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Abstract 
The pathogenic fungus Rhizoctonia solani causes major economic losses for potato 

producers in Sweden. The producers, as well as advisors, have reported possible 

increases in severity of R. solani when free-living plant parasitic nematodes are 

present and active. There are several examples in the literature of interactions be-

tween pathogens where one, or both species, support or increase the damage made 

by the other organism. These complexes are important to investigate and to be able 

to forecast, since even low incidences of fungi or nematodes may result in an inter-

action of significance.  

The aim of this study was to investigate possible interactions between two differ-

ent nematodes and the fungus R. solani under field conditions. The nematodes were 

root-lesion (Pratylenchus spp.) and stubby-root nematodes (Trichodoridae). The 

hypothesis was that there is spatial correlation in the distribution of free-living 

nematodes and the severity of stem canker caused by R. solani. A greater severity 

of stem canker is related to higher numbers of nematodes. Nematodes in the genus 

Globodera were also included after finding high numbers of these cyst nematode 

juveniles in the samples.  

The study was limited to sampling of eight potato fields with observed outbreaks 

of damping off in the northern part of the county of Östergötland, located in the 

middle part of Sweden. Both soil sampling and grading of stem canker were per-

formed at a gradient starting from the center of the patch. The nematodes were first 

extracted and then identified and counted in the suspension from each extraction 

under high magnification. 

There was no difference in the number of nematodes within the fields (middle of 

the patch, at the border, close to healthy plants and the control) for any of the inves-

tigated nematodes. The severity of R. solani was greater on plants graded in the 

middle of the patches compared to those in the margins. The interaction between 

Trichodoridae and R. solani, as well as the interaction between Globodera spp. and 

R. solani, were both significant. There was no observed connection between 

Pratylenchus spp. and R. solani in this field study. These results partly confirm 

what potato producers and advisors have observed and will hopefully give them 

useful information for future decisions of appropriate management methods. Future 

work to untangle the mechanisms behind the interactions is needed.  

Keywords: Rhizoctonia solani, Pratylenchus, Trichodoridae, Globodera, synergistic 

interactions, disease complex, Solanum tuberosum, spatial distribution, stem canker 

 



 

 

Populärvetenskaplig sammanfattning 
Rhizoctonia solani är en svamp som orsakar stora skördeförluster inom den svenska 

potatisproduktionen. Svampen angriper potatisplantans underjordiska delar och 

syns där som groddbränna på stjälkar och stoloner samt som lackskorv, elefanthud, 

deformationer och/eller dry core på potatisknölarna. Rådgivare och lantbrukare har 

på olika håll i Sverige observerat vad de tycker verkar vara ett samband mellan 

svampen R. solani och frilevande växtparasitära nematoder. Tidiga undersökningar 

pekar på att speciellt rotsårsnematoder (Pratylenchus spp.) och stubbrotsnematoder 

(Trichodoridae) verkar vara inblandade.  

Det finns ett antal litteraturgenomgångar som behandlar samband mellan organ-

ismer där den ena, eller båda, förstärker skadan som den andra orsakar. Matematiskt 

kan detta beskrivas som att ett plus ett är större än två. Detta fenomen är viktigt att 

undersöka och kunna förutsäga eftersom till och med små mängder av exempelvis 

svamp eller nematod då kan leda till att plantorna blir såpass sjuka att konsekvensen 

blir betydande ekonomiska förluster för lantbrukaren. En större kännedom om orsak 

och verkan behövs för att kunna ta beslut om och utveckla nya kontrollstrategier. 

För insamlandet av kunskap är det speciellt viktigt med fältexperiment, eftersom de 

täcker den komplexitet som finns ute i våra fält på ett helt annat sätt än under kon-

trollerade former i växthusförsök. 

Denna studie går därför ut på att i fält undersöka möjliga interaktioner mellan 

olika nematoder och graden av groddbränna orsakad av R. solani. Dessa nematoder 

var i början endast rotsårs- och stubbrotsnematoder men undersökningen vidgades 

senare till att även inkludera potatiscystnematoder. Detta gjordes eftersom dessa 

nematoder hittades i stora mängder i de prover som togs. De fält som ingår i studien 

ligger i norra Östergötland och hade fläckvis dålig uppkomst under försommaren 

2014. I och runt sådana fläckar graderades plantor med avseende på groddbränna 

och jordprover samlades in för att senare bestämma antalet nematoder däri.   

Resultat från denna studie visar att det finns ett samband mellan stubbrotsnema-

toder och groddbränna, samt potatiscystnematoder och groddbränna. Däremot hitta-

des inget samband mellan rotsårsnematoder och groddbränna. Bakomliggande or-

saker till de visade sambanden kan exempelvis vara att nematoderna skapar in-

körsportar för svampen eller att nematoderna förändrar rötternas utseende och till-

växt på ett sådant sätt att svampen får mer tid att angripa eller lättare kommer i 

kontakt med plantan. Nematoderna kan också haft möjlighet att minska eller för-

ändra det immunförsvar som plantan har eller skapat fysiologiska förändringar, 

såsom att förändra celler inuti plantan. De här exemplen är hämtade från litteratu-

ren, men mer forskning behövs för att reda ut vilka faktorer som har störst betydelse 

i just de interaktioner som hittades i den här studien.  
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1 Introduction 
The fungus Rhizoctonia solani causes major economic losses for potato producers 

in Sweden and especially in areas with potato intensive crop rotations (Andrae, 

2011; Pettersson and Kronhed, 2010). It is considered to be a more difficult prob-

lem to handle than other common yield-reducing pathogens, like Phytophthora 

infestans and Alternaria spp., since it is not as regularly treated and has a wide-

spread geographical distribution.  

In fields of Sweden, advisors and farmers have observed what they think may 

increase damages caused by R. solani: namely the presence and activity of free-

living plant parasitic nematodes in the same fields (Andrae, 2011; Pettersson and 

Kronhed, 2010). Investigations of fields in the county of Östergötland with poor 

emergence due to R. solani have demonstrated high incidences of mainly root-

lesion and stubby-root nematodes (Pettersson and Kronhed, 2010). Their results 

point towards stubby-root nematodes being the nematode most strongly associated 

with the fungus, but no conclusions could be drawn due to limited sampling. How-

ever, this theory is supported by earlier experience by farmers and advisors in 

Sweden as tubers affected by tobacco rattle virus (TRV) often have been found to 

be linked to fields with R. solani-problems (Andrae, 2011; Pettersson and 

Kronhed, 2010). TRV is transmitted by stubby-root nematodes and tubers affected 

by the virus show symptoms like internal brown flecking and arcs (Decraemer and 

Geraert, 2013).  

In the literature there are several examples of interactions between pathogens 

where one, or both species, support or increase the damage made by the other or-

ganism (reviewed in Back et al., 2002; Bergeson, 1972; Evans and Haydock, 

1993; Mai and Abawi, 1987; Powell, 1971; Taylor, 1990). An interaction, such as 

suggested between free-living nematodes and R. solani, is important to investigate 

and be able to forecast since even a low incidences of fungi or nematodes may 

result in a disease complex of significance (Back et al., 2002). In the same review, 

the authors also conclude that it is essential to understand and appreciate the im-
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portance of each such relationship between pathogens in order to control disease 

through appropriate management methods.  

Field experiments are needed to evaluate interactions between pathogens and 

see how important they are in agriculture (Evans and Haydock, 1993). Pot tests, or 

laboratory experiments, are limited in their design and do not cover the complexity 

found in fields (Evans and Haydock, 1993; Wallace, 1978). Factors such as tem-

perature, moisture, biota and soil type, might impact the nematode-fungus interac-

tion (Back et al., 2002). The influence of these factors in their contribution to dis-

ease need to be taken into account when assessing organisms with interaction po-

tential (Back et al., 2002; Wallace, 1978).  

At the Swedish University of Agricultural Sciences (SLU), the interaction be-

tween the root-lesion nematode Pratylenchus penetrans and R. solani have earlier 

been assessed in pot tests (Viketoft et al., unpubl.). The results showed a decrease 

in tuber yield when the fungus and nematode occurred together. This paper is a 

continuation and extension of those experiments.  

1.1 Objectives, hypothesis and limitations  

The aim of this study was to do a field investigation of possible interactions be-

tween two different nematodes and the fungus R. solani. The following hypothesis 

was tested: 

 

 There is spatial correlation in the distribution of free-living nematodes and 

the severity of stem canker caused by R. solani. A greater severity of stem 

canker is related to higher numbers of nematodes. 

 

The study was limited to sampling of eight fields with sandy soils in northern 

Östergötland. The nematodes investigated were root-lesion (Pratylenchus spp.), 

stubby-root (Trichodoridae) and potato cyst nematodes (Globodera spp.). Distri-

bution of soil-living nematodes was determined in patches with poor emergence 

and symptoms of R. solani.  
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2 Literature review 
This literature review focuses on the relationship between nematodes and fungi 

and its effect on potato. Firstly, the investigated organisms are presented; the root-

lesion nematodes Pratylenchus spp., the stubby-root nematodes Trichodoridae, the 

potato cyst nematodes Globodera spp. and the fungus R. solani. Then the concept 

of disease complexes is explained and put into context. Lastly, the management of 

potato in Sweden and how to deal with disease complexes are reviewed.   

2.1 Nematodes 

Nematodes are unsegmented worm-like animals and are known to be the most 

common animal group on earth (Decraemer and Hunt, 2013). Estimations state 

that one acre of arable land contains as much as 3,000,000,000 nematodes (about 

1,214,000,000 nematodes hectare-1). They exist in almost all kinds of environment 

but are in essence aquatic animals, which mean that they are dependent on mois-

ture to be able to move and have an active life. Nematodes can be free-living in 

soils and sediments or parasites of plants and animals. In soil, the majority of 

nematodes (70 %) do not feed directly on plant roots (Freckman and Caswell, 

1985). However, many of them play important parts in soil ecological processes 

and take part in interactions influencing the plant. For example, nematodes may 

consume important symbiotic microflora, such as mycorrhizae, and thereby indi-

rectly affect the root health of the plant. They also stimulate and participate in the 

biological activity, decomposition and release of nutrients (Freckman and Caswell, 

1985).  

