Sambandet mellan DLA klass II och autoimmuna sjukdomar hos Nova Scotia duck tolling retriever

Sandra Ögren

Uppsala

2015
Sambandet mellan DLA klass II och autoimmuna sjukdomar hos Nova Scotia duck tolling retriever

Sandra Ögren

Handledare:
Maria Wilbe, Institutionen för Husdjursgenetik
Examinator: Göran Andersson, Institutionen för Husdjursgenetik

Examensarbete inom veterinärprogrammet, Uppsala 2015
Fakulteten för Veterinärmedicin och husdjursvetenskap
Institutionen för husdjursgenetik
Kurskod: EX0237, Nivå A2E, 30hp

Nyckelord: Autoimmunitet, DLA klass II, DRB1, DQA1, MHC klass II, Nova Scotia Duck Tolling Retriever, SRMA, Addisons sjukdom, Lymfocytär thyroidit, sekvensering, allelfrekvenser

Online publication of this work: http://epsilon.slu.se
ISSN 1652-8697
Examensarbete 2015:63
Innehåll

Sammanfattning ... 1
Abstract .. 2
Inledning .. 3
Litteraturöversikt – Autoimmunitet och DLA klass II .. 6
Autoimmunitet ... 6
 Självtolerans ... 6
 Utveckling av autoimmun sjukdom .. 7
 Diagnostik och behandling av autoimmuna sjukdomar 8
 DLA klass II ... 9
 MHC – Major Histocompatibility Complex ... 9
 MHC klass I och II ... 9
 MHC-molekyllernas roll i immunförsvaret .. 10
 DLA-komplexet ... 11
 DLA klass II ... 12
 Samband mellan DLA klass II och autoimmuna sjukdomar 13
Litteraturöversikt – Sjukdomarna ... 16
Steroidresponsiv meningit-arterit .. 16
 Sjukdomen ... 16
 Patologi .. 17
 Sjukdomens uppkomst ... 18
 Lymphocytär thyroidit .. 19
 Sjukdomen ... 20
 Patologi .. 22
 Sjukdomens uppkomst ... 22
Addisons sjukdom .. 23
 Sjukdomen ... 24
 Patologi .. 25
 Sjukdomens uppkomst ... 25
Övriga sjukdomar .. 26
Vitiligo ... 26
 Epilepsi .. 26
Material och metoder ... 27
Teori ... 27
Hundar ... 28
DNA ... 29
Amplifiering av DNA-sekvenser (PCR) .. 29
SAMMANFATTNING

I denna genetiska associationsstudie undersöks det eventuella sambandet mellan DLA klass II (hundens MHC klass II) och utvecklandet av autoimmun sjukdom hos Nova Scotia duck tolling retriever. Syftet är att finna eventuella riskalleler eller -haplotyper av generna DLA-DRB1 och -DQA1.

DNA från 35 hundar med bekräftad eller misstänkt autoimmun sjukdom, samt från 40 kontroller, används i studien. Hundarna, alla av rasen Nova Scotia duck tolling retriever, kommer från Storbritannien, Sverige, och USA (Boston). Generna DLA-DRB1 och -DQA1 amplifieras ur detta DNA med PCR-teknik och genom sekvensering fastställs alleluppsättningar hos varje enskild hund.

13 hundar i studien har steroidresponsiv meningit-arterit, 12 har lymfocytär thyroidit och resterande 10 hundar har andra misstänkta autoimmuna sjukdomar, däribland Addisons sjukdom, epilepsi och vitiligo.

Steroidresponsiv meningit-arterit (SRMA) är en form av meningit med vaskulit i meningernas blodkärl, med symtom som nacksmärta och feber. Sjukdomen kännetecknas bland annat av ett förhöjt antal leukocyter och antikroppar av typen IgG, IgM och IgA i cerebrospinalvätskan samt en ökad koncentration av IgA i serum.

Lymfocytär thyroidit innebär en immunmedierad destruktion av sköldkörteln och är en vanlig orsak till hypothyroidism hos hund. Brist på thyroideahormoner leder till minskad cellmetabolism med effekt på flera organsystem och utveckling av specifika symtom såsom viktpåtagande, utveckling av variant, ospecifica symptom och vitiligo.

Addisons sjukdom orsakas av en nedsatt binjurebarksfunktion som leder till brist på både mineralkortikoider och glukokortikoider. Sjukdomen har påverkan på bland annat viktpåtagande och leder till ospecifica symtom som ofta påminner om de som ses vid njursjukdom eller gastrointestinala sjukdomar.

Inga alleler eller haplotyper av DRB1 och DQA1 kunde i denna studie sättas i samband med en förhöjd risk att utveckla dessa autoimmuna tillstånd hos Nova Scotia duck tolling retriever.
ABSTRACT

The association between DLA class II and the development of autoimmune diseases in Nova Scotia duck tolling retriever was examined in order to find a possible risk allele or risk haplotype of the DRB1 and DQA1 genes.

DNA, extracted from blood samples taken from 35 dogs with suspected autoimmune disease and 40 healthy controls, were used for the analyses. The samples were collected from Nova Scotia duck tolling retrievers in Sweden, Great Britain and USA (Boston).

13 dogs in the study were affected by Steroid Responsive Meningitis-Arteritis, 12 by Lymphocytic Thyroiditis. The remaining 10 dogs were affected by other suspected autoimmune diseases, including Addison’s disease, Epilepsy and Vitiligo.

The desired polymorphic exon 2 sequences from DLA-DRB1 and -DQA1 genes were amplified by PCR and then sequenced in order to determine the set of alleles belonging to each dog.

No association was found between the development of autoimmune disease and any of the acquired alleles and haplotypes of DRB1 and DQA1. This is most likely due to the limited number of dogs affected by each particular disease that were available for this analysis.
INLEDNING

På institutionen för hudsjursgenetik, SLU, pågår en kartläggning av de genetiska riskfaktorerna för ett antal autoimmuna sjukdomar hos hund. Dessa studier kan förhoppningsvis leda, inte bara till större möjligheter till diagnostik och förståelse för sjukdomarna hos hund, utan även till en allmänt ökad förståelse av autoimmunitet hos både djur och människa.

Den komparativa betydelsen av sjukdomsstudier hos hund är stor, då denna art till stor del delar människans miljö, drabbas av liknande sjukdomar och även har en relativt stor genetisk likhet med människan. Det faktum att hundpopulationen är uppdelad i ett flertal raser, med liten genetisk variation inom varje ras, bidrar också till ökade möjligheter när det gäller genetiska kartläggningar.

Nova Scotia duck tolling retriever, i Sverige vanligen kallad tollare, är en ras som anses vara predisponerad för autoimmuna tillstånd. I en enkätundersökning, utförd av den svenska rasklubben 2005, visade sig 8,5 % av de 697 hundar vars ägare besvärats av någon autoimmun sjukdom, ej inräknat fall av hypothyroidism och Addisons sjukdom (Åström, o.a., 2007).

Tollaren är bland annat drabbad av en immunmedierad reumatisk sjukdom, som brukar kallas för tollarsjuka. (Hansson-Hamlin & Lilliehöök, 2009) Även en immunmedierad meningit, steroidresponsiv meningit-arterit (SRMA), drabbar rasen och räknas som en variant av tollarsjuka. I den tidigare nämnda enkätundersökningen angavs 3 % av tollarna vara drabbade av meningit och 2,3 % av artrit, medan 2,2 % hade fått diagnosen Tollarsjuka (Åström, o.a., 2007).

SLE är en relativt vanlig immunmedierad sjukdom hos människa, som även drabbar hund och andra djur. Den kliniska bilden är mycket varierande eftersom i stort sett alla orgamsystem kan drabbas. Hos hund är de hudlesioner som har gett sjukdomen sitt namn inte alls så vanliga som hos människa, och njursvikt, som är den mest livshotande komplikationen hos människor med SLE, uppkommer sällan. Feber och polyartrit är däremot vanliga symtom hos både hund och människa. Förekomsten av antinukleära antikroppar, ANA, är ett klassiskt känneterken för SLE. (Pedersen, 1999)

Sedan några år tillbaka pågår det så kallade Tollarprojektet på SLU, där en kartläggning av tollarsjukan görs för att öka kunskapen om sjukdomsutveckling, behandlingsresultat och prognos. I detta projekt ingår även genetiska analyser på institutionen för hudsjursgenetik, som syftar till att identifiera genetiska riskfaktorer för tollarsjuka (Wilbe, o.a., 2009; 2010). Dessa studier kan
förhoppningsvis leda till ökad kunskap om sjukdomens utveckling och ge större möjligheter till en tidig diagnos.

Förutom tollarsjukan är även andra tillstånd som kan ha autoimmun bakgrund relativt vanliga hos tollare enligt den svenska rasklubbens enkätundersökning, däribland hypothyroidism (2,0 %) och Addisons sjukdom (1,0 %) (Åström, o.a., 2007). Även epilepsi är ett relativt vanligt tillstånd hos tollare (1,3 % i enkätstudien), och det har föreslagits att det möjlichen skulle finnas en autoimmun bakgrund till denna sjukdom hos rasen.

Frekvensen av autoimmuna sjukdomar har föreslagits kunna ha ett samband med en valpsjukeepidemi som drabbade rasen hårt kring förra sekelskiftet. (Hughes o.a., 2009) De individer som överlevde, för att deras immunförsvar var särskilt väl lämpat att bekämpa valpsjukeviruset, spred sitt effekativa immunförsvar vidare till sin avkomma när rasen på nytt växte till. Då autoimmunitet kännetecknas av ett immunförsvar så ”effektivt” att det angriper till och med kroppsegna celler, skulle tollarens relativt höga benägenhet till autoimmuna reaktioner kunna ha en del av sin förklaring här. Vaccination mot valpsjuka skulle då kunna ha en roll i etiologin, genom ”molecular mimicry”.

Det har visat sig finnas ett starkt samband mellan immunmedierade sjukdomar och gener inom MHC (Major Histocompatibility Complex) klass II. Förklaringen till detta finns förmodligen i den viktiga roll som MHC-molekyler spelar vid initieringen av immunsvaret. Hundens MHC kallas DLA, dog leukocyte antigen, och är till stora delar likt människans HLA, human leukocyte antigen.

En studie av svenska och finska tollare med tollarsjuka har visat ett samband mellan DLA-haplotypen DRB1*00601/DQA*05011/DQB1*02001 och en förhöjd risk att utveckla den reumatiska formen av sjukdomen. Däremot hittades inget samband mellan DLA och SRMA. (Wilbe o.a., 2009)

I detta examensarbete görs en genetisk associationsstudie, där sambandet mellan DLA klass II och ett antal autoimmuna, eller misstänkt autoimmuna sjukdomar hos rasen tollare undersöks genom att bestämma sekvensen av det polymorfa exon 2 från DRB1 och DQA1. Syftet är att finna eventuella riskalleler eller riskhaplotyper för utveckling av autoimmuna tillstånd. Detta görs genom att jämföra frekvensen av varje allel eller haplotyp i gruppen av drabbade hundar, med den i en kontrollgrupp.

De flesta av hundarna i studien är drabbade av steroidresponsiv meningit-arterit eller lymphocytär thyroidit, men även ett fåtal fall av sjukdomar som Addisons sjukdom, vitiligo och mer ospecifika diagnoser som misstänks ha autoimmun, eller åtminstone immunmedierad bakgrund, ingår. (Se tabell 2, under Material och metoder.) I studien ingår hundar från Storbritannien och Sverige, samt ett fåtal från Boston, USA.

I litteraturöversikten ges en beskrivning av sjukdomarna som ingår i studien. Först görs dock en genomgång av mekanismerna bakom autoimmutitet, samt en översikt av den roll MHC och i synnerhet DLA klass II har i immunsystemet och
vid utveckling av autoimmuna tillstånd. En teoretisk bakgrund till de metoder som används i studien ges under Material och metoder.
Autoimmunitet

Immunmedierade sjukdomar – dit autoimmuna sjukdomar hör tillsammans med allergier/atopier, immunbrister, immundefekter och neoplasier i immunsystemet – orsakas av primära störningar i immunsystemet. Det skiljer dem från de immunmedierade patologiska tillstånd som kan uppstå till följd av många infektiösa, kroniskt inflammatoriska eller neoplastiska sjukdomar. (Day, 2008b)

Självtolerans

Denna selektionsprocess är inte tillräcklig för att helt hindra förekomsten av självreaktiva lymfocyter. Därför är det nödvändigt med ytterligare mekanismer för att upprätthålla immunförsvarets självtolerans. Till dessa hör så kallad perifer deletion, där även lymfocyter utanför benmärg och thymus, som känner igen självantigen presenterade av MHC, tvingas genomgå apoptos. (Day, 2008a)

När en lymfocyt känner igen ett självantigen kan den också hindras från att aktiveras genom anergi eller suppression. Anergi är en passiv mekanism. Där uteblir de sekundära signaler som, förutom själva antigenpresentationen, krävs för lymfocytaktivering. Suppression är en aktiv process där regulatoriska T-celler hämmar aktivering av de självreaktiva lymfocyterna. (Agger o.a., 2006; Day, 2008a)

Även immunologisk ignorans bidrar till att förhindra autoimmuna reaktioner. Det handlar då om kroppsegna antigen som inte inducerar något immunsvar, antingen
för att de är helt avskilda från immunsystemet, eller för att de förekommer i för låga nivåer. (Agger o.a., 2006; Day, 2008a)

Brister i dessa regulatoriska processer tillåter aktivering av självreaktiva lymfocyter och innebär därmed en ökad risk för att utveckla autoimmuna sjukdomar. (Day, 2008a)

Utveckling av autoimmun sjukdom

Etiologi

Störningar i regleringen av immunförsvaret, vilka kan orsakas av till exempel kemoterapi eller sjukdomar som lymfom och infektioner, är en annan faktor bakom autoimmunitet. En försämrad funktion hos regulatoriska celler eller en förändrad balans mellan Th1- och Th2-celler verkar vara en underliggande faktor för risken att utveckla flera olika autoimmuna sjukdomar. (Day, 2008b) Eftersom apoptos är det sätt med vilket kroppen normalt gör sig av med självreaktiva lymfocyter, kan även apoptosdefekter leda till autoimmun sjukdom. (Tizard, 2004; Agger o.a., 2006)

Infektioner och vaccinationer hör till de viktigaste miljöfaktorer som anses kunna ligga bakom utvecklandet av autoimmunitet. Ett antal mekanismer som kan ligga bakom sambandet mellan infektionsöka agonser och autoimmunitet har föreslagits. En infektion kan leda till förändringar i antigenpresentationen, så att sådana självantigen som i normala fall är dolda för immunförsvaret kan börja uttryckas. (Day, 2008b) En sådan exponering av tidigare dolda självantigen kan även orsakas av annan massiv vävnadsskada (Agger o.a., 2006). Immunsavet mot en infektion kan också leda till att MHC klass II uttrycks av celler som normalt inte uttrycker dessa molekyler. Om dessa celler då uttrycker självantigen kan de aktivera självreaktiva T-celler. Vissa mikrober kan inducera en ospecific massakaktivering av flera T- och B-cellskloner, varav några kan vara autoreaktiva. (Day, 2008b) Mikrobiella antigen kan också korsreagera med självantigen genom ”molecular mimicry”, det vill säga en strukturell likhet mellan de främmande och de kroppsegna molekylerna. (Day, 2008b; Agger o.a., 2006)

Även läkemedel kan bidra till utveckling av autoimmuna sjukdomar. Ett samband har exempelvis setts mellan trimetoprim–sulfonamid och immunmedierade hematologiska sjukdomar. (Day, 2008b)

