Asia (Moscardi, 1999, Lacey et al., 2001, 

Inceoglu et al., 2006). 

 

Baculoviruses are viruses with circular double-stranded DNA genomes and consists of two 

types: nucleopolyhedroviruses (NPVs) and granuloviruses (GVs). The viruses mainly enter 

and infect the host after ingesting food contaminated with viral occlusion bodies (OBs).  The 

OBs dissolve in the alkaline midgut lumen, allowing occlusion-derived viruses (ODVs) to 

pass through the insect peritrophic membrane and infect the gut cells before transmitting to 

other tissues, leading to insect death and liquefaction of tissues (Ikeda et al., 2015).  

 

Both types of baculoviruses have been applied for use as biopesticides (Ikeda et al., 2015). 

NPVs are being produced and successfully applied for the protection of soybean in Brazil 

(Moscardi, 1999) and many crops in China (Yang et al., 2012). However, baculoviruses 

present some limitations such as long killing times, narrow host specificity, short field 

stability, and high cost of production (Inceoglu et al., 2006). 

  

The Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae) is a destructive 

pest that is distributed throughout the Middle East, Africa and in Mediterranean Europe 

(CABI & EPPO, 2011). Larvae can cause damage to many economically important plants 

such as cotton, flax, groundnuts, jute, lucerne, maize, rice, soybeans, tea, tobacco, and many 

vegetables (CABI & EPPO, 2011). Economical losses associated with S. littoralis damage can 

indirectly result from larvae feeding on foliage. Cotton foliage feeding by S. littoralis larvae 

can be conducive to reductions in yield greater than 50% (Russell et al., 1993). 
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Chemical control of S.littoralis faces difficulty such as the development of resistance towards 

chemical insecticides, inimical effects on the natural enemies, and other non-target insects, 

and serious toxic effects on humans (Hegazi and Abd-Allah, 2004; Ghoneim et al., 2015). 

One of the most promising insect biocontrol agents are baculoviruses. A number of 

baculoviruses with improved insecticidal activities have been developed against lepidopteran 

pests. Since baculoviruses are species or genus specific, viral insecticides allow controlling 

pest insects without damaging beneficial insects or the ecosystem (Moscardi, 1999; Fuxa, 

2004). Spodoptera littoralis nucleopolyhedroviruses (SpliNPVs) are a member of the genus 

Alphabaculovirus, part of the Baculoviridae family, which may have single or multiple 

nucleocapsids per envelope (Rohrmann, 2014). There has been considerable research on the 

use of SpliNPV as a microbial insecticide (Toprak et al., 2007; Hatem et al., 2011). 

Commercial formulations of the virus have been developed as Spodopterin® (Natural Plant 

Protection S.A., Nogueres, FR) (Moscardi, 1999). However, SpliNPV is not effective enough 

as a stand-alone product. The use of SpliNPV and other NPVs in the field has shown that low 

persistence on leaf surfaces is a limiting factor since ultraviolet radiation inactivates the viral 

particles (Fuxa, 2004). Additionally, larvae need to ingest viral particles in early larval stages 

in order to avoid economical damage in crops. As such, baculovirus dispersal on a spatio-

temporal scale is one of the main considerations when optimizing their use as biological 

control agents. 

 

Insect-assisted spread of pathogens is a key component of horizontal transmission of viruses 

between generations. Insect pathogenic viruses and insect hosts are considered to have 

coevolved over millions of years (Thézé, 2011). The modes of transmission within insect 

populations are not well understood, but may provide insight in the development of insect 

management strategies.  

 

The main route of baculovirus transmission is caterpillar feeding on contaminated foliage. 

Baculoviruses manipulate host larvae behaviour by inducing increased activity and by 

enhancing their movement to the top of the host plants. Dangling cadavers, leaking viral OBs 

from the top of plants accelerate the rain-driven dissemination onto the lower plants parts 

(Rebolledo et al., 2015; van Houte et al., 2014). Alternately, cannibalism may also play a role 

in horizontal transfer of viral OBs from larvae to larvae.  

 

Cannibalistic behaviour is advantageous from an evolutionary perspective. Cannibalistic 
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species may have increased survival, growth rate, fecundity or a reduction of conspecific 

antagonists (Fox, 1975; Polis, 1981; Meffe and Crump, 1987; Church and Sherratt, 1996). 

However, Chapman et al (1999) have proposed three disadvantages to cannibalism. First, 

larvae attacked by conspecifics may defend themselves causing injury or death to its attacker 

(Fox, 1975; Polis, 1981). Second, cannibalism reduces inclusive fitness (Polis, 1981), and 

lastly, cannibalism may increase virus transmission by consuming infected conspecifics 

(Chapman et al., 2000; Williams and Hernandez, 2006). Cannibalism in S.littoralis is 

observed in laboratory populations during later larval instars, or in cases of limited food 

availability or at high population densities (Reeson et al., 2000; Richardson et al., 2010). 

