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Impact of a maternal high-fat diet on mouse placental epigenetic 

programming 

 

Abstract 
 

Objective:  

To assess how nutrient intakes of mouse mothers during pregnancy influence placental and 

fetal growth, we fed pregnant mother with a high-fat diet (HFD) and collect fetus and 

placentas in the middle of fetal period and at term.  

Material and methods:  

We studied gene expression by RT-qPCR and DNA methylation by LUMA to understand the 

molecular mechanisms of placental epigenetic programming in the labyrinth layer of the 

placenta, where nutrient exchanges take place. 

Results: 

Food intake of the mother was adjusted for caloric intake during gestation. Fetal and placental 

weights were affected by the diet and sex of the fetus. At term, there was a diet effect on 

placental gene expression of Dnmt3l, coding for a Dnmt cofactor important for regulating 

DNA methylation. However, the expression of three other epigenetic enzymes Suv39h1, 

Suv39h2 and Jarid 1c, did not change either between the diets nor between the sexes at the 

two stages 15.5 and 18.5 days. No differences in global DNA methylation was observed 

between diet or sex at the two stages. 

Conclusion:  

These findings suggest that a HFD intake during pregnancy has an impact on fetal and 

placental growth and gene expression. Such an effect could have long term consequences for 

the offspring's risk of metabolic syndrome by altering programming in utero. 

 

Keywords: Epigenetic, high-fat diet, placenta, DOHaD, Sexual dimorphism 
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SUMMARY 

Obesity is a global problem associated with high risks of cardiovascular diseases and type 2 

diabetes. Despite the increase in prevalence of overweight and obesity all over the world, 

there are not many studies focusing on understanding the underlying mechanism of nutritional 

programming. The developmental origins of health and disease hypothesis (DOHaD) states 

that suboptimal maternal environment, including changes in diet, affect in developmental 

programming of predisposition to adult-onset diseases. The studies involved in this concept 

therefore have important medical, socioeconomical and biological implications.  

A growing body of evidence suggests that the risk of developing complex diseases in 

adulthood is not only due to genetic factors but also environmental factors. Epigenetics is 

defined as inherited changes in gene expression that are not due to the changes in DNA 

sequence, which are responsible for regulating gene expression patterns. Environmental 

factors can impact epigenetic modifications, leading to long term changes in cell function, 

therefore predisposing to diseases. Implementation of epigenetic analysis in research could 

open a window into potential molecular mechanisms of gene-environment interactions.  

The placenta is an extra-embryonic organ which regulates nutrient, oxygen, hormone traffic 

between mother and fetus. Changes in maternal diet can thus influence intrauterine growth 

and developmental programming of the fetus.  

The aim of the study was to examine the impact of a maternal high-fat diet (HFD) on gene 

expression in time-, sex- and tissue-specific manner and to determine the link between 

developmental studies with molecular studies. The current study was performed on the 

labyrinth layer of placenta, where the nutrient exchanges take place, at different embryonic 

stages (middle of fetal period and term), in both HFD and control diet (CD) fed pregnant 

mice. Statistical analyses of the food and caloric intake showed that the pregnant dams under 

HFD, reduced their food intake leading to a balanced caloric intake with CD fed mothers. Our 

model is therefore a model of maternal malnutrition rather than overnutrition. Weight gain of 

the placenta in both stages showed sex differences, with male heavier than the female 

placentas. In addition, we observed sex-specifc different responses under the HFD in terms of 

fetal weights in the middle of the fetal period. Moreover, a molecular analysis showed time- 

dependent changes in gene expression within the labyrinth. Further investigations at different 

stages and on different layers of placenta will therefore be of interest. Examining epigenetic 
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alterations in the placenta should provide biomarkers of exposure, disease risk and important 

insights into the human development and disease. Thus, epigenetic alterations may be used in 

disease diagnosis and prognosis as well as novel drug treatment and disease prevention 

strategies. 

 

 

 



 

 Table 1: Classification of Overweight and Obesity by BMI, Waist circumference and 

associated disease risk in human 

 

         Disease risk relative to 

    weight waist circumference

M < 102 M 102 

W < 88 W  88 

Underweight < 18.50

Normal range 18.50 - 24.99

Overweight  25.00

Pre-obese 25.00 - 29.99 Increased High



I 30.0 - 34.9 High Very high

II 35.0 - 39.9 Very high Very high

Extreme obesity III   Extremely High  Extremely High

Obese

BMI (kg/m2)

Degree of obesityClassification

Principal cut-off points

 

 

 Adapted  from  WHO  Global  Database  on  Body  Mass  Index (2)   and  National Heart Lung 

and Blood Institute’s report (3) M: Men, W: Woman 
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1. INTRODUCTION 

The incidence of epidemic obesity and overweight has become a major public health concern 

since it has reached alarming levels worldwide. According to World Health Organization 

(WHO), the major criterium of overweight and obesity is body mass index (BMI), which can 

be simply calculated by comparing weight and height (BMI = weight (kg) / height (m)
2
), that 

classifies an overweight or obese person when BMI is equal to or more than 25 or 30, 

respectively (Table 1). In addition to BMI, obesity is also evaluated through waist 

circumference or waist–hip circumference ratio measurements according to body fat 

distribution. Furthermore, obesity is characterized as an excess of fat cell numbers, sizes, 

and/or fat accumulation in adipocytes due to the energy imbalance between consumed and 

expended calories.  

The prevalence of overweight and obesity has been increasing rapidly not only in 

industrialized countries but also in developing countries (Usfar et al., 2010). According to the 

recent statistics from the WHO, obesity has reached epidemic levels worldwide (Figure 1): in 

2005, about 1.6 billion people were overweight and 400 million adults were obese (Kelly et 

al., 2008) (Figure 1). Moreover, according to WHO estimations, by the year 2015, there will 

be 2.3 billion overweight adults and more than 700 million of them will be obese in the world 

(1).  

The current obesity epidemic is a result of complex interplay between multiple genetic, 

epigenetic, environmental and socio-economical factors (Flier, 2004; Hotamisligil, 2006; 

McAllister et al., 2009; Tamashiro and Moran, 2010). However, the 'fetal origins' hypothesis, 

which was first proposed by Barker and colleagues and evolved as 'Developmental Origins of 

Adult Health and Disease' (DOHaD), provides a complementary explanation for the obesity 

epidemic. The DOHaD hypothesis states that exposure to an unfavorable environment during 

critical window(s) of development (either prenatal or postnatal period), may have direct 

influence on fetal growth and vulnerability of the offspring to a broad range of non 

communicable diseases in adulthood including obesity, cardiovascular diseases, type 2 

diabetes (T