Vävnadsskadornas patogenes

Vävnadsskadorna vid autoimmuna sjukdomar orsakas av samma immunreaktioner som normalt används för att bekämpa främmande antigen. (Agger o.a., 2006) Beroende på om autoimmuniteten medieras mest av B- eller T-lymfocyter, kan patogenesens domineras av antingen autoantikroppar eller cellmedierad skada. (Tizard, 2004)
Skadorna kan vara direkt antikroppsmedierade (typ II), immunkomplexinducerade (typ III) eller orsakade av cytotoxicitet från lymfocyter och makrofager (typ IV). Däremot spelar immunreaktioner av typ I, som medieras av IgE och är inblandade vid allergiska tillstånd, ingen väsentlig roll vid autoimmuna sjukdomar. (Agger o.a., 2006) Ofta är flera mekanismer ansvariga för vävnadsskadorna och vilken typ av immunvar som dominerar kan variera vid olika sjukdomsstadijer. (Tizzard, 2004)

Vilken typ av immunreaktion som dominerar varierar mellan organspecifika och systemiska autoimmuna sjukdomar. Vid organspecifika sjukdomar orsakas vävnadsskadorna vanligen av immunreaktioner av typ II eller IV. Ofta är det en specifik celltyp i ett specifikt organ som drabbas. Vid exempelvis diabetes är det de insulinproducerande β-cellerna i bukspottkörteln som skadas av cytotoxiska T-cellerna och makrofager. (Agger o.a., 2006)

Autoimmunitet i sköldkörteln kan hos människa leda till antingen hyperthyroidism eller hypothyroidism. Vid Grave’s disease påverkar antikroppar TSH-receptorn till att inducera en ökad hormonproduktion, med hyperthyroidism som följd. Vid Hashimoto’s thyroiditis uppstår istället hypothyroidism genom att lymfocyter och makrofager förstör de hormonproducerande cellerna. (Agger o.a., 2006)

Autoimmuna sjukdomar är vanligen immunkomplexinducerade, alltså orsakade av typ III-reaktioner. Dessa sjukdomar domineras av inflammation i kärlväggarna och ger oftast symtom framförallt från njurar, leder och hud. Systemisk Lupus Erythematosus (SLE), typexemplet på en systemisk autoimmun sjukdom, kännetecknas av hyperaktiva B-lymfocyter och defekter i T-lymfocytarnas regulatoriska förmåga. Autoantikroppar bildas mot flera kroppsegnat antigen och organ, vilket leder både till direkta vävnadsskador av typ II och immunkomplexinducerad inflammation. (Agger o.a., 2006)

Autoantikroppar är en viktig del av diagnostiken vid autoimmuna sjukdomar. Vid SLE, och SLE-besläktade sjukdomar, söker man efter antinukleära antikroppar (ANA), riktade mot komponenter i cellkärnan. Vid bland annat reumatoid artrit hos människa används så kallade reumafaktorer (RF), som är antikroppar mot Fc-delen av IgG. RF är dock ospecifikt, då de även ofta förekommer i samband med infektioner och dessutom kan förekomma hos friska individer. (Agger o.a., 2006)

Även biopsier kan användas i diagnostiken av autoimmuna sjukdomar. Inflammatoriska celler kan ses i vävnaden och med immunfluorescensteknik kan depositioner av Immunoglobuliner och komplement påvisas. (Agger o.a., 2006)

För många autoimmuna sjukdomar är den konventionella behandlingen en ospecific immununspression. Det finns även vissa behandlingsmetoder som påverkar subpopulationer av immunystemets celler, eller balansen av cytokiner, vilka är proteiner med olika slags reglerande effekter på immunceller. Vid de sjukdomar där autoimmuna reaktioner mot endokrina körtlar orsakar en nedsatt hormonproduktion behandlas symtomen genom en direkt ersättning av bristhormonet. (Agger o.a., 2006)

Diagnostik och behandling av autoimmuna sjukdomar

Autoantikroppar är en viktig del av diagnostiken vid autoimmuna sjukdomar. Vid SLE, och SLE-besläktade sjukdomar, söker man efter antinukleära antikroppar (ANA), riktade mot komponenter i cellkärnan. Vid bland annat reumatoid artrit hos människa används så kallade reumafaktorer (RF), som är antikroppar mot Fc-delen av IgG. RF är dock ospecifikt, då de även ofta förekommer i samband med infektioner och dessutom kan förekomma hos friska individer. (Agger o.a., 2006)

Även biopsier kan användas i diagnostiken av autoimmuna sjukdomar. Inflammatoriska celler kan ses i vävnaden och med immunfluorescensteknik kan depositioner av Immunoglobuliner och komplement påvisas. (Agger o.a., 2006)

För många autoimmuna sjukdomar är den konventionella behandlingen en ospecific immununspression. Det finns även vissa behandlingsmetoder som påverkar subpopulationer av immunystemets celler, eller balansen av cytokiner, vilka är proteiner med olika slags reglerande effekter på immunceller. Vid de sjukdomar där autoimmuna reaktioner mot endokrina körtlar orsakar en nedsatt hormonproduktion behandlas symtomen genom en direkt ersättning av bristhormonen. (Agger o.a., 2006)
DLA klass II

MHC – Major Histocompatibility Complex

Major histocompatibility complex, MHC, är en samling gener med viktiga funktioner i immunförsvaret. Namnet kommer av den avgörande roll som MHC-molekyler har för vävnadskompatibilitet vid transplantationer. (Nicholas, 1996)

Hos däggdjur omfattar MHC ungefär 3500 kb och innehåller en mängd olika gener. För vissa av dessa är funktionen ännu okänd. Andra är överhuvudtaget inte funktionella, till exempel ingår så kallade pseudogener, det vill säga gener som har inaktiverats av mutationer. (Nicholas, 1996)

MHC kan delas in i tre huvudregioner: klass I, II och III. Klass I och II är regioner som kodar för histokompatibilitetsmolekyler, vilka har uppgiften att presentera antigen för de celler som initierar det specifika immunförsvaret. Klass III omfattar gener som visserligen är lokaliserte till MHC-regionen, men som kodar för molekyler som helt skiljer sig från klass I- och klass II-molekylerna i struktur och funktion. Även många av dessa har dock viktiga roller i immunförsvaret, då gruppen till exempel innefattar vissa cytokiner och komplementfaktorer. (Day, 2008)

MHC klass I och II

MHC kännetecknas av en hög grad av genetisk polymorfism, vilket innebär att det finns ett stort antal alleler i populationen för de flesta loci. Hos människa är därför majoriteten av alla individer heterozygota med avseende på HLA klass II. Vanligen ärvs kombinationen av MHC-alleler på en kromosom som ett block, en så kallad haplotyp. Överkorsning under meiosen, med bildandet av nya haplotyper, är relativt ovanligt. (Nicholas, 1996)

Hundens MHC kallas DLA, "dog leukocyte antigen", medan människans kallas HLA, "human leukocyte antigen". DLA-komplexet har många likheter med människans HLA, liksom med andra däggdjurs MHC-komplex. Hunden saknar dock DP-gener och i DLA-komplexet ingår bara en av vardera DRB, DRA, DQA och DQB. (Debenham o.a., 2005) DRA-genen är inte polymorf hos hund.

MHC-molekylernas roll i immunförsvaret

För att ett specifikt immunförsvar ska kunna riktas mot ett främmande antigen måste detta först registreras av T-cellsreceptorn på en T-lymfocyt som då initierar ett immunsvar. En receptor med affinitet för en viss främmande peptid kan dock bara känna igen denna när peptiden är bunden till en MHC-molekyl. Detta, att det är kombinationen av kroppseget MHC och en främmande peptid som T-cellsreceptorn reagerar på, kallas för MHC-restriktion. (Day, 2008; Mazza o.a., 2007; Parham, 2005)

MHC-molekylens roll i immunförsvaret är alltså att presentera antigen för T-lymfocyten. Det som presenteras är små peptidfragment, som passar in i specifika fickor i den antigenbindande fåran på molekylen. Presentationen kräver därför att antigenet först tas in i cellen och bryts ned. Varje MHC-molekyl kan sedan binda flera olika peptider. (Day, 2008; Mazza o.a., 2007; Parham, 2005)

Processen i cellen går olika till beroende på om det rör sig om ett endogent, t.ex. ett viraltd, eller ett exogent, t.ex. ett bakteriellt, antigen, och de förstnämnda kommer att presenteras på MHC klass I-molekyler medan de senare presenteras av klass II-molekyler. MHC klass I uttrycks på nästan alla kroppens celler just därför att alla celler kan infekteras av virus och då måste kunna elimineras. Nervceller uttrycker däremot inte MHC klass I, ett undantag som skyddar dessa celler från eliminering men istället ofta leder till kroniska inflammationer. MHC klass II är däremot inriktat mot hot utanför cellerna och uttrycks av professionella antigenpresenterande celler, som makrofager, dendritiska celler och B-lymfocyter. Dessa har receptorer som känner igen vissa uppsättningar av ytmolekyler som ofta uttrycks av patogena organismer. Den mest potenta av de antigenpresenterande cellerna är den dendritiska cellen, som kan ta upp främmande antigen både genom fagocytos och genom pinocytos (insamling av material via vesiklar). (Day, 2008)

DLA-komplexet

DLA-regionen är lokaliserad till hundens kromosom 12, men enstaka gener som också anses höra till DLA sitter istället på andra kromosomer. (Kennedy o.a., 2001) I tabell 1 visas gener och pseudogener inom DLA. Åtminstone fyra gener har identifierats inom DLA klass I: DLA-79, DLA-88, DLA-12 och DLA-64. (Kennedy o.a., 2001) Av dessa är DLA-88 mycket polymorf, med mer än 40 alleler, medan de andra uppvisar betydligt mindre variation. (Wagner, Burnett & Storb, 1999) Generna inom DLA klass II har visat sig vara homologa med loci i människans HLA och har också namnetts som dessa, med namn som DRA, DRB, DQA och DQB. (Kennedy o.a., 1998).

Tabell 1: Loci inom klass I och klass II i DLA-komplexet (modifierad efter tabell från European bioinformatics institutes MHC-databas)

<table>
<thead>
<tr>
<th>Locus</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLA klass I</td>
<td></td>
</tr>
<tr>
<td>DLA-79</td>
<td>Klass I gen som inte sitter i DLA-regionen</td>
</tr>
<tr>
<td>DLA-88</td>
<td>Klass I-gen</td>
</tr>
<tr>
<td>DLA-12</td>
<td>Klass I-gen</td>
</tr>
<tr>
<td>DLA-64</td>
<td>Klass I-gen</td>
</tr>
<tr>
<td>DLA-12a</td>
<td>Pseudogen</td>
</tr>
<tr>
<td>C1pg-26</td>
<td>Klass I-processad gen som inte sitter i DLA-regionen</td>
</tr>
<tr>
<td>DLA-53</td>
<td>Pseudogen</td>
</tr>
<tr>
<td>DLA klass II</td>
<td></td>
</tr>
<tr>
<td>DLA-DRA1</td>
<td>DR alfakedja</td>
</tr>
<tr>
<td>DLA-DRB1</td>
<td>DR betakedja</td>
</tr>
<tr>
<td>DLA-DRB2</td>
<td>Pseudogen</td>
</tr>
</tbody>
</table>

11
DLA klass II

Hunden har två funktionella DR-gener, DLA-DRA1 och DLA-DRB1, och en DR-pseudogen, DLA-DRB2. Likaså har den två funktionella DQ-gener, DLA-DQA1 och DLA-DQB1, och en pseudogen, DLA-DQB2. Till klass II hör också tre DP-loci, som alla tycks vara pseudogener. (Debenham o.a., 2005)

Alleler

DLA klass II är en mycket polymorf region. För varje ny ras som undersöks hittas nya alleler och nya haplotyper för DRB1, DQA1 och DQB1. (Kennedy o.a., 2007a) DLA-DRA1 tycks däremot sakna motsvarande variation (Wagner, Burnett & Storb, 1999). Även hos andra arter är DLA-DRA monomorf. bara hos häst har enstaka alleler rapporterats.

För alla arter gäller att DRB1 är mest polymorf, följt av DQB1 och sedan DQA1. År 2012 hade 155 alleler för DLA-DRB1, 26 för DLA-DQA1 och 76 för DLA-DQB1 identifierats hos hund och varg. (Wilbe o.a., 2012)

Allelerna namnges med siffror, baserat på aminosyresekvensen som de kodar för. De tre första siffror i namnet står för vilken huvudtyp allelen tillhör, de fjärde och femte siffrorna står för subtypen, medan den eventuella sjätte siffran står för en så kallad ”silent substitution” (där ett kodon kodar för samma aminosyra som enannan trots att ett baspar har bytts ut). Alleler av samma huvudtyp är identiska i tre specifika hypervariabla regioner och delas in i subtyper baserat på skillnader utanför dessa regioner. (Kennedy o.a., 1999)

DRB1-allelerna 01502 och 01501 är alltså exempel på två varianter av samma huvudtyp, DRB1*015. Det som skiljer dem åt finns utanför de tre hypervariabla regionerna. DQA1-allelerna 005012 och 005011 kodar båda för samma aminosyresekvens, trots att det finns en mindre skillnad i själva DNA-sekvensen.

Haplotyper

Varje allel av DRB1 förekommer vanligen tillsammans med ett specifikt par av DQA1- och DQB1-alleler, det vill säga det är hög kopplingsojämvikt i DLA klass II regionen (se nedan). (Kennedy o.a., 2007ab) Till exempel ses DRB1*00101 vanligen i kombination med DQA1*00101 och DQB1*00201, medan DRB1*01501 ofta ses i kombination med DQA1*00601 och DQB1*02301. Båda dessa alleler av DRB1 kan också, mer sällan, ses tillsammans med ett antal andra allelpar av DQ-gener, men antalet olika kombinationer som har setts är
begränsade. (Kennedy o.a., 2007ab) Det finns färre alleler av DQA1 än av DRB1. Vissa DLA-DRB1-alleler förekommer alltså i flera haplotypkombinationer med DQA1 medan andra, framförallt de mer ovanliga allelelerna, bara ses i en kombination. (Kennedy o.a., 2002)

Det faktum att oväntade kombinationer av DR och DQ sällan ses, är ett tecken på ett starkt ”linkage disequilibrium”, en kopplingsojämvikt, i nedärvningen. (Kennedy o.a., 2007b) Kombinationer av DRB1, DQA1 och DQB1 överförs alltså vanligen som intakta haplotyper från föräldrar till avkomma också hos hund.

Variation mellan och inom hundraser

Medan polymorfismen för DLA klass II är stor hos arten hund som helhet, har rasaveln lett till att medan skillnaderna kan vara mycket stora mellan raser, kan de samtidigt vara mycket små inom raser. Det finns stora skillnader när det gäller vilka alleler och haplotyper som olika raser uppvisar. Det förekommer att en viss ras inte tycks ha en enda haplotyp gemensamt med en viss annan ras. (Kennedy o.a., 2002)

Hos vissa raser finns mycket få varianter av alleler och haplotyper, medan andra har en betydligt bredare uppsättning. Troligen beror detta på hur bred populationsbas rasen härstammar från, och i vilken utsträckning inkorsning med andra raser har skett. (Kennedy o.a., 2002) Ofta är det en eller två alleler som dominerar hos en ras, medan övriga alleler finns i betydligt lägre frekvenser. (Angles o.a., 2005)

Den begränsade variationen inom raser leder till en hög grad av homozygoti för DLA klass II-loci hos hundar. I en studie på hundar, av flera raser inklusive blandras, visade sig mer än en tredjedel vara homozygota för DRB1 och DQA1. Särskilt hos numerärt små raser är homozygoti vanligt, medan större raser, som schäfer, labradorer och golden retrievers, oftare är heterozygota. (Kennedy o.a., 2002)

Antalet raser som har en viss allel eller haplotyp varierar – vissa verkar vara i stort sett helt begränsade till en viss ras, medan andra finns hos många raser. Likaså varierar frekvensen av haplotypen mellan de raser där den finns. (Kennedy o.a., 2002; Angles o.a., 2005)

Inom raser ses geografiska skillnader i alleluppsättningar. Jämförelser mellan amerikanska och europeiska hundar av samma ras (av europeiskt ursprung) har visat på en ofta mer begränsad variation hos de amerikanska hundarna. De alleler som är vanligast hos de europeiska hundarna är vanliga även hos de amerikanska, men exporten av hundar från Europa till Nordamerika har inneburit ett ytterligare urval av hundar, med färre alleler som följd. (Angles o.a, 2005) Det motsatta förhållandet gäller för den ras som studerats i detta projekt, Nova Scotia duck tolling retriever, vars ursprung är nordamerikanskt, där ett marginellt antal fler haplotyper förekommer i Nordamerika relativt Europa.

