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Abstract 

This study assess the impact of human waste and household garbage on the concentrations of 

heavy metals in arable land on two sites located close either to a waste collecting point (WD) 

or waste water treatment plant (WWTP). Malawi suffers from poverty, low food security and 

problems with access to land. The aim was to find out if the assessed areas are contaminated 

with heavy metals and to evaluate the results and the land use in a historical, social and 

political context. Another objective is to evaluate the possible positive effects the waste can 

give in form of plant nutrients against the potential harmful effect that comes from heavy 

metal contamination.   

Soil and plant samples were collected from the three sites, and the concentration of Cd, Zn, 

Cu and Fe was measured with atomic absorption spectrophotometry (AAS) at the University 

of Malawi. After evaluation of the results, some samples were brought to Sweden for a second 

AAS-analysis for Cd, Pb and Cr. Unfortunately the results for Cd were considered unreliable 

and were therefore not used in the assessment. The concentration of metals in the soil was 

then compared with the general guideline values calculated by the Swedish Agency for 

Environmental Projection. In the comparison WD and WWTP both showed concentrations of 

Pb exceeding the general guideline value. The concentration of Pb found was much higher 

than expected, and the results need to be treated with care. The sites had both a higher soil 

concentration of N and P compared with a reference site.  

The study was limited by time constraints and hampered by broken equipment. However, the 

results can be used for planning a more detailed risk assessment of the areas. Future actions 

suggested in this study are: a more detailed risk assessment of metal pollution and hygienic 

aspects, updated information about background levels of metals in soil, control of Cd-content 

in imported fertilisers and an overall focus on ensuring access to agricultural land and input as 

well as secure places for depositing waste.   
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Popular science summary 

Malawi has only been independent since 1964, and was previously a British protectorate. 

During the first 30 years of independence, Dr Hastings Kamuzu Banda, was the country's 

leader . The politics during both the British leadership and the Banda regime are still visible in 

the agricultural sector. During that time the agricultural focus was on national self-sufficiency 

in maize, combined with export of cash crops such as tobacco, sugar, tea and coffee. During 

colonial time the best land was seized by the British for production of lucrative cash crops, 

and after independence that pattern of land distribution continued, but with the local “elite” in 

charge instead. Small-scale farmers have historically been excluded from the trade with 

export crops, and have instead been locked into production of maize. Access to land and 

agricultural input, such as fertiliser and improved seeds, is a problem currently addressed by 

the government. To increase access to fertilisers the Malawi Farm Input Subsidy Program 

(FISP) was implemented in 2005. The program aims to give small-scale farmers vouchers for 

fertiliser and seed to help them escape poverty.   

When travelling around in Malawi, the first thing one notice is that all unoccupied areas are 

cultivated, even if there only is room for a few plants. Maize is everywhere. This can be seen 

as a good use of available land, but what happens when the only land available might be 

contaminated? With arable land covering 49 % of the land area, and an estimated 82 % of the 

total land considered suitable for agricultural production, one might think that this problem 

will never occur. However, with a fast growing population, already exceeding 16 million, 

Malawi is one of the most densely populated countries in the world, and about 85 % of the 

population is engaged in agricultural activities. The average household plot size is only 1.4 

hectare, and most households are net-buyers of maize, the staple food. A growing population 

will need either more intense agriculture or more agricultural land, but at the same time more 

space and resources will be needed for housing, waste management etc. 

This study investigated the concentration of heavy metals at two agricultural sites in Zomba, 

Malawi. One of the sites is on a waste dump (WD), and one is close to a waste water 

treatment plant (WWTP). No inorganic fertilizer was used on either site. The results show that 

the concentrations of the toxic metal lead are above Swedish general guideline values. On the 

flip side, the concentrations of the essential plant nutrients nitrogen and phosphorus were 

higher than the concentrations at a reference site where inorganic fertilisers have been used. In 

conclusion, the concentration of metals is higher than recommended, but the sites give good 

yields without use of expensive inorganic fertilisers. Hopefully the areas will be the focus of a 

more specific risk assessment to help local farmers and government make a qualified decision 

about future land use.    

     

 

 

      



 

Table of content 

1. Introduction ............................................................................................................................ 9 

2. Objectives ............................................................................................................................. 10 

2.1 Hypotheses ..................................................................................................................... 10 

2.2 Limitations ..................................................................................................................... 10 

3. Background and theory ........................................................................................................ 11 

3.1 Food security .................................................................................................................. 11 

3.1.1 Access to land .......................................................................................................... 12 

3.1.2 Political actions and agricultural development ....................................................... 13 

3.1.3 Diversity of crops .................................................................................................... 14 

3.2 Mobility of metals in the soil-plant system .................................................................... 16 

3.2.1 Dissolved complexes and free ions ......................................................................... 16 

3.2.2 Adsorption and precipitation ................................................................................... 17 

3.2.3 Plant uptake ............................................................................................................. 17 

3.3.4 Guideline values ...................................................................................................... 18 

3.3 Sources and effects of metal contamination ................................................................... 18 

3.3.1 Effects on plants ...................................................................................................... 19 

3.3.2 Metal contamination and human health .................................................................. 20 

3.4 Results from similar studies ........................................................................................... 21 

4. Methods ................................................................................................................................ 22 

4.1 Site descriptions ............................................................................................................. 22 

4.1.1 Waste dump (WD) .................................................................................................. 22 

4.1.2 Waste water treatment plant (WWTP) .................................................................... 24 

4.1.3 Reference site .......................................................................................................... 24 

4.2 Sampling and analysing ................................................................................................. 25 

4.3 Atomic adsorption spectrophotometry (AAS) ............................................................... 26 

4.4 Statistics ......................................................................................................................... 28 

5. Results .................................................................................................................................. 29 

5.1 Pilot study ....................................................................................................................... 29 

5.2 Soil properties ................................................................................................................ 29 

5.3 Metal contamination ....................................................................................................... 30 

5.3.1 Unreliable data ........................................................................................................ 30 

5.3.2 Soil .......................................................................................................................... 31 



 

5.3.3 Plants ....................................................................................................................... 33 

5.3.4 Ash and water .......................................................................................................... 35 

6. Discussion ............................................................................................................................ 37 

6.1 Hypothesis testing .......................................................................................................... 37 

6.2 Flaws in method ............................................................................................................. 38 

6.3 Interpretation of results .................................................................................................. 39 

6.4 Agricultural situation ...................................................................................................... 40 

6.4.1 Access to land .......................................................................................................... 40 

6.4.2 Access to inputs ....................................................................................................... 40 

6.5 Social, economic and political aspects of contamination ............................................... 40 

6.5.1 Food security ........................................................................................................... 40 

7. Conclusions .......................................................................................................................... 42 

8. References ............................................................................................................................ 43 

Appendices ............................................................................................................................... 48 

Appendix 1 – Sampling performance ....................................................................................... 48 

Sampling scale .................................................................................................................. 48 

Approach .......................................................................................................................... 49 

Pilot study ............................................................................................................................. 50 

Soil samples .......................................................................................................................... 50 

Materials: .......................................................................................................................... 51 

Method: ............................................................................................................................ 51 

Crop samples ........................................................................................................................ 52 

Materials: .......................................................................................................................... 52 

Method: ............................................................................................................................ 52 

Water samples ...................................................................................................................... 52 

Materials: .......................................................................................................................... 52 

Method: ............................................................................................................................ 52 

Appendix 2 – Analysis performance ........................................................................................ 53 

Soil ....................................................................................................................................... 53 

Preparation of sample ....................................................................................................... 53 

Moisture content (M) ....................................................................................................... 53 

Texture ............................................................................................................................. 53 

pH ..................................................................................................................................... 53 



 

Electrical Conductivity ..................................................................................................... 54 

CEC determination ........................................................................................................... 54 

Total Organic Carbon (Walkley and Black 1934)............................................................ 55 

Total Nitrogen (Kjeldahl method) .................................................................................... 55 

Total phosphorous - Vanadomolybdophosphoric yellow colour method .................. 55 

Sample Preparation for Elemental Analysis ..................................................................... 56 

HClO4-HF Digestion (Tri-acid oxidation) ....................................................................... 56 

HNO3/HClO4 Digestion (Di-acid oxidation) .................................................................. 56 

Water .................................................................................................................................... 57 

Plants .................................................................................................................................... 57 

Processing the plant sample: ............................................................................................ 57 

Tri-acid digestion ............................................................................................................. 57 

Appendix 3 - Calculations ........................................................................................................ 58 

Moisture ........................................................................................................................... 58 

Heavy metal content in surface soil ................................................................................. 58 

Phosphorous ..................................................................................................................... 59 

Cation Exchange Capacity (CEC) .................................................................................... 59 

 



 

  



9 

 

1. Introduction 

Malawi is a small sub-Saharan country with a large population. Small scale farming is 

common, especially in the rural areas, and issues with food security have been painfully 

prevalent in recent starving events. The climate in Malawi has episodes of both floods and 

draughts, which affect the agriculture and the population very negatively. Just before this 

study was performed Malawi experienced a serious episode of flooding, affecting over one 

million people (Al Jazeera, 2015). This catastrophe also led to great losses of yield and its full 

impacts are yet to be estimated.  

Agriculture is an important part of the economy (31 % of GDP), and a majority of the 

population is engaged in agricultural activities (FAO 2013). The average plot size is small and 

low access to land has been addressed as an important issue (CEPA 2013). With a rapidly 

growing population, Malawi faces enormous challenges in the future, especially considering 

that the country is one of the poorest nations in the world. Utilisation of available land is 

therefore important for the development of the country. This project studies the effect of poor 

waste management on heavy metal contamination of arable land close to waste collecting 

areas. All sampling and analysing was performed in cooperation with Sofie Orvestedt. In her 

thesis from 2015 she is discussing the results from an environmental point of view, 

meanwhile this thesis focus on the agricultural, economic and political aspects and causes of 

this possible contamination.  

During the 19
th

 century the Europeans ‘discovered’ and colonized Africa. The first Malawi 

election was held in 1961, three years before the actual independence in 1964. In this election 

the Malawi Congress Party (MCP) won the majority of the votes and in 1963 Dr Hastings 

Kamuzu Banda was declared president (Grauers, Fischer, & Odén 1997). Dr Banda was later 

made life-president of Malawi. Although Banda did not rule Malawi for his full life, he 

remained president for the first thirty years after independence. Under his regime agriculture 

was the main focus for governmental investments in an attempt to increase the country’s 

economic growth. The focus on the agricultural export sector was a logical choice since 

Malawi is scarce of other valuable resources, such as minerals. He also kept the agricultural 

orientation created by the colonial leaders and worked for an increased production of the same 

export crops. Big estate owners got favourable loans and were over all favoured over small-

scale farmers who could not export their crops. (Grauers et al 1997). In 1992 Banda started to 

get seriously pressured by the international and local community who wanted a system-

change. In 1993 the Malawian people were given the chance to vote for either a return of the 

multi-party political system, or the retention of the present one-party rule. The support for a 

multi-party system was overwhelming, and a general election was held in 1994. Commonly 

this is considered the first multi-party election of Malawi, although this is not true according 

to Muula & Chanika (2004) who highlights the fact that four parties contested in the election 

1961, before independence. Regardless of if it was the first of its kind or not, the election in 

1994 was the end of President Bandas rule, as he found himself defeated by Mr. Bakili 

Muluzi, representing the United Democratic Front (UDF) (Muula & Chanika 2004). Muluzi 

was then followed by Dr Bingu Mutharika (2004-2012), Joyce Banda (2012-2014) and the 

current president Peter Mutharika.    
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2. Objectives 

This study has two specific and one general objective:  

First: To find out if the areas close to the waste water treatment plant in Zomba and the waste 

dump located just outside Zomba are contaminated with heavy metals. 

Second: To determine the phosphorus and nitrogen status in the soils at the waste treatment 

plant and the waste dump, and compare them with a reference soil where inorganic fertilisers 

currently are used.   