Plant parasitic nematodes (PPNs) represent 15 % of the total number of nema-

tode species described and are significant pathogens in agriculture (Decraemer and 

Hunt, 2013). In potato fields, the above-ground symptoms of PPNs can be seen as 

patches with delayed or no emergence (Nilsson et al., 2012). This paper covers 

three different types of PPNs. These nematodes are migratory endoparasitic, ecto-

parasitic and sedentary endoparasitic represented by Pratylenchus spp., Trichodor-
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idae and Globodera spp, respectively. They differ in feeding strategies and life 

cycles, but have in common that they all are soil-dwelling.  

2.1.1 Pratylenchus 

Pratylenchus, also known as root-lesion nematodes, is a genus in the family 

Pratylenchidae (Figure 1a) (Duncan and Moens, 2013). They are known world-

wide to be one of the major limiting factors of economically important crops, such 

as banana, cereals, coffee, corn, legumes, peanut, potato and many fruits (Castillo 

and Vovlas, 2007). Within the phylum Nematoda, only root-knot and cyst nema-

todes have greater economic impact. The reason for the success of the genus 

Pratylenchus is not only attributed to their wide host range, where for example P. 

penetrans have more than 350 known hosts, but also to their distribution in almost 

every environment, regardless of climate (Castillo and Vovlas, 2007; Duncan and 

Moens, 2013). Only around a dozen of the 68 species within the genus are respon-

sible for the majority of the economic damage (Castillo and Vovlas, 2007). Most 

of these species are only present in tropical and subtropical climates. Root-lesion 

nematodes present in Swedish soils are P. crenatus Loof, P. fallax Seinhorst, P. 

neglectus Filipjev & Schuurmans Stekhoven, P. penetrans Filipjev & Schuurmans 

Stekhoven and P. thornei Sheer & Allen (Maimoun Hassoun, research assistant, 

Department of Plant Protection Biology, SLU, personal communication). At cooler 

temperatures, like in Sweden, temperate species require 5-7 weeks to complete 

their life cycle (Duncan and Moens, 2013), making more than one generation pos-

sible during one season. 

It is difficult to taxonomically separate the various species within the genus due 

to few diagnostic features as well as variability of these characters within each 

species (Duncan and Moens, 2013). Face morphology viewed with scanning elec-

tron micrographs is useful to differentiate otherwise similar species. In addition, 

biochemical and molecular analyses are becoming more significant (Castillo and 

Vovlas, 2007).      



11 

 

  
Figure 1. A) Front body of root-lesion nematode (Pratylenchus spp.) with typical heavily sclerotized 

head and B) damage caused by P. penetrans on cultivar King Edward. Photos: Hanny van Megen, 

Department of Nematology, Wageningen University (A) and Eva Edin, Department of Forest My-

cology and Plant Pathology, SLU (B). 

Root-lesion nematodes are classified as migratory endoparasites, which means that 

they mainly reside in and move through cortical cells in roots and other below-

ground parts of the plant (Castillo and Vovlas, 2007; Duncan and Moens, 2013). 

They can however also be found feeding ectoparasitically. The nematodes pene-

trate and migrate through the plant by thrusting their stylet and/or by enzymatic 

softening of the plant cell walls (Castillo and Vovlas, 2007). This creates necrotic 

lesions on the roots and hence the common name of the nematodes: root-lesion 

nematodes. The symptoms are non-specific and can therefore be confused for 

damage initiated by other soil pathogens, or recognised as nutrient deficiency or 

water stress. On potato roots the feeding spots can be seen as dark brown to red-

dish lesions (Brodie et al., 1993). Some species infect the tubers and cause shallow 

lesions (< 0.5 mm), as shown in Figure 1b.  

2.1.2 Trichodoridae 

The family Trichodoridae consists of 108 species in six genera (Decraemer and 

Geraert, 2013). The three largest and most common are Trichodorus (62 species), 

Paratrichodorus (26 species) (Figure 2a) and Nanidorus (seven species). They 

occur worldwide but especially on sandy or sandy loam soils. Under optimum 

conditions, the life cycle of Trichodorus spp. is completed in 6 – 7 weeks, but in 

temperate climates they usually only manage one generation per season. They are 

all migratory root ectoparasites, which mean that they feed for short periods along 

the root system. Ectoparasites use their stylet to perforate plant cells and thereafter 

feed upon the cytoplasm. Ectoparasites do not enter the plant with their body, 

which limits the damage on the plant cell to necrosis where the stylet penetrates. 

A B 
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Since a longer stylet allows the nematodes to feed deeper, this also results in 

greater damage to the plant. Trichodorid nematodes have relatively long curved 

stylets which allow them to consume entire cell organelles (Decraemer and Gera-

ert, 2013; Perry and Curtis, 2013). Stunted roots can be a symptom of Trichodori-

daes’ feeding and they are commonly called stubby-root nematodes (Kumari and 

Subbotin, 2012). Even though stubby-root nematodes cause substantial direct 

damage (Figure 2b), it is as virus vectors they are most famous (Decraemer and 

Geraert, 2013). For example Nanidorus spp., Paratrichodorus spp. and Trichodo-

rus spp. carries the tobacco rattle virus (TRV) to potato plants.  

Stubby-root nematodes are difficult to differentiate morphologically and mor-

phometrically due to high intra- and interspecific variability (Kumari and Sub-

botin, 2012). DNA-based methods have been successfully used to diagnose a num-

ber of stubby-root nematodes (Duarte et al., 2011). 

 
Figure 2. A) Head of stubby-root nematode (Paratrichodorus spp.) with typical curved stylet and B) 

field infested with high population levels of Paratrichodorus spp.. Photos: Hanny van Megen, De-

partment of Nematology, Wageningen University (A) and Åsa Rölin, Hushållningssällskapet, 2012 

(B).  

2.1.3 Globodera 

Globodera is a genus in the family Heteroderidae (Subbotin et al., 2010; Turner 

and Subbotin, 2013). They are cyst-forming nematodes, which mean that the fe-

males have the capacity to hold eggs inside their bodies and transform into a cyst 

at the fulfillment of their life cycles (Subbotin et al., 2010). The eggs contain inac-

tive second-stage juveniles (J2), which may stay in dormancy for many years until 

they respond to stimuli such as host root exudates (Figure 3a and b). This unique 

strategy makes cyst nematodes one of the most challenging pests to manage (Bro-

die et al., 1993). The cyst nematodes also create a feeding cell, called a syncytium, 

within the plant, from which the nematode feeds during its entire life cycle (Sub-

botin et al., 2010). The syncytium is a highly metabolic active feeding structure 

formed by fusion of cells. The syncytium is generated through injection of secre-

tions by the J2. Once it is in place, the female stays attached for the rest of her life 

B A 
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cycle.  In Sweden, the females can be seen in the end of June as white small beads, 

the size of pinheads, on the potato roots (Figure 3c) (Nilsson et al., 2012). In re-

gions with climates as Sweden, Globodera spp. usually completes only one gener-

ation per year, although a second generation might start to develop (Turner and 

Subbotin, 2013).   

 
Figure 3. A) head of potato cyst juvenile (G. rostochiensis) with partly protruded stylet, B) second-

stage juvenile (G. rostochiensis) inside egg, C) cysts on the roots of a King Edward potato plant and 

D) the field infested with potato cyst nematodes. Photos: Hanny van Megen, Department of Nema-

tology, Wageningen University (A), Hein Overmars, Department of Nematology, Wageningen Uni-

versity (B) and Åsa Rölin, Hushållningssällskapet, 2013 (C and D).  

Globodera constitutes of twelve species and the most important ones in an eco-

nomic perspective are G. pallida Stone, G. rostochiensis Skarbilovich and G. tab-

acum Skarbilovich (Turner and Subbotin, 2013). G. pallida and G. rostochiensis 

are associated with potato, which, together with the color of their cysts, have given 

them their common names: pale potato cyst nematode and golden potato cyst 

nematode, respectively. Within each species there are a number of pathotypes or 

races, which are differentiated through their capacity to reproduce on potato culti-

vars with dissimilar genes for resistance (Brodie et al., 1993). Both G. pallida and 

G. rostochiensis are major pests on potato (Figure 3d) (Brodie et al., 1993; Sub-

botin et al., 2010). The total losses in European potato production are calculated to 

9 % (Turner and Subbotin, 2013). The significance of the potato cyst nematodes is 

B A 

C D 
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emphasized by the quarantine or regulatory action enforced against them in several 

countries where they occur (Brodie et al., 1993; Mugniéry and Phillips, 2007). In 

Sweden it is not obligatory to notify the authorities unless there is a suspicion of or 

confirmed changes in host resistance in a potato cultivar against potato cyst nema-

todes (Jordbruksverket, 2010). There are, however, regulations on how to proceed 

in the occurrence of potato cyst nematodes, for example applying control methods 

such as cultivating resistant potato cultivars only. 

2.2 Fungus 

2.2.1 Rhizoctonia solani 

Rhizoctonia solani Kühn (teleomorph: Thanathephorus cucumeris Frank Donk) 

causes stem cankers, stolon lesions, black scurf, deformations, elephant hide and 

dry core, on potato (Solanum tuberosum Linnaeus) (Anderson, 1982; Muzhinji et 

al., 2014; Ramsey, 1917; Simons and Gilligan, 1997; Tsror, 2010). It is an eco-

nomically important disease and common worldwide. Rhizoctonia species are 

classified into anastomosis groups (AG) (Anderson, 1982; Carling et al., 1989; 

Tsror, 2010). Within R. solani, the most common group found in potatoes is AG-3. 