Samband mellan DLA klass II och autoimmuna sjukdomar

Eftersom MHC-molekylern har en så viktig funktion i immunförsvaret kan variationer inom DLA-komplexet misstänkas spela en viss roll när det uppstår störningar i immunförsvarets funktion. Det har också visat sig finnas samband
mellan DLA, särskilt klass II, och flera immunmedierade sjukdomar. (Kennedy o.a., 2006a; Kennedy o.a. 2006b; Ollier o.a., 2001; Kennedy o.a., 2006d; Wilbe o.a., 2009; Wilbe o.a., 2010a; Wilbe o.a., 2010b; Wilbe o.a., 2010c; Wilbe o.a., 2012; Hughes o.a., 2010; Jokinen o.a., 2011; Massey o.a., 2013)

Vissa alleler av MHC klass II har affinitet för vissa självantigen och kan därför presentera dessa för självreaktiva T-celler, medan andra alleler ger upphov till en struktur på molekylens bindningsficka dit samma självantigen inte kan binda. Av denna anledning kan en individspussättning av MHC-alleler påverka risken för att utveckla en autoimmun sjukdom. (Jacobson o.a., 2007)

Till de sjukdomar hos hund som har visat sig ha ett samband med DLA klass II hör diabetes mellitus, hypothyroidism, reumatisk artrit, hypoadrenokorticism och immunmedierad hemolytisk anemi. (Kennedy o.a., 2006b; Kennedy o.a. 2006d; Ollier o.a., 2001; Kennedy o.a., 2006a; Wilbe o.a., 2009; Wilbe o.a., 2010a; Wilbe o.a., 2010b; Wilbe o.a., 2012; Hughes o.a., 2010, Massey o.a., 2013)

Det verkar finnas rasskillnader när det gäller sjukdomsassociationer med DLA. Ofta kan ett samband med en viss allel eller haplotyp och en sjukdom ses för vissa hundraser, men saknas för andra raser, där eventuellt ett samband med en annan allel eller haplotyp istället kan ses. (Kennedy o.a., 2006a; Kennedy o.a., 2006d; Massey o.a., 2013)

När det gäller risken för att utveckla diabetes mellitus har den visat sig vara större hos hundar med haplotyperna DRB1*009/DQA1*001/DQB1*008, DRB1*015/DQA1*006/DQB1*023 och DRB1*002/DQA1*009/DQB1*001. Även de DQA1-alleler som kodar för aminosyran arginin i kodon 55 leder till en större risk att utveckla sjukdomen. Ett liknande samband har setts hos människor med diabetes mellitus, då i kodon 52 istället för 55 på DQA1. (Kennedy o.a., 2006b)

En skyddande haplotyp för diabetes mellitus har också identifierats: DQ-haplotypen DQA1*004/DQB1*013 har visat sig ha en signifikant lägre frekvens hos drabbade hundar än i en kontrollgrupp. (Kennedy o.a., 2006b)

Haplotypen DLA-DRB1*01201/DQA1*00101/DQB1*00201 har visat ett samband med en ökad risk att utveckla hypothyroidism hos både rieszenschauzer och doberman. (Wilbe o.a., 2010b; Kennedy o.a., 2006c) Den verkliga risken tros ligga hos själva DRB1*01201-allelen, snarare än på haplotypnivå. Hos rieszenschauzer har även en skyddande haplotyp identifierats, DLA-DRB1*01301/DQA1*00301/DQB1*00501. Här tycks det vara hela haploptypen, snarare än en enskild allel i den, som har den skyddande effekten. (Wilbe o.a., 2010b) Även hos andra raser, såsom rhodesian ridgeback och engelsk setter finns samband mellan DLA och hypothyroidism. (Kennedy o.a., 2006d)

För reumatisk artrit hos både människa och hund har en ökad risk satts i samband med alleler av DRB1 som kodar för vissa särskilda aminosyresekvenser i den tredje av de hypervariabla regionerna (Ollier o.a., 2001). Ett sådant samband har setts även för den reumatiska sjukdom som drabbar tollare, då den riskhaplotyp som har identifierats kodar för en sådan sekvens. För den immunmedierade reumatiska sjukdomen hos tollare är DLA en av flera genetiska riskfaktorer.
Homozygoti för DLA-DRB1*00601/DQA1*005011/DQB1*02001 visat sig innebära en förhöjd sjukdoms risk, med ett särskilt tydligt samband för ANA-positiva fall. (Wilbe o.a., 2009; Wilbe o.a., 2012)

Det har även setts samband mellan homozygoti för DLA klass II-regionen, oavsett haplotyp, och utveckling av autoimmun sjukdom. I en studie av Addisons sjukdom hos Nova Scotia duck tolling retriever sågs en tendens både till högre risk för att utveckla sjukdom och till en tidigare sjukdomsutveckling hos homozygota individer jämfört med heterozygota. (Hughes o.a., 2010) Även för tollarnas reumatiska sjukdom har en ökad risk setts för homozygoter jämfört med heterozygoter. (Wilbe o.a., 2009)
LITTERATURÖVERSIKT – SJUKDOMARNA

I denna studie ingår framförallt hundar med steroidresponsiv meningit-arterit och lymfocytär thyroidit och det är dessa två sjukdomar som först kommer att behandlas i detta kapitel. En grupp på nio hundar har istället andra sjukdomar, med autoimmun eller misstänkt autoimmun bakgrund. Till dessa hör Addisons sjukdom, som beskrivs nedan, samt vitiligo och epilepsi, som mer kortfattat beskrivs under övriga sjukdomar. Resterande hundar hade sjukdomar med symtom från mun, hud eller tarm.

Steroidresponsiv meningit-arterit

Steroidresponsiv meningit-arterit, SRMA, är en form av meningit hos hund med vaskulit i meningernas blodkärl. (Tipold & Jaggy, 1994) Detta är kanske den vanligast förekommande formen av meningit hos hund. (LeCouteur & Grandy, 2005)

SRMA har gått under många namn, däribland aseptisk meningit (Anfinsen o.a., 2007), kortikosteroidresponsiv meningit (Meric o.a., 1985; Muñana, 1996), steroidresponsiv suppurativ meningit (Meric, 1988) och nekrotiserande vaskulit (Hoff & Vandevelde, 1981; Meric, 1988; Muñana, 1996).

I viss litteratur skiljer författarna mellan steroidresponsiv meningit och nekrotiserande vaskulit i meningarna. Den senare innebär då en kraftigare och ibland mer svårbehandlad vaskulit, en form som har setts hos bland annat Berner sennen och beagle. (Meric, 1988; Muñana, 1996)

Sjukdomen

Symtom

I den klassiska formen av SRMA domineras symtomen av smärta och stelhet i nacken, i kombination med feber. En mer utdragen, kronisk form av sjukdomen leder även till neurologiska bortfall, såsom nedsatt proprioception och para- eller tetrapares. (Tipold & Jaggy, 1994)

De kliniska tecknen är desamma som ses vid meningit av andra orsaker, som till exempel infektioner. Drabbade hundar blir ovilliga att röra sig och går med stela rörelser och böjd rygg. Förutom nacksmärtan kan drabbade hundar bland annat få ont i ryggen eller ont när munnen öppnas. Sjukdomen kan också ge muskelstelhet eller spasmer. (Tipold & Jaggy, 1994; Cizinauskas o.a., 2000; LeCouteur & Grandy, 2005)

De kliniska symtomen kan vara akuta och progressiva, eller variera i styrka under veckor eller månader. (LeCouteur & Grandy, 2005)

Vanligen drabbar SRMA hundar av medelstora till stora raser. (LeCouteur & Grandy, 2005) Sjukdomen är vanligast hos unga hundar, åtta till arton månader, men kan drabba även yngre och äldre hundar. (Tipold & Jaggy, 1994)

SRMA kan ibland ses tillsammans med nonerosiv, idiopatisk, immunmedierad polyartrit. (Tipold & Jaggy, 1994)
Diagnostik

Diagnosen baseras på en ökad mängd leukocyter i CSF utan att något infektiöst agens kan isoleras, samt ett svar på kortikosteroidehandling. (LeCouteur & Grandy, 2005) Ofta ses också neutrofili i perifert blod. Även analyser av IgG, IgM och IgA i CSF är användbart i diagnostiken då produktionen av dessa antikroppar har visat sig vara förhöjd vid SRMA. (Tipold & Jaggy, 1994; Tipold o.a., 1995; LeCouteur & Grandy, 2005)

Behandling

Sjukdomen behandlas med kortikosteroide, en långtidsbehandling med gradvis minskande dos. (LeCouteur & Grandy, 2005; Cizinauskas o.a., 2000; Day & Bennet, 2008) Kortisonbehandlingen leder till att antalet vita blodkroppar i cerebrospinalvätskan minskar markant, medan IgA-koncentrationerna i både blod och CSF däremot förblir förhöjda. (Cizinauskas o.a., 2000)

Återfall är vanligt; ungefär hälften av fallen återfår sina kliniska symtom efter att kortikosteroidebehandlingen har avbrutits. Behandling i upp till sex månader kan vara nödvändigt för att förhindra kliniska återfall. (LeCouteur & Grandy, 2005)

För låga doser av kortikosteroide eller en för tidigt avbruten behandling kan leda till ett utdraget och svårbehandlat sjukdomstillstånd. Därför bör dosen inte minskas förrän prov från blod och cerebrospinalvätska inte längre visar tecken på en aktiv inflammation. (Tipold & Jaggy, 1994)

Prognosen är på sikt god för att bli av med de kliniska symtomen. (LeCouteur & Grandy, 2005) Vanligen återkommer inte sjukdomen igen efter att hunden blivit två till tre år. (Jeffery, 1995) Äldre hundar med högre IgA-nivåer i CSF och frekventa återfall kräver en längre behandling och har en sämre prognos. (Cizinauskas o.a., 2000)

Patologi

Den histopatologiska bilden vid SRMA utgörs av inflammation i meningerna och i meningernas artärer. I det akuta stadiet infiltreras vävnaden av makrofager, lymfocyter och polymorfkärniga celler. Kärlesionerna består framförallt av degenerativa förändringar i tunica media och en periarteriell inflammation, med mestadels mononukleära celler i tunica adventitia. (Tipold o.a., 1995)

I kroniska stadier är de inflammatoriska cellerna i vävnaden färre. Istället ses fibros av meninger och blodkärl, med mineralisering av vissa kärl samt fokalt i meningerna. (Tipold o.a., 1995)

Meningerna i alla regioner av det centrala nervsystemet är involverade i sjukdomen, men effekten av skadorna är störst i halsregionen (Tipold o.a., 1995). Där är den somatiska innerveringen tätare och rörligheten större, vilket gör att smärta och stelhet i det området blir det mest markanta resultatet av inflammationen. (Meric, 1988)

Vävnadsischemi och blödningar på grund av kärlskador ger upphov till de neurologiska symtomen som ibland kan ses i grava fall av sjukdomen. (Hoff & Vandeveld, 1981; Meric, 1988)
I den klassiska formen av sjukdomen ses en kraftig pleiocytos, det vill säga ett ökat antal leukocyter i cerebrospinalvätskan. Polymorfkärniga celler dominerar. Hos de fall som har visat symtom en längre tid ses en mild till måttlig pleiocytos med antingen blandade celler en övervikt av mononukleära celler. (Tipold & Jaggy, 1994)

I meningerna och i kärlens tunica adventitia finns infiltrat av plasmaceller som producerar IgA, IgG och IgM och en ökad mängd av dessa antikroppar finns i cerebrospinalvätskan. Även serumnivåerna av IgA är förhöjda hos hundar med SRMA. (Tipold & Jaggy, 1994; Tipold o.a., 1995)

Vanligen är kärlförändringarna begränsade till CNS, men även arterit i hjärtats kransvägar har settits i samband med SRMA. (Harcourt, 1978; Tipold o.a., 1995)

Sjukdomens uppkomst

Det finns flera tecken på att SRMA har en immunmedierad patogenes. (Day & Bennet, 2008) Ett av dessa är att inget infektiöst agens har kunnat påvisas i lesionerna (Harcourt, 1978; Meric o.a., 1985; Tipold & Jaggy, 1994).

Även det faktum att sjukdomen svarar på behandling med kortikosteroider talar för att patogenesena är immunmedierad. (Meric o.a., 1985; Tipold & Jaggy, 1994; Day & Bennet, 2008) Några fall av SRMA är dessutom ANA-positiva. (Tipold & Jaggy, 1994)

Hundar med SRMA har i jämförelse med friska hundar en högre proportion CD4-positiva T-hjälparceller och en lägre proportion CD8-positiva cytotoxiska T-celler i perifert blod. Att den övervägande delen av lymfocyterna är T-hjälparceller tyder på att det humorala immunsvaret spelar en roll vid SRMA. (Schwartz o.a., 2008a)

Även proportionen mellan B- och T-lymfocyter i blodet är förändrad hos hundar med SRMA, med en större andel B-celler hos dessa än hos friska hundar. I CSF är andelen B-celler ännu större, vilket tyder antingen på en selektiv rekrytering, eller på en kraftig proliferation av de B-celler som tas in i subarachnoidalrummet. (Schwartz o.a., 2008a)

Enligt en teori är det den ökade produktionen av IgA som utlöser den inflammatoriska processen vid SRMA. Den ökade IgA-syntesen skulle i sin tur kunna förklaras med att en minskning av antalet suppressorceller leder till en rubbning i T-cellsregleringen. (Tipold o.a., 1995)

De autoantikroppar mot CNS-proteiner som också förekommer i samband med SRMA ses dock även vid andra sjukdomar i det centrala nervsystemet och anses inte vara orsak till tillståndet. (Day & Bennet, 2008)

Invasionen av neutrofiler in till cerebrospinalvätskan vid SRMA kan förklaras av att neutrofilerna i perifert blod har ett ökat uttryck av ytmolekylen CD11a. Denna integrin medierar leukocyternas adhesion på endotelet, ett nödvändigt steg i utträdet ur kärlen. (Schwartz o.a., 2008b)
Ärftlighet

En förhöjd prevalens av SRMA i vissa raser (Tipold & Jaggy, 1994), liksom det faktum att fler än en hund i en kull ibland drabbas (Åström, 2000; Werholt, 2004; Anfinsen o.a., 2007) talar för att genetiska faktorer är viktiga för etiologin. En Genome-Wide Association-studie har identifierat fem loci, hos rasen tollare, som kan associeras med en ökad risk för att utveckla tollarsjuka. Två av dessa, lokalisera på kromosom 8 respektive 32, sätts i samband med just SRMA. (Wilbe o.a., 2010b)