 

Behaviour involved in an uninfected host’s avoidance or attraction to infected conspecifics 

has yet to be thoroughly studied (Hawley et al., 2011). Both avoidance and attraction 

behaviours alter the risk of infection by pathogens (Eakin et al., 2015). Avoidance behaviour 

to virus-infected conspecifics has only been demonstrated in the gypsy moth (Lymantria 

dispar  L.) (Capinera et al.; 1976; Parker et al., 2010). In contrast, our previous work has 

shown that larval suspensions of larvae infected with SpliNPV OBs are attractive to first 

instar S. littoralis larvae (unpublished data). This suggests that S. littoralis larva may be able 

to distinguish and navigate toward conspecific cadavers or fluids, potentially, for use as a 

protein source. 

 

Spodoptera littoralis larvae emit specific odours profiles that may have an ecological function. 

Larval odour profiles may vary between infected and uninfected larvae, mediated by OB 

production and tissue liquefaction. Changes in odour profiles could be of importance in 

altering larval behaviour. We hypothesised that infected larval cadavers may become more 

attractive to uninfected individuals as a route to enhance viral transmission. Alternately, 

uninfected larvae could avoid infected cadavers as an adaptive measure to avoid coming into 

contact with pathogens. We here show that healthy larvae S. littoralis differentiate and 

navigate towards virus-infected conspecific corpses. Larval orientating and feeding behaviour 

affect larval mortality caused by consuming SpliNPV via conspecific necrophagy. 
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Materials and Methods  
 

Insects  
S.littoralis were reared on artificial diet (Hinks and Byers, 1976) at 25°C ± 2°C, 65% ± 2% 

RH with a 18:6 LD cycle at SLU Alnarp. Adult moths of both sexes were kept in plastic jars 

and provided with a 10% honey solution on a cotton ball and allowed to mate. Mated females 

oviposit on waxed-paper. Waxed-paper oviposition sheets were placed in acrylic boxes with 

moistened paper towels to maintain a humid environment.  

 

Virus-infected Larvae 
Death due to baculovirus infection was identified by a clear indication of the integument 

liquefaction. Larvae infected with SpliNPV were collected from laboratory population and 

frozen immediately after death to avoid liquefaction.  

 

Preparation of Larval Suspensions  
Uninfected larval suspensions were made from fourth instar larval cadavers. Groups of 10 

fourth instar larvae were separated, starved for 24h, frozen for 2h, defrosted and then 

macerated. Infected larval suspension was directly obtained from virus-killed cadavers as 

described above. Both larval suspensions were filtered to remove coarse sediments. 

Uninfected ground larvae were mixed with blue food colouring (1:10) (Dr.Oetker Sverige 

AB, Göteborg, SE) to indicate the larval ingestion while infected larvae were not mixed with 

colouring due to infected larvae suspension typically displayed a dark brown/black colour.  

 

Neonate S.littoralis larvae attraction towards larval suspensions 
Bioassays consisted of two 50µl drops, which were pipetted onto opposite ends of a plastic 

petri dish (92×16mm, No.82.1472, Sarstedt AG & Co., Nümbrecht, DE).  Ten neonate larvae 

were collected between 24-48h post-hatching and used under starved conditions. The larvae 

were placed in the petri dish with a fine brush, which was then covered with a clear plastic lid 

to prevent the larvae from escaping, and larvae were observed for a period of 30 minutes 

while they made a choice. Larvae were then left to feed for one hour and a half and were then 

inspected under a dissecting microscope to determine the colour of the gut. A total of 20 
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independent replicates were performed. In all replicates half of dishes had the side of the 

treatments switched to avoid a position effect.  

 

Fourth instar S.littoralis larvae attraction towards larval cadavers 
SpliNPV-infected cadavers were produced as described above. Virus-free fifth instar larvae 

were frozen for 2h.  Defrosted cadavers were placed on opposite side of a 14–cm-diameter 

glass petri dish.  A single, fourth instar larva, starved for 24h, was released at the centre of the 

glass petri dish and was monitored for physical contact and feeding behaviour during 30 min. 

Larval feeding was determined when they perforated the integument and actively chewed the 

cadaver. After the observation time, each larva was transferred to a 30 ml plastic cup with a 

piece of artificial diet and kept in a rearing room until pupation or death. The larvae were 

checked every day to make sure the diet had not desiccated. Dry diet was replaced with a 

fresh block. The test was performed a total of 70 times. In all replicates half of dishes had the 

side of the treatments switched to avoid a position effect.  

 

Statistical analysis 
Neonate larval orientation to infected vs. uninfected larval suspension were statistically 

analysed using a binomial test. 

 

Proportion of fourth instar larvae attraction was carried out using a binomial test. Mortality 

percentage after fed or contact cadaver was analysed using a Chi-squared test. Significance 

was determined at α = 95%.  All statistical analysis were performed using R (R Core Team, 

2015).  