In Sweden, R. solani is found every year throughout the country and is considered 

to be a significant pathogen in potato fields (Jordbruksverket, 2014). The pathogen 

can be transmitted by contaminated seed tubers and can therefore be dispersed 

over long distances by trade (Tsror, 2010). As soon as the fungus is established in 

the soil, the mycelium and sclerotia are possible sources of soil-borne inoculum.  

The significance of the different sources of inoculum have been debated, some 

researchers find soil-borne to be the most important (James and McKenzie, 1972; 

Sanford, 1938), others seed-borne (Banville, 1989; Hide et al., 1973) and some 

both sources (Carling et al., 1989; Frank and Leach, 1980). Frank and Leach 

(1980) suggest that it is the differences in the stage of plant development that de-

termines which of the inoculum sources that may play the most important role. 

Seed-borne inoculum is believed to affect the early stages since the pathogen is in 

such close proximity to the sprout when it emerges from the tuber. On the other 

hand, when the stolons grow through the soil and away from the inoculum on the 

seed, soil-borne inoculum might increase in importance as a factor of infection 

source. The life cycle of R. solani is presented in Figure 4. 
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Figure 4. Disease life cycle of R. solani. Illustration: Phillip Wharton, 2005. With permission. 

Optimum temperatures for growth of mycelia ranges between 20 and 25 °C, 

both in soil and in vitro (Chand and Logan, 1983; Ritchie et al., 2009). On media, 

sclerotial germination peaks between 20 and 30 °C (Ritchie et al., 2009). Tests of 

sclerotial germination in soil showed that germination occurs between 10 and 30 

°C. Experience from the south of Sweden foretells that severity of stem canker is 

often connected to early planting in cool soil (Olofsson et al., 1996). The plant’s 

reactions to the pathogen are slow at cold temperatures and low temperatures pro-

long the time during which the potato plant is susceptible to infection. In a British 

study with three different planting dates between mid-April and the end of May, 

the late planting date resulted in fewer symptom of disease (Simons and Gilligan, 

1997). In Sweden, severe outbreaks of R. solani have also been observed during 

warm springs when the growth of the sprouts has been delayed by drought (Ol-

ofsson et al., 1996).  

Symptoms on below- and above-ground parts appear in two phases; first, the 

growing plant is infected (stem canker) and later the tubers are infected with the 

formation of sclerotia (black scurf) (Figure 5a and b) (Tsror, 2010). Stem cankers 

can be seen early in the season as necrotic lesions on the sprout tips that may con-

strain or postpone emergence. This causes poor and uneven stands. Also brown, 

dry and usually sunken lesions can develop on stems, stolons and roots. When 

these are formed on stem bases they can girdle the stems and cause stunting. 
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Above-ground, typical symptoms are chlorosis and purpling of the leaves as the 

water and nutrient transport is reduced by the fungus. Severe infection of R. solani 

drives the potato plant to form small, green aerial tubers. After the stems have 

emerged, they show less sensitivity to infection by soil-borne inoculum causing 

stem canker (van Emden, 1965). The fungus can sometimes be seen in its sexual 

form (T. cucumeris) as a superficial white-grey powder encircling the stem base 

close to the soil (Tsror, 2010). Later in the growing season black scurf develops on 

the tubers. It is the sclerotia of the fungus and can be seen as black, irregular spots 

of various sizes. The tubers can also be malformed or crack if the infection gets 

more severe (Muzhinji et al., 2014). Some tubers may exhibit corky lesions called 

elephant hide and some may develop dry core, a structure sometimes confused 

with wireworm damage (Figure 5b and c) (Muzhinji et al., 2014; Ramsey, 1917).  

 
Figure 5. Some symptoms of R. solani: A) Stem and stolon canker, B) black scurf, elephant hide and 

deformation of tuber, C) dry core. Photos: Ulla Bång, Department of Agricultural Research for 

Northern Sweden, SLU. With permission. 

Disease caused by R. solani can cause both quantitative and qualitative losses to 

potato farmers (Tsror, 2010). Infection of the stems, stolons and roots affects tuber 

size and number, which causes quantitative losses. Qualitative losses occur when 

the tubers are misshapen and/or have superficial sclerotia formations. The losses in 

marketable yield can be as high as 30 % (Banville, 1989).  
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2.3 Disease complexes with nematodes and fungi 

Several factors contribute to the development of disease in nature (Wallace, 1978). 

Host, pathogen and prevailing environmental conditions interrelate in complex 

relationships, often called “the disease triangle”. In nature, plants are seldom ex-

posed to only one potential pathogen and this is particularly true in the soil habitat 

(Powell, 1971). Pathogen biology is considered to be more complex in the soil 

medium than in air (Park, 1963). In air, the general relationship between host (H) 

and pathogen (P) can be described as a two component system with two pathways 

of interaction: H↔P. This relationship is uncommon in soil, mainly due to the 

presence of microbial populations with their own biology lacking any obligatory 

connection to a host plant. Therefore, the general relationship in soil can be de-

scribed as a three component system with six pathways of interaction (Park, 1963). 

Powell (1971) states that microorganisms which occupy the same habitat influence 

one another and that it is logical to suspect that infection by one pathogen changes 

the hosts’ response to a following infection by another pathogen.  

Disease complexes are produced when synergistic interactions occur between 

organisms (Back et al., 2002). An interaction is synergistic if the association be-

tween two organisms results in plant damage greater than the sum of individual 

damage (1 + 1 > 2). On the contrary, the association will be described as antago-

nistic if it results in plant damage less than the sum of individual damage (1 + 1 < 

2). The interaction can also be described as neutral if the damage inflicted by the 

organisms equals the sum of individual damage (1 + 1 = 2).  

2.3.1 Species interaction observed previously 

The first recorded case of interaction between nematodes and fungi was observed 

in 1892 (Atkinson, 1892 see Back et al., 2002). The author observed an increase in 

the severity of Fusarium wilt in cotton when the plants were infected by root-knot 

nematodes (Meloidogyne spp.). Since then, the interaction between the two organ-

isms have been extensively studied and documented in a number of different 

crops, such as alfalfa, beans, chickpeas, tomatoes, coffee, peas, bananas and lentils 

(reviewed in Back et al., 2002).   

There are numerous examples of interactions between nematodes and fungi in 

the literature and these have been compiled in previous reviews (Back et al., 2002; 

Bergeson, 1972; Evans and Haydock, 1993; Mai and Abawi, 1987; Powell, 1971; 

Taylor, 1990). This paper focuses on R. solani, Pratylenchus spp., Trichodoridae 

and Globodera spp. on potato. Most commonly reported in disease complexes are 

Pratylenchus spp. and Globodera spp., while Thricodoridae seldom figures in the 

literature (Back et al., 2002). R. solani is often reported to be involved in disease 

complexes with nematodes (Evans and Haydock, 1993). Table 1 summarizes al-

ready known interactions involving any of these organisms.  
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Table 1. Examples of nematode-fungus disease complexes where R. solani, Pratylenchus spp., 

Trichoridae or Globodera spp. figures between the years 1954-2013 

Nematode Fungus Crop Source 

Globodera pallida Rhizoctonia solani Potato Bhattarai et al. (2009) 

Globodera pallida Verticillium dahliae Potato Storey and Evans (1987) 

Globodera rostochiensis Rhizoctonia solani Potato Back et al. (2006), Back et al.  

(2010), Kiani et al. (2013), 

Grainger and Clark (1963) 

Heterodera schachtii Rhizoctonia solani Sugar beet Polychronopoulos (1969), 

Hillnhütter et al. (2011) 

Meloidogyne incognita Rhizoctonia solani Tomato Van Gundy et al. (1977) 

Pratylenchus minyus Rhizoctonia solani Winter wheat Benedict and Mountain (1956), 

Mountain (1954) 

Pratylenchus penetrans Rhizoctonia solani Potato Viketoft et al. (unpubl.) 

Pratylenchus penetrans Verticillium dahliae Potato Bowers et al. (1996)  

Trichodorus christiei Fusarium moniliforme Sugar cane Liu and Ayola (1970) 

Trichodorus spp. Rhizoctonia solani Potato Klemmensen (2006) 

In a two year field study, Back et al. (2006) found a strong positive relationship 

between invasion of potato roots by G. rostochiensis juveniles and infection of 

stolons by R. solani. It has also been shown that plants exposed to the pale potato 

cyst nematode, G. pallida, result in increased severity of stem canker, stolon infec-

tion and pruning (Bhattarai et al., 2009). R. solani also develops faster in associa-

tion with Meloidogyne incognita, another sedentary endoparasite, on tomato (van 

Gundy et al., 1977) 

However, all data does not point towards a synergistic effect between Globod-

era and R. solani. Janowicz et al. (1994) even found antagonistic effects on G. 

rostochiensis by R. solani. Another report states that the damage observed on 

plants were mostly attributed to the potato cyst nematodes and not a synergistic 

effect between R. solani and G. rostochiensis (Stelter and Meinl, 1967).  

There are limited studies on synergistic interactions between fungi and Tricho-

doridae (Back et al., 2002). The feeding strategy of the ectoparasites does not 

damage tissue to the same extent as the endoparasites, but the  length of their stylet 

is probably critical to the degree of wounding they can inflict (Bergeson, 1972; 

Hussey and Grundler, 1998). A Danish study of Trichodorus spp. and R. solani 

revealed reductions in stem canker when nematicides where applied (Klem-

mensen, 2006). Brodie and Cooper (1964) claims that there is no synergistic inter-

action between Trichodorus christiei and R. solani. However, in a study on sugar 

cane in Puerto Rico, some evidence of a positive interaction on root growth, but 

not on top growth, was seen between T. christiei and Fusarium moniliforme (Liu 

and Ayala, 1970). Another example of an interaction between an ectoparasite and 
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a fungus was provided by Kisiel et al. (1969). Increased root penetration in corn 

by the fungus Fusarium roseum was observed when the nematode Tylenchus 

agricola was present.  