I den norska populationen av tollare har prevalensen av SRMA uppskattats till åtminstone 2,5 %. Inom vissa familjer i rasen finns en markant ökad risk för att utveckla sjukdomen, med flera kullar där hälften av syskonen är drabbade. Nedärvningsmönstret är inte klarlagt. (Anfinsen o.a., 2007)

Lymfocytär thyroidit

Lymfocytär thyroidit är en immunmedierad destruktion av sköldkörtelvävnaden hos hund, där flera organystem påverkas av den minska cellmetabolism som brist på thyroideahormoner leder till. (Day & Shaw, 2008; Feldman & Nelson, 2004a; Scott-Moncrieff & Guptill-Yoran, 2005) Hypothyroidism, med minskad produktion av thyroideahormonerna thyroxin (T4) och trijodothyronin (T3), är ett relativt vanligt tillstånd hos hund. (Scott-Moncrieff & Guptill-Yoran)

Sköldkörtelns hormoner

Thyroideahormonerna har ett stort antal fysiologiska effekter. De ökar metabolismen och syrekonsumtionen i de flesta av kroppens vävnader, har en positiv inotrop effekt på hjärtmuskulaturen, har en katabol effekt på muskler och fettvävnad samt stimulerar erytropoes. De är också viktiga för tillväxt och utveckling av nervsystem och skelett. (Scott-Moncrieff & Guptill-Yoran, 2005)

Allt cirkulerande T4 produceras i sköldkörteln, medan det mesta av det T3 som finns i blodet hängr från en extrathyroidal dejodinering av T4. (Scott-Moncrieff & Guptill-Yoran, 2005; Feldman & Nelson, 2004a)
T4, och till en mindre del även T3, frisätts från glykoproteinet thyroglobulin, genom en proteolytisk process i sköldkörtelsens celler. Thyroglobulinet produceras av sköldkörtelcellerna, för att sedan lagras i lumen av de kolloidydda folliclar som sköldkörteln utgörs av, tills det återupptas av cellerna för att genomgå proteolytisk process. De frisatta sköldkörtelhormonerna passar därefter ut i blodet. (Feldman & Nelson, 2004a)

Mer än 99 % av T4 och T3 i blodet är bundet till plasmaproteiner, T4 starkare än T3. Bara fria hormoner har en biologisk effekt på kroppens celler, och bara dessa utövar negativ feedback på hypofys och hypothalamus. T3 är det mest potenta av de två hormonerna, tre till fem gånger mer potent än T4. (Scott-Moncrieff & Guptill-Yoran, 2005)

Sjukdomen

Symtom

De flesta organsystemen kan påverkas vid hypothyroidism och vilka kliniska tecken som ses och dominerar, varierar mellan individer och även mellan raser. (Feldman & Nelson, 2004a)

Dermatologiska förändringar är vanligt vid hypothyroidism, och innefattar torr, fjällig hud, förändrad pälskvalitet, alopeci (håravfall), och ytlig pyodermi (hudinfektion). (Scott-Moncrieff & Guptill-Yoran, 2005)

Hypothyroidism kan leda till symtom från centralet eller perifera nervsystemet. Vanligast är påverkan på det perifera nervsystemet, däribland fascialisparalys, och nedsatt proprioception. Det vanligaste neuromuskulära symtomet är svaghet. (Feldman & Nelson, 2004a)

reproduktionsstörningar är ovanligt, men det som oftast ses är förlängd anöstrus. (Feldman & Nelson, 2004a)

Diagnostik

Förekomst av antikroppar mot thyroglobulin (TgAA) i blodet är nästan alltid ett tecken på en underliggande lymfocytär thyroidit. Alla fall av lymfocytär thyroidit är dock inte positiva för TgAA. I senare stadier av sjukdomen kan tidigare positiva hundar bli negativa. (Ferguson, 2007) Totalt är ungefär hälften av alla hypothyroida hundar TgAA-positiva. (Beale, Halliwell & Chen, 1990; Ferguson, 2007)

Förekomst av TgAA är det tidigaste tecknet på patologiska förändringar i sköldkörteln, och kan upptäckas före kliniska symptom som sänkta hormonnivåer kan registreras. (Ferguson, 2007)

Thyroideas funktion kan utvärderas genom mätning av serumkoncentrationer av thyroideahormoner, i synnerhet T4, och av TSH. Låga T4-nivåer i kombination med höga TSH-nivåer stödjer diagnosen hypothyroidism, medan normala nivåer av både T4 och TSH utesluter diagnosen. Andra kombinationer av resultat är svårare att tolka. (Feldman & Nelson, 2004a)

Både fritt T4 och totalt T4 kan användas för att utvärdera sköldkörtelns funktion. En analys av endast totalt T4 är bara av diagnostiskt värde vid normala eller höga koncentrationer, vilka utesluter hypothyroidism. Fritt T4 ger en uppskattning av vilka koncentrationer som är tillgängliga för vävnaderna, och har visat sig korrelera väl med de kliniska symptomen. (Ferguson, 2007)

Diagnostiken av hypothyroidism komplicerar av en överlappning av T4-nivåer mellan friska och hypothyroida hundar, samt av det faktum att flera faktorer kan sänka nivåerna av thyroideahormoner även hos icke hypothyroida hundar. Till dessa faktorer hör andra sjukdomar, läkemedel och naturliga, slumpmässiga fluktuationer över dygnet. Dessutom finns det skillnader mellan olika raser i hormonnivåerna. Detta gör att diagnosen hypothyroidism bara kan ställas med stöd av den kliniska bilden. (Feldman & Nelson, 2004a)

De minskade koncentrationerna av thyroideahormoner vid ickethyroida sjukdomar tycks vara ett skydd mot katabolismen vid sjukdom. (Ferguson, 2007) Sänkningen sker trots att sköldkörtelvävnaden har tillräckligt med funktionellt parenkym för att ha potential att frisätta tillräckliga hormonnivåer. Mest påverkas de totala nivåerna av T4, men i många fall sänks även nivåerna av fritt T4. (Torres o.a., 2003) Sänkningen är mest markant vid allvarligare sjukdomar. (Feldman & Nelson, 2004a)

Ungefär en fjärdedel av hypothyroida hundar har normala TSH-värden, men förhöjda värden är mycket sällsynt hos euthyroida hundar vilket innebär att testet bidrar med specificitet vid låga T4-värden. (Ferguson, 2007)
Behandling

Hypothyroidism behandlas med syntetiskt T4, levothyroxin. Prognosen är då god vid primär hypothyroidism. Vanligen ses en snabb förändring i mentalitet och aktivitet, medan det dröjer längre tid för andra symtom att förbättras. (Feldman & Nelson, 2004a)

Behandling med levothyroxin krävs bara då kliniska tecken eller diagnostiska prov tyder på brist på thyroideahormon. Bara förekomst av TgAA är visserligen en stark indikation på en underliggande lymfocytär thyroidit, men innebär inte att det finns ett behov av levothyroxinbehandling. (Ferguson, 2007)

Patologi

Lymfocytär thyroidit kännetecknas histologiskt av en diffus infiltration av lymfocyter, plasmaceller och makrofager i sköldkörtelvävnaden, med en progressiv destruktion av folliklarna och sekundär fibros. (Feldman & Nelson, 2004a),

I ungefär hälften av fallen av primär hypothyroidism ses det histologiska utseendet hos lymfocytär thyroidit. I andra hälften av fallen ses idiopatisk atrofi, där sköldkörtelns parenkym har ersatts av fettvävnad eller bindväv. Ätminstone en del av dessa fall utgör en slutfas av lymfocytär thyroidit. (Graham, Refsal & Nachreiner, 2007)

Sjukdomens uppkomst

Destruktionen av sköldkörtelvävnaden är en långsam process, och det kan krävas att mer än 75 % av vävnaden förstörs, innan kliniska symptom ses. Ofta tar det över ett år för funktionstester att bli onormala, efter att tester för lymfocytär thyroidit blivit positiva. (Feldman & Nelson, 2004a)

Slutligen uppkommer en atrofisk hypothyroidism, där thyroideavävnaden har ersatts av fettvävnad och bindväv, och de inflammatoriska cellerna har försvinnit. Frånvaron av inflammation leder till att autoantikropparna i blodet försvinner. (Graham, Refsal & Nachreiner, 2007)

Autoantikropparna vid lymfocytär thyroidit tros vara ett epifenomen, snarare än att ha någon direkt roll i patogenesen. (Day & Shaw, 2008) Antikropparna är
troligen ett resultat av att vävnadsskadan leder till att självantigen, som normalt är avgränsade från immunförsvarv, exponeras. (Maitra & Kumar, 2003) I 50-70 % av fall med hypothyroidism ses antikroppar mot thyroglobulin. (Day & Shaw, 2008) Mer sällsynt är autoantikroppar mot T4 och T3, men dessa har en betydelse för diagnostiken genom att de, vid vissa analysmetoder, kan leda till falskt höga nivåer av thyroidea hormon. (Nachreiner o.a., 2002) Även autoantikroppar mot thyreoperoxidasa, det vanligaste autoantigenet vid autoimmun lymfocytär thyroidit hos människa, kan förekomma hos hypothyroida hundar. (Skopek, 2006)

En teori om patogenesen är att en defekt hos T-suppressorcellerna skulle göra det möjligt för andra T-lymfocyter att attackera follikelceller, och inducera differentiering av autoantikroppsproducerande plasmaceller. (Feldman & Nelson, 2004a) Autoimmun lymfocytär thyroidit hos människa, kallad Hashimotos sjukdom, orsakas just av en sådan defekt i T-cellerna, där thyroidspecifika CD4+ T-cellar inducerar bildandet av CD8+ cytotoxiska T-cellar och autoantikroppar, där de cytotoxiska T-cellerna är primärt ansvariga för vävnadsskadorna. (Maitra & Kumar, 2003)

Äftlighet

Genetiska faktorer är viktiga i utvecklingen av lymfocytär thyroidit, och en ökad incidens av sjukdomen ses i vissa raser och familjer. (Feldman & Nelson, 2004a) Sjukdomen tycks ha en polygen nedärvning hos hund. (Capen, 2001) En association mellan DLA-haplotype och utveckling av hypothyroidism har setts. Hos Dobermann och Riesenschnauzer har haplotyphen DLA-DRB1*01201/DQA1*00101/DQB1*00201 identifierats som en riskhaplotyp (Kennedy, 2006c; Wilbe o.a., 2010a). Hos Riesenschnauzer har även en skyddande haplotyp, DLA-DRB1*01301/DQA1*00301/DQB1*00501, identifierats. (Wilbe o.a., 2010a).

Även hos människor med autoimmuna thyroida sjukdomar finns ett samband med MHC klass II, med olika riskgener identifierade hos olika populationer. (Jacobson o.a., 2008)

Riskfaktorer i miljön är dåligt kartlagda hos hund, men kopplingar till infektioner och vaccinering har diskuterats. (Feldman & Nelson, 2004a)

Addisons sjukdom

Addisons sjukdom, hypoadrenokorticism, orsakas av en nedsatt binjurebarksfunktion som ger otillräckliga nivåer av glukokortikoider och/eller mineralkortikoider. (Day & Shaw, 2008)

Binjurarnas bark producerar ett trettiotal olika hormoner, varav många inte anses ha någon stor klinisk betydelse. Mineralkortikoiderna är en grupp hormoner, av vilka det viktigaste är aldosteron, med betydelse för elektrolyt- och vattenhomeostas. (Herrtage, 2005)

Aldosteronets viktigaste funktion är att skydda mot hypotension och kaliumintoxikation, genom att främja reabsorption av natrium, klor och vatten och exkretion av kalium. Frisättningen styrs framförallt av renin-angiotensin-systemet, och reninfrisättningen från njurarna påverkas av blodtryck, natrium- och kaliumnivåer och det sympatiska nervsystemet. (Herrtage, 2005)
Glukokortikoiderna, varav det viktigaste är kortisol, har bland annat till funktion att främja glukoneogenes. Frisättningen av dessa hormon regleras av ACTH (adrenocorticotrophic releasing hormone) från främre hypofysen, som i sin tur regleras av CRH (corticotrophin releasing hormone) från hypothalamus. Kortisol utövar negativ feedback på både hypofysens frisättning av ACTH och hypothalamus av CRH. (Herrtage, 2005)

Sjukdomen

Symtom

Bristen på glukokortikoider leder till nedsatt stresstolerans, aptitlöshet, kräkningar, diarré, buksmärtor och letargi. (Herrtage, 2005)

Binjurevävnaden bryts ned gradvis, vilket leder till en successiv utveckling av kliniska symtom. Till en början leder sjukdomen bara till en otillräcklig binjurereserv, som ger kliniska symtom bara vid ökad stress, men till slut utvecklas sjukdomen till en ständig otillräcklig hormonsekretion. (Feldman & Nelson, 2004b)

Akut primär hypoadrenokorticism visar sig som hypovolemisk chock, en så kallad Addisonkris, med ett snabbt, livshotande förlopp. Drabbade djur är dehydrerade och har svag puls, kraftig bradykardi, buksmärtor, kräkningar, diarré och hypotermi. (Herrtage, 2005)

Omkring 70 % av de hundar som drabbas av Addisons sjukdom är tikar. Alla åldrar kan drabbas, men medelåldern vid diagnos är 4-5 år. (Feldman & Nelson, 2004)

Diagnostik

Hematologiska fynd kan inkludera lymfocytos, eosinofili och en mild anemi och till de biokemiska fynden hör prerenal azotemi (ökad mängd urea eller andra kvävehaltiga ämnen i blodet), hyponatremi (minskad natriumhalt i blodet), hyperkalemi (ökad kaliummängd i blodet) och metabolisk acidos (förhöjd halt sura ämnen). En definitiv diagnos ställs genom ACTH-stimulering, då kortisolnivåerna i blodet är låga både före och efter stimuleringen. (Herrtage, 2005)
Behandling

Patio

Histopatologiska förändringar vid Addisons sjukdom involverar en kraftig atrofi av binjurebarken, ibland till den grad att binjuren inte längre kan lokaliseras makroskopiskt. I det som återstår av cortex finns infiltrat av lymfocyter och plasmaceller. (Schaeer o.a., 1986)

Sjukdomens uppkomst

Den vanligaste orsaken till Addisons sjukdom hos hund är primär, idiopatisk, bilateral binjurebarksatrofi. (Day & Shaw, 2008) Immunmedierad destruktion av binjurebarken är i regel en gradvis process. Först efter en förlust av mer än 90 % av vävnaden utvecklas kliniska symtom på hypoadrenokorticism. (Feldman & Nelson, 2004b)

Hos människa orsakas Addisons sjukdom vanligen av en autoimmun inflammation i binjurarna, med lymfocytär infiltration av binjurebarken och produktion av autoantikroppar mot binjurebarkseller och enzymer som är involverade i steroidmetabolismen. (Day & Shaw, 2008) Hos människa är ett av de viktigaste autoantigenerna 21-hydroxylas. (Winqvist o.a., 1992)

Även hos hundar med Addisons sjukdom har lymfocytär infiltration av binjurebarken och autoantikroppar mot binjurebarkseller påvisats. Detta talar för att det även hos hund finns en autoimmun bakgrund till sjukdomen. (Schaeer o.a., 1986; Day & Shaw, 2008) Det faktum att tikar loper en högre risk att drabbas talar också för en autoimmun etiologi, då en predilektion för tikar är vanligt vid immunmedierade sjukdomar hos hund. (Feldman & Nelson, 2004b) Hos vissa raser, däribland tollare, har dock ingen skillnad i risk setts mellan könen. (Hughes o.a., 2007; Oberbauer o.a., 2002)

Äftlighet

Flera raser är predisponerade för att utveckla Addisons sjukdom (Feldman & Nelson, 2004b), och avrvarbarheten för hypoadrenokorticism har visat sig vara hög (Hughes o.a., 2007; Oberbauer o.a., 2002). Den genetiska bakgrunden till sjukdomen är dock inte helt klarlagd. (Herrtage, 2005) Hos människa har ett samband setts mellan autoimmun adrenalit och HLA. (Maitra & Kumar, 2003) Även hos hund har flera haplotyper visat sig påverka risken för att utveckla hypoadrenokorticism. (Massey o.a., 2013)

Nova Scotia duck tolling retriever är en av de hundraser som har en ovanligt hög incidens av hypoadrenokorticism, och sjukdomen tycks nedäras autosomalt recessivt i rasen. (Hughes o.a., 2007) Haplotypen DLA-DRB1*01502/DQA*00601/DQB1*02301 har satts i samband med en högre risk att utveckla sjukdomen hos nordamerikanska tollare. Risken ökar också för de individer som är homozygota i DLA klass II-regionen. (Hughes o.a., 2010)
Övriga sjukdomar

Vitiligo

Lesionerna som uppstår vid vitiligo är asymtomatiska, men sjukdomen innebär hos människa en ökad risk för ögonsjukdomar, sköldkörtelsjukdomar, diabetes mellitus och Addisons sjukdom. (Gross o.a., 2005)

Histologiskt ses en avsaknad av melanocyter i lesionerna. Några inflammatoriska infiltrat ses vanligen inte (Alhaidari, 2005), men ibland kan en mindre ansamling av lymfocyter ses perivaskulärt (Gross o.a., 2005).