Third: To discuss the political, economic and social forces that make people grow food on 

areas with suspected contamination. 

2.1 Hypotheses  

Null hypothesis: There is no difference between the reference site and WD/WWTP regarding: 

a) Concentration of Fe, Zn, Cu, Cd, Pb and Cr in soil 

b) Concentration of Fe, Zn, Cu, Cd, Pb and Cr in plants 

c) Nutrient status 

2.2 Limitations 

This project was designed to be easy to repeat under local conditions. As a consequence the 

methods of analysis were chosen for simplicity and low price, and not for being up-to-date or 

the most accurate. The study was also limited by the short time available in field and the wet 

weather conditions during February and March. The soil samples were limited by our 

equipment which only allowed us to take samples from the top soil, 0-20 cm, without any 

damage to crops.  For analyses the plan was to use microwave plasma - atomic emission 

spectrometry (MP-AES) but unfortunately the machine was broken during my time in 

Malawi. Instead all metal analyses were performed using atomic absorption 

spectrophotometry (AAS), and were therefore limited to the available lamps (Fe, Cd, Zn and 

Cu). A second AAS analysis of some samples was performed in Sweden, where Cr and Pb 

concentrations were analysed.   

Another important aspect to consider is that the laboratory, the equipment, chemicals and 

glassware at the University of Malawi have a lower quality compared to a high-income 

country. The short time period also made it hard to form professional relations with the 

employees and the flow of information was sometimes insufficient.    
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3. Background and theory 

This section contains information about Malawi’s agricultural and political history regarding 

food security, and a brief theory about how metals are introduced to and transported in the 

soil-plant system.  

3.1 Food security 

Ensuring food security is high on the political agenda in Malawi, both currently and 

historically. Food security is defined as “when a person has permanent physical and economic 

access to sufficient, safe and nutritious food to meet his or hers dietary needs and food 

preferences for an active and healthy life” (IHS3 2010/11). Factors contributing to low food 

security are, among others, low access to agricultural production inputs and small average plot 

size (Figure 1). In Malawi those and other factors combined leads to a declining maize 

production and unstable food prices (Sahley et al 2005). Food security is also intimately 

connected with poverty.    

Now, around 50 years after independence, Malawi’s agricultural and industrial situation 

remains too under-developed to ensure sufficient food security or help the country out of 

poverty. During the last fifteen years Malawi’s population has gone from 11.3 to 16.4 million 

people (The World Bank 2015), and about half of the population is considered to be poor 

(IHS3 2010/11:207). Despite past political efforts to ensure food security the Global Food 

Security Index 2014 ranks Malawi as number 94 out of 109 countries. According to the third 

integrated household survey (IHS3 2010/11) only a little more than half of the population can 

be assumed to have a high food secure status and one third suffers from very low food 

security.  
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3.1.1 Access to land  

On the 14
th

 of May 1891 Malawi was made a British protectorate called Nyasaland (Muula & 

Chanika 2004). During this period the foundation of the current export-orientated agricultural 

system was built (Sahley et al 2005). Malawi was ruled indirectly by use of tribal authorities 

who implemented colonial policy on the local level. This colonial land policy introduced 

English property concepts to appropriate land for the European settlers and some of the best 

agricultural land was ceased for production of export crops such as tobacco and tea (Sahley et 

al 2005).  Natives rights to land were redefined as “occupation rights” to prevent 

establishment of land rights equivalent to the freehold or the concessions held by the settlers 

(Malawi National Land Policy 2002). The Land Ordinance of 1951 defined land as private, 

public or customary.  However, the customary land was considered a type of private land 

leading to a situation where natives became tenants of their own land (Malawi National Land 

Policy 2002). After independence the Land Act in 1965 was passed but did not change the 

status and insecurity of customary land rights (Malawi National Land Policy 2002). Small 

scale farming mostly took place on customary land, meaning that it falls under the law of the 

actual ethnic group (Takane 2007). Private land ownership mostly applies for the big estates 

and requires a freehold title, leasehold title, or a Certificate of Claim granted by the early 

colonial governors (Takane 2007). Public lands include national parks, forest reserves and 

conservation areas and is owned or held in trust by the government or local authorities as well 

as the areas former known as customary land (CEPA 2013;Takane 2007).        

In 2002 the government of Malawi passed the National Land Policy. It was an initial step to 

revise the legal framework governing land rights and has eight objectives (USAID 2010): 

Figure 1 - Factors affecting food insecurity (Sahley et al 2005) 
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1. To promote tenure reforms that guarantee security, confidence and fairness in all land 

transactions 

2. To guarantee secure tenure and access without discrimination or gender bias 

3. To curb land encroachment, unapproved development, land speculation and 

racketeering. 

4. To promote decentralized and transparent land administration. 

5. To extend planning strategies for land use to all urban and rural areas. 

6. To establish a modern land registration system for delivering land services to all. 

7. To enhance conservation and community management of local resources 

8. To promote research and capacity-building in land surveying and land management 

 

In the National Land Policy of 2002 the government also addressed eleven problems 

associated with land. The most relevant in this context are residual effects of colonial land 

policy, high population to land ratio, worsening land pressure, land scarcity in spite of idle 

lands and mismanagement of land development (Malawi National Land Policy 2002). All 

these issues can be considered to be connected with the situation addressed in this study. A 

Land Bill and a Customary Land Bill were passed in 2013. The purpose was to implement 

some of the recommendations from the Malawi National Land Law from 2002 (CEPA 2014). 

The Land Bill of 2013 also excluded the customary land and makes it a part of the public 

land, which have been criticised as reinforcing the alienation of the customary land (CEPA 

2013).    

Today, the agricultural land cover 49 percent of the total land area, but an estimated 82 

percent of the total area is suitable for cultivation (USAID 2010). About 85 percent of the 

households are engaged in agricultural activities and of those 84 percent are involved in crop 

production. The agriculture is dominated by poor farmers cultivating small areas and the 

average cultivated area per household is 1.4 ha (IHS3 2010/11). According to USAID (2010) 

approximately 30,000 farms can be considered to be large-scale estates with 10-500 hectares, 

but 84 percent of the agricultural land are either farmed by small holders or is considered by 

the government to be available to small-holding farming. The majority of the small scale 

farmers, who in total are about 2 million people, cultivate less than one hectare of rain fed 

land and 11 percent are almost land-less (USAID 2010). The most common ways to access 

land is by inheritance (52 %), marriage (18%) or allocation by traditional authorities (20 %). 

Other ways is by purchase (1 %), leases or government land programs. Both patrilineal and 

matrilineal systems of rights to land through marriage or inheritance are prevalent in Malawi. 

In the southern and centre region, land is handed down the female line, and in the northern 

region land is handed down the male line. This means that if one person moves to the 

spouse’s village and the marriage then is ended due to divorce or death, they often lose the 

right to the land. (USAID 2010) 

3.1.2 Political actions and agricultural development 

In 1998 the Malawian Starter Pack was launched. The program aimed to introduce new 

farming technologies and increase food security for all small holders using free starter packs 
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containing improved maize seeds, legumes and fertiliser sufficient to cultivate 0.1 ha. The 

program reached 2.8 million people between 1998 and 2000. After 2000 the program was 

scaled down to the Targeted Input Program (2000-2002), mostly due to pressure from donors. 

The programme was to be scaled down in steps following introduction of other interventions 

under the Malawi National Safety Net Strategy. The recipients of the packages were now 

chosen according to a vulnerability criteria derived as part of the Safety Net. In 2000-2001 1.5 

million people received starter packs, and in 2001-2002 one million people were reached. 

(Harrigan 2008)   

In 2001/02 Malawi suffered a big food crisis. The event was connected with a national 

scandal when the strategic grain reserve was sold off just before the crisis occurred, and 

followed by investigation of seven high-ranked people on charges of criminal recklessness 

and negligent acts (Sahley et al 2005). After this food crisis the Targeted Input Program (TIP) 

was scaled up to the Extended Targeted Input Program (ETIP), lasting from 2002 to 2004 

(Harrigan 2008). The Starter Pack, TIP and ETIP landed in a total cost of 91.1 million USD 

where 34.2 million was funded by the Government of Malawi (Harrigan 2008). 

During Malawi’s third president Dr Bingu Mutharika’s time in office the country suffered two 

major starving events, 04-05 and 07-09. After the first one, in 2005/06, the government 

launched the still ongoing Farm Input Subsidy Program (FISP). The objectives are to improve 

smallholder productivity, reduce vulnerability to food insecurity and hunger and to promote 

self-sufficiency of food and development of the private sector input markets (SOAS 2008). To 

do this the strategy was to distribute vouchers for fertiliser for maize, fertiliser for tobacco and 

improved maize seeds to farmers nationwide (Dorward & Chirwa 2011). Later the program 

included legume seeds, cotton seeds and chemicals, tea and coffee fertilisers and chemicals 

for storing of maize (Dorward & Chirwa 2011). With the goal to reach all small-scale farmers 

in the country the big challenges for this program have been logistic and organizational 

problems (Dorward & Chirwa 2011).  

During the last century global use of fertilisers, pesticides, tractors, irrigation systems and 

other technology has boomed, leading to an increase in global food production. However, the 

development of the agricultural sector is not evenly distributed between countries or even 

continents. In Malawi the usage of modern technology is low. Most of the field work is done 

by hand and the agriculture is mainly rain-fed. Only 2 percent of the farmers use irrigation 

(USAID 2010) leading to a crop production system with low resilience for  droughts. Access 

to organic and inorganic fertilisers is a key factor to ensure high long term soil fertility, 

especially if the production is dominated by one type of crop.  

3.1.3 Diversity of crops 

The Malawian saying “Chimanga ndi moyo” means “maize is life”, and maize is indeed an 

important staple food in Malawi. Maize of either local or hybrid sort covers 67 percent of the 

arable land (IHS3 2010/11) and makes up half of the average caloric intake (FAO 2013). 

Although being the most wide spread crop cultivated in Malawi, maize is only the third 

biggest agricultural commodity sorted by metric tonnes. Both cassava and potato was 
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produced in higher quantities than maize in 2012 (FAOSTAT 2012). However, the production 

of maize in Malawi has increased during the last decades but most households have not 

acquired self-sufficiency. In 2008/2009 around 60 percent of all households were net buyers 

of maize (Holden & Lunduka 2013) 

The high focus on maize can be traced to the political actions taken during the Banda regime. 

During that time self-sufficiency of maize became the main tool to ensure acceptable food 

security for the population. Before the mid-80’s talking about food shortages was considered 

to be taboo, and at times even considered subversion (Chilowa 1998). This one-sided focus on 

maize combined with other political factors led to a situation where Malawi was able to 

export maize to other African countries in the mid-80’s, but at the same time experienced 

some of the highest child mortalities in the world (Sahley et al 2005).  

In 1971 the Agricultural Development Marketing Corporation (ADMARC) was created from 

the colonial Farmer’s Marketing Board (Christansen & Stackhouse 1989). This parastatal 

corporation had monopoly on purchase of tobacco and cotton, but the monopoly seems to 

have expanded to other agricultural products as well (Chilowa 1998). ADMARC were also 

responsible for the setting of maize prices, often under market price. This functioned as a tax 

for the small-scale farmers and kept the maize prize low for consumers (Sahley et al 2005). A 

majority of the poor farmers were locked into maize production and had to sell for low prices, 

meanwhile ADMARC used the profit to finance big estates producing export crops (Sahley et 

al 2005). Until a policy change in 1990 smallholders were not allowed to grow and market 

tobacco at all (USAID). ADMARC also had responsibility for the strategic grain reserve from 

the start in 1981 until 1999 when the National Food Reserve Agency was formed (Chilowa 

1998; Harrigan 2003). To prevent food crises the National Food Reserve Agency (NFRA) still 

holds a strategic grain reserve and therefore plays an important role determining the maize 

price (Ellis & Manda 2012). 