A more well-studied interaction is the ‘potato early dying’-complex, where Ver-

ticillium dahliae interacts with Pratylenchus spp. (Bowers, 1996; Martin et al., 

1982), G. rostochiensis (Evans, 1987) or G. pallida (Storey and Evans, 1987). The 

potato canopy can suddenly become chlorotic, wilt and die, about four to six 

weeks before harvest, even though climatic conditions favor potato growth (Martin 

et al., 1982). In the disease complex, P. penetrans activate low populations of V. 

dahliae that would otherwise be of minor significance in causing disease (Bowers, 

1996). 

2.3.2 Mechanisms of synergistic interactions 

There are many theories on how the nematode-fungus-plant interaction works. 

Some believe that nematodes work as wounding agents creating invasion sites for 

fungi (Storey and Evans, 1987), while others consider that more systematic in-

duced changes are of greater relevance (Taylor, 1990). Interactions described in 

this section are nematodes as wounding agents, nematode and fungus as host mod-

ifiers, nematodes as rhizosphere modifiers and finally nematodes and fungus as 

resistance breakers.  

 

Nematodes as wounding agents 

The different feeding strategies of plant parasitic nematodes (PPNs) result in many 

different types of wounds on the host plants’ roots (Back et al., 2002; Taylor, 

1990; Wajid Khan, 1993). Ectoparastic nematodes, such as Trichodorus spp., 

cause small shallow wounds since they only feed on root epidermal cells. On the 

contrary, the endoparastic nematodes are far more damaging to their hosts’ roots. 

The migratory ones, such as Pratylenchus spp., use their stylets to cut through cell 

walls. This creates intracellular wounds in the cortex of the roots. The sedentary 

endoparasitic nematodes, for example Globodera spp., are highly specialised or-

ganisms, which travels intracellularly as juveniles to the vascular cylinder of the 

root and highly affects the surrounding cells through their creation of syncytium. 

Three to four weeks after invasion, during the last stage in their life cycle, the en-

larged females rupture the root cortex providing invasion sites for fungi (Evans 

and Haydock, 1993).  

In a histological study on infection of Heterodera schachtii and R. solani on 

young beet seedlings an increase in fungal penetration and establishment were 

found where the juvenile nematodes had wounded the plant (Polychronopoulos et 

al., 1969). The authors also observed an increase of the amount of openings due to 

an increase in lateral root emergence. There was also a decrease in the amount of 
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infection cushions used by the fungus when the nematodes were present. Infection 

cushions, appressoria, are complex infection structures used by the fungus to pene-

trate intact plant surface (Dodman and Flentje, 1970). There may have been a re-

duced need for these structures since the nematodes already had provided openings 

for the fungi to exploit (Back et al., 2002). In a similar way, R. solani has been 

found to infect without infection cushions through natural openings; such as lenti-

cels on potato tubers (Ramsey, 1917). On potatoes, V. dahliae was found to enter 

and utilize the invasion channels created by G. pallida juveniles (Storey and Ev-

ans, 1987). Moreover, the nematodes induced a hypersensitive response in some of 

the cultivars tested, resulting in lignified cell walls. This hampered V. dahliae, as 

shown as the fungus colonised the root to a lesser extent than in the control when 

the fungus was introduced eight days after the introduction of nematodes. This 

host response was also found in experiments with Pratylenchus species (Bowers, 

1996).  

However, all research within this area does not support the wounding theory. 

For example, a study of V. dahliae showed no spatial relationship between feeding 

of Pratylenchus species and the entry sites of the fungus (Bowers, 1996). Some 

believe that mechanical injury of nematodes may be of minor significance in the 

establishment and development of fungal diseases on plants (Taylor, 1990). All in 

all, the wounding-theory is not applicable in all cases but do seem to have an im-

portance for the interaction between nematodes and fungi (Back et al., 2002; Pow-

ell, 1979). 

 

Physiological changes in plants caused by nematode or fungus infection 

Research has been conducted to demonstrate that physiological changes are in-

duced by nematodes and that these changes increase the plant susceptibility to 

fungi (Evans and Haydock, 1993). In the literature, both local and systemic effects 

are considered. Cyst nematodes create local physiological changes in the plant at 

the formation of their feeding cell (Polychronopoulos et al., 1969). After R. solani 

had infected the sugar beet seedlings mentioned above, the fungus seemed to pre-

fer cells affected by the nematode as substrate instead of the normal ones. The 

fungus appeared to use the cells damaged by the cyst nematode as a sort of ‘food 

base’. From the syncytia, hyphae rapidly invaded healthy cells in cortical and vas-

cular tissue, suggesting that nematode infection improves the nutritional composi-

tion of the plant to the fungi. Systemic effects of nematode-induced physiological 

changes have been indicated in experiments with for example split root systems, 

but the underlying mechanisms are still unclear (Back et al., 2002; Evans and 

Haydock, 1993). Back et al. (2002) speculate about nematode-induced systemic 

effects and suggest changes in nutritional quality of the plant or reduced levels of 

compounds toxic to fungi could be possible underlying factors. 
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In the same manner where nematodes can facilitate fungal development, fungi 

can increase nematode population levels on plant hosts (Back et al., 2002; Evans 

and Haydock, 1993). This area has not been as well-studied as the other way 

around. Possible mechanisms are production of cell wall-degrading enzymes, such 

as pectinmethylesterase, which would enable nematodes to penetrate more easily, 

or elevated levels of CO2, which could attract nematodes to the plant (Edmunds 

and Mai, 1967, 1966; Nordmeyer and Sikora, 1983).  

 

Nematode modifications within the rhizosphere 

In tomato plants infected by the nematode M. incognita, an increase in mainly 

carbohydrates in root exudates was seen during the two first weeks compared to 

non-infected plants (van Gundy et al., 1977). In the following two weeks, levels of 

nitrogenous compounds in roots infected by M. incognita were elevated. The dif-

ferences in C/N ratio in root exudates were positively connected to the develop-

ment of R. solani. Back et al. (2010) also found higher levels of sucrose in root 

exudates from plants infected with G. rostochiensis. However, they did not notice 

any difference in nitrogen content. The same research group tested the growth of 

R. solani on medium modified with potato root exudates from plants infected with 

G. rostochiensis (Back et al., 2010). The potato root exudates were collected 4, 6, 

8, 12 and 18 days after infestation of the potato cyst nematodes. The growth of R. 

solani was significantly higher on nematode infested than uninfested plants for all 

treatments except the last one. This made the research group suggest that the plant-

modifications required to enhance infection of R. solani take place during the ini-

tial stages of root invasion. The modifications in the nematode infested plants led 

to a faster development of R. solani compared to the uninfested ones. This is also 

supported by Dodman and Flentje (1970), who states that it is apparent that the 

influence of exudates on fungal growth may be of substantial significance in de-

velopment of R. solani. They also hypothesize carbohydrates and amino acids to 

be of greatest importance. 

In addition to increases in root exudation, nematode feeding by P. penetrans 

seems to stimulate root branching (Bowers, 1996). This is observed after five 

weeks in treatments with P. penetrans as a higher number of root tips per meter of 

root. Infection could then be enhanced through a greater number of contacts be-

tween root surface and microsclerotia of V. dahliae. 

 

Nematodes or fungus infection causes reduction of host resistance 

Host resistance can be affected when a nematode or fungus alter the physiology of 

the plant in some way, making the plant totally or partly unable to express the 

resistance reaction (Francl and Wheeler, 1993). Polygenic resistance has been 
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found to be more easily to overcome by the nematode-fungus interaction than 

single dominant genes (Mai and Abawi, 1987).  

Examples of reduction in resistance were shown in a study of six different cow-

pea cultivars (Khan and Husain, 1989). The authors investigated the effect of the 

fungus R. solani and the nematodes M. incognita and Rotylenchulus reniformis 

and found that host resistance to both nematodes and fungus was reduced by the 

other organism. Another example was in a study of the interaction between potato 

cyst nematodes and V. dahliae on four different potato cultivars (Evans, 1987). 

Two of the cultivars, Maris Anchor and Pentland Javelin, had the H1 resistance 

gene and were thereby resistant to the pathotype of G. rostochiensis used in the 

experiment. Maris Anchor grown with the combination of fungus and nematodes 

showed earlier development of symptoms and plant death. The H1 gene could not 

stop the interaction between the organisms.  

However, reduction of resistance is not necessarily always the outcome when 

nematode and fungus interact. In a proven synergistic interaction between H. 

schachtii and R. solani, resistance was not broken (Hillnhütter et al., 2011). The 

reproduction of H. schachtii was negatively affected as well as the development of 

R. solani. The authors believe it was probably due to activation of the plant’s de-

fensive mechanisms against both nematodes and fungus which caused the reduced

development of R. solani.

2.3.3 Influence of biotic and abiotic factors 

Synergistic interactions are, as many other diseases, affected by environmental 

factors and the living organisms themselves (Back et al., 2002). For example, in 

experiments, the timing of the application of nematode and fungi seems to matter 

(Back et al., 2006; Bhattarai et al., 2009). The relationship between the invasion of 

potato roots by potato cyst nematodes and the percentage of stolons affected by R. 

solani was strongest 6 and/or 8 weeks after planting. The observed difference is 

believed to be linked to dissimilarity in hatching patterns between G. pallida and 

G. rostochiensis, where the former hatch slower than the latter (Deliopoulos et al.,

2007). There can also be differences within species in hatching patterns which has

consequences for the disease severity. Bhattarai et al. (2010) showed that fast-

hatching juveniles of G. pallida gave more severe damage by R. solani than the

slower hatching ones. Compared to the other populations, the fast-hatching popu-

lation resulted in higher number of juveniles g-1 root. The higher root invasion by

the early G. pallida increased the disease severity of R. solani.

Other factors influencing the interaction are nematode density, plant age and 

species-specificity. Bhattarai et al. (2009) showed that higher densities of G. pal-

lida gave more severe disease of R. solani. The influence of plant age has been 

shown in experiments with potatoes and sugar beets, where young plants were 
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more susceptible to disease complexes compared to older plants (Bhattarai et al., 

2010; Polychronopoulos et al., 1969). Synergistic interactions may also be species-

specific, for example P. penetrans, but not P. crenatus, affects colonisation of 

potato plants by V. dahliae (Bowers, 1996). The interaction of nematodes can also 

vary within species depending on the region they were reared from (Hafez et al., 

1999) or which anastomosis group (AG) the strain of the fungus belongs to (John-

son and Santo, 2001).  