Sjukdomens patogenes är omstridd. (Schallreuter o.a., 2008) Det finns flera skilda teorier, däribland en autoimmun destruktion av melanocyterna; en neurokemisk inhibering av själva melanogenesen; och defekter i melanocyternas skyddsmechanismer mot melaninets toxiska prekurseror. (Hargis & Ginn, 2007, Schallreuter o.a., 2008) Ingen av dessa teorier har fullkomligt lyckats förklara hur melanocyterna förstörs. En komplex patogenes med en kombination av mekanismer från olika teorier, där flera etiologiska faktorer samverkar, har föreslagits ligga bakom sjukdomen. (Schallreuter o.a., 2008)

Epilepsi

Idiopatisk, eller primär, epilepsi, är ett tillstånd med återkommande anfall som saknar en påvisbar strukturell orsak i CSN. Vanligen handlar det om kortvariga tonisk-kloniska anfall (tonisk kramp är en ihållande kramp med stelhet; klonisk kramp innebär korta, snabba muskelryckningar), som debuterar i en ålder på mellan ett halvt och tre år. Mellan anfälerna är de drabbade hundarna normala, och inga avvikelse upptäcks vid klinisk och neurologisk undersökning. (Taylor, 2003)

Tillståndet har sitt upphov i någon form av nedärvd funktionell störning i hjärnan och anfälerna tros orsakas av en obalans i neurotransmissionen. (Taylor, 2003) Autoantikroppar kan utgöra en del av patogenesen vid epilepsi. Hos människliga patienter med olika typer av epilepsi har höjda nivåer av autoantikroppar, mot exempelvis glutamatreceptorer och DNA-molekyler, i flera fall påvisats i serum. (Galor o.a., 2004)
MATERIAL OCH METODER

Teori

I en genetisk associationsstudie undersöks huruvida en viss gen kan kopplas till en viss egenskap eller sjukdom. Detta görs genom att frekvenserna av olika alleler av genetiska markörer som mikrosatelliter eller Single Nucleotide Polymorphisms (SNPs) alternativt om sjukdomsgenen är känd eller om en kandidatgen analyseras så jämförs allelfrekvenser mellan olika grupper av kliniskt diagnosticerade individer. En högre frekvens av en viss allele i en grupp med en viss sjukdom, jämfört med i en grupp friska individer, innebär att denna allele kan sättas i samband med en högre risk att utveckla sjukdomen. Det är viktigt att urvalet av hundar inte är stratifierat, för om fallen skulle tas från i huvudsak en subpopulation och kontrollerna från en annan blir det svårt att avgöra om ett sjukdomssamband är verkligt eller om en genetisk skillnad mellan fall och kontroll bara beror på att de tillhör olika subpopulationer.

I många fall använder man sig av polymorfa genetiska markörer, som SNP:s eller mikrosatelliter, i associationsstudier. När det gäller DRB1, DQA1 och DQB1 finns det dock så många alleler – och nya hittas hos näst intill varje ny hundras som studeras – att tillgängliga SNP-array inte kan särskilja alla kända alleler. För att i detta fall avgöra vilka allele som en individ bär på måste istället nukleotidsekvenserna bestämmas genom en process som kallas sekvensering. Eftersom variationen inom dessa gener är begränsad till exon 2, som kodar för den antigenbildande delen av molekylerna, behöver bara denna del av sekvenserna analyseras.

Från DNA, som kan extraheras ur exempelvis ett blodprov, produceras kopior av de önskade sekvenserna med hjälp av PCR-teknik. Då tillsätts specifika primers för exon 2 från de tre polymorfa DLA klass II generna DRB1, DQA1 och DQB1, tillsammans med termostabilt DNA-polymeras och fria nukleotider till DNA:t , varefter blandningen utsätts för ett antal särskilda temperaturer i cykler för att DNA-amplifiering ska ske. I varje cykel separeras först DNA-molekylens strängar genom upphettning till 95°C (denaturering). Därefter sänks temperaturen till omkring 50-60°C och primers binder till de enkla DNA-strängarna (annealing). Temperaturen höjs till 72°C, och polymeraset bygger på med nukleotider tills fullständiga dubbelsträngade kopior av DNA-sekvensen har bildats (elongering). Dessa kopior denatureras genom en ny upphettning, vilket påbörjar nästa cykel. På detta sätt leder varje PCR-cykel till en fördubbling av antalet kopior.

De primers som används för PCR är i denna studie märkta med en nukleotidsekvens som kallas T7, för att sekvenseringsprimern T7 ska kunna binda dit vid sekvenseringen. Överskott av primers och nukleotider renas därefter bort genom tillsats av enzymer.

Vid sekvenseringen kopieras DNA-strängarna med hjälp av DNA-polymeras, med T7 som primer, i en process som liknar PCR men som förutom vanliga deoxynukleotidfosfater (dNTP) även involverar en liten mängd särskilda dideoxynukleotider (ddNTP), även dessa med kvävebaserna adenin, guanin, thymin eller cytosin. Dideoxynukleotiderna saknar den hydroxylgrupp på 3'-positionen som är nödvändig för att binda till sig nästa nukleotidfosfat, vilket
innebär att när de inkorporeras i en DNA-sträng kommer de att hindra fortsatt syntes av den strängen. (Griffiths, 2000)

Dideoxynukleotidfosfaterna kommer att inkorporeras slumpmässigt i det syntetiserade DNA:t, på olika platser på olika strängar. Därför kommer DNA-fragment i olika längder att uppstå för var och en av de fyra dideoxynukleotidfosfaterna, och dessa längder kommer att motsvara alla olika positioner som respektive bas har i sekwensen. (Griffiths, 2000)

Segmenten separeras i storleksordning genom kapillärelektrofores – där en elektrisk spänning används för att föra fragmenten genom tunna kapillärer. Fragmenten kommer att passera kapillären i en ordning som motsvarar deras storlek. (Klug, Cummings & Spencer, 2007) Genom att de fyra dideoxynukleotiderna ges en fluorescerande märkning i varsin färg kan en detektor läsa av vilken kvävebas varje erhållon längd avslutas med. (Griffiths, 2000) Resultatet visas som ett elektroferogram, en graf med en serie toppar i de fyra färgerna, där varje topp motsvarar en nukleotid i sekwensen.

Elektroferogrammen granskas därefter med hjälp av datorprogram för att kunna korrigeras och kompletteras. Där jämförs de med så kallade consensus-sekvenser för DRB1, DQA1 och DQB1, som visar de nukleotider som tidigare har identifierats för varje position i sekwensen. De erhållna sekwenserna jämförs sedan med ett referensbibliotek med allelernas namn.

Den procentuella fördelningen av olika alleler i grupper av sjuka och friska kan därefter jämföras. Samband undersöks även för haplotyperna, det vill säga kombinationerna av DRB1, DQA1 och DQB1, och för genotyperna. I de fall då en skillnad kan ses, kan den statistiska signifikansen bedömas exempelvis med en 2x2-tabell.

Hundar

I studien ingår 35 hundar med bekräftade eller misstänkta autoimmuna sjukdomar, alla av rasen Nova Scotia duck tolling retriever. I kontrollgruppen ingår 39 hundar av samma ras, vilka är över sju år och inte har drabbats av någon autoimmun sjukdom. De totalt 74 hundarna i studien kommer från tre länder: från Storbritannien, Sverige och, en liten grupp, från USA (Boston).

I studien ingår 13 fall av SRMA och 12 fall av CLT. Dessutom ingår 10 fall av övriga sjukdomar av autoimmun, eller troligen autoimmun, bakgrund, även om antalet individer med dessa sjukdomar är alltför litet för att hitta en signifikant association valde vi att inkludera dessa i studien. I tabell 2 visas en sammanställning av sjukdomar och hemland för hundarna i studien.

Tabell 2: Sammanställning av de hundar som ingår i studien

<table>
<thead>
<tr>
<th>Sjukdom</th>
<th>Antal hundar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sverige</td>
</tr>
<tr>
<td>SRMA</td>
<td>13</td>
</tr>
<tr>
<td>CLT</td>
<td>7</td>
</tr>
<tr>
<td>Övriga sjukdomar:</td>
<td></td>
</tr>
</tbody>
</table>
DNA
I studien används DNA som har extraherats från blodprover från nämnda hundar och spätts till en koncentration av 10-20 ng/µl.

Amplifiering av DNA-sekvenser (PCR)
Amplifiering av sekvenserna DRB1, DQA1 och DQB1 görs med PCR-teknik. De primers som används för amplifiering av respektive sekvens visas i tabell 3. "Reverse"-primern för DRB1 och DQA1 samt "forward"-primern för DQB1, är märkta med nukleotidsekvensen T7, som sedan kommer användas vid sekvenseringen.

För amplifiering av DRB1 och DQA1 används en reaktionsmix med AmpliTaq Gold (Applied Biosystems). 2 µl DNA ingår i en total reaktionsvolym på 20 µl, vilket ger en DNA-koncentration på 1-2 ng/µl. Primers ("forward" och "reverse") tillsätts till en slutkoncentration av 0,25 µM vardera och dNTP till en koncentration av 0,2 mM. Resterande reaktionslösning består av 1 x PCR-buffer, MgCl₂ till en koncentration av 1,5 mM och 0,7 u AmpliTaq Gold (DNA-polymeras), samt H₂O för att nå den önskade volymen på 20 µl.

För amplifiering av DQB1 används istället HotStarTaq (Qiagen). I den totala reaktionsvolymen på 25 µl ingår 2µl DNA, vilket innebär en DNA-koncentration på 0,8-1,6 ng/µl. Primers ingår här med en koncentration av 0,1µM vardera och dNTP med en koncentration på 0,25 mM. Dessutom ingår 1x buffert, 0,625 u HotStarTaq-enzym, 1x Q-lösning och H₂O i reaktionslösningen.

Tabell 3: Primers för DRB1, DQA1 och DQB1, samt sekvensen T7. (F = forward, R = reverse)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primersekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB1 F</td>
<td>CCGTCCCCACAGCACATTCC</td>
</tr>
<tr>
<td>DRB1 R (+T7)</td>
<td>(T7)TGTGTACACACCTCAGCACCA</td>
</tr>
<tr>
<td>DQA1 F</td>
<td>TAAGGTTCTTTTCTCCCTCT</td>
</tr>
</tbody>
</table>
DQA1 R (+T7)
(T7)GGACAGATTCAGTGAAGAGA

DQB1 F (+T7)
(T7)CTCACTGGCGCGGTGCTC

DQB1 R
CACCTGCCGCTGCAACGTG

T7
TAATACGACTCACTATAGGG

Vid amplifieringen används touchdown-PCR, vilket innebär att temperaturen under annealing-fasen sänks för varje cykel. I tabell 3 visas de PCR-program som används för varje sekvens.

Produkten från PCR-reaktionen utvärderas genom gelelektrofores av stickprover.

Tabell 4: PCR-program för amplifiering av DRB1, DQA1 och DQB1

<table>
<thead>
<tr>
<th>PCR-program</th>
<th>Steg 1</th>
<th>Steg 2</th>
<th>Steg 3</th>
<th>Steg 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB1</td>
<td>14 cykler</td>
<td>20 cykler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95°C 15 min</td>
<td>95°C 30 s</td>
<td>95°C 30 s</td>
<td>72°C 10 min</td>
<td></td>
</tr>
<tr>
<td>62-55°C 1 min (-0,5°C/cykel)</td>
<td>55°C 1 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°C 1 min</td>
<td>72°C 1 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DQA1</td>
<td>14 cykler</td>
<td>20 cykler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95°C 15 min</td>
<td>95°C 30 s</td>
<td>95°C 30 s</td>
<td>72°C 10 min</td>
<td></td>
</tr>
<tr>
<td>54-47°C 1 min (-0,5°C/cykel)</td>
<td>47°C 1 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°C 1 min</td>
<td>72°C 1 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DQB1</td>
<td>8 cykler</td>
<td>40 cykler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95°C 10 min</td>
<td>95°C 30 s</td>
<td>95°C 30 s</td>
<td>72°C 7 min</td>
<td></td>
</tr>
<tr>
<td>73-66°C 30 s (-0,5°C/cykel)</td>
<td>66°C 30 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72°C 4 min</td>
<td>72°C 4 min</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enzymatisk rening av PCR-produkt (ExoCIAP)

Överskottet av primers och dNTP:s avlägsnas enzymatiskt från PCR-produkten, med exonukleas 1 (Exo1, från *E.coli*) och "calf intestine alkaline phosphatase"
(CIAP). Till varje brunn med 20 µl (DRB1 och DQA1) eller 25 µl (DQB1) PCR-produkt tillsätts 2 µl ExoCIAPreaktionsmix, bestående av Exo1, CIAP samt Taq-buffert med KCl och MgCl₂ (Fermentas).

Efter 1h inkubation i 37°C, inaktiveras enzymerna genom upphettning till 85°C i 15 min.

Sekvensering

Till 1 µl av PCR-produkten tillsätts 1 µl av sekvenseringsprimern T7 (till en slutkoncentration på 0,28 µM) och 16 µl vatten.

Sekvenseringen utförs av Uppsala Genome Center Sequencing Service, Rudbeckslaboratoriet. Där används BigDye Terminator v3.1 (Applied Biosystems) för sekvenseringsreaktionen och de resulterande DNA-fragmenten separeras genom kapillärelektrofores med ABI3730XL.

Sekvensanalys

Statistik

En 2x2-tabell, i form av ett program tillhandahållt av VassarStats webplats för statistiska beräkningar, användes för att utvärdera om eventuella skillnader i allel- och haplotyperfrekvens mellan kontroller och de olika sjukdomskategorierna var statistiskt signifikanta. Med detta kan odds ratio, relativ risk och p-värde för alleler och haplotyper räknas ut.
RESULTAT

I tabell 5 visas de allele som har identifierats i den totala studiepopulationen på 74 hundar, samt i vilka frekvenser dessa förekommer. Där visas också fördelningen av allele i respektive population av Nova Scotia duck tolling retriever. I bilaga 1 visas en förteckning över varje individs alleluppsättning.