A number of previously mentioned subsidise programs have been financed by the government 

and external donors, aiming to give the country a higher resilience against food crises and to 

reduce poverty. The more specific purpose of these programs was to break the vicious circle 

where poor maize yields gives the farmers small opportunities to invest in agricultural inputs 

such as fertilisers or better seeds, leading to continually small yields (Dorward & Chirwa 

2011). The most recent one is FISP, described above. One study show that FISP lead to a 

simplification of the crop production by a lower allocation of land for other crops (Chibwana, 

Fisher, & Shively 2012). The focus on maize was also one part of the critique of the Starter 

Pack program (Harrigan 2008). It is widely known that dependency of one crop gives a 

production with low resilience for both extreme weather situations and long-term changes of 

conditions such as the climate. The production is also more sensitive for other production 

threats, such as pests or diseases. Dependency of maize in Malawi had been described as 

“maize poverty trap”, where people are unable to increase the production and have a constant 

high risk of food shortage (Harrigan 2008). However the focus on maize has been justified as 

a cost effective way to obtain food security since the country’s land-locked situation and poor 

infrastructure gives high partial import costs (Harrigan 2008).   
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3.2 Mobility of metals in the soil-plant system 

The soil environment is a complex system consisting of solid particles, water, air and various 

organisms (Eriksson et al 2011). In this system metals can be bound, released and/or 

transported between the soil, water and organisms in a number of processes. One fraction of 

the metal is bound to the soil material, another forms complexes with other dissolved 

compounds and the third are free in the solution and therefore accessible for biological uptake 

or leaching. If the concentration is sufficient there might also be some precipitation of the 

metal. Just a small fraction of the total concentration will be in the soil solution and there have 

the ability to spread to ground and surface water (Berggren Kleja et al 2006). The size of the 

different fractions are affected by the conditions in the soil, such as pH, concentration of 

DOC, clay content etc. The same metal can be present in various forms in the same fraction, 

so called species, which all have unique properties (Essington 2004:208). The different 

fractions and the speciation of the metal means that the total concentration of metals measured 

in the soil paints a false picture of the risk the contamination poses to surrounding organisms 

and systems (Berggren Kleja et al 2006). Therefore, it’s important to have knowledge about 

the properties of the site and the metal of interest before any risk assessment is performed.  

 

3.2.1 Dissolved complexes and free ions  

Metals in the soil solution can exist as dissolved complexes or free ions. This fraction is 

important, since the soil solution is the main phase in which substances transport in the soil 

(Essington 2004). Since water is polar, and thus have one negatively and one positively 

charged end, both cations and anions can exist free in water. The ion will create weak bounds 

with water molecules and therefore form a layer of water surrounding the ion. This process is 

called hydration (Berggren Kleja et al 2006). Metal cations can also undergo hydrolysis when 

they react with the oxygen in the water molecules, breaks the hydrogen-oxygen bond, and 

form new ionic species, a hydroxide or oxide. This process will change the metals behaviour 

in the soil environment (Essington 2004).  

Many metal cations can form complexes with other ligands than water. The link can be 

directly between the metal and the ligand inside the hydration sphere, called an inner-sphere 

complex, or it can be an attachment outside the hydration sphere, called ion-pairs (Essington 

2004).   

The transport of solutes through the soil is affected by three mechanisms; convection, 

dispersion and diffusion. Convection is the transport of solutes with the movement of the soil 

solution. This transport is affected by dispersion, the mechanism that makes the flow of water 

and solutes in the soil go faster in bigger pores and in the middle of pores and slower in 

smaller pores and close to pore walls. Diffusion is the movement of solutes driven by 

concentration gradients, when an ion or compound moves from an area with higher 

concentration to an area with lower. (Messing 2010)       
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3.2.2 Adsorption and precipitation  

Retention of metal transport in soil is mostly due to adsorption on the surfaces of clay 

minerals, oxides or organic matter or precipitation into secondary minerals (Berggren Kleja et 

al 2006).  Adsorption is defined as a surface process that results in the accumulation of a 

dissolved substance (an adsorbate) at the interface of a solid (the adsorbent) and the solution 

phase (Essington 2004). Precipitation is the process when a compound increases in volume in 

a three-dimensional growth (Essington 2004). Together these processes will be referred to as 

sorption. These mechanisms are reversible, so the metals will eventually be released to the 

soil solution in a later stage if the conditions change (Berggren Kleja et al 2006). 

Adsorption consist of a number of different mechanisms, were the most important ones are 

ion exchange and formation of surface complex (Berggren Kleja et al 2006). Those two 

mechanisms are both highly dependent on the pH value in the soil, since the pH affects the 

surface charge on the soil particles. Charge on the mineral surfaces in soil is pH-dependent. 

The pH-dependent charges results from a protonation and deprotonation of hydroxyl groups 

on the mineral surface and can be positive, negative or neutral depending on conditions. This 

is called a functional group. Those groups are commonly found on phyllosilicates, metal 

oxides, hydroxides and oxyhydroxides (Essington 2004). Formation of surface complex 

happens when an ion or molecule in the soil solution reacts with a surface functional group. 

This can be both as an inner-sphere and an outer-sphere complex. Ion exchange is the name 

for the process when ions that have formed electrostatic bonds with surface functional groups, 

so called outer-sphere complexes, is displaced by ions from the soil solution (Essington 

2004).   

Another important factor for the retention of metals in the soil is the content of organic matter. 

Soil organic matter (SOM) is divided into two groups, humic and non-humic substances. All 

organic substances that are recognizable as belonging to biochemical classes are considered 

non-humic. The rest of the SOM, the humic substances, are divided into humic acid, fulvic 

acid and humin. Metal ions have the ability to bind strongly with the organic matter in the 

soil, especially fulvic and humic acids. (Essington 2004)  

Metals can also be precipitated as a secondary mineral, together with other ions in the soil 

solution. This process is in equilibrium and is affected by the present conditions, such as the 

concentration of different ions and molecules and the soil pH (Essington 2004; Eriksson et al 

2011). Precipitation can only take place if the metal ion is present in sufficiently high 

concentration (Berggren Kleja et al 2006).  

3.2.3 Plant uptake  

Plants take up nutrients by passive or active transport of ions from the soil solution into the 

root cells (Fogelfors 2001). In this process metals present in the soil can be taken up and 

accumulate in the plant. For plant uptake to occur, the metal needs to be present in an 

available form. This can either be as free ions or complexes in the soil solution or adsorbed to 

soil particles and therefore available for ion exchange (Fogelfors 2001). The ability to take up 

metals and to allocate them in the different parts varies between plant species (Mattina et al 
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2003). Heavy metal contamination can have a hampering effect on the yield of crops. For 

example, a study performed by Bhogal et al (2003) shows that cereals and legumes fertilized 

with sewage sludge containing Cd, Cu and Cr gave lower yields then a control with no sludge 

applied.    

Plants can also affect movement of elements in the soil in two important ways. One is by 

creating a mass flow of soil solution to the roots by suction, driven by the transpiration. This 

is an effect of the plants uptake of water. The other way is by the creation of a concentration 

gradient by uptake of elements. This lead to diffusion of elements from the soil solution to 

areas close to the root surface, where the concentration is lower. (Fogelfors 2001; Messing 

2010) 

3.3.4 Guideline values 

In risk assessments for contaminated areas guideline values are often used to determine if the 

area pose as a health risk or not. The Swedish Environmental Protection Agency (SEPA) has 

developed a model for calculation of general guideline values for a number of different 

contaminants. Another option is to use area-specific guideline values, for a more specialised 

risk assessment. These guideline values can be calculated using an excel-model developed by 

SEPA, and the properties for the concerned site. If general guideline values are used it is 

important to make sure that the values are meant to be used for the actual target of projection 

and land usage (SEPA 2009). The values presented in Table 1 are the general guideline values 

for sensitive land use.    

 Cd Pb Cr Zn Cu 

General  

guideline value 

0.5 mg/kg soil 50 mg/kg soil 

 

80 mg/kg soil 250 mg/kg soil 80 mg/kg soil 

Target of 

protection 

Ingestion of 

plants 

Ingestion of 

soil 

Soil 

environment 

Soil 

environment 

Soil 

environment 
Table 1 - General guideline values for sensitive land use (mg/kg dry soil), and the target of protection (SEPA 2009)  

 

3.3 Sources and effects of metal contamination 

The metals analysed in this study are the essential zinc (Zn), copper (Cu), chromium (Cr) and 

iron (Fe), and the non-essential cadmium (Cd) and lead (Pb). Of these metals cadmium, 

chromium and lead are the most toxic ones, and Cd and Pb are also without a biological 

function for animals and plants (Eriksson et al 2011). A study of metal concentration in soils 

performed by Sillanpää & Jansson in 1992 showed that Malawi have a low concentration of 

both Cd and Pb, compared to the rest of the world 

Soil can be Cd-contaminated from both natural and anthropogenic processes. Natural 

processes can, for example, be weathering of minerals, volcanic activity or sea spray. 

Anthropogenic contamination mostly originates from mining of zinc, combustion of fossil 

fuel, waste, sewage sludge or spreading of contaminated fertilisers (Roberts 2014). It’s 

calculated that approximitly 30,000 tonnes of Cd is realesed into the atmotphere each year 
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(ATSDR 2005). The pollution of Cd in our envirionment is considered to be a serious concern 

since Cd is among the most toxic trace elements, for both animals and plants (Dias et al 

2013). 

Contamination of Pb mostly comes from weathering of primary or secondary minerals or 

from atmospheric deposition (Eriksson et al 2011). Lead was formerly used as an anti-knock 

agency in gasoline and leaded gasoline was a major source of contamination (Thomas et al 

1999). Pb form strong bonds with organic material and the concentration in the soil solution is 

therefore usually low (Eriksson el al 2011).  

Chromium in soil can exist as both Cr(III) and Cr(VI). Cr(VI) is the most toxic one, but it is 

uncommon in soil. Cr(III) is more common, but low solubility in neutral water makes it less 

of a threat to the soil environment and prevents plant uptake (Eriksson et al 2011). Since Cr is 

used in many different industries such as leather processing, hide tanning, metal plating and 

previously wood preservation the metal is widely spread in the environment (Shanker et al 

2005).   

3.3.1 Effects on plants 

Some metals are essential for the growth and development of higher plants. Lack of those 

metals will inhibit growth and lower the yield. Other metals, such as Cd and Pb are not. Even 

if some metals have a higher toxicity than other, all of them can be harmful for plants if 

present in sufficient concentration in the soil. Three of the metals assessed in this study, 

cadmium, lead and chromium, are more toxic then the others. The toxic effects on plants of 

these three metals will be described in this part.  

Cd is relatively easily available in the soil, compared to other metals. Between 10-40 % of the 

total Cd can be assumed to be available for ion exchange (Eriksson et al 2011). The amount 

of Cd available for ion exchange increases with lower pH-values. In extremely acidic 

conditions Cd can be transported in the soil, but under normal circumstances the mobility is 

low (Eriksson et al 2011). Plant uptake of Cd is regulated by its concentration and 

bioavailability in the soil, which is affected by pH, content of organic matter, temperature and 

presence of other elements (Dias et al 2013). The toxic effects of Cd can cause abnormalities 

and inhibition of growth in higher plants by inducing chlorosis, necrotic lesions, wilting, and 

disturbances in mineral nutrition and carbohydrate metabolism (Tran & Popova 2013; Dias et 

al 2013). Studies have shown that both long-term and short-term exposure to Cd inhibit 

photosynthesis in many plants by disturbing the biosynthesis of chlorophyll and carotenoids 

(Tran & Popova 2013). It’s also shown that Cd
2+

 ions affect the function of chloroplasts by 

targeting two key enzymes for CO2-fixation, ribulose-1,5-bisphosphate carboxylase 

(RuBisCO) and phosphoenolpyruvate carboxylase (PEPCase) (Tran & Popova 2013). Cd 

might also interfere with the cell division and chloroplast replication in the leaf and has been 

shown to induce chlorosis in oilseed rape by decreasing the number of chloroplasts in the cells 

(Baryla et al 2001). Another harmful effect is that Cd can cause oxidative stress in plants by 

interfering with the antioxidant defence system leading to an increase in reactive oxygen 

species in the plant cells (Tran & Popova). Uptake and use of other, essential, elements and 
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water may also be hindered by exposure to Cd (Tran & Popova 2013). All this factors 

combined leads to a decrease in production of biomass.  