Abiotic factors such as temperature, soil type, soil pH, soil moisture and mete-

orological conditions may affect the development of disease complexes (Back et 

al., 2002). For example, Agu (2002) found differences in the synergistic interac-

tion of Meloidogyne javanica and R. solani when soybean was cultivated in three 

different soil classes. Differences between soils may be attributed to physiological 

factors such as the fact that nematodes require a minimum pore diameter of 20 µm 

to be able to move through the soil (Wallace, 1973). 

2.3.4 Indirect effects / antagonism 

The interaction between nematode and fungus is not always beneficial for both 

organisms (Back et al., 2002; Evans and Haydock, 1993). Either nematode or fun-

gus may be indirectly affected of their cohabitation on the same host. Competition 

for root space, fungi producing metabolites toxic to nematodes, fungi infecting 

nematodes and/or nematodes feeding on fungi, are examples of possible indirect 

effects.  

2.4 Management of potato and disease complexes 

The most commonly cultivated potato (S. tuberosum spp.) originates from South 

America and was imported into Europe through Spain during the late 16th century 

(Hawkes, 1978). The subspecies tuberosum was selected from its South American 

ancestor S. tuberosum ssp. andigena by selecting tubers with long-day characteris-

tics. The import of tubers constituted a severe bottleneck, which led to potatoes in 

Europe being quite homogenous and having a low genetic diversity compared to 

South American potatoes (Bornet et al., 2002). Therefore, the South American 

gene pool represents a large and significant source of diversity for potato breeders. 

For example, the H1 gene from S. tuberosum ssp. andigena have been introduced 

into many European cultivars in order to obtain potato plants resistant against G. 

rostochiensis (Mugniéry and Phillips, 2007). 

2.4.1 Management of potato in Sweden 

Swedish farmers produce on average 833 500 tons of potato per year on 26 000 

hectare, including starch potato (SCB, 2014). Potato cultivation is an intensive 
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production and requires both knowledge and economical resources in combination 

with factors such as certain soil conditions, farm- and field layout and large acre-

age (Nilsson et al., 2012). The demand for large acreage is mainly due to the need 

of a crop rotation of at least four years, but preferably six to seven. This is im-

portant especially for the control of soil-borne diseases. 

Viruses, bacteria and other pathogens that infect potato are in some cases trans-

mitted to the next generation (Nilsson et al., 2012). Planting infested seed tubers 

decreases the potential yield and to ensure the farmer that the seed is healthy, there 

are certification systems in place. In a certification system, the starting point is 

always completely disease-free seed which is achieved by meristem culture. In 

Sweden, this first generation is called SS. The following generations are cultivated 

in field and are, in order, S1, S2, S3, SE1, SE2, E and A/B. This means that there is a 

limit of maximum seven generations cultivated in the seed grower’s field. In the 

ordinary potato farmer’s field, generation five to ten are the ones usually planted 

(Åsa Rölin, Hushållningssällskapet, personal communication). Generation eight 

and upwards are the consequence of the potato farmer multiplying his/her own 

seed tubers. 

In addition to healthy seed tubers, potato seed treatment can be used to fight 

several diseases caused by fungi and some insects (Nilsson et al., 2012). It may 

also be used for growth promotion. There are chemical as well as biological treat-

ments which can be applied by for example using spray application equipment 

over a roller table before planting or directly in the planting machine. Roller tables 

may be equipped with hydraulic spray nozzles, fast rotating spinning discs or elec-

trostatic spray applicators (Pringle et al., 2009). Pre-germination of potatoes or 

pre-sprouting can be done before planting in order to encourage fast development 

and more even stands (Nilsson et al., 2012). Pre-sprouting demands more time, 

around four to eight weeks, while greening requires approximately one week.   

Planting times in Sweden range from the middle of March in South of Sweden 

to middle of June in the North, or when the soil temperature at tillage depth have 

reached 8 °C (Nilsson et al., 2012). The potatoes are planted in hills and it is 

common to hill after planting as well to ensure soil coverage. During the growing 

period there might be need of supplementary fertilization, irrigation and certainly 

control of diseases and weeds. When the potato crop is considered to have good 

enough tuber size distribution and the tubers have a good dry matter content it is 

time to kill the canopy. This is done in order to improve the skin quality. Harvest 

usually begins ten to twenty-one days afterwards.   

2.4.2 Management of disease complexes  

As soon as a disease complex has been recognized as a field problem, a choice 

must be made whether to try to control the nematode, the fungus or both (Evans 
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and Haydock, 1993). Scouting for disease in field, looking at the potato plant’s 

roots and performing soil analysis are important steps in recognising which patho-

gens are present (Nilsson et al., 2012). It would be appropriate to control the or-

ganism which is capable of instigating most damage on its own or using integrated 

systems of pest and disease management taking both nematode and fungus into 

account (Evans and Haydock, 1993). This would require merging of background 

information and management of the pathogens (Khan and Parvatha Reddy, 1993). 

According to Khan and Parvatha (1993) resistance to both of the pathogens that 

are interacting is the most acceptable form of management system. Some man-

agement methods of nematodes and R. solani are presented separately below.   

Nematodes 

The first step in management of nematodes is protective measures, which are per-

formed in order to avoid introduction of a new population into the field (Mugniéry 

and Phillips, 2007; Nilsson et al., 2012). This can be ensured by making sure that 

inputs to the farm are free of disease by, for example, buying certified seed tubers 

with phytosanitary passport and avoiding introduction of infested soil by making 

sure equipment is clean. Holgado et al. (2009) showed the importance of seed-

borne inoculum when they found P. penetrans to be able to survive inside tubers 

in normal Norwegian storage procedures and later established in sterile soil.  

Other preventative methods are crop rotation and control of volunteers (Mugn-

iéry and Phillips, 2007; Nilsson et al., 2012). These are especially effective against 

potato cyst nematodes, with few host species, and not so much against polypha-

gous nematodes such as Trichodoridae or Pratylenchus spp.. The build-up of the 

population is limited when the farmers avoid cultivation of host species. Crop 

rotation is most effective if the cultivated plants are non-hosts or, even better, re-

sistant. However, it is important that weed control measures are taken, otherwise 

the crop rotation risks to fail. 

Host resistance against nematodes is a valuable form of control and has been 

found in wild potato species against sedentary nematodes (Mugniéry and Phillips, 

2007). Growing resistant potato cultivars lure the nematodes to hatch but restrict 

their life cycles. In completely resistant varieties, the decrease is therefore corre-

lated to the hatching rate of the nematode population, which in general is between 

70 and 90 %. Most commercial varieties have the H1 gene against G. rostochiensis 

but only a few have the H2 gene against G. pallida. In the UK, this has led to G. 

pallida being the major problem today. 

Cultural methods used to control nematodes are in general of three main types: 

(1) give the potato plants the best possible growing conditions in order to make

them withstand the damage of the nematodes, (2) reduce the soil population before

cultivating potatoes, (3) harvest or destroy the potatoes at optimal time for inter-
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ference with the nematode’s life cycle (Mugniéry and Phillips, 2007; Nilsson et 

al., 2012). Examples of number (2) are deep ploughing, preferably in the summer, 

which causes Trichodorus spp. to dry-out, or intercropping with nematicidal plants 

such as marigold (Tagetes spp.). 

Biological methods against nematodes are still in an experimental stage, the on-

ly one being used in practice is control of Meloidogyne spp. by the fungi Ar-

throbotrys irregularis and Paecilomyces lilacinus (Mugniéry and Phillips, 2007; 

Nilsson et al., 2012). The bacteria Bacillus spp. are promising as biological agents 

of Meloidogyne spp., Globodera spp. and Pratylenchus spp. (Mugniéry and Phil-

lips, 2007). 

Other control methods of nematodes are solarisation and flooding, these are 

however not commonly practiced in Sweden, and chemical treatments are not 

allowed (Mugniéry and Phillips, 2007; Nilsson et al., 2012).   

Rhizoctonia solani 

A well-thought crop rotation, with emphasis on the number of years between pota-

to cultivation, is important to decrease the amount of soil-borne inoculum in the 

field (Tsror, 2010). In a study in Sweden, soil-borne inoculum decreased gradually 

with increasing number of years between potato cultivation in the field (Bång, 

unpublished). When the range was five or more than five years, the inoculum was 

down to zero. The other crops in the rotation also have impact, for example barley 

or rape seed prior to potato does not favor the development of R. solani while sug-

ar beet and certain legumes can increase disease development (Baker and Martin-

son, 1970; Larkin and Honeycutt, 2006). 

Potato cultivars show differences in susceptibility against R. solani and how 

they express symptoms, therefore careful choosing of variety is a good strategy 

(Nilsson et al., 2012; Tsror, 2010). Another important approach is to use healthy 

seed tubers, meaning as many tubers as possible without black scurf or dry core 

present. The seed certification system in Sweden allows relatively high black scurf 

incidence and it is up to the farmer to assess the seed tubers (Nilsson et al., 2012). 

The tubers may be treated with antagonists or fungicides (Nilsson et al., 2012; 

Tsror, 2010). Suppression of R. solani has been attained with various antagonistic 

fungi (for example Trichoderma) and bacteria (for example Pseudomonas spp. and 

Bacillus subtilis).  

Chemical potato seed treatment reduces seed-borne inoculum, although it does 

not offer complete protection owing to application technique and to the existence 

of soil-borne inoculum (Nilsson et al., 2012; Tsror, 2010). The anastomosis groups 

(AGs) of R. solani answers differently to fungicides, some are more sensitive than 

others (Virgen-Calleros et al., 2000). AG-2 and AG-3 are more sensitive than AG-4, 

AG-5, and AG-7 to the commonly used chemicals against R. solani. For example, 
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the fungus followed this pattern when exposed to pencycuron and azoxystrobin. 