 

 

Results 
 

Neonate larval attraction to larval suspensions 
Dual choice assay were performed to investigate the orientation of neonate larvae to infected 

larval cadaver suspension versus uninfected larval suspension. 57.0 % of the larvae were first 

attracted to virus-infected larval internal liquid and 42.5% of the larvae chose uninfected 

liquid (Figure 1A). These results were not significant (P = 0.98). 0.5 % of larvae that did not 

make a choice were excluded from analysis. After one hour and a half, 55.5% of the larvae 
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consumed the infected larval suspension, 43.5% of the larvae incepted uninfected larval 

suspension (P=0.96) (Figure 1B). 1.0% of larvae that did not make a choice were excluded 

from analysis. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  (A) Percentage of attraction of S. littoralis neonate larvae that stimulated by uninfected larval 

suspension or SpliNPVs-infected suspension.  (B) Percentage of ingestion of S. littoralis neonate that offered 

uninfected larval suspension or SpliNPVs-infected suspension. 
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Fourth instar S.littoralis larvae attraction towards larval cadavers 
Dual-choice feeding experiment show that a significantly higher amount of larvae chose to 

feed on infected conspecifics (31) than uninfected conspecifics (14) (binomial test, P= 0.008). 

Surprisingly, mortality was not significantly different between larvae that fed on uninfected 

(42.9%) and infected (54.8%) cadavers (x2 = 0.55, df = 1, P = 0.46) (Figure 2A). 5 larvae fed 

on both types of cadaver, while 20 larvae did not feed on either cadaver.	
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Larval choice between uninfected cadavers and infected cadavers (n= 70). (A) Dark grey, the number 

of larvae showed feeding behaviour. Light grey, the number of dead larvae after feeding on each cadaver. (B) 

Dark grey, the number of larvae made physical contact uninfected cadavers vs. infected cadavers. Light grey, the 

number of dead larvae after making physical contact.  
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Contact with infected cadavers by fourth-instar was twice as high than those that came into 

contact with uninfected cadavers (P=0.008) (Figure 2B). There is 57.2% larval mortality from 

making contact with healthy cadavers and 67.9% mortality from contact with infected 

cadaver(x2 = 0.47, df = 1, P = 0.49). The six larvae that did not contact either cadaver were 

eliminated from the analysis. 
 

  

Discussion 
 

Our results show that attraction to larval cadavers and liquefied remains may increase larval 

necrophagy. This behaviour also contributes to virus dispersal and propagation. Neonate 

larval attraction to infected larval or uninfected larval suspensions suggests that neonate 

larvae are attracted to larval remains whether they contain viral OBs or not. Contrary to what 

has been reported in Lymantria dispar, S. littoralis larvae were not seen to avoid infected 

cadavers or remains. In feeding assays, L. dispar avoids the consumption of virus-

contaminated leaves, suggesting that infected cadavers might metabolise volatile or gustatory 

cues detected by larvae (Capinera et al., 1976; Parker et al., 2010). 

 

Feeding choice tests with fourth instar S.littoralis show that larvae are strongly attracted to 

and feed on virus-infected conspecifics. The mortality of larvae that consumed infected larval 

cadavers was not different from those that fed on uninfected cadavers, suggesting that the 

virus may be transmitted directly from parent to progeny in our colony. Vertically transmitted 

viruses are predicted to be less lethal than viruses acquired by ingestion (Lipsitch et al., 1996) 

since they are completely reliant on the survival of their hosts for transmission (Vilaplana et 

al., 2010). The trade-off hypothesis of virus evolution predicts that there is equilibrium 

between virulence (host mortality caused by virus) and effective transmission of the virus 

(Day, 2003). If vertically transmitted strains have too high virulence it would lead to a failure 

of transmission to offspring. Manipulating host’s survival is especially important for viruses. 

Maximizing virulence without it becoming a limitation to be evolved through natural 

selection (Dennehy, 2014).  

 

NPV infection may lead to metabolic changes in infected larvae and cadavers, ending in the 

release of volatile cues that increase attraction of healthy larvae. In humans, malaria infected 
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hosts are more attractive to mosquitos due to the production of chemical signals (Lacroix et 

al., 2005). A number of plant pathogenic viruses are also known to release chemical 

compounds that attract insect vectors (Mauck et al., 2010), however, this has yet to be shown 

for insect pathogenic viruses). Furthermore, chemical signals emitted by infected cadavers 

that may be affecting larval behaviour have yet to be identified and we cannot exclude 

without tactile or gustatory effects. 

 

Our results show that NPV infection enhances larval attraction and feeding in S. littoralis. 

However, the precise mechanism for the increased attraction and ingestion we observed, is as 

yet not well known and requires further research. High selective pressure and low levels of 

virulence favours the development of resistance (Day, 2003). Additionally the short 

persistence of viral formulations on plant foliage can be improved by adding a wide range 

compounds to the virus agents. Some studies have reported that larval attractants or 

phagostimulants can improve viral efficiency such as sugar, yeasts and pear ester (Arthurs et 

al., 2007; Knight and Witzgall, 2013). Biological control based on baculoviruses has 

advantages over of conventional strategies with synthetic pesticides. Our research may 

contribute to the improvement of baculoviruses use under field conditions by elucidating how 

baculoviruses affect larval behaviour to either enhance viral transmission or avoid infection. 
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