The toxic effects from Pb inhibit growth of both roots and aerial parts of the plant, and can 

also cause chlorosis on leaves. Inside the plant cell Pb can affect the enzyme activity, 

hormonal status, electron transport and water potential. It can also alter the permeability of the 

cell membrane. The photosynthesis can also be gravely affected by Pb contamination, since 

the metal disturbs the Calvin-cycle, the synthesis of chlorophyll, the electron transport and the 

opening of stomata cells. (Sharma & Dubey  2005)     

Plant uptake of Cr happens through pathways for uptake of Fe, S and P. Both Cr(III) and 

Cr(VI) are highly toxic for the plant, and high uptake leads to disturbances in development 

and growth. High concentration of Cr in the soil also inhibits seed germination. 

Contamination of Cr can reduce the biomass production and reduce the yield by up to 50 %. 

(Shanker et al. 2005)  

3.3.2 Metal contamination and human health 

Contamination of heavy metals in food, water and environment are a widely known threat to 

the global human health. Copper, zinc, iron and chromium(III) are all essential elements for 

human life, but can have toxic effect in high doses. Cadmium and lead are both non-essential 

metals which can have toxic effects on the human body. This section will give a short 

overview of the possible health effects from exposure, and some limit values for human 

consumption of the metals assessed in this study.   

The tolerable upper intake of copper for adults is recommended by the Scientific Committee 

on Food (SFC) as 5 mg/day for adults, but lower for children and for women during 

pregnancy and lactation. A too high intake if copper can lead to acute poisoning, or heart and 

neurological diseases. The US guideline for recommended intake of copper is 0.9 mg/day for 

adult males and females. (SCF 2003a)  

Zinc is an important part of many enzymes, and in humans zinc is essential for growth, 

development, healing of wounds, testicular maturation and other important functions. The 

European Population Reference Intake (PRI) for zinc is 9.5 mg/day for females and 7.0 

mg/day for males. Excess intake of zinc can lead to negative health consequences. Therefore 

the Tolerable Upper Intake Level is set as 25 mg zinc per day for adults, and lower for 

children. (SCF 2003b) 

Iron is essential for humans to produce haemoglobin, an enzyme that transports oxygen 

through the body. Healthy adults run a very low risk for negative effects of excessive intake 

of iron. However, a one-time high dose (over 60 mg/kg body weight) can lead to organ failure 

and even death. The Tolerable Upper Intake is 45 mg/day for adults and children over 13 and 

40 mg/day for children under 13. However, lack of iron is more common than excess intake. 

(NIH 2015) 

Chromium can exist as both Cr(III), more commonly found from natural sources, and as the 

more toxic Cr(VI) which mostly have its source from anthropogenic activities. Cr(III) is 
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essential for metabolism, but high exposure of Cr(III) can have negative effects. The tolerable 

daily intake for Cr(III) is set by European Food Safety Authority as 0.3 µg/kg body weight. 

No such limit exist for Cr(VI), since tests indicates that exposure of it can cause cancer 

(EFSA 2015).  

Lead has been showed to have neurodevelopmental effects on developing foetus, children and 

adults (EFSA 2010). In 2010 the Panel on Contaminants in the Food Chain (CONTAM Panel) 

at European Food Safety Authority gave a scientific opinion that the tolerable weekly intake 

for lead set as 25 µg/kg body weight is not appropriate, since evidence shows that there exist 

no threshold for damaging lead-induced effects (EFSA 2010). 

Cadmium has a tolerable weekly intake (TWI) of 2.5 µg/kg body weight, and the limit is set 

to protect children, vegetarians and people living in contaminated areas. The major source of 

exposure of cadmium is tobacco smoking and foodstuff. To high exposure leads to damage of 

kidneys and bones. (EFSA 2013) 

3.4 Results from similar studies 

To use waste compost as fertiliser is a wide spread-practise, and the possible consequences for 

soil quality have therefore been investigated in a number of different studies. The practise of 

cultivating food directly at a waste dump is however not as common, but the similarity is 

close enough to use this studies for background knowledge and comparison. 

 Hargreaves, Adl and Warman (2008) made a review of a large number of studies about the 

use of composted municipal waste (CMW) in agriculture. Their conclusion was that CMW 

can safely be used in agriculture, but only if the quality of the compost is controlled. It is 

important that the compost is mature and have a low metal content. For this purpose source 

separation is a necessary practice. The soil concentration of lead, zinc and copper was shown 

to increase from use of CMW. There are also studies that have shown an increase of the soil 

concentration of Cd and Cr.       

For reference, the concentration of metals in plants and soil found in some other studies of 

contaminated areas are summarised in table 2. The studies were chosen with the criteria that it 

should include at least one of the plants analysed in this study, and that the plants should have 

been grown in soil contaminated by anthropogenic activity. In the study by Mattina et al. 

(2003) the analysis for Pb and Zn were performed with Inductively Coupled Plasma Emission 

Spectroscopy (ICP OES) and the analysis for Cd with graphite furnace AAS. The aim of the 

study was to investigate the concurrent plant uptake of heavy metals and persistent organic 

pollutants from soil. The site used for the study was agricultural soil treated with the pesticide 

Chlordane. Carbonell et al. (2011) analysed metal content in maize fertilized with both 

municipal waste compost and inorganic fertilisers (NPK). To determine the metal 

concentration they used flame AAS and graphite furnace AAS. This study found very low 

concentration of metals in the maize grain.     
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Table 2 – Metal concentration in soil and plants found in other studies on soils contaminated by anthropogenic 

activity.  

Study Plant Metal Concentration 

 in plant (mg/kg) 

Concentration 

 in soil (mg/kg) 

Mattina el al. 2003 Pumpkin leaves Pb <10 188 

  Zn 74 63 

  Cd 0.15 0.31 

     

Carbonell et al. 2011 Maize (shoot) Pb 1.16 35.61 

  Cd 0.07 0.21 

  Cu 1.12 14.01 

  Cr <0.01 21.38 

 

4. Methods 

This section shortly describes the sampling sites and the methods used for sampling and 

analysis. A full description can be found in in Appendix 1 and 2. All sampling and all 

analyses were made together with Sofie Orvestedt.  

4.1 Site descriptions 

This section contains a short description of the sampled sites. All areas were cultivated with 

maize and pumpkin. 

4.1.1 Waste dump (WD) 

This site is located around three miles northwest of Zomba Centre. At this area most of the 

household waste collected in Zomba is stored. No sorting is performed, but occasional 

burning of waste happens. During the wet season crop production takes place in the waste 

from the last dry season, and the new waste is stored in piles (Figure 2b). After harvest, in the 

dry season, the accumulated waste is spread over the whole area (Figure 2a). During the 

sampling plastic, glass and batteries was found in the field and the piles of waste nearby was 

mainly composed of organic waste and plastic bags, but also contained glass, broken china 

and metal cans.    
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Figure 2a - The sampling site, located in a depression 

below the main waste pile. Picture taken by Sofie 

Orvestedt 

Figure 2b –The biggest waste pile, located just above the 

sampling area. Picture taken by Sofie Orvestedt 



24 

 

4.1.2 Waste water treatment plant (WWTP) 

The sampled area is located close to the Zomba waste water treatment plan (Figure 3). The 

treatment plant consists of one infiltration bed (bio filter) and two ponds. During all our visits 

the rotating ramp over the infiltration bed was broken.  

 

 

Figure 3 - A map of the area around the treatment plant. The circled area is cultivated. Source: Google Maps 

4.1.3 Reference site 

The reference site is located close to the Zomba University, and is cultivated by a member of 

their staff. This area is assumed to have a low risk of contamination, and is fertilized with an 

inorganic fertilizer containing nitrogen, phosphorus and sulphur.  A picture of the site can be 

found in Figure 4.  

 

 

Figure 4 - The reference site. Picture taken by Sofie Orvestedt 
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4.2 Sampling and analysing 

Before the start of the main study a small-scale pilot study was performed. This was for three 

reasons: 

I. To get a picture of the metals present in the soil. 

II. To calculate the standard variation and mean values for the concentrations of metals. 

III. To test the sampling plan, the equipment and the analysis method for metals on a 

smaller scale.   

The original plan was to take 10 soil samples from each of the three sites, according to the 

method described in Appendix 1. Unfortunately bad weather conditions limited the time in the 

field, so only one site, WWTP, was sampled. Due to the small area of the site only 5 

randomly placed soil samples were taken. In the pilot study moisture and metal concentration 

in the soil was analysed using AAS. The samples were prepared for analysis with tri-acid 

digestion, using HCl, HF and HClO4, following the method in Appendix 2.  

The minimum number of soil samples to be collected in the main study was then determined 

using a priori-testing with the statistical software G*Power and data from the pilot study. 

G*Power was set as: F-test, ANOVA: Fixed effects, omnibus, one-way. The significant level 

was set to 95 %. The a priori-test were performed for all metals individually using the metals 

standard deviation and mean value from the pilot study. Two of the groups were assumed to 

have the same mean value as in the pilot study, and one (reference) was assumed to have half 

of the measured value. The used means and standard variations are shown in Table 2. The 

sample size in the main study was then set as the biggest total sample size calculated, which 

gave a minimum of 75 samples from all sites together to achieve selected level of certainty.  

In the main study soil, maize, pumpkin leaves, pumpkin fruit, ash and water was collected 

from the sites. The number of samples collected is presented in Table 3. On the reference site 

and on WWTP the plant samples were taken from the same spot as the soil, but on WD the 

crop was too small for sampling. Therefore plant samples from the WD was collected on 

nearby fields, as close to the sampling place as possible. On each of the sample points 12 soil 

samples was collected with the soil drill and mixed together to produce one composite sample 

(for more details see Appendix 1). This procedure was to reduce the impact from eventual 

hotspots and natural variation.   

The plant samples were dried in an oven overnight and then digested using heat and tri-acid 

mixture, made of AR grade conc. HNO3, H2SO4 and HClO4, following the method in 

Appendix 2. Water content was calculated on randomly selected plants of all tested sorts and 

parts. The concentration of Cd, Cu, Fe and Zn in all samples was measured using atomic 

absorption spectrometry (AAS) at University of Malawi. Three soil, three maize and one 

pumpkin leave sample from each site were brought to the Swedish University of Agricultural 

Science for a second analysis for Cd, Cr and Pb with AAS. One sample of ash, two of 

pumpkin fruit and five water samples were also analysed a second time. All samples were 

prepared at University of Malawi. The soil samples was prepared by digestion in two steps, 
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using HNO3 and HClO4, following the di-acid digestion method described in Appendix 2. 

Two replicates from each sample point were prepared.  

The soil content of organic carbon, total nitrogen and total phosphorous were analysed at 

University of Malawi. The Walkley-Black method was used for carbon, the Kjeldahl method 

(performed by laboratory assistants) for nitrogen and vanadate-molybdate reagent and 

spectrophotometry was used for measuring phosphorus. Due to limited time, only some of the 

soil samples were analysed for C, N and P. More detailed descriptions are given in Appendix 

2 where the methods for measuring other soil properties as cation exchange capacity (CEC), 

pH and electric conductivity also are presented. Analysis of soil texture was performed by 

employees at another department.   

Table 3 – Input values in mg/kg soil and calculated sample size (n) needed to be able to find significant difference 

between sites, for Cd, Pb, Cd, Zn and Fe.  

 
Cu Pb Cd Zn Fe 

StDev 31 25 3 28 1191 

Mean 1 42 196 7,5 169 16493 

Mean 2 42 196 7,5 169 16493 

Mean 3 11 98 4,75 85 8247 

 
n=75 n=9 n=45 n=12 n=6 

 

Table 4 – Number and type of samples collected at each site during the main study. The soil samples are displayed as 

number of sampling spots*number of subsamples from each spot.  