Pencycuron is the active component in Prestige FS 370® (Bayer AB) and Mon-

ceren FS 250® (Bayer AB), while azoxystrobin is the active component in 

Amistar® (Syngenta Nordics A/S) and Mirador 250 SC® (ADAMA Registrations 

B.V.) (KemI, 2015).

Measures that favor quick emergence, such as pre-sprouting and shallow plant-

ing in warm (> 10 °C) soil, decrease the risk of root and stem cankers (Banville et 

al., 1996; Nilsson et al., 2012). Also, if the soil is dry at planting, irrigation before 

emergence can reduce the symptoms of R. solani (Banville et al., 1996), as the 

growth of the plant is stimulated. Low levels of potassium, sodium and calcium 

increase disease, whereas high levels of nitrogen and phosphorus increases the 

frequency of black scurf (Tsror, 2010).    

Mechanical mowing or flailing the potato canopy followed by cutting of roots 

give less black scurf than mechanical canopy kill alone or chemical canopy kill 

(Dijst, 1985). Harvest should commence as soon as possible after haulm destruc-

tion in order to avoid increased incidence of black scurf (van Emden, 1958). 
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3 Materials and methods 

Field descriptions 

Soil samples were taken in eight potato fields with observed outbreaks of damping 

off in the northern part of the county of Östergötland, located in the middle part of 

Sweden. The soils were classified as sandy. Potato cultivars grown were in four of 

the fields King Edward, two Folva, and one each of Opera and Gala (Table 2). The 

preceding crop was mainly winter wheat, otherwise barley, ley, rye or spring 

wheat. Potato had not been cultivated for the last four years in any of the fields. 

The planting of the potato varied from 24th of April until 20th of May 2014, mean-

ing that the potato plants were 5.5 – 9.5 weeks old at sampling. All but two farm-

ers had used potato seed treatment. The treatments used were Prestige FS 370® 

(Bayer AB) and Maxim 100 FS® (Syngenta Nordics A/S), either in mixture or 

alone. Active components in these two fungicides are imidacloprid in combination 

with pencycuron and fludioxonil, respectivley (KemI, 2015). Table 3 summarizes 

the field information gathered through interviews with the farmers.  

Table 2. Potato cultivars’ susceptibility/resistance to different pathotypes of Globodera spp. (+ = 

susceptible, - = resistant) as well as their susceptibility to R. solani (low/moderate/high). G. rosto-

chiensis have five different pathotypes (Ro1, Ro2, Ro3, Ro4 and Ro5) and G. pallida have three (Pa1, 

Pa2 and Pa3) 

Cultivar Susceptible to 

Ro1 Ro2 Ro3 Ro4 Ro5 Pa1 Pa2 Pa3 R. solani 

Folva - - - - - + + + Moderate (Danespo A/S, 2015) 

Gala - + + - + + + + Low (Manduric, 2004; 

Norika, 2015) 

King Edward + + + + + + + + Moderate Personal communica-

tion1 

Opera - + + - + + + + High Personal communica-

tion1 

1Jaap Poortinga, product manager, HZPC Holland B.V, 2015-05-11 



2
9
 

Table 3. Field information gained through interviews with the farmers 

Field Soil type Years since 

potato 

Preceding crop Potato variety Pre-

germina-

tion 

Seed treatment Plant date Age at 

sampling 

Number 

of soil 

samples 

Number 

of graded 

plants 

1 Sand 8 Rye King Edward Yes Prestige, spinning 

disc 

28th of April 6.5 weeks 17 9 

2 Sand 4 Winter barley King Edward Yes Maxim, spinning disc 5th of May 5.5 weeks 15 7 

3 Sand 4 Winter wheat King Edward Yes No 24th of April 7.5 weeks 18 10 

4 Sand 4 Winter wheat Folva Yes Maxim, spinning disc 6th of May 8 weeks 4 2 

5 Sand 4 Barley Folva Yes Maxim, spinning disc 1st of May 9 weeks 4 2 

6 Sand > 4 Ley Opera Yes No 26th of April 9.5 weeks 4 2 

7 Sand 4 Spring wheat Gala No Prestige + Maxim, 

spinning disc 

20th of May 6 weeks 4 2 

8 Sand 4 Winter wheat King Edward No Prestige + Maxim, 

spinning disc 

5th of May 8 weeks 4 2 
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Sampling design 

Sampling 

Nematodes were sampled in soil cores and potato plants were graded in field 1, 2 

and 3 on 14th of June; field 4, 6, 7 and 8 on 1st of July and at last field 5 on 3rd of 

July 2014. Field 4-8 were sampled by personnel at Lovang Lantbrukskonsult AB. 

The first half of 2014 was in general warmer and wetter than usual, except for a 

dryer April and normal temperature in June (Figure 6). Six of the farmers report 

heavy rains a few weeks after planting, even leading to one of them re-planting 

parts of his other fields. July was warmer and drier than previous years. 

Figure 6. Monthly precipitation and temperature in Linköping for January until July. Mean precipita-

tion per month in 2014 as well as 1961-90 (mm) are presented as bars and mean temperature per day 

2014 as well as 1961-90 (°C) are illustrated as lines (SMHI, 2014). 

In each field, a patch with poor emergence of potato plants was identified and soil 

samples were taken using a soil corer (diameter 2.3 cm) to a depth of 25 cm. The 

strategy was to sample at a gradient starting from the center of the patch. At the 

same time, the potato plants were graded for symptoms by R. solani on a scale 

from 0 to 4, where 0 = no damage, 1 = weak (one or two very small spots), 2 = 

defined lesions, 3 = girdled stalks and 4 = completely burnt stalks. The protocol 

also included height of the above- and below-ground stems. Three of the fields 

(Field 1-3) were investigated more thoroughly, generating 50 soil samples and 26 

graded plants (Figure 7a). The other five patches (Field 4-8) were sampled in one 

transect only, generating 20 soil samples and 10 graded plants (Figure 7b). In total, 

36 plants were graded at site and 70 soil samples were placed in plastic bags, 
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sealed and transported to the laboratory at the Department of Ecology, SLU, for 

future extraction. 

Figure 7. A schematic of sampling layout. Each green square represents a potato plant, the different 

sizes illustrates variances in emergence. The grey rectangles represents the rows of potato. The cir-

cles shows which plants were graded and the miniature soil corer shows where soil samples were 

taken. The distance, x, between the first healthy plant, c, and the control, d, varied.  When the dis-

tance between the middle, a, and the last unhealthy looking plant, b, was large, some extra plants 

were graded and soil samples taken. A) Field 1-3 and B) field 4-8.  

Extraction, counting and identification of nematodes 

Two subsamples from each soil core of approximately 10 g soil (wet weight) were 

placed on vlieseline filters within a mesh net sieve. The sieves were placed in 

Baermann funnels in order to extract the nematodes. After 24 hours, the extraction 

was terminated and the nematodes heat-killed and finally fixated in formalin 

(Viketoft et al., 2005). The rest of the wet soil sample, approximately 100 g, was 

weighed and placed in an oven at 105 °C for 24 hours to determine the water con-

tent of each sample.  

x

a b dc
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b. Border
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Nematodes from the genus Pratylenchus, the family Trichodoridae and the fam-

ily Heteroderidae were identified and counted in the suspension from each extrac-

tion under high magnification (200x) and expressed as number of nematodes g-1 

dry soil. Identification was made by morphometric studies using the key of 

Bongers (1994). Samples from fields with cyst juveniles were sent to Intertek 

Scanbi Diagnostics, Alnarp, with the aim of identifying whether the sample con-

tained the potato cyst nematodes G. rostochiensis or G. pallida by using polymer-

ase chain reaction (PCR).   

Data treatment and statistical analyses 

A generalised linear mixed model was used to test the difference in severity of 

cankers inflicted by R. solani between the middle and the margins of the patch 

(GLIMMIX, SAS 9.3, SAS Institute Inc., Cary, NC, USA). The model needed a 

hierarchical approach since the stalks graded were part of the same plant. There-

fore the factor field*treatment was included as a random effect with the purpose of 

adjusting for each plant in the field. Also, field was set as a random block factor to 

adjust for possible differences in R. solani between fields.  

The number of nematodes in each sampling spot was calculated as an average of 

the two investigated subsamples. The nematode-dataset was tested for homogenei-

ty of variances and normal distribution of residuals with Bartlett and Shapiro-

Wilks test, respectively (R 3.2.0, R Core Team, 2015). For the data with homoge-

nous variances, a one-way ANOVA was used to test the differences between the 

numbers of nematodes in the different sampling spots. Kruskal-Wallis one-way 

analysis of variances test by ranks was used for those samples which did not have 

homogenous variances.  

The graded stalks constituted a difficulty in statistical analysis since they were 

hierarchically complex and on an ordinal scale. Transformation was made by 

merging the graded stalks into one plant unit and assigning each rating class a 

numerical value. The average was then called a disease index (DI). DI was calcu-

lated by the following formula (modified from Atkinson et al., 2010). 

DI =  
(𝑛1 × 1) + (𝑛2 × 2) + (𝑛3 × 3) + (𝑛4  × 4) 

Y

Where nx equals the number of stalks graded in the x severity class and Y equals 

the number of stalks. All plants in the analysis were not graded but since they 

looked healthy judging by above-ground appearance, their DI was set to 0.  

A Poisson regression analysis was made in order to test if there was an interac-

tion between R. solani and each nematode genus/family (R 3.2.0, R Core Team, 

2015). The model had number of nematodes as response variable and DI as ex-
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planatory variable with dry weight of sample as offset. A spatial correlation struc-

ture was added to the model in order to handle the distances between the different 

sampling spots within the field. Each sampling spot had x- and y-coordinates re-

lated to the middle of the patch. Field was included as a random effect in the mod-

el. Globodera spp. was only found in field 1, 4 and 7, this was handled by exclud-

ing the other fields by only including values above zero.  