Resultat presenteras bara för DRB1 och DQA1, eftersom DQB1 utgick ur studien när sekvenseringen inte lyckades trots flera försök.

Tabell 5: Fördelning av allele av DRB1 och DQA1, i den totala studiepopulationen (Tot) på 74 hundar, samt hos de 41 svenska hundarna (Sv), de 27 brittiska hundarna (Eng) och de 6 hundarna från Boston (Bost.)

<table>
<thead>
<tr>
<th>Allel</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot. Sv Eng Bost.</td>
</tr>
<tr>
<td>DRB1</td>
<td></td>
</tr>
<tr>
<td>*00601</td>
<td>31,1 (46) 34,1 (28) 24,1 (13) 41,7 (5)</td>
</tr>
<tr>
<td>*01502</td>
<td>30,4 (45) 30,5 (25) 31,5 (17) 25 (3)</td>
</tr>
<tr>
<td>*01501</td>
<td>18,2 (27) 19,5 (16) 14,8 (8) 25 (3)</td>
</tr>
<tr>
<td>*02301</td>
<td>10,8 (16) 6,1 (5) 18,5 (10) 8,3 (1)</td>
</tr>
<tr>
<td>*00101</td>
<td>4,7 (7) 1,2 (1) 11,1 (6)</td>
</tr>
<tr>
<td>*00401</td>
<td>4,1 (6) 7,3 (6)</td>
</tr>
<tr>
<td>*01301</td>
<td>0,7 (1) 1,2 (1)</td>
</tr>
<tr>
<td></td>
<td>[148] [82] [54] [12]</td>
</tr>
<tr>
<td>DQA1</td>
<td></td>
</tr>
<tr>
<td>*00601</td>
<td>48,6 (72) 50 (41) 46,3 (25) 50 (6)</td>
</tr>
<tr>
<td>*005011</td>
<td>31,1 (46) 34,1 (28) 24,1 (13) 41,7 (5)</td>
</tr>
<tr>
<td>*00301</td>
<td>11,5 (17) 7,3 (6) 18,5 (10) 8,3 (1)</td>
</tr>
<tr>
<td>*00101</td>
<td>4,7 (7) 1,2 (1) 11,1 (6)</td>
</tr>
<tr>
<td>*00201</td>
<td>4,1 (6) 7,3 (6)</td>
</tr>
<tr>
<td></td>
<td>[148] [82] [54] [12]</td>
</tr>
</tbody>
</table>

DRB1-alleler

Sju allele av DRB1 hittades i den totala studiepopulationen. De vanligaste DRB1-allele som *00601 och *01502, som båda har en frekvens på ungefär 30 %. Den förstnämnda är den allra vanligast förekommande i den svenska populationen, medan den senare är något vanligare i den brittiska.

Även DRB1*01501 och DRB1*02301 är relativt vanliga, och utgör ungefär en femtedel respektive en tiondel av DRB1-allele. DRB1*02301 förekommer med en cirka tre gånger större frekvens i den brittiska populationen jämfört med i den svenska. De mer ovanliga allele är DRB1*00101, *00401 och *01301, där den sistnämnda hittades i bara ett enda exemplar.
DQA1-alleler

Den vanligaste av de fem funna alleleerna av DQA1 var *00601, som utgjorde nästan hälften av alleleerna, följd av *005011 med en knapp tredjedel, och *00301 med ungefär en tiondel, även om den sistnämnda närmar sig en femtedel i den brittiska populationen.

Av de två mer sällsynt förekommande alleleerna identifierades DQA1*00201 bara i den svenska populationen, medan DQA1*00101 var betydligt vanligare hos de brittiska hundarna än hos de svenska.

Allelfrekvenser för de olika sjukdomskategorierna

I tabell 6 framgår fördelningen av allele i de olika gruppen i studien: friska kontroller; hundar med SRMA; hundar med CLT; hundar med övriga autoimmuna sjukdomar; samt en sammanslagning av alla hundar med någon form av immunmedierat tillstånd (det vill säga SRMA, CLT eller en övrig sjukdom). Ingen signifikant skillnad i allelfrekvenser förekommer mellan de olika grupperna.

I tabell 7 och 8 visas resultat separat för den svenska respektive brittiska populationen. De hundar från Boston som ingick i studien presenteras inte i någon egen tabell på grund av sitt låga antal.

<table>
<thead>
<tr>
<th>Allel</th>
<th>Andel i % (antal hundar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
</tr>
</tbody>
</table>

DRB1

<table>
<thead>
<tr>
<th>Allel</th>
<th>Andel i % (antal hundar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allel</th>
<th>Andel i % (antal hundar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
</tr>
</tbody>
</table>

DQA1

<table>
<thead>
<tr>
<th>Allel</th>
<th>Andel i % (antal hundar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
</tr>
</tbody>
</table>

33
Tabell 7: Prevalens av alleler av DQA1 och DQB1 hos de 41 svenska hundarna i studien.

<table>
<thead>
<tr>
<th>Allel</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.FKÖCLTAS</td>
</tr>
<tr>
<td>(Sverige)</td>
<td></td>
</tr>
<tr>
<td>DRB1</td>
<td></td>
</tr>
<tr>
<td>*00601</td>
<td>34,1 (28)28,8 (5)</td>
</tr>
<tr>
<td>*01502</td>
<td>30,5 (25)22,2 (4)</td>
</tr>
<tr>
<td>*01501</td>
<td>19,5 (16)33,3 (6)</td>
</tr>
<tr>
<td>*00401</td>
<td>7,3 (6)11,1 (2)</td>
</tr>
<tr>
<td>*02301</td>
<td>6,1 (5)5,6 (1)</td>
</tr>
<tr>
<td>*00101</td>
<td>1,2 (1)00</td>
</tr>
<tr>
<td>*01301</td>
<td>1,2 (1)2 (1)0</td>
</tr>
<tr>
<td></td>
<td>[82] [50] [18] [14] [32]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allel</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.FKÖCLTAS</td>
</tr>
<tr>
<td>DQA1</td>
<td></td>
</tr>
<tr>
<td>*00601</td>
<td>50 (41)55,6 (10)</td>
</tr>
<tr>
<td>*00501</td>
<td>34,1 (28)27,8 (5)</td>
</tr>
<tr>
<td>*00301</td>
<td>7,3 (6)5,6 (1)</td>
</tr>
<tr>
<td>*00201</td>
<td>7,3 (6)11,1 (2)</td>
</tr>
<tr>
<td>*00101</td>
<td>1,2 (1)00</td>
</tr>
<tr>
<td></td>
<td>[82] [50] [18] [14] [32]</td>
</tr>
</tbody>
</table>

Tabell 8: Fördelning av DQA1- och DQB1-alleler hos de 27 brittiska hundarna i studien.

<table>
<thead>
<tr>
<th>Allel</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.FKÖCLTAS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(Storbrit.)</td>
<td></td>
</tr>
<tr>
<td>DRB1</td>
<td></td>
</tr>
<tr>
<td>*01502</td>
<td>31,5 (17)29,2 (7)</td>
</tr>
<tr>
<td>*00601</td>
<td>24,1 (13)16,7 (4)</td>
</tr>
<tr>
<td>*02301</td>
<td>18,5 (10)25 (6)</td>
</tr>
<tr>
<td>*01501</td>
<td>14,8 (8)16,7 (4)</td>
</tr>
<tr>
<td>*00101</td>
<td>11,1 (6)12,5 (3)</td>
</tr>
<tr>
<td></td>
<td>[54] [24] [26] [4] [30]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allel</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.FKÖCLTAS</td>
</tr>
<tr>
<td>DQA1</td>
<td></td>
</tr>
<tr>
<td>*00601</td>
<td>46,3 (25)45,8 (11)</td>
</tr>
<tr>
<td>*005011</td>
<td>24,1 (13)16,7 (4)</td>
</tr>
<tr>
<td>*00301</td>
<td>18,5 (10)25 (6)</td>
</tr>
<tr>
<td>*00101</td>
<td>11,1 (6)12,5 (3)</td>
</tr>
<tr>
<td></td>
<td>[54] [24] [26] [4] [30]</td>
</tr>
</tbody>
</table>
Haplotyper

I tabell 9 framgår hur DRB1 och DQA1 är kopplade till varandra. Sju olika DRB1-DQA1-haplotyper kunde identifieras hos Nova Scotia duck tolling retriever i denna studie. I bilaga 1 visas haplotypuppsättningen för alla hundar.

Tabell 9: DRB1-DQA1-haplotyper

<table>
<thead>
<tr>
<th>DRB1</th>
<th>DQA1</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*00601</td>
<td>*005011</td>
<td>31,1 (46) 34,1 (28) 24,1 (13) 41,7 (5)</td>
</tr>
<tr>
<td>*01502</td>
<td>*00601</td>
<td>30,4 (45) 30,5 (25) 31,5 (17) 25 (3)</td>
</tr>
<tr>
<td>*01501</td>
<td>*00601</td>
<td>18,2 (27) 19,5 (16) 14,8 (8) 25 (3)</td>
</tr>
<tr>
<td>*02301</td>
<td>*00301</td>
<td>10,8 (16) 6,1 (5) 18,5 (10) 8,3 (1)</td>
</tr>
<tr>
<td>*00101</td>
<td>*00101</td>
<td>4,7 (7) 1,2 (1) 11,1 (6)</td>
</tr>
<tr>
<td>*00401</td>
<td>*00201</td>
<td>4,1 (6) 7,3 (6)</td>
</tr>
<tr>
<td>*01301</td>
<td>*00301</td>
<td>0,7 (1) 1,2 (1)</td>
</tr>
</tbody>
</table>

Prevalensen av haplotyperna i studiepopulationen visas i tabell 10. De vanligaste, med en prevalens på omkring 30 % vardera, är haplotyp DRB1*00601/DQA1*005011 och DRB1*01502/DQA1*00601. Även DRB1*01501/DQA1*00601 och DRB1*02301/DQA1*00301 är ganska vanligt förekommande. Mer ovanliga är haplotyperna DRB1*00101/DQA1*00101, DRB1*00401/DQA1*00201 och DRB1*01301/DQA1*00301.

Tabell 10: Fördelningen av DRB1-DQA1-haplotyper visas för den totala studiepopulationen (Tot) på 74 hundar, samt för de 41 svenska hundarna (Sv), de 27 brittiska hundarna (Eng) och de 6 hundarna från Boston (Bost.)

<table>
<thead>
<tr>
<th>Haplotyp</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB1</td>
<td>DQA1</td>
</tr>
<tr>
<td>*00601</td>
<td>*005011</td>
</tr>
<tr>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>*00401</td>
<td>*00201</td>
</tr>
<tr>
<td>*01301</td>
<td>*00301</td>
</tr>
</tbody>
</table>

| | [148] | [82] | [54] | [12] |

Haplotypfrekvenser för de olika sjukdomskategorierna

En jämförelse av haplotypfrekvenser mellan kontroller och de olika kategorierna av autoimmuna sjukdomar visas i tabell 11. I tabell 12 och 13 redovisas resultatet separat för den svenska respektive den brittiska populationen. Någon signifikant skillnad mellan de friska kontrollerna och de sjuka hundarna avseende haplotypfrekvenser kan inte påvisas.
Tabell 11: Fördelning av DRB1-DQA1-haplotyper hos alla de 74 hundar som ingår i studien. (Tot. = alla hundar, FK = friska kontroller, M = hundar med SRMA, CLT = hundar med lymfocytär thyroidit, Ö = övrig autoimmun sjukdom, AS = alla sjukdomar)

<table>
<thead>
<tr>
<th>Haplotyp</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
</tr>
<tr>
<td>*00601</td>
<td>*005011</td>
</tr>
<tr>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>*00401</td>
<td>*00201</td>
</tr>
<tr>
<td>*01301</td>
<td>*00301</td>
</tr>
</tbody>
</table>

[148] [78] [26] [24] [20] [70]

Tabell 12: Fördelning av DRB1-DQA1-haplotyper hos de svenska hundarna. (Tot. = alla hundar, FK = friska kontroller, M = hundar med SRMA, CLT = hundar med lymfocytär thyroidit, Ö = övrig autoimmun sjukdom, AS = alla sjukdomar)

<table>
<thead>
<tr>
<th>Haplotyp</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
</tr>
<tr>
<td>*00601</td>
<td>*005011</td>
</tr>
<tr>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>*00401</td>
<td>*00201</td>
</tr>
<tr>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>*01301</td>
<td>*00301</td>
</tr>
</tbody>
</table>

[82] [50] [18] [14] [32]
Tabell 13: Fördelning av DRB1-DQA1-haplotyper hos de brittiska hundarna. (Tot. = alla hundar, FK = friska kontroller, M = hundar med SRMA, CLT = hundar med lymfocytär thyroidit, Ö = övrig autoimmun sjukdom, AS = alla sjukdomar)

<table>
<thead>
<tr>
<th>Haplotyp</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
</tr>
<tr>
<td>*01502 *00601</td>
<td>31,5 (17)</td>
</tr>
<tr>
<td>*00601 *005011</td>
<td>24,1 (13)</td>
</tr>
<tr>
<td>*02301 *00301</td>
<td>18,5 (10)</td>
</tr>
<tr>
<td>*01501 *00601</td>
<td>14,8 (8)</td>
</tr>
<tr>
<td>*00101 *00101</td>
<td>11,1 (6)</td>
</tr>
</tbody>
</table>

| | [54] | [24] | [26] | [4] | [30] |
Genotyper

I tabell 14 visas de kombinationer av haplotyper som förekom hos hundarna i studien. Den allra vanligaste genotypen var haplotypen DLA-DRB1*00601/DQA1*005011 i par med DLA-DRB1*01502/DQA1*00601. Sett bara till den brittiska populationen var dock kombinationen DLA-DRB1*01502/DQA1*00601 och DLA-DRB1*02301/DQA1*00301 vanligast.

Tabell 14: Fördelningen av genotyper visas för den totala studiepopulationen (Tot) på 74 hundar, samt för de 41 svenska hundarna (Sv), de 27 brittiska hundarna (Eng) och de 6 hundarna från Boston (Bost.).

<table>
<thead>
<tr>
<th>Haplotyp 1</th>
<th>Haplotyp 2</th>
<th>Tot.</th>
<th>Sv</th>
<th>Eng</th>
<th>Bost.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB100601/DQA1005011</td>
<td>DRB100601/DQA1005011</td>
<td>5,4 (4)</td>
<td>7,3 (3)</td>
<td>3,7 (1)</td>
<td></td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>DRB101502/DQA100601</td>
<td>2,7 (2)</td>
<td>2,4 (1)</td>
<td>3,7 (1)</td>
<td></td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>DRB101502/DQA100601</td>
<td>24,3 (18)</td>
<td>29,3 (12)</td>
<td>14,8 (4)</td>
<td>33,3 (2)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>DRB101501/DQA100601</td>
<td>14,8 (11)</td>
<td>14,6 (6)</td>
<td>11,1 (3)</td>
<td>33,3 (2)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>DRB101501/DQA100601</td>
<td>13,5 (10)</td>
<td>17,1 (7)</td>
<td>7,4 (2)</td>
<td>16,7 (1)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>DRB102301/DQA100301</td>
<td>10,8 (8)</td>
<td>4,9 (2)</td>
<td>22,2 (6)</td>
<td></td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>DRB100101/DQA100101</td>
<td>4,1 (3)</td>
<td>11,1 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRB101501/DQA100601</td>
<td>DRB100101/DQA100101</td>
<td>4,1 (3)</td>
<td>2,4 (1)</td>
<td>7,4 (2)</td>
<td></td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>DRB102301/DQA100301</td>
<td>5,4 (4)</td>
<td>11,1 (3)</td>
<td>16,7 (1)</td>
<td></td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>DRB100101/DQA100101</td>
<td>1,4 (1)</td>
<td>3,7 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRB101501/DQA100601</td>
<td>DRB102301/DQA100301</td>
<td>1,4 (1)</td>
<td>4,9 (2)</td>
<td>3,7 (1)</td>
<td></td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>DRB100401/DQA100201</td>
<td>5,4 (4)</td>
<td>9,8 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>DRB101301/DQA100301</td>
<td>1,4 (1)</td>
<td>2,4 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRB102301/DQA100301</td>
<td>DRB100401/DQA100201</td>
<td>1,4 (1)</td>
<td>2,4 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>DRB100401/DQA100201</td>
<td>1,4 (1)</td>
<td>2,4 (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | 74 | 41 | 27 | 6 |
Genotypfrekvenser för de olika sjukdomskategorierna

I tabell 15 framgår hur genotyperna fördelas mellan kontroller och de olika sjukdomskategorierna. I tabell 16 och 17 visas resultatet separat för den svenska respektive den brittiska populationen.