 Soil Maize Pumpkin 

leaves 

Pumpkin 

fruit 

Ash Water 

Ref 5*12 5 5 0 - - 

WD 9*12 5 2 1 3 - 

WWTP 9*12 9 9 2 - 6 

 

4.3 Atomic adsorption spectrophotometry (AAS) 

All metal analyses in this study were performed using flame atomic adsorption 

spectrophotometry (AAS). Due to technical problems three different machines were used. 

Iron, copper, zinc and cadmium were analysed at University of Malawi. Chromium were 

analysed at SLU, the department for chemistry and biotechnology, and lead and cadmium 

(second analysis) at SLU in the students laboratory (MEKÖL).  

The basic theory of AAS is to measure the quantity of an element in a sample by measuring 

the radiation adsorbed by it. Light with a known wavelength in the visible or ultra violet 

spectra passes through the sample, and some of it is adsorbed by the element and emitted at a 

higher energy level. The emission comes from electrons moving from one energy level to 

another within the atom, and in this process emitting a photon. Since all elements have a 

unique configuration of electrons in the outer shell, all elements absorbs energy at different 

wavelengths. A detector in the machine measures what wavelength that are transmitted from 

the sample, and compares it with the original wavelengths sent through it. By using Lambert-
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Beers Law, saying that the absorption is directly proportional with the concentration, the 

concentration of the element can be calculated. Most often the calculation is done using a 

calibration curve created from samples with a known concentration. (García & Báez 2012) 

The basic parts of an AAS-machine are illustrated in Figure 5. The wavelength selector, also 

called monochromator, is important for the selectivity of the AAS. A sample may contain a 

number of different elements, and the wavelength selector sort out the wavelength absorbed 

by the element of interest and excludes the rest of the radiation. The detector then translates 

the intensity of the light to a proportionally strong electrical signal which then is processed in 

the signal processor which translates it to the output value. Most often the radiation source is a 

lamp containing the element of interest, and does therefore only emit light of the wavelength 

that the element can absorb. In this case the wavelength selector sorts away all wavelengths 

but the one chosen for the analysis. (García & Báez 2012)   

When measuring concentrations with flame AAS a number of different interferences can 

occur. Some examples of this are that formation of ions can cause lower absorption, or that 

other elements or particles creates the opposite effect when they also absorbs the used 

wavelength. These interferences can give a result that is lower or higher than the true 

concentration in the sample. To prevent this from happening it is important to make sure that 

the flame is hot enough to completely atomize the sample. (García & Báez 2012)   

 

 

Figure 5 – The basic parts of an atomic absorption spectrophotometer. The figure is a part of the public domain, 

taken from Wikimedia Commons and created by the user K05en01.  
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4.4 Statistics 

In this study an ANOVA (Analysis of variance) was used to determine if the three sites are 

significantly different from each other. Tukey’s test was used at a confidence level of 95 %. 

This statistical test was performed in the program MiniTab. Tukey’s test is the least 

conservative of all commonly used ANOVA-test. This means that the difference between the 

sites needed to give a significant difference is lower for Tukey’s test then for other ANOVA-

tests (Grandin 2012). The number of samples needed and the ad hoc statistical power, the 

probability of a correct rejection of the null-hypothesis, was determined using the program 

G*Power. All the data from statistical tests are presented under “Results”.    
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5. Results 

5.1 Pilot study 

The mean values and the standard variation were used to determine a suitable sample size for 

the main study, as described above. The metal concentrations at all sampling points are 

summarised in Table 5.    

Table 5 – Total Cu, Pb, Cd, Zn and Fe concentration at sample points and mean values for each metal in pilot study 

Sampling  

point 
Cu  Pb Cd Zn  Fe 

mg/kg soil 

1 69 183 11 166 17195 

2 64 166 9 209 17592 

3 63 209 5 180 17100 

4 13 190 4 133 14693 

5 5 231 9 158 15887 

Mean 43 196 8 169 16494 

5.2 Soil properties 

In table 6 the soil type, clay, silt and sand content, size of fraction >1 mm, pH, EC, CEC, C 

%, P %, N % and C/N quota are presented for all sites. Two of the sites, the reference and 

WWTP, are classified as sandy clay loams and WD is classified as a clay loam. The carbon 

content at the WWTP is twice as high (~11 %) as at the other sites. The pH varied between 

the sites, were the lowest values were found at WWTP (3.71) and highest at WD (7.06). 

Analysis showed that WWTP were richest in both nitrogen and phosphorous. Lowest nutrient 

status was found at the reference site, despite present use of inorganic fertiliser. The 

calculated CEC is higher than expected .This can be due to a high amount of organic carbon, 

high clay content or measuring errors.  Note that the titration-based methods used for C and N 

are very inexact compared with modern methods for analysis.    

Table 6 - Soil properties for the reference site, WD and WWTP. 

 Ref WD WWTP 

Type Sandy clay loam Clay loam Sandy clay loam 

Clay content 35 % 35 % 29 % 

Silt content 19.4 % 27.4 % 19.4 % 

Sand content 45.6 % 37.6 % 51.6 % 

Fraction > 1 mm 15% 37 % 11 % 

pH 5.90 7.06 3.71 

EC (µS) 50.6 117 142 

CEC (cmolc*kg
-1

 soil) 66.0 74.7 76.4 

C % 5.04 5.21 10.9 

P (mg P* 100 g
-1

 soil) 373 619 1930 

N (mg N*100 g
-1

 soil) 80 83 273 

C/N 63 65 40 
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5.3 Metal contamination  

5.3.1 Unreliable data 

The first and second AAS-analysis gave very different results regarding the concentration of 

Cd. Not one single plant or soil sample showed the same concentration in both analyses, and 

most of the plant dry matter showed a concentration higher than in the soil on the site. On 

account of this variance, which can be seen in Table 7 and 8, the results for Cd will not be 

included in any statistical analysis or used as base for discussion about possible risks.  

Table 7 – Concentration of Cd in 9 of the soil samples, measured at University of Malawi and the Swedish University 

of Agricultural Science. Note the big difference between the two analyses.  

Name Malawi  SLU 

Ref  mg/kg soil mg/kg soil 

1a 3 0 

3a 8 0 

5a 13 0 

WWTP   

2a 8 0 

5a 5 28 

8a 5 0 

WD  

 2a 10 2 

5a 5 3 

8a 13 1 

 

Table 8 – Cd concentrations in plant dry matter for samples analysed at both University of Malawi and the Swedish 

University of Agricultural science. Note the big difference between the two analyses, and that most of the 

concentrations in the plants are higher than the soil concentration.  

Name Malawi SLU 

Ref mg/kg DM mg/kg DM 

Maize 1 15 6 

Maize 4 20 2 

Pumpkin leaves 4 20 5 

WWTP  

 Maize 2 10 60 

Maize 5 10 62 

Maize 8 15 7 

Pumpkin leaves 3 15 7 

Pumpkin fruit 6 24 7 

WD  

 Maize 1 19 3 

Maize 3 15 8 

Maize 5 29 6 

Pumpkin leaves 1 20 8 

Pumpkin fruit 18 9 
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5.3.2 Soil 

The mean concentration of Pb, Cr, Cu, Zn and Fe are presented in Figure 4 and 5. In these 

diagrams the standard deviation is included as error bars. In Table 9 P-values, mean values 

and standard deviation for the metal concentration at each site are given. Data for Fe, Zn and 

Cu comes from results retrieved in AAS analysis at the University of Malawi and data for Cr 

and Pb from the analysis at SLU. The concentration of Pb was above the general Swedish 

guideline values at two points on WD and three points on WWTP. Cr did not exceed the 

guideline values at any test point.  

An ANOVA analysis was performed for the metals that were analysed at University of 

Malawi (Fe, Zn and Cu). This was to determine if there were any significant differences 

between the sites (Table 9). The number of analyses for Cr and Pb was not sufficient for 

ANOVA analysis. Of the statistically analysed metals, Zn was the only one where both WD 

and WWTP differ significant from the reference, but not from each other. No site had a mean 

concentration of Zn above the guideline value. For iron WD, but not WWTP, differs from the 

reference site. The opposite situation is true for Cu, were WWTP but not WD differ from the 

reference. The concentration of Cu at WWTP is above the guideline value, but the standard 

variation is large. The median value for Cu-concentration at WWTP is 75 mg Cu/kg soil and 

only 7 of the 17 analysed samples were above the guideline value of 80 mg Cu/kg soil. This 

means that the use of the mean value in the risk assessment might not be optimal in this case. 

Since only three samples from each site were analysed for Pb and Cr, no ANOVA could be 

done for them.  

 

Figure 3- Mean concentrations for Pb and Cr from the analysis performed at SLU. Error bars show the standard 

variation.  
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Figure 4 - Mean concentrations for Cu, Zn and Fe. The results for Fe are divided by a factor of 100, since the values 

are so much higher than the values for the other metals. Error bars show the standard variation. 

Table 9 - Statistical information for soil samples. Asterisk marks values above the Swedish general guideline values.   

 Pb Cr Cu Zn Fe 

Number of 

samples 

analysed 

 

     

P-value - - 0.003 0.0 0.0 

Statistical 

power 

- - 1.0 1.0 1.0 

 

Mean value 

     

Ref   35    56   10461 

WD   12    155   9591 

WWTP   118*   138   10917 

 

StDev 

     

Ref   4.4 37.9   284 

WD   11.9   72.2 1182 

WWTP   112.3                          31.4                     466 
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Table 10 – Concentration of Cr and Pb for all samples analysed at the Swedish University of Agricultural Science. 

Asterisk marks values above the Swedish general guideline values.   

Name Cr Pb 

Ref  mg/kg soil mg/kg soil 

ss1a 9 30 

ss3a 13 42 

ss5a 11 30 

WWTP 
  ss2a 57 62* 

ss5a 52 66* 

ss8a 39 74* 

WD 
  ss2a 11 51* 

ss5a 3 52* 

ss8a 10 45 
 

Table 11 – Grouping information for soil samples using Tukey’s test.  Sites that do not share a letter are significantly 

different. The analysed data comes from the AAS-analysis performed in Malawi.  

 N Fe Zn Cu 

Ref 5 A  B B 

WD 9 B A B 

WWTP 9 A A A 

 

 

5.3.3 Plants 

In Table 11 the mean concentration of all metals in pumpkin leaves, pumpkin fruit, maize and 

soil are presented. The soil concentration is included for easy compilation. Tables 12 and 13 

contain the results from the ANOVA analysis performed on the metals analysed at University 

of Malawi. For maize, there is a significant difference between the reference site and WD 

regarding Zn and Cu, but not Fe. For pumpkin leaves there are no significant differences 

between the reference and WD. Between the reference site and WWTP there is a significant 

difference in the concentration of Zn in both maize and pumpkin leaves, but none for Fe and 

Cu. Tables 14 and 15 gives the P-values, mean values and standard deviation for the maize 

and pumpkin samples respectively. 

The Pb content in the plants is very high. Compared with the study performed by Mattina et 

al. (2003) were the concentration in the soil was 188 mg/kg soil and the concentration in 

pumpkin leaves <10 mg/kg dry matter, this result seems unlikely. The results from Carbonell 

et al. (2011), who had a soil concentration of 35 mg Pb/kg and negligible concentration of 

lead in maize grain, also confirms that these results might not be correct. Another 

unexpectedly high concentration is Fe in all plants. The iron content in fresh maize given 

from the National Food Agency in Sweden is 5 mg Fe/kg. The pumpkin leaves can be 

compared with iron-rich food such as fresh spinach (20 mg Fe/kg) and raw pork (12 mg 

Fe/kg). These values, also taken from the National Food Agency in Sweden, indicate that 
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these results may be wrong. The plants content of Zn is high as well, but in Mattina et al. 

(2003) the Zn concentration in pumpkin leaves were higher than the soil concentration so this 

concentration might be accurate. If it is, the Tolerable Upper Limit on 25 mg Zn/day may be 

exceeded by the residents in the area.  