In the outcome of the model, the explanatory variable (DI) was assigned a re-

gression coefficient. The Poisson regression uses a logarithmic link function which 

means that if the severity of R. solani increased by one unit, the number of nema-

todes increased e(regression coefficient for the explanatory variable (DI)) times. 
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4 Results 
Nematodes 

Pratylenchus spp. and Trichodoridae were found in all fields (Table 4). Pratylen-

chus spp. was more frequently found than Trichodoridae. Globodera spp. (family 

Heteroderidae) was only present in fields 1, 4 and 7, but in higher numbers than 

any of the other two nematode species. The standard errors were high, indicating 

differences between the sampling spots. 

Table 4. Average (standard error) number of nematodes found in each field, calculated as nematodes 

(100 g)-1 dry soil 

Field Pratylenchus spp. Trichodoridae Globodera spp. 

1 121 (14) 1 (1) 657 (77) 

2 251 (29) 9 (2) 0 

3 214 (26) 13 (2) 0 

4 48 (19) 9 (4) 1707 (774) 

5 85 (30) 17 (10) 0 

6 238 (52) 41 (18) 0 

7 302 (32) 3 (2) 395 (181) 

8 19 (5) 1 (1) 0 

The PCR-analyses of samples containing cyst nematode juveniles did not give any 

results, as the laboratory could not detect enough DNA to perform an analysis. 

Even though there was no analysis to confirm that the sample contained Globod-

era spp. the following factors led to this conclusion anyway. The farmer cultivat-

ing field 1 saw cysts on the potato’s roots later in the season, confirming that the 

juveniles indeed were potato cyst nematodes. In field 7, potato cyst nematodes 

have been found in earlier analyses of the same spot (Andreas Kronhed, Lovang 

Lantbrukskonsult AB, personal communication). It is only field 4 that does not 

have a confirmed presence of potato cyst nematodes. However, the amount of 

nematodes found (average (standard error): 1707 (774) nematodes (100 g)-1 soil) 
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in combination with potato being the crop grown, strongly indicates that it is Glo-

bodera spp.. Some samples from field 2 and 3 also contained cyst nematode juve-

niles. The amounts were at the most 16 and 86 nematodes (100 g)-1 dry soil in field 

2 and 3, respectively. According to the farmers, earlier investigations showed no 

occurrence of potato cyst nematodes, instead it could have been for example sugar 

beet or cereal cyst nematodes.   

There was no difference within field between the amounts of any species of nema-

todes sampled in the middle of the patch, at the border, close to healthy plants and 

the control. A graphic overview of the occurrence of Pratylenchus spp. and 

Trichodoridae in field 1-3 is presented in figure 8 and 9.  

 
Figure 8. Distribution of Pratylenchus spp. in field 1-3 as seen from above. Illustration: Amanda 

Olsson, 2015. With permission. 
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Figure 9. Distribution of Trichodoridae in field 1-3 as seen from above. Illustration: Amanda Olsson, 

2015. With permission. 

 

In field 4-8, Pratylenchus spp. showed no pattern at all (Figure 10), while Tricho-

doridae showed a tendency towards higher numbers of nematodes in the middle of 

the patch compared to the control (p-value 0.19) (Figure 11). Globodera spp. dis-

played a higher number of nematodes at the border of the patch, however the 

standard error was high (Figure 12). There might been a tendency towards fewer 

potato cyst juveniles in the control compared to in the middle of the patch (p-value 

0.18).  
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Figure 10. Distribution of Pratylenchus spp. among the sampling spots middle, border, healthy plant 

and control in field 4-8.  

 
Figure 11. Distribution of Trichodoridae among the sampling spots middle, border, healthy plant and 

control in field 4-8. 

 
Figure 12. Distribution of Globodera spp. among the sampling spots middle, border, healthy plant 

and control in field 1, 4 and 7. 
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Rhizoctonia solani 

Rhizoctonia solani was found in all fields (Table 5). The disease index was highest 

in field 2 and lowest in field 7.  

Table 5. Damage by R. solani presented as averages (median) of all stalks graded in the middle and 

at the border, respectively. As well as averages (median) of disease index for each field    

Field Grade Middle Grade Border Disease index 

1 2 2 2.0 

2 4 3 3.3 

3 4 3 3.0 

4 4 3 3.2 

5 4 2 3.0 

6 3 2 2.5 

7 2.5 2 2.0 

8 4 1 2.4 

The severity of R. solani was greater on plants graded in the middle of the patches 

compared to those in the margins (p-value 0.02) (Figure 13). The probability of 

stalks being graded as 4 (completely burnt stalks) was higher than 50 % in the 

middle while the same probability was less than 25 % at the border.  

 

 

 

 

 

 

 

 

 

Figure 13. Comparison between plants graded in the middle and at the border of the affected patch, 

expressed as predicted cumulative probabilities for a certain grade. 1 = weak (one or two very small 

spots), 2 = defined lesions, 3 = girdled stalks and 4 = completely burnt stalks. 
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Test of interaction 

The interaction between R. solani and each nematode group are illustrated in fig-

ures 14, 15 and 16. An incline of the curve shows a relationship where higher 

numbers of nematodes are connected to plants with a higher disease index, in this 

case more affected by R. solani. The interaction between Trichodoridae and R. 

solani, as well as the interaction between Globodera spp. and R. solani, were both 

significant. There was no observed correlation between Pratylenchus spp. and R. 

solani in this study.  

 
Figure 14. Result of Poisson regression analysis of interaction between Pratylenchus spp. and R. 

solani. All eight fields included. The solid line is an estimated regression line with an increase of 

e(0.008) = 0.8 % per unit DI and the dotted lines show an approximate 95 % confidence interval for the 

estimated line. DF = 61. The p-value of the interaction is 0.84. 
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Figure 15. Result of Poisson regression analysis of interaction between Trichodoridae and R. solani. 

All eight fields included. The solid line is an estimated regression line with an increase of e(0.32) = 38 

% per unit DI and the dotted lines show an approximate 95 % confidence interval for the estimated 

line. DF = 61. The p-value of the interaction is < 0.0001. 

 
Figure 16. Result of Poisson regression analysis of interaction between Globodera spp. and R. sola-

ni. Field 1, 4 and 7 included. The solid line is an estimated regression line with an increase of e(0.25) = 

28 % per unit DI and the dotted lines show an approximate 95 % confidence interval for the estimat-

ed line. DF = 21. The p-value of the interaction is 0.03.    
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The interactions were not significant if excluding the plants which were judged to 

be healthy by assessment of above-ground symptoms, but were not graded (Table 

6). Trichodoridae still had the lowest p-value of the three genus/families tested.  

Table 6. Result of Poisson regression analysis of interaction between R. solani and each of Pratylen-

chus spp., Trichodoridae and Globodera spp.. All eight fields included but excluding plants not 

graded. Regression coefficient for the explanatory variable (DI), degrees of freedom (DF), t-value 

and p-value 

 Regression coefficient for the 

explanatory variable (DI) 

DF t-value p-value 

Pratylenchus spp. -0.123 27 -0.84 0.41 

Trichodoridae 0.357 27 1.80 0.08 

Globodera spp. 0.305 9 0.57 0.58 
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5 Discussion 
I found an interaction between R. solani and both Trichodoridae and Globodera 

spp. in the field conditions. Unlike Globodera spp. and R. solani, the interaction 

between Trichodoridae and R. solani is less studied, and the findings here confirm 

what advisors and potato farmers in Sweden have suspected. The hypothesis about 

a spatial correlation is accepted for both Trichodoridae and Globodera spp., since 

a greater severity of stem canker is significantly related to higher numbers of nem-

atodes. The hypothesis is rejected for Pratylenchus spp.  

 

As mentioned above, there have not been so many studies of the interaction be-

tween Trichodoridae and R. solani. Klemmensen (2006) showed similar results on 

potato in Denmark, otherwise there have been either no interaction (Brodie and 

Cooper, 1964), interactions between Trichodoridae species and other fungi (Liu 

and Ayala, 1970) or interaction between another ectoparasitic nematode and fungi 

(Kisiel et al., 1969). However, the last three studies mentioned have not consid-

ered the interaction of these pathogens in potato, but in cotton, sugar cane and 

corn, respectively. 

Potential mechanisms of the synergistic interaction might be limited since 

trichodorids do not enter the plant with their body. Wounding is restricted to shal-

low wounds, but they have a relative long stylet and are fast in their ingestion of 

the cell organelles (< 4 min cell-1) (Perry and Curtis, 2013). The question is if 

these many micropuncture-type wounds are enough to create entry points for the 

fungus. Evans and Haydock (1993) dismiss that theory. Instead the feeding may 

slow down the root extension or in other ways affect the root morphology and 

thereby facilitate the meeting between fungus and plant. Examples of changes in 

root appearance have been provided by Bowers (1996) and Polychronopoulos 

(1969), who found P. penetrans to stimulate root branching and observed an in-

crease in openings caused by additional emergence of lateral roots when affected 

by H. schachtii, respectively.  



43 

 

Trichodoridae nematodes probably do not change the plant cells in any physio-

logical way but they might inflict some sort of response from the plant that could 

be beneficial for the colonization of R. solani, for example reduced levels of com-

pounds toxic to fungi (Back et al., 2002). Leakage of metabolites into the rhizo-

sphere is probably limited since the nematodes only feed on epidermal cells.  