Tabell 15: De genotyper som förekom hos de 74 hundarna, fördelade enligt kategori. (Tot. = alla hundar, FK = friska kontroller, M = hundar med SRMA, CLT = hundar med lymfocytär thyroidit, Ö = övrig autoimmun sjukdom, AS = alla sjukdomar)

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>5,4 (4)</td>
</tr>
<tr>
<td>DRB101502/DQA1006011</td>
<td>2,7 (2)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>23,1 (18)</td>
</tr>
<tr>
<td>DRB101501/DQA1006011</td>
<td>14,9 (11)</td>
</tr>
<tr>
<td>DRB101502/DQA1006011</td>
<td>13,5 (10)</td>
</tr>
<tr>
<td>DRB102301/DQA1003011</td>
<td>10,8 (8)</td>
</tr>
<tr>
<td>DRB101001/DQA1001011</td>
<td>4,1 (3)</td>
</tr>
<tr>
<td>DRB101501/DQA1006011</td>
<td>4,1 (3)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>5,4 (4)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>1,4 (1)</td>
</tr>
<tr>
<td>DRB101501/DQA1006011</td>
<td>4,1 (3)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>5,4 (4)</td>
</tr>
<tr>
<td>DRB101502/DQA1006011</td>
<td>1,4 (1)</td>
</tr>
<tr>
<td>DRB102301/DQA1003011</td>
<td>1,4 (1)</td>
</tr>
<tr>
<td>DRB100401/DQA1002011</td>
<td>1,4 (1)</td>
</tr>
</tbody>
</table>

[74] [39] [13] [12] [10] [35]
Tabell 16: De genotyper som förekom hos de svenska hundarna, fördelade enligt kategori (Tot. = alla hundar, FK = friska kontroller, M = hundar med SRMA, CLT = hundar med lymfocytär thyroidit, Ö = övrig autoimmun sjukdom, AS = alla sjukdomar)

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB100601/DQA1005011</td>
<td>7,3 (3)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>8,0 (2)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>2,4 (1)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>4,0 (1)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>29,3 (12)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>40,0 (10)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>14,6 (6)</td>
</tr>
<tr>
<td>DRB101501/DQA100601</td>
<td>16,0 (4)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>17,1 (7)</td>
</tr>
<tr>
<td>DRB101501/DQA100601</td>
<td>12,0 (3)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>4,9 (2)</td>
</tr>
<tr>
<td>DRB102301/DQA100301</td>
<td>8,0 (2)</td>
</tr>
<tr>
<td>DRB101501/DQA100601</td>
<td>2,4 (1)</td>
</tr>
<tr>
<td>DRB100101/DQA100101</td>
<td>14,3 (1)</td>
</tr>
<tr>
<td>DRB101501/DQA100601</td>
<td>4,9 (2)</td>
</tr>
<tr>
<td>DRB102301/DQA100301</td>
<td>0</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>9,8 (4)</td>
</tr>
<tr>
<td>DRB100401/DQA100201</td>
<td>4,0 (1)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>2,4 (1)</td>
</tr>
<tr>
<td>DRB101301/DQA100301</td>
<td>4,0 (1)</td>
</tr>
<tr>
<td>DRB102301/DQA100301</td>
<td>2,4 (1)</td>
</tr>
<tr>
<td>DRB100401/DQA100201</td>
<td>0</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>2,4 (1)</td>
</tr>
<tr>
<td>DRB100401/DQA100201</td>
<td>4,0 (1)</td>
</tr>
</tbody>
</table>

[41] [25] [7] [9] [16]
Tabell 17: De genotyper som förekom hos de brittiska hundarna, fördelade enligt kategori. (Tot. = alla hundar, FK = friska kontroller, M = hundar med SRMA, CLT = hundar med lymfocytär thyroidit, Ö = övrig autoimmun sjukdom, AS = alla sjukdomar)

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>Andel i % (antal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot.</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td></td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>3,7 (1)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>3,7 (1)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td></td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>14,8 (4)</td>
</tr>
<tr>
<td>DRB101501/DQA100601</td>
<td>11,1 (3)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>7,4 (2)</td>
</tr>
<tr>
<td>DRB101502/DQA100601</td>
<td>22,2 (6)</td>
</tr>
<tr>
<td>DRB101501/DQA100601</td>
<td>11,1 (3)</td>
</tr>
<tr>
<td>DRB101501/DQA100601</td>
<td>7,4 (2)</td>
</tr>
<tr>
<td>DRB101501/DQA100601</td>
<td></td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>11,1 (3)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td>3,7 (1)</td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td></td>
</tr>
<tr>
<td>DRB100601/DQA1005011</td>
<td></td>
</tr>
</tbody>
</table>
DISKUSSION

I den här studien har allel- och haplotypfrekvenser för gener inom DLA undersökts hos 74 hundar av rasen Nova Scotia duck tolling retriever, i syfte att undersöka eventuella samband med immunmedierade sjukdomar som drabbar rasen. Den interindividuella variation som ses inom DLA och den funktion som genprodukterna har i immunförsvaret gör generna till självklara kandidater i sökandet efter genetiska faktorer bakom autoimmuna och immunmedierade tillstånd. Sådana samband har hittats tidigare, för den här rasen och för flera andra. Resultaten av denna studie uppgir dock inga stora skillnader mellan allel- och haplotypfrekvenser i kontrollgruppen och de i gruppen av hundar med immunmedierade tillstånd, åtminstone inte när det gäller de alleler som är så pass frekventa att det alls är meningsfullt att göra en statistisk jämförelse.

Totalt identifierades 7 alleler av DRB1 och 5 alleler av DQA1, som fördelas på 7 DRB1/DQA1-haplotyper. De två vanligaste haplotyperna, DRB1*00601/DQA1*00501 och DRB1*01502/DQA1*00601, har båda en frekvens som ligger omkring 30 %, både bland de friska kontrollerna och grupperna av sjukdomsfäll. Den tredje vanligaste haplotypen, DRB1*01501/DQA1*00601 hade en frekvens på strax under 17 % bland de friska kontrollerna, vilket var 3 procentenheter under frekvensen i den samlade sjukdomsgruppen. Den fjärde vanligaste haplotypen, DRB1*02301/DQA1*00301, låg på en frekvens något över 10 % i både kontrollgruppen och den samlade sjukdomsgruppen. När det gäller de mer ovanliga alleleerna motsvarar de procentuella skillnaderna i absoluta tal bara av enstaka alleler vilket gör att de är av litet värde för jämförelser. Detsamma gäller för de flesta av de frekvenser som har räknats ut separat för meningit, CLT och övriga sjukdomar.

Om den svenska populationen analyseras för sig ses tydligare skillnader mellan de friska kontrollerna och sjukdomsfällen. DRB1*01501, och den haplotyp som den ingår i, har dubbelt så hög frekvens i gruppen av samlade sjukdomsfäll som i gruppen med friska kontroller. För den närbesläktade allelen DRB1*01502 gäller det motsatta, den är dubbelt så vanlig hos de friska kontrollerna än i sjukdomsgruppen. Detta skulle alltså antyda att DRB1*01501/DQA1*00601 skulle kunna medföra en högre risk att utveckla immunmedierade sjukdomar medan DRB1*01502/DQA1*00601 istället skulle ha en skyddande effekt, men underlaget är inte stort nog för att sambanden ska vara signifikanta. Det kan lika väl röra sig om en slumpmässig variation, särskilt som DLA-DRB1*01502/DQA1*00601/DQB1*02301 i själva verket är en identifierad riskhaplotyp för Addisons sjukdom i nordamerikanska populationer av rasen (Hughes o.a., 2010).

Den riskhaplotyp för CLT som har identifierats hos Dobermann och Riesenschauzer, DLA- DRB1*01201/DQA1*00101/DQB1*00201 (Kennedy, 2006c; Wilbe o.a, 2010a), tycks över huvud taget inte förekomma hos tollare (Wilbe o.a. 2009; Hughes o.a., 2010).

Inga signifikanta samband kan alltså ses mellan DRB1/DQA1-uppsättning och risk för att utveckla de immunmedierade tillstånd som ingår i studien. I de fall då tydliga skillnader i frekvenser kan ses mellan kontroller och fall handlar det om att enstaka alleler gör en stor procentuell skillnad. Antalet hundar, särskilt med de mer sällsynta allerna och haplotyperna, är för få för att vare sig kunna bekräfta eller utesluta något samband med sjukdomsutveckling. Däremot är det inte troligt att någon av de sällsynta alleleerna är en viktig bidragande orsak till de vanligare sjukdomarna i studien, hos den här rasen, just på grund av deras sällsynthet.

Inte heller i den större studie av tollarsjuka som har gjorts hos svenska och finska tollare, där 49 fall av SRMA ingick, sågs något samband mellan DLA och SRMA. Däremot sågs en förhöjd risk för att utveckla den reumatiska formen av tollarsjuka hos de individer som bar på DLA-DRB1*00601/DQA1*005011/DQB1*02001, särskilt homozygoter. (Wilbe o.a., 2009) Det kan tyda på att MHC-molekylens struktur inte spelar någon större roll i utvecklingen av meningitformen av tollarsjuka, medan den kan vara betydande för den reumatiska formen.

Studier har visat på samband mellan homozygoti för DLA klass II och en ökad risk för vissa autoimmuna sjukdomar. I synnerhet, men inte bara, gäller det just homozygoti för riskalleler. Hos tollare har detta samband setts för Addisons sjukdom (Hughes o.a., 2010) och immunmedierad reumatisk artrit (Wilbe o.a., 2009).

I en population där individerna parar sig mer eller mindre slumpvist skulle den stora variationen inom MHC innebära att de flesta individer skulle vara heterozygota, men den inavel som rasaveln innebär för alltid med sig en högre grad av homozygoti. Detta gäller givetvis inte bara för generna i DLA, utan inavel innebär en generellt högre risk för att exempelvis sjukdomsframkallande alleleer, som ofta är recessiva, ska förekomma i dubbletter hos en individ.

I den här studien ses ingen antydan om ett samband mellan homozygoti och risk för sjukdom. Antalet homozygoter bland studiens hundar är över huvud taget anmärkningsvärt lågt och verkar inte vara rättvisande för den verkliga populationen av tollare. Bara 6 individer, 8 %, var homozygota för sin DRB1/DQA1-haplotyp och dessa var jämt fördelade mellan kontroller och fall.

Allt som allt förekom 15 olika genotyper bland de 74 hundarna. Fyra av dessa var markant vanligare än de övriga, och var naturligt nog kombinationer av de vanligaste haplotyperna. Däremot var det alltså mer sällsynt att dessa vanliga haplotyper kombinerades med identiska haplotyper. Som jämförelse kan nämnas att 23 % (18 av 78) av de friska kontrollerna i studien av tollarsjuka hos svenska och finska hundar var homozygota för DLA-DRB1/DQA1/DQB1 (Wilbe o.a., 2009), medan bara 12 % (3 av 25) svenska, friska kontroller homozygota för sin DLA-DQB1/DQA1-haplotyp i den här studien.
Eftersom antalet identifierade DQA1-alleler är lägre än antalet DRB1-alleler, förekommer vissa DQA1-alleler i kombination med fler än en DRB1-allele. DQA1*00601 kombineras med både DRB1*01502 och *01501, och båda dessa kombinationer är vanliga haplotyper. Att de två DRB1-allelerna skiljer sig åt på bara en basposition tyder på att kopplingen till DQA1 troligen skedde innan denna mutation inträffade. Även om få individer i studien är homozygota avseende hela sin haplotyp är fler homozygota för bara DQA1. Det rör sig om 18 % i kontrollgruppen och 26 % i den kombinerade fällgruppen – en skillnad som inte är signifikant då det även här handlar om mycket få individer.

I den här studien erhölls bara resultat för DRB1 och DQA1, men de ofullständiga haplotyperna kan åtminstone delvis kompletteras med DQB1-alleler utifrån andra undersökningar av DLA klass II hos tollare. I en studie på totalt 176 svenska och finska tollare identifierades de haplotyper som visas i tabell 14 (Wilbe o.a., 2009). Utifrån detta kan man förutsäga vilka de fullständiga haplotyperna är för åtminstone de svenska hundarna som användes i min studie – det finns inga skäl att anta att deras haplotyper skulle innehålla andra DQB1-alleler än dessa.

Tabell 14: DRB1-DQA1-DQB1-haplotyper i den svenska tollarpopulationen

<table>
<thead>
<tr>
<th>DRB1</th>
<th>DQA1</th>
<th>DQB1</th>
</tr>
</thead>
<tbody>
<tr>
<td>*00601</td>
<td>*00501</td>
<td>*02001</td>
</tr>
<tr>
<td>*01502</td>
<td>*00601</td>
<td>*02301</td>
</tr>
<tr>
<td>*01501</td>
<td>*00601</td>
<td>*00301</td>
</tr>
<tr>
<td>*00401</td>
<td>*00201</td>
<td>*01501</td>
</tr>
<tr>
<td>*02301</td>
<td>*00301</td>
<td>*00501</td>
</tr>
</tbody>
</table>

Detta kan dock inte överföras direkt till de två andra populationerna. Hos nordamerikanska tollare har delvis andra haplotyper identifierats. (Hughes o.a., 2010) Där förekommer DRB1*01501/DQA1*00601 både tillsammans med DQB1*02301 och DQB1*00301, och detsamma gäller för DRB1*01502/DQA1*00601. I övrigt ses dock samma haplotyper som i den svenska populationen.

Motsvarande studier har inte gjorts för brittiska tollare, vilket gör det svårt att bedöma vilka de fullständiga haplotyperna skulle vara för dessa hundar, även om de som är gemensamma för både svenska och nordamerikanska sannolikt är desamma även för de brittiska. DRB1*00101/DQA1*00101, som ses i den brittiska populationen, har inte tidigare identifierats i den nordamerikanska (Hughes o.a., 2010) eller den svenska (Wilbe o.a., 2009) populationen. Hos andra raser har DRB1*00101/DQA1*00101 setts i kombination med DQB1*00201 och i mindre utsträckning med DQB1*03601. (Kennedy o.a., 2007a)

Enligt mina resultat fanns DLA-DRB1*00101/DQA1*00101 och DLA-DRB1*01301/DQA1*00301 i varsitt exemplar hos de svenska hundarna. Med
tanke på att dessa haplotyper inte upptäcktes i den större studien av svenska och finska tollare (Wilbe o.a., 2009) är det möjligt att det har skett misstag i hanteringen av DNA:ṭ eller i analysen av sekvenser. Alternativt kunde det röra sig om haplotyper som förekommer mycket sällsynt i populationen och av en slump har identifierats just i den mindre grupp som ingår i den här studien, men jag bedömer det som mindre sannolikt. Om man bortser från dessa två individer får man istället det resultat som i tabell 15 jämförs med den andra undersökningens resultat. Med undantag från DLA-DRB1*00401/DQA1*00201/DQB1*01501, som i den här studien har en betydligt högre frekvens, stämmer haplootypfrekvenserna ganska väl överens.