For Cu the result for maize at the waste dump (87 mg/kg) is much higher than the soil 

concentration (12 mg/kg). Since both pumpkin leaves and fruit at WD shows zero content of 

Cu this result might be considered unreliable. Regarding Cr the highest soil concentration was 

found at WWTP, but the plants from that site showed no detectable amount of Cr. In 

Carbonell et al. (2011) the concentration of Cr in maize shoot and grain were very low (<0.01 

mg/kg in shoots) even though the soil concentration was around 23 mg/kg. This result 

combined with the fact that Cr has low solubility in the soil solution makes the results for the 

reference site and WD unreliable.    

 

Table 12 – Mean values for metal concentration in plant dry matter. Analysis for Cr and Pb performed at SLU and 

for  Fe, Zn and Cu at the University of Malawi. Mean concentration in soil included for comparison.   

 
Ref WD WWTP 

 
mg/kg  mg/kg  mg/kg  

Pb    

Pumpkin leaves* 39 34 30 

Pumpkin fruit* - 23 36 

Maize 39 42 29 

Soil 34 49 67 

Cr    

Pumpkin leaves* 1.5 0 0 

Pumpkin fruit* - 4 0 

Maize 12 4 0 

Soil 11 8 50 

Fe 
   Pumpkin leaves 1286 217 2371 

Pumpkin fruit - 180 261 

Maize 140 124 133 

Soil 10461 9591 10917 

Zn 
   Pumpkin leaves 86 88 304 

Pumpkin fruit - 79 120 

Maize 33 147 132 

Soil 56 155 138 

Cu 
   Pumpkin leaves 1 0 3 

Pumpkin fruit - 0 10 

Maize 1 87 2 

Soil 35 12 118 
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Table 13 – Grouping information for maize samples using Tukey’s test.  Sites that do not share a letter are 

significantly different. The analysed data comes from the AAS-analysis performed in Malawi. 

 N Fe Zn Cu 

Ref 5 A B B 

WD 5 A A A 

WWTP 9 A A B 

 

Table 14 – Grouping information for pumpkin leaves using Tukey’s test.  Sites that do not share a letter are 

significantly different. The analysed data comes from the AAS-analysis performed in Malawi. 

 N Fe Zn Cu 

Ref 5 A B B A 

WD 2 B B A 

WWTP 9 A A A 

 

Table 15 – P-value, statistical power and standard deviation for maize samples 

 Fe Zn Cu 

P-value - 0.02 0.00 

Statistical power 

 

0.05 0.7 1.0 

StDev    

Ref 78 20 3 

WD 93 102 57 

WWTP 64 56 3 

 

Table 16 – P-value, statistical power and standard deviation for pumpkin leaves samples 

 Fe Zn Cu 

P-value 0.02 0.00 - 

Statistical power 0.8 0.9 0.2 

StDev    

Ref 1115 29 3 

WD 25 15 0 

WWTP 905 124 7 

5.3.4 Ash and water  

Samples from the water at the waste water treatment plant and the ash from burning of waste 

at the waste dump were analysed. The concentration of zinc in all water samples are higher 

than WHO (2003) refers to as the normal level for surface water, 10 µg/L. In tap water the 

concentration can be as high or higher than in these samples, due to corrosion in pipes (WHO 

2003). Pb was only found in the sample of untreated water, and in low concentration. No Cr 

was detected in the water samples. The mean values for the metal concentration in the water 

are displayed in Table 16.   

The concentration of metals in the ash is presented in Table 17. Only one ash sample was 

brought to Sweden for analysis of Cr and Pb. However, the mean values of Zn, Cu and Cr 

were all found in higher concentrations in the ash then in the soil. The concentration of Fe and 

Pb were lower in the ash than in the soil samples.  
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Table 17 - Mean concentration of metals in water samples (mg/L), analysed at the University of Malawi 

Name Fe Zn Cu Cr Pb 

Before treatment 0.6 0.8 0.5 0 0.2 

Pond 1 0.8 1.1 0.5 0 0 

Pond 2 0.6 0.5 0.6 0 0 

Outlet to stream 1.3 0.3 0.5 0 0 
 

Table 18 - Concentration of metals in ash samples (mg/kg ash) collected at the waste dump, analysed at the University 

of Malawi.  

 Fe Zn Cu Pb Cr 

Ash 1 1602 174 88 45 16 

Ash 2 2146 109 63 - - 

Ash 3 1332 225 61 - - 

Mean 1693 170 71 45 16 
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6. Discussion  

The main objectives of this study was to find out if the two assessed areas are contaminated 

with heavy metals, and if they have a higher, lower or equal nutrient status compared to a 

reference site. A more general objective was to investigate and discuss the forces that lead to a 

situation where food is cultivated on areas we in Sweden would routinely classify as 

contaminated or at high-risk for contamination.  

6.1 Hypothesis testing  

The hypothesis formed before the study was as follows: 

Null hypothesis: There is no difference between the reference site and WD and/or WWTP 

regarding: 

a) Concentration of Fe, Zn, Cu, Cd, Pb and Cr in soil 

b) Concentration of Fe, Zn, Cu, Cd, Pb and Cr in plants 

c) Nutrient status 

In statistical hypothesis testing the null hypothesis can be rejected if the P-value is lower than 

the significant level, in this case <0.05. We can then say that with a certainty of 95 %, there is 

a difference between at least two of the tested groups. However, my null hypothesis was that 

there were no different in metal concentration between the reference site and WD and/or 

WWTP. The difference between WD and WWTP is not of interest in this study. Therefore the 

P-value alone (Table 19) is not enough information for rejecting or not rejecting this null 

hypothesis. Therefore the grouping information from Tukey’s test is also used. The results for 

Cd will not be included in the hypothesis testing, as explained under “Results”.  

According to the P-values for the soil samples there are significant differences between sites 

for all metals. However, the grouping information shows that only the concentration of Zn 

shows any significant difference between the reference and both of the other sites. For Cu and 

Fe the difference indicated from the P-value is between the two sites WD and WWTP, but not 

the reference. Hypothesis (a) is therefore rejected regarding only Zn, and not rejected for any 

of the other metals. Regarding Pb and Cr the number of samples analysed is assumed to be 

too low to give sufficient certainty for a statistical hypothesis test. In the same way we can 

reject the null hypothesis (b) for Zn (both at WD and WWTP for maize, only WWTP for 

pumpkin leaves) and for Cu (regarding maize at WD). For all other metals we cannot reject 

the null hypothesis (b). 

Regarding hypothesis (c) the number of samples analysed are not sufficient to make a 

qualified decision about rejecting or not rejecting the null hypothesis.  
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6.2 Flaws in method 

A displayed inability to repeat the analysis and acquire similar concentrations makes the 

results for Cd-content in the samples unreliable.  A simple explanation for the irregularity 

would be that the result from the Buck Scientific 200 AAS used at University of Malawi is 

faulty, due to the machine being developed in the early 80’s and the lamps being hand-me-

downs from other universities. However, the calibration curves created with this machine 

showed a correct linear response in increasing absorbance with increasing concentration of 

metal in the calibration solutions. Therefore the response to the variation of Cd concentration 

between the two analyses is to exclude both of them from the study.  

A possible explanation for the higher concentration showed in the analysis at University of 

Malawi is background interference from particles due to the flame not being at a sufficient 

temperature. This is shown to give a higher absorption (García & Báez 2012). There might 

also have been problems with the radiation source or the monochromator that made other 

elements interfere with the results. All this speculations can however not be proved without 

further testing of the instrument.      

An important thing to remember regarding the assessment of contamination is the limitations 

given by the method of analysis. An AAS instrument has, like all other instruments, a 

detection limit. This limit is dependent on the instrument, the chosen wavelength, the solvent 

and a number of other factors (Van Loon 1980). If the concentration in the sample is below 

the limit of detection, the analysis will give a result of zero. This does not mean that the 

sample is free from the actual substance. To make sure that eventual presence of metals are 

detected one can either change method of analysis to one with lower detection limit, or 

change the method for extraction to get samples with higher concentration. This can be done 

by increasing the amount of sample used for extraction from ~1 to ~10 g or even more. 

Higher concentrations are easier to handle and the standard deviation between replicates will 

have a lower impact on the certainty of the result. In further studies I also recommend that the 

methods for sample preparation are changed to simpler ones. It’s also important to use a blank 

with the same acids as in the sample preparation, and to use standards prepared with the same 

acids.  

Other flaws in this study are the problem with broken equipment, the short time period and 

the short contact time with local experts and residents. The choice of metals to analyse was 

also determined by availability of equipment to analyse them, and not by any qualified 

suspicions of which ones might be relevant in the case.  

Table 19 - P-values compared with significant level 

 Fe Zn Cu 

Soil P <0.05 P <0.05 P <0.05 

Pumpkin leaves P <0.05 P <0.05 P >0.05 

Maize P >0.05 P <0.05 P <0.05 
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6.3 Interpretation of results 

General guideline values were used to give a reference value to compare with the found 

concentrations. To only compare with the reference site would be insufficient, since there we 

lack knowledge about previous use of the land. The reference site was considered to have a 

lower risk of contamination and was chosen to represent a “general” field, but one cannot be 

certain that the reference is free from contaminations.  

The concentration of Pb at the waste dump (WD) in the samples is above the general 

guideline values given by the Swedish Agency for Environmental Protection (NV 2009). At 

WWPT, the concentration of Pb in the three samples analysed was above the guideline value. 

However, Sillanpää and Janson reported in 1994 that Pb contamination were not a problem in 

agricultural production in Malawi. Another factor that needs to be considered in the 

interpretation of these results is the concentration of Pb in plants. As mentioned earlier, the 

measured Pb concentration in the plants is unexpectedly high compared with other studies. 

All those unexpectedly high values combined with lack of support from earlier studies 

indicates that these results should be treated with scepticism until further studies can confirm 

the accuracy of them. The mean value for Cu was also above guideline values, but the high 

standard deviation of the data need to be taken into consideration.  

For all metals except Zn, the results for the metal content in plants were in some way 

unreliable, as described earlier. Therefore no evaluation of risk from consumption of plants 

from the site will be performed. Since there seemed to be a trend of unreasonable high 

concentration for all assessed metals there might have been some errors in the way that the 

samples were prepared.   

It is however important to keep in mind that even though it seems likely that the concentration 

of a metal is low at the sites right now, there might be a future risk for contamination. Also, 

even if the unreliable results from this study cannot prove any contamination, they can also 

not prove any lack of contamination. There is also a possibility of presence of metals and 

organic compounds not analysed in this study. It might therefore be motivated to use these 

results to plan and perform a second, improved, study.  

The analysis of the soils content of phosphorus and nitrogen were not performed with a 

method that gives results suitable to be compared with other studies, unless they used the 

same methods of extraction and analysis. However, the results can be compared with each 

other to give a ranking between the sites. This ranking indicates that the crop production at 

these areas can acquire positive benefits from nutrients leaching from the waste water 

treatment plant or from the waste dump. Both carbon content and CEC are unexpectedly high. 

Large amounts of organic matter can give a high CEC, but since the soil had a light colour 

and the method for measuring total carbon is inexact, the values shouldn’t be trusted.    
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6.4 Agricultural situation  

6.4.1 Access to land 

In the case of the waste dump, the land is owned by the city assembly and the use of it for 

crop production can be considered squatting. The person I met during the sample collecting 

told me that he had no other land to cultivate but this. On the waste water treatment plant the 

usage of the land was a benefit for the people working for the city assembly. They were 

assigned one piece of land each, and rotated places.    

6.4.2 Access to inputs 

None of the farmers addressed in this study benefited from FISP and both sites were 

unfertilised, but according to the people cultivating crops on the waste dump and at the waste 

water treatment plant the sites gave good yields without use of fertilisers. Especially the fields 

at the waste dump were said to give extraordinary amounts of maize without any inputs. From 

this point of view the cultivation of those areas is benefiting the farmers, since they get a 

higher yield without investment in fertilisers.  