The numbers of Trichodoridae found in the fields were consistently lower, be-

tween 6 – 30 times, compared to earlier samplings for free-living nematodes (An-

dreas Kronhed, Lovang Lantbrukskonsult AB, personal communication). The 

samples were taken to a depth of 25 cm, this might have been insufficient. Sam-

ples for trichodorids are sometimes taken to a depth of 50 cm if, for example, the 

topsoil layers have dried out (Been and Schomaker, 2013). However, the water 

content in the soil samples indicated normal water content (6 – 19 %). In temper-

ate zones, only the upper few centimeters are affected by drought and temperature 

to an extent that would impact the vertical distribution (Been and Schomaker, 

2013). The soil samples analysed here were small in comparison to the earlier 

analyses, and consisted of only one soil core while the other analyses were compo-

site samples from locations all over the fields. The small soil sample increases the 

risk of missing nematodes which are aggregated in their distribution (Been and 

Schomaker, 2013). The probability of finding individuals clumped together is 

higher for Trichodoridae than for Pratylenchus spp. and Globodera spp.. A single 

core may therefore be limited as a strategy to sample Trichodoridae, because the 

sample may not be representative for the population densities outside the core.   

 

Pratylenchus spp. did not show any interaction with R. solani. This is consistent 

with the results from Viketoft et al. (unpubl.) where no difference in the occur-

rence of stem canker on potato was found when comparing the effects of R. solani 

and P. penetrans with the combination of them both. However, in those studies, 

the tuber yield was decreased when the two of them occurred together, which lead 

to the conclusion that there indeed was a synergistic interaction between the or-

ganisms. I did not investigate the effect on tuber yield in this study. There might 

have been the same effect, which could be subject for future field studies. Also, 

there was no discrimination made between different Pratylenchus species in this 

study, and there may have been different results if the analysis had been made for 

P. penetrans only. For example, P. penetrans, but not P. crenatus, influences col-

onisation of potato plants by V. dahliae (Bowers, 1996), which may be the same 

for R. solani.  

Except for the study of Viketoft et al. (unpubl.) there are hardly any records of 

interaction between Pratylenchus spp. and R. solani in potato. Regarding other 

crops, the two pathogens figure together in synergistic interaction on winter wheat 

(Benedict and Mountain, 1956; Mountain, 1954). Going back to potato, P. pene-
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trans is also involved in complexes with V. dahliae (Bowers, 1996). This complex 

is dependent on the point of time when the fungus is introduced to the potato plant, 

since the plant produces hyper-sensitive responses resulting in lignified tissue. 

This may also explain why R. solani did not colonise the potato plants to a greater 

extent in the vicinity of Pratylenchus spp. However, the cultivars tested by Bowers 

et al. (1996) were not included in this study and there were no antagonistic interac-

tion seen in the analysis. Pratylenchus spp. moves inside the root and causes more 

damage to the roots than Trichodoridae. Logically, that would implicate that 

Pratylenchus spp. would be a better facilitator of entry sites, and movement within 

the host, for the fungus. However, Bergeson (1972) comments that Pratylenchus 

spp. may destroy the food base for the fungus.    

There are also interactions between Pratylenchus spp. and other kind of organ-

isms. In Norweigan potato fields, scientists observed more severe symptoms of 

common scab (caused by the bacteria Streptomyces scabies) in areas with high 

densities of P. penetrans (900 specimens (250 g)-1 soil) than in the margins where 

the growth seemed unaffected (40 specimens (250 g)-1 soil) (Holgado et al., 2009). 

The researchers concluded that the symptoms easily can be confused with each 

other, but that the high frequency of scab could be a product of an additive effect. 

Plant growth was also negatively correlated with the amount of P. penetrans in the 

soil. 

The numbers of Pratylenchus spp. found in the fields investigated in this study 

seems reasonable compared to earlier nematode samplings (Andreas Kronhed, 

Lovang Lantbrukskonsult AB, personal communication). 

 

Globodera spp. were from the beginning not considered, but were included in the 

study since they were found in such high numbers in three of the sampled fields. 

In these fields an interaction with R. solani was seen. The potato plants in this 

study were graded 6 – 8 weeks after planting, which is in the same time frame 

where Back et al. (2006) and Bhattarai et al. (2009) concluded the relationship 

between Globodera spp. and R. solani to be strongest. The juveniles counted in 

this study derived from soil, which means that they had not started forming feed-

ing cells yet. There may, however, have been other individuals in the population 

which already were inside the roots and affecting the plant. This would be logical 

since cysts are usually observed on potato roots in the end of June (Nilsson et al., 

2012) and the sampling was performed in the middle of June and start of July. The 

formation of feeding cells creates local physiological changes in the plant (Poly-

chronopoulos et al., 1969), and this might be one reason for the observed interac-

tion with R. solani.  

Another explanation for the observed interaction between Globodera spp. and 

R. solani may be nematode-induced systemic effects. Studies have shown that G. 
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rostochiensis are able to suppress plant disease resistance against fungi through 

expression of effectors (Postma et al., 2012). Something similar may have made 

the interaction between Globodera spp. and R. solani possible. 

The cyst nematodes cause necrosis all the way from epidermis to the center of 

the root when they migrate straight through the cortical cells and the extensive 

amount of wounding might be the mechanism behind the interaction. Also, leak-

age of metabolites and changes in their composition might have affected the de-

velopment of R. solani (Back et al., 2010; Dodman and Flentje, 1970; van Gundy 

et al., 1977). Back et al. (2010) observed the highest growth of R. solani on 

leachates collected 12 days after adding cyst nematodes to the potato plants. This 

indicates that the modifications by Globodera spp. are made early.  

It would have been interesting to know whether it was G. rostochiensis or G. 

pallida in the samples collected. However, there were no results obtained from the 

PCR-analyses of potato cyst nematode species. A hypothesis is that the formalin 

fragmented the DNA, making it impossible to determine whether the sample con-

tained G. pallida, G. rostochiensis or even Globodera at all (Sigyn Jorde, Intertek 

ScanBi Diagnostics, personal communication). Medical literature support this 

hypothesis as well, adding the notion of formalin causing nucleotides to cross-link 

(reviewed in Srinivasan et al., 2002). Also, formalin-fixed samples should prefera-

bly be stored at 4 °C. The samples in this study were stored at room temperature. 

 There are clearly some disadvantages and obstacles with using DNA based 

methods when the samples have been stored, instead of using ocular identification 

under high magnification. In other cases, when the samples have been treated in a 

way that allows identification through DNA-tests, the method has many ad-

vantages. It is fast and precise, and there is no requirement to be a skilled taxono-

mist (Castillo and Vovlas, 2007; Duarte et al., 2011). Identification through mor-

phological characters is difficult, especially when identifying to species level 

(Duncan and Moens, 2013; Kumari and Subbotin, 2012).      

The cultivars in field 4 and 7 were Folva and Opera, respectively. Both of them 

are partly resistant to potato cyst nematodes. Folva is resistant against all patho-

types of G. rostochiensis while Opera is resistant against only Ro1 and Ro4 of G. 

rostochiensis. The cultivar in field 1 was King Edward, which is susceptible to all 

potato cyst nematodes. The resistance does not, however, prevent the cyst from 

hatching, instead it hinders the completion of the nematodes life cycle (Mugniéry 

and Phillips, 2007). The juveniles counted in this experiment where all extracted 

from the soil, that is before they entered the root system. Thereby, the potato culti-

var does not have any importance on the findings of juveniles. 

 

Instead of the nematodes being the first pathogen leading the way for R. solani, it 

might have been the other way around. For example, the nematodes could have 
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been attracted to the plants affected by R. solani through elevated levels of CO2 

(Edmunds and Mai, 1967, 1966). In less than a month, plant parasitic nematodes 

can travel 15 cm and occasionally up to 1 m (reviewed in Robinson, 2004). An-

other possible mechanism is fungal production of cell wall-degrading enzymes 

which could facilitate entry of the nematodes (Nordmeyer and Sikora, 1983). 

 

It is problematic to set plants that were judged as healthy based on above-ground 

appearance to a DI 0. The plant may be affected by R. solani without showing 

above-ground symptoms (Åsa Rölin, Hushållningssällskapet, personal communi-

cation). It is good that there was a gradient in the damage of R. solani within the 

patch, as that may indicate that there was even less damage outside the patch, as 

we assumed it to be. The analyses where these non-graded plants were excluded 

showed no significant interaction. It can either be that the first analysis was biased 

by the healthy plants or the later analysis did not contain enough sampling spots. 

The amount of samples analysed were cut from 70 to 36 for the samples contain-

ing Pratylenchus spp. and Trichodoridae. Globodera spp. went from 25 to 13 

samples analysed. A limited sample is less likely to give a significant result and it 

is almost impossible to prove that the sample is normally distributed (Mikael An-

dersson Franko, Division of Applied Mathematics and Statistics, SLU, personal 

communication). The use of DI was necessary for the statistical analysis and also 

transformed a large dataset into a more manageable unit. However, the transfor-

mation may have led to losses of data as the graded stalks were merged into one 

plant unit. DI have been used in other studies of R. solani (Atkinson et al., 2010).  

 

There may have been confusion between lesions created by nematodes and can-

kers inflicted by R. solani during the grading. This factor could have been elimi-

nated by bringing the plants into laboratory and confirming the presence of R. 

solani by growing cultures of the fungus. This could have been combined with a 

more extensive sampling of soil. As mentioned earlier in the discussion, tricho-

dorids are the nematodes most affected by sampling strategy of the nematodes 

investigated. An improvement would have been to sample a larger volume of soil; 

perhaps all around the plant, bringing both plant and soil into the laboratory.   

Two of the farmers in the study did not use any seed treatment on the tubers, but 

since the patches of delayed emergence were indeed patches, the conclusion was 

drawn that it was soil-borne infection. An infection from seed-borne inoculum 

would have been more randomized in its appearance in the field.   

The statistical analysis demanded coordinates in order to handle the distances 

between the different sampling spots. These coordinates would have been more 

accurate and easier to provide if each spot of sampling had been recorded with 

some sort of GPS equipment, instead of estimations and rough calculations.   
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6 Conclusions 
In this study, an interaction in the field between R. solani and both Trichodoridae 

and Globodera spp. have been shown. No interaction between R. solani and 

Pratylenchus spp. could be found. These results partly confirm what potato pro-

ducers and advisors have observed and will hopefully give them useful infor-

mation for future decisions of appropriate management methods. Future work to 

untangle the mechanisms behind the interactions is needed. 
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