Tabell 15: En jämförelse mellan haplootypfrekvenser för de svenska tollarna enligt denna studie (med två individers osäkra resultat borträknade), med resultatet från en annan studie (Wilbe o.a. 2009), av svenska och finska hundar av samma ras.

<table>
<thead>
<tr>
<th>DRB1</th>
<th>DQA1</th>
<th>DQB1</th>
<th>Andel i % (antal)</th>
<th>Jämförelse: Andel i % (Wilbe o.a., 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*00601</td>
<td>*005011</td>
<td>*20001</td>
<td>35,9 (28)</td>
<td>40,3</td>
</tr>
<tr>
<td>*01502</td>
<td>*00601</td>
<td>*23001</td>
<td>30,8 (24)</td>
<td>34,1</td>
</tr>
<tr>
<td>*01501</td>
<td>*00601</td>
<td>*00301</td>
<td>19,2 (15)</td>
<td>15,1</td>
</tr>
<tr>
<td>*00401</td>
<td>*00201</td>
<td>*01501</td>
<td>7,7 (6)</td>
<td>0,9</td>
</tr>
<tr>
<td>*02301</td>
<td>*00301</td>
<td>*05001</td>
<td>6,4 (5)</td>
<td>9,7</td>
</tr>
</tbody>
</table>

De sju allele av DRB1 som kan identifieras hos rasen i den här studien är bara en bräckdel av de som totalt har identifierats hos hund som art. Mer än hälften av hundarna i den här studien bär på DRB1*00601, och detsamma gäller för DRB1*01502. När det gäller DQA1, som inte finns i lika många varianter, bär mer än 80 % av hundarna på DQA1*00601, och nästan 60 % på DQA1*00501. Av de 74 hundar som ingick i studien var det bara 7 som inte bara på någon av de två vanligaste haplotyperna, DRB1*00601/DQA1*00501 och DRB1*01502/DQA1*00601. Flest DRB1/DQA1-haployer kunde identifieras i den svenska studiepopulationen, vilket troligen är en effekt av att ett större studiematerial ökar sannolikheten för att hitta mer sällsynta haploypen. Allt som allt förekom 15 olika genotypen, men två tredjedelar av den totala populationen hade någon av de 4 mest frekventa genotyperna. I den svenska studiepopulationen
hade nästan 30 % av hundarna samma genotyp avseende DRB1 och DQA1, nämligen DRB1*00601/DQA1*005011-DRB1*01502/DQA1*00601. Över 60 % hade någon av de tre vanligaste genotyperna. Allt detta är exempel på den begränsade variation som är ett typiskt resultat av rasavel.

Eftersom det i studien ingår individer både från Sverige och Storbritannien, samt ett fåtal ur en amerikansk population, är det möjligt att göra iakttagelser av hur haplotyppfrekvenser kan variera mellan olika populationer inom en ras. Antalet amerikanska hundar i studien är för litet för kunna dra andra slutsatser än att de haplotyper som påvisades i detta lilla urval, och därmed annolikt hör till de vanligare i populationen, är de som också är vanligast i den totala studiepopulationen. Mellan den svenska och den brittiska populationen kan fler jämförelser göras.

De fyra vanligaste DRB1-DQA1-haplotyperna återfinns i alla tre populationerna, men det finns skillnader i de relativt frekvenserna av dessa. Särskilt tydligt är att haplotypen DRB1*02301/DQA1*00301 tycks vara omkring tre gånger vanligare i den brittiska populationen än i den svenska. De två vanligaste haplotyperna är desamma för de svenska och de brittiska hundarna, men medan DRB1*00601/DQA1*005011 är den allra vanligaste bland de svenska, så är DRB1*01502/DQA1*00601 allra vanligast bland de brittiska. När det gäller de mindre vanliga haplotyperna utgör DRB1*00101/DQA1*00101, som bara finns hos en av de svenska hundarna, omkring en tiondel av haplotyperna i den brittiska populationen, medan DRB1*00401/DQA1*00201 bara identifierades i den svenska populationen.

Det gemensamma ursprunget leder till stora likheter mellan rasens olika populationer, men att det också finns skillnader är i högsta grad väntat. Allelfrekvenserna beror till stor del på vilka hundar som har importerats till respektive land och därmed utgör grunden för rasen i det landet, samt vilka individer som uppfödarna har valt att avla vidare på. Ett möjligt exempel på detta är att DRB1*00101/DQA1*00101, som enligt mina resultat skulle utgöra ca 11 % av haplotyperna i den brittiska populationen, inte har identifierats i populationen av nordamerikanska tollare (Hughes o.a., 2010) trots att rasen har sitt ursprung i Kanada. Kanske förekommer den mer sällsynt där medan aveln i Storbritannien har lett till att den blivit vanligare.

De skillnader i haplotypprekvenser som ses här illustrerar hur som helst vikten av att undvika stratifiering i studiepopulationen, det vill säga att inte jämföra friska hundar från en population med sjuka hundar från en annan population.

Den stora variationen i exon II är en av två särskilt utmärkande egenskaper hos MHC klass II. Den andra är den höga graden av kopplingsojämvikt, som på sätt och vis faktiskt leder till en lägre variation. Om det inte vore för denna så skulle slumpmässiga rekombinationer över tiden ha lett till ett mycket större antal haplotyper än vad som nu förekommer. Den naturliga selektonen har dock gynnat mekanismer som istället leder till nedärvning av särskilda kombinationer av aleller. Det tyder på att vissa kombinationer helt enkelt är mer funktionella än andra, och att det i många fall är genprodukternas samverkan, snarare än varje enskild produkts funktion, som har störst betydelse. Det kan vara en förklaring till
att sjukdomsassociationer ofta blir starkare när man tar hänsyn till hela haplotyper än om man bara ser till de enskilda generna.

Även om variationer inom MHC klass II har visat sig vara av stor vikt för utveckling av immunmedierade tillstånd och autoimmunitet så är det långt ifrån den enda genetiska faktorn att ta hänsyn till i sammanhanget. I det komplexa immunförsvarsvaret samverkar ett mångfald av celler och molekyler och det finns därmed ett stort antal gener som påverkar immunförsvarsvarets funktion och kan spela en roll i autoimmuna sjukdomstillstånd. Kanske kan den viktigaste orsaken till SRMA och meningitformen av tollarsjuka hittas bland dessa gener. När det gäller de andra sjukdomar som ingick i denna studie skulle en större associationsstudie med fler individer som är drabbade av varje sjukdom kunna ge en bättre inblick i möjliga samband med DLA klass 2.

Vår förståelse för etiologin bakom den här typen av sjukdomar är ännu inte tillräcklig. All forskning som kan öka kunskapen om dessa tillstånd är därför viktig för att dessa effektivare ska kunna förebyggas och behandlas hos djur och människor.
LITTERATURFÖRTECKNING

European Bioinformatics institute. IPD - MHC Database: Table of DLA-genes. Tillgänglig på URL: http://www.ebi.ac.uk/ipd/mhc/dla/loci.html

VassarStats: Statistic Computation Website. 2x2 Contingency table. URL: http://faculty.vassar.edu/lowry/tab2x2.html (2010-06-07)

Bilaga 1: Förteckning över erhållna allelepuppsättningar

<table>
<thead>
<tr>
<th>Nr</th>
<th>Status</th>
<th>Population</th>
<th>DRB1</th>
<th>DQA1</th>
<th>DRB1</th>
<th>DQA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SRMA</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>2</td>
<td>SRMA</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>3</td>
<td>SRMA</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>4</td>
<td>SRMA</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>5</td>
<td>SRMA</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>6</td>
<td>SRMA</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>7</td>
<td>SRMA</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>8</td>
<td>SRMA</td>
<td>England</td>
<td>*01501</td>
<td>*00601</td>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>9</td>
<td>SRMA</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*00601</td>
<td>*005011</td>
</tr>
<tr>
<td>10</td>
<td>SRMA</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>11</td>
<td>SRMA</td>
<td>England</td>
<td>*01501</td>
<td>*00601</td>
<td>*02301</td>
<td>*00401</td>
</tr>
<tr>
<td>12</td>
<td>SRMA</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>13</td>
<td>SRMA</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>14</td>
<td>CLT</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>15</td>
<td>CLT</td>
<td>Sverige</td>
<td>*01501</td>
<td>*00601</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>16</td>
<td>CLT</td>
<td>Sverige</td>
<td>*02301</td>
<td>*00301</td>
<td>*00401</td>
<td>*00201</td>
</tr>
<tr>
<td>17</td>
<td>CLT</td>
<td>Sverige</td>
<td>*01502</td>
<td>*00601</td>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>18</td>
<td>CLT</td>
<td>Sverige</td>
<td>*01501</td>
<td>*00601</td>
<td>*00401</td>
<td>*00201</td>
</tr>
<tr>
<td>19</td>
<td>CLT</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>20</td>
<td>CLT</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*00401</td>
<td>*00201</td>
</tr>
<tr>
<td>21</td>
<td>CLT</td>
<td>England</td>
<td>*01501</td>
<td>*00601</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>22</td>
<td>CLT</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>23</td>
<td>CLT</td>
<td>Boston</td>
<td>*01502</td>
<td>*00601</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>24</td>
<td>CLT</td>
<td>Boston</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>25</td>
<td>CLT</td>
<td>Boston</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>26</td>
<td>Annan (Addison)</td>
<td>Sverige</td>
<td>*01501</td>
<td>*00601</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>27</td>
<td>Annan (Addison)</td>
<td>Sverige</td>
<td>*01501</td>
<td>*00601</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>28</td>
<td>Annan (Addison)</td>
<td>Sverige</td>
<td>*01501</td>
<td>*00601</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>29</td>
<td>Annan (Epilepsi)</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*00601</td>
<td>*005011</td>
</tr>
<tr>
<td>30</td>
<td>Annan (Trol. autoim. munsjukdom)</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*00401</td>
<td>*00201</td>
</tr>
<tr>
<td>31</td>
<td>Annan (Autoim. tandsjukdom)</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>32</td>
<td>Annan (Trol. autoim. hudsjukdom)</td>
<td>Sverige</td>
<td>*01502</td>
<td>*00601</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>33</td>
<td>Annan (Allergi och kronisk kolit)</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*00401</td>
<td>*00201</td>
</tr>
<tr>
<td>34</td>
<td>Annan (Vitiligo)</td>
<td>Sverige</td>
<td>*01502</td>
<td>*00601</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>35</td>
<td>Annan (Vitiligo)</td>
<td>Boston</td>
<td>*00601</td>
<td>*005011</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>Nr</td>
<td>Status</td>
<td>Population</td>
<td>DRB1</td>
<td>DQA1</td>
<td>DRB1</td>
<td>DQA1</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>36</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>37</td>
<td>FK</td>
<td>Sverige</td>
<td>*01502</td>
<td>*00601</td>
<td>*01301</td>
<td>*00301</td>
</tr>
<tr>
<td>38</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*00401</td>
<td>*00201</td>
</tr>
<tr>
<td>39</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>40</td>
<td>FK</td>
<td>Sverige</td>
<td>*01502</td>
<td>*00601</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>41</td>
<td>FK</td>
<td>Sverige</td>
<td>*01502</td>
<td>*00601</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>42</td>
<td>FK</td>
<td>Sverige</td>
<td>*01502</td>
<td>*00601</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>43</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>44</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>45</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>46</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>47</td>
<td>FK</td>
<td>Sverige</td>
<td>*01502</td>
<td>*00601</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>48</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>49</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>50</td>
<td>FK</td>
<td>Sverige</td>
<td>*01502</td>
<td>*00601</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>51</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*00601</td>
<td>*005011</td>
</tr>
<tr>
<td>52</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*00601</td>
<td>*005011</td>
</tr>
<tr>
<td>53</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>54</td>
<td>FK</td>
<td>Sverige</td>
<td>*01502</td>
<td>*00601</td>
<td>*00401</td>
<td>*00201</td>
</tr>
<tr>
<td>55</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>56</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>57</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>58</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>59</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>60</td>
<td>FK</td>
<td>Sverige</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>61</td>
<td>FK</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>62</td>
<td>FK</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>63</td>
<td>FK</td>
<td>England</td>
<td>*01501</td>
<td>*00601</td>
<td>*00101</td>
<td>*00101</td>
</tr>
<tr>
<td>64</td>
<td>FK</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>65</td>
<td>FK</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>66</td>
<td>FK</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>67</td>
<td>FK</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*01502</td>
<td>*00601</td>
</tr>
<tr>
<td>68</td>
<td>FK</td>
<td>England</td>
<td>*00601</td>
<td>*005011</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>69</td>
<td>FK</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>70</td>
<td>FK</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>71</td>
<td>FK</td>
<td>England</td>
<td>*01502</td>
<td>*00601</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>72</td>
<td>FK</td>
<td>England</td>
<td>*01501</td>
<td>*00601</td>
<td>*02301</td>
<td>*00301</td>
</tr>
<tr>
<td>73</td>
<td>FK</td>
<td>Boston</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
<tr>
<td>74</td>
<td>FK</td>
<td>Boston</td>
<td>*00601</td>
<td>*005011</td>
<td>*01501</td>
<td>*00601</td>
</tr>
</tbody>
</table>
Bilaga 2 - Konsensussekvenser

Teckenförklaring

A = Adenin, C = Cytosin, G = Guanin, T = Tymin

N = A, C, T eller G

DQA1

GACCATGTGGCCWACTAcGGCATAAAATGTCTACCAGTCTTTACGGTCCC
TCTGGCCAGTWCACCACATGAAATTGTGAGGAGGAGGTCTACGTG
GACCTGGAGAAGAAGGAAACTGTCTGGCGGCTGCCGCTTTAGCACA
TTTAAAGTTTTGACCCACAGGGTGCRCTGAGAAACTTGGCRAKARAYA
AAACAAAAACTTGAACATCMTCMTGACTAAAAGKTCCAAACMAACTGCTGC
TACCAAT---

DQB1

GATTTCGTGTWCCAGTDARAGKBCGAGTGCATATTTCAACCAACGGGAGC
GACGGGAGTGCCGCTCTGTGRCKARRADRCATCTTAACCAGGAGGAGYW
CGTGCCTTTCCGAGCGACGGTGAGGGGAGTWCCGGCGTCAGGGAGC
TCGGGAGGGCCCKNSGTGAGTMCTTGGAAACSSRCAGAAGGAVWSTG
GASCRARRDRCGGGCMRMCSTGGACACCGGTGTGCAGACACAACTACGG
GDKGGAAGAGCTCWCACCTGCGAGCGGGCGA

DRB1

CACATTTCGCTGRSVWVGKHWAAGB1GY1TTYCTTCAACCAACGGG
ACGGAGCGGGTGGCCGGY1WBS1TGRHAGANRCATCYATAACCAGGAGGA
GHWCSY1GCCTCGACACGGGCAGTGGGGAGTWCCGGGCAGTACCG
AGTTGGGCGGCSCDHGCTGAGTMCTGGAACSSGAGAAGGAGHTCT
TGGAGSRGRVSCGGGSCMRMGGTGGGACACSKWSTGCGACACCAACTAC
SGGGTGRKYGAGAGCCTCRCGGTGCGAGCGGGCGAG