6.5 Social, economic and political aspects of contamination 

The third objective for this study was to “discuss the political, economic and social forces that 

make people need to grow food on areas with suspected contamination”. To make a complete 

assessment of those forces is of course impossible, but a more general discussion of what I 

believe is the main problems for the agricultural practice in Malawi is carried out below.  

6.5.1 Food security 

I believe that the low food security is the main cause of risky behaviour regarding land use. In 

the current situation with low use of agricultural input and technology combined with small 

average plot size, farmers can’t “afford” not to cultivate all available land. This is especially 

true when the sites also give benefits in form of nutrients.   

There are two ways for a country like Malawi to ensure food security. The first is to promote 

self-sufficiency of food, and the other is to develop a well-functioning import system. To be 

able to rely on import, access to foreign currency is critical, and can be acquired by a focus on 

cash crops for export or on industry (Harrigan, 2008). A problem with the second approach is 

that the poor infrastructure gives high import prices and leads to delayed arrivals of food in 

times of need. The starving events that occurred in 2001–02, 2004–05, and 2007–09 were all 

connected to the same pattern of a low maize harvest leading to a rise in price followed by a 

ban of private trading and delayed import (Ellis & Manda 2012). Malawi’s dependency on 

import in episodes of food shortages combined with the poor infrastructure have resulted in 

situations where the strategy to fight off high maize prices with external trade fails to deliver 

results in time, leading to starvation in the country (Ellis & Manda 2012). Historically Malawi 

has had a focus on national self-sufficiency of maize, combined with export of cash crops to 

promote economic growth. According to Chilowa (1998) food security in Malawi has been 
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viewed as synonymous to “production of enough maize”. This strategy has failed to provide 

food security for the majority of the population. A different approach could be to focus on 

self-sufficiency at a household level, since a national self-sufficiency of maize does not 

guarantee an even distribution of food in the population. The Farm Input Subsidy Program 

may have helped to increase maize production, but critics like Pauw et al (2014) shows that 

the intended poverty reduction failed to occur.    

A secondary issue worth mentioning is that the programs for subsidising and distributing 

fertilisers in Malawi might have consequences on the soil quality and public health. It’s 

widely known that inorganic fertiliser can be contaminated with cadmium, and most high-

income countries have regulation regarding Cd-concentration in fertilisers used in agriculture. 

However, according to the Malawi Bureau of Standards no control of the Cd concentration is 

performed on the imported fertilisers. My effort to find out the origin of the apatite used in 

production was also fruitless, and there seems to be a lack of documentation in this area. 

However, in 1992 Malawi was reported to have low levels of Cd in soil and plants and this 

study does not indicate any drastic increase in those levels.  
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7. Conclusions 

According to this study, the general guideline values (NV 2009) were exceeded for lead in at 

least one sample on both WD and WWTP. On WWTP the mean value of Cu exceeds the 

guideline value 80 mg Cu/kg soil (7 out of 17 samples exceed). The results for Pb are 

however unexpectedly high compared with earlier similar studies, and the concentration of Cu 

at WWTP showed a large standard deviation. There is also the earlier mentioned problem 

with the results for Cd concentration. All this means that no conclusion about the presence of 

Cd, Pb or Cu can be drawn from this study, even if a brief look at the results might indicate 

contamination. The only certain conclusion from this experimental study is that the used 

methods are insufficient. In future studies at the area it might be recommended to send 

samples to a laboratory with a higher standard and better accuracy in the analyses.       

The concentration of nitrogen and phosphorus on both sites are higher than the reference 

levels. At the waste water treatment plant the soil pH was extremely low (3.71). To prevent 

losses of yield and to decrease the availability of some metals liming might be considered.  

 From the results presented here there might be some arguments to perform another risk 

assessment of the areas using the suggested improvements. A risk assessment on the hygienic 

and pathogenic aspects would also be motivated. Another important factor not covered in this 

study is the proportion of arable land close to potential sources of contaminating substances 

and the number of people affected by it.   

When this study was performed some gaps in the existing research were found. For example, 

there is very little written about the average levels of metals in arable soil in Malawi. This is 

information needed to perform accurate risk assessments. There is also a lack of information 

regarding origin and Cd-content of the inorganic fertilisers imported to Malawi.  

Malawi has a history of subsidy programs to give small-scale farmers access to fertilisers and 

seeds. I do not believe that the idea to break the poverty trap by giving smallholders access to 

agricultural is bad. The problem is when modern technology such as inorganic fertilisers or 

improved seeds is used to conceal the long term consequences of agricultural malpractice and 

bad politics. These programs must be combined with actions to secure safe access to land, fair 

ways of trading and over-all poverty reduction. Food security for all of the populations needs 

to be achieved to prevent food production on contaminated areas. If the alternative is 

starvation, the use of the land and the utilisation of the leaching nutrients might be the best 

alternative for the farmers even if there is a risk for negative health effects from 

contamination. The most important thing is that information about the risk and benefits is 

handed to the local farmers and the city assembly so they can make a qualified decision about 

the future use of the areas.  
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Appendices 

These appendices were made in cooperation with Sofie Orvestedt, and appear in a similar 

form in her work titled “Waste management and impact on people’s health when cultivating 

on sites contaminated with heavy metals - Minor field study made in Zomba, Malawi” (2015).  

Appendix 1 – Sampling performance 

This sampling strategy contains a detailed description of how the sampling was performed. It 

contains descriptions and situational planning such as the area of sampling, locations for the 

sampling points and how the samples were taken and handled.  

The aim of this sampling plan was to perform sampling of high quality with the right 

equipment and methodology to avoid influence on the quality of the collected data (Swedish 

geotechnical society, 2013).This strategy was throughout the study revised due to limitations 

or other reasons for changes. This is the final document describing in detail how the sampling 

was performed. 

Sampling scale 

In order to take samples representing a bigger soil volume, twelve samples from every sample 

point was mixed and one aliquot was further taken for analysis. This is called composite 

sampling and reduces the possibility for small variations in local concentration to affect the 

final results (See Figure 1) (Norrman, Back, Engelke, Sego, & Wik, 2009). 

 

 

  

Figure 5 - An illustration of the composite samples from 12 

individual samples to 1 composite sample and one aliquot for 

further analysing. 
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Approach  

This study was designed with a probability-based approach to hypothesis testing. This means 

that the number of samples was calculated beforehand to ensure the chosen certainty in the 

results. To do this, a number of estimations were needed to be done (Norrman, Back, Engelke, 

Sego, & Wik, 2009): 

 Choice of statistical parameter (usually mean value). 

 Estimation of statistical distribution of data. Keep in mind that data from 

contaminated areas usually do not have a normal distribution. 

 Estimation of coefficient of variability. This can be done by performing a pilot study 

or by experiences from former studies. 

 Decision of desired certainty. 

 Choice of sampling pattern. 

 Determination of needed number of samples. 

The decided statistical certainty gives the risk of wrongly rejecting or not rejecting the null 

hypothesis, H0. This can lead to two kinds of errors, called type I and type II (see Figure 2). If 

the null hypothesis is set as a hypothesis of zero change, meaning that there is no difference 

between the study site and a reference site, a type I-error would lead to that a clean area is 

declared as contaminated. In the same situation a type II-error would result in that a 

contaminated area is declared clean. The risk for committing a type I error is given as α, and 

is commonly set as 0.05 or lower. For type II-errors the risk is given as β, and is commonly 

set as 0.2 or lower. The levels of α and β has to be adjusted after the severity of the 

consequences coming from committing the errors (Grandin, 2012). 

 H0 is true H0 is false 

 

Reject H0 
Type I-error Correct 

 

Don’t reject H0 
Correct Type II-error 

Figure 6 - Type I and type II errors 
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Pilot study 

The sampling began with a pilot study to de determine the standard variation in the samples. 

Based on these samples, calculations were performed in G*Power to decide how many 

samples were needed for an acceptable confidence interval. Limitations of costs or other 

resources can of course further reduce the number of samples but was not a problem in this 

study. 

The pilot study was planned to consist of 10 randomly placed soil surface samples within each 

location but this was limited to one site – the waste water treatment plant. This limitation was 

due to a lack of time. These samples was only analysed for heavy metals to estimate the 

standard deviation. 

Soil samples 

To be able to quantify the amount of heavy metals in the soil surface and to be able to create a 

map over heavy metal concentration, the samples were taken in a systematic grid pattern. The 

distance between the sample points was adjusted with consideration of the total site area and 

the available time and resources. The number of samples taken at each site needed to be a 

sufficient amount to ensure that the conclusions from the study can be taken with an 

acceptable risk for type I and type II errors. 

Preparations 

 Location of sampling point 

 Naming of sampling point 

 Making sure that all equipment was available and clean 

 Making sure that all safety equipment was available 

 Marking of all sampling vessels  

Documentation 

 The sampling was documented in a sampling protocol 

 Notations of soil type, smell and visual impressions etc. were made. 

 Deviations were documented in the sampling protocol 

 The location of the sampling point were measured out 

Cleaning of sampling equipment 

 Mechanical cleaning was made between each sampling level 

 Cleaning between sampling points were made with water due to limitations of 

washing-up liquid and since the risk of cross contamination was considered to be 

small. 
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Packing, transport and storage 

 The samples were put in marked sampling vessels and sealed 

 The samples were delivered and analyse as soon as possible 

(Swedish geotechnical society, 2013) 

Materials: 

 Soil survey drill called “Trekantenborr” (see Figure 3) 

 Buckets 

 Tape measurements 

 Sample vessels: plastic jars and buckets 

 GPS 

 Sticks to mark out sample points 

Method: 

 The soil survey drill was put down in the soil to take out 12 samples in the same way 

as Figure 4 illustrates. 

 The soil from the drill was emptied in a bucket and mixed with all the soil taken from 

the sampling circle before one single sample was taken from the bucket (the aliquot) 

(Instutionen för mark och miljö , 2013). 

 The sampling circles were placed in a grid evenly distributed (Figure 5). 

  

Figure 4 - Illustration of the 

sample circle and how the 

surface soil samples were taken 

Figure 5 - Sampling grid 

without fixed distance 

Figure 7 - Soil survey drill "Trekantenborr" 
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Crop samples 

Materials: 

 Buckets 

 Sample vessels: plastic bags 

 Safety equipment: gloves and boots 

Method: 

 Plant samples were planned to be taken the same sampling circle as the soil but 

adjustments had to be made due to how the maize was growing. It was instead taken as 

close to the soil sampling circle as possible. 

 Only edible plants as maize and pumpkin leaves were sampled 

Water samples 

Fast changes in the waters chemical composition might occur in water courses, e.g. after 

precipitation. It is therefore difficult to take manual samples and get a representative picture 

about changes in water quality (Swedish geotechnical society, 2013). The samples was taken 

to be as representative as possible, which is why the samples was taken from the shore in the 

same way as water for drinking, cleaning or irrigation would be taken. 

Materials: 

 Sample vessels: plastic bottles with lids 

 Safety equipment: gloves, boots and waders 

Method: 

Preparations 

 Location and naming of sampling point 

 Making sure that all equipment was available and clean 

 Marking of all sampling vessels and making sure it was clear if there were several 

sampling vessels for the same sampling point 

 Rubber gloves were put on  

 The bottle was brought down vertically in the water with the opening first so that the 

water surface was not included in the sample. 

Packing, transport and storage 

 The vessels were sealed well 

 The samples were delivered and analysed as soon as possible 
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 Appendix 2 – Analysis performance 

This is a detailed description of how the analyses were performed. The aim of these analytical 

methods was that they were supposed to be possible to repeat with the available material at 

the Chancellor College. In an attempt to accomplish this aim, A manual on analytical 

techniques from the Department of Chemistry was used for most of the methods presented in 

this appendix. When another source was used, this is presented under respective method. 

Soil 

Preparation of sample 

Before any analyses were performed the soil samples were air dried, grinded and sieved to a 

particle size less than 1 mm. The sorted fractions were weight and the proportion calculated. 

  Moisture content (M) 

The results of soil analyses were calculated on the basis of oven dried sample weight. 

Therefore, the moisture analysis was executed before any other analysis. The result from the 

other analyses on the basis of the air-dry weight was multiplied by a moisture correction 

factor (mcf). 

Procedure 

 Some glass beakers was placed in an oven at a temperature around 110 °C for at least 

two hours.   

 Then the beakers were cooled to room temperature in a desiccator and weighted. 

 Around 5 g of soil sample was placed in each beaker. The exact weight was noted. 

 The beakers with samples were placed in the oven at 110 °C over night.  

 Then the beakers and samples cooled down in a desiccator and weighted again. 

Texture 

The particle size distribution of a soil expresses the proportions of the various size classes 

(clay < 0.002 mm, silt 0.002-0.02 mm and sand 0.02-2.0 mm particle size), commonly 

represented by weight percentages of the total soil. The texture analyse was not possible to 

perform at Chancellor College which is why they were sent to a lab at the Forest department. 

They used the hydrometer method to determine the proportions which is based on Stokes’s 

law which states that the rate of fall of particles in a suspension is directly proportional to 

their size. 

pH 

pH of the soil was measured potentiometrically in 1:2 soil – water suspensions  

Apparatus 
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pH meter, mechanical shaker 

Procedure 

 Approximately 10 g of air dried, 1 mm sieved sample was weighted into a 100 mL 

flask and 20 mL distilled water was added. The flask was then shaken for one hour. 

 The pH meter was calibrated using pH buffer and after that, pH of the suspensions was 

measured. 

Electrical Conductivity 

The measurement of EC gives the concentration of soluble salts in the soil solution at any 

particular temperature. EC was measured in 1:2 soil-water suspensions with the help of a 

conductivity meter. 

Procedure 

The EC meter was calibrated using standard KCl solution and EC was determined of the 

suspension used in the pH determination. 

CEC determination 

Source: Samson Mkali Idruss Sajidu, Characterisation and interaction of mixed alkaline clays 

and Moringa seeds with heavy metals in contaminated water.  

Apparatus  

 E-flasks 

 Centrifuge tubes 

 Centrifuge 

 AAS 

Reagents 

 26.89 g CuCl2 (0.2 mole) was dissolved in 200 mL distilled water. 

 30.05 g ethylenediamine (33.39 mL, 0.5 mole) was dissolved in 500 mL distilled 

water. 

 50 mL of the CuCl2 solution was added to 102 mL of the ethylenediamine solution 

 This was diluted to 1 litre. 

 The final solution had 0.05 M
 
[Cu(EDA2)]

2+ 
 

Procedure 

 0.3-0.4 g of soil sample was weighted into a centrifuge tube. The exact weight was 

noted.   

 4.0 mL of the complex solution was diluted to 25 mL with distilled water and added to 

the soil sample. 

 This was shaken for 30 minutes and centrifuged. 
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 The concentration of copper(II) was analysed in the supernatant by AAS.  

Total Organic Carbon (Walkley and Black 1934) 

The organic carbon in the sample is oxidized with potassium dichromate and 

sulphuric acid. The excess potassium dichromate is titrated against ferrous ammonium 

sulphate. 

 

Reagents 

 1N Potassium dichromate: Dissolve 49.04 g K2Cr2O7 in 500 ml distilled water and 

make up the volume to one litre. 

 Concentrated Sulphuric acid (H2SO4). 

 Concentrated Orthophosphoric acid (H3PO4). 

 0.5N Ferrous ammonium sulphate: Dissolve 196 g Ferrous ammonium sulphate in 

distilled water, add 20 ml of conc. H2SO4 and make volume up to one litre. 

 Diphenylamine indicator: Dissolve 0.5 g of diphenylamine in a mixture of 20 ml 

distilled water and 80 ml conc. H2SO4. 

 

Procedure 

• Weigh 1 g soil into a 500 ml conical flask. 

• Add 10 ml of 1 N K2Cr2O7 and 20 ml of conc. H2SO4. 

• Swirl the flask carefully and allow it to stand for 30 minutes. 

• Slowly add 200 ml distilled water and 10 ml H3PO4. 

• Add 1 ml of diphenylamine indicator and titrate against 0.5 N Ferrous ammonium 

sulphate solution until green colour starts appearing indicating the end point. 

• Run a blank simultaneously. 

Total Nitrogen (Kjeldahl method) 

Due to a lack of time and experience, this analyse was performed by a laboratory worker at 

the Forestry Department. The Kjeldalh method was used which only measures organic and 

ammoniac form where nitrate is excluded.  

Total phosphorous - Vanadomolybdophosphoric yellow colour method 

 

Reagents 

 

• Solution A: Dissolve 25 g of ammonium molybdate in 300 ml warm distilled water 

and cool it. 

• Solution B: Dissolve 1.25 g of ammonium metavandate in 300 ml boiled distilled 

water. Cool and add 250 ml conc. HNO3. Cool solution B and mix with solution A 

and make up to one litre. 

• Standard P solution: Dissolve 0.2195 g of dried KH2PO4 in distilled water, acidify 

with 25 ml of 7N H2SO4 and make the volume up to one litre to get 50 mg/l P 

solution. 
 

Procedure 

 

 Place 10 ml of acid digests (see chapter B-13) of soil sample in a 50 ml volumetric 
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flask, add 10 ml of the vanadate-molybdate reagent and dilute to 50 ml. 

 Mix well and read the P concentration after 10 minutes using spectrophotometer at 

420 nm. 

 Take 0, 1, 2, 3, 4 and 5 ml of the 100 mg/l P solution in 50 ml volumetric flask and 

develop colour in identical manner. 

 Calibrate the spectrophotometer with known P concentration and read the 

concentration of sample. 

Sample Preparation for Elemental Analysis 

For the release of mineral elements from soil and sediments, wet oxidation of sample is 

carried out. Wet oxidation employs oxidizing acids like HNO3-HClO4-HF triacid mixture or 

HNO3-HClO4 diacid mixture. Use of HClO4 avoids the volatilization loss of potassium and 

provides a clear solution while hydrofluoric acid (HF) helps removing silica. The diacid 

oxidation method is easier, less time-consuming and convenient but it is not a total digestion 

as soil does not dissolve completely, particularly silicate minerals, therefore, di-acid digestion 

is known as pseudo digestion or partial digestion.  

The pilot study were performed using tri-acid, but due to the hazards of handling HF-acid and 

lack of proper equipment the main study were performed with di-acid oxidation.   

HClO4-HF Digestion (Tri-acid oxidation) 

 Around 1.0 g of sample, two replicates per sample point, was weight into clean 

250 ml E-flasks. Exact weight was noted.  

 Two ml mL of HClO4 (70%) and 12 mL of HF (40%) was added and the mixture 

was heated to near dryness. 

 Then 8 mL of HF was added and the mixture heated to dryness. 

 Now add two mL of HClO4 and about 5 mL of distilled water and heat to incipient. 

 The remaining residue was dissolved in 8 mL of hydrochloric acid and 20 mL of 

water. 

 The mixture was filtrated 

 Using distilled water the filtrate was diluted to 100 mL. 

 The concentrations of concerned metals were determined by AAS.   

HNO3/HClO4 Digestion (Di-acid oxidation) 

 Around 1.0 g of sample, two replicates per sample point, was weight into clean 

250 ml E-flasks. Exact weight was noted.  

 3 mL HNO3 was added and the mixture heated to 145 °C for one hour.  

 Then 4 ml of HClO4 was added and the mixture heated to 240 °C for one further 

hour. 

 The mixture was cooled and filtered then diluted with distilled water to 50 mL 

volume. 

 The concentrations of concerned metals were determined by AAS.   
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Water 

Procedure 

 Acid was added to prevent microbial growth 

 The water was filtered through filter paper 

 The water was analysed for metals in AAS 

Plants 

Processing the plant sample: 

1. The samples were only cleaned with water to replicate how they would be cleaned before 

eating, i.e. removal of soil etc. 

2. The samples were placed on paper in room temperature to dry of excessive water from 

cleaning and to easier be able to remove the eatable part of the maize. 

3. Final drying at 100-110 °C to obtain a constant weight upon which to base the analysis. 

4. Mechanical grinding to produce a material suitable for analysis. 

Tri-acid digestion 

Tri-acid mixture:  

Mix AR grade conc. HNO3, H2SO4 and HClO4 in 10:1:4 ratio and cool. 

Procedure 

 Approximately 1.0 g of dried and processed plant sample were transported to a 250 

mL conical flask. 

 5 mL of conc. H2SO4 was added 

 A glass funnel was kept on the flask which was placed in a water bath and heated at 

100 °C for about 30 minutes 

 After cooling 5 mL of tri-acid mixture was added 

 It was heated at 180-200 °C on hot plate until the dense white fumes evolved and 

transparent white contents were left 

 After cooling about 50 mL of double distilled water was added and filtered into 100 

mL volumetric flask, giving 3-4 washings. Finally the volume was made up to 100 

mL. 

 The filtrate was then analysed in AAS. 
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Appendix 3 - Calculations  

Moisture 

The soils moisture content and the moisture correction factor were calculated for all sample 

points using equation 1 and 2.  

M =
(B−C)×100% 

(C−A)
    Equation 1 

 

mcf =
100+M(%) 

100
    Equation 2 

 
Where 

M = Moisture content (%) 

A = Empty Beaker weight 

B = Sample + Beaker weight 

C = Final weight 

 

Heavy metal content in surface soil 

Two aliquots per sample point was analysed for Cd, Cu, Zn and Fe using AAS, with measures 

absorbance. Before analyse of the samples a calibration curve for each metal was made from 

solutions with a metal concentration of 1, 2, 3, 4 and 5 ppm. The calibration curve and 

equation for Cd is shown as an example (equation 3, figure 6).  

The absorbance values from the samples were then recalculated to ppm using the equation 

from the calibration curve. After that the value in ppm was recalculated to mg/kg soil using 

equation 4.    

 

𝐶𝐶𝑑 (𝑝𝑝𝑚) =
𝐴

0.029
     Equation 3  

 

 

𝐶𝐶𝑑(𝑚𝑔/𝑘𝑔) =
𝐶𝐶𝑑 (𝑝𝑝𝑚)∗𝑀𝐶𝐹∗0.1

𝑆𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
∗ 1000   Equation 4 
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Figure 8 - Calibration curve for Cd. All trend lines used for calculation of concentration goes through zero.  

 

Phosphorous 

Three sample points per site was analysed, using the same samples as for metal analysis. The 

acid digests of soil samples was mixed with vanadate-molybdate reagent and the 

concentration of P analysed with spectrophotometry and the soils P-content calculated with 

equation 5.  

𝑃 (µ𝑔/𝑔) =  
𝑅∗50

10
∗

100

𝑆𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)
   Equation 5  

Where: 

R = reading of spectrophotometer P mg/l. 

10 = volume of acid digest used for colour development. 

50 = Volume make up for colour development. 

100 = Volume make up after acid digestion. 

g = Sample wt. (g) for acid digestion.  

 

Cation Exchange Capacity (CEC) 

For determination of CEC, a known concentration of Cu
2+ 

-diethylenediamine complex was 

added. The samples were shaken, and the concentration of Cu in the supernatant was 

analysed. The difference in moles from before and after the mixing with the soil corresponds 

with half of the total charge in the soil. The moles of charge per gram soil were calculated 

according to equation 6.       

Equation 6   

  

𝐶ℎ𝑎𝑟𝑔𝑒 (𝑚𝑜𝑙/𝑔 𝑠𝑜𝑖𝑙) = (
( 𝑀𝑜𝑙/𝐿 𝐶𝑢 𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑀𝑜𝑙/𝐿𝐶𝑢 𝑎𝑓𝑡𝑒𝑟) ∗ 0.025 𝐿

𝑆𝑎𝑚𝑝𝑙𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔)
) ∗ 2 

A = 0,029*(ppm Cd)  
R² = 0,9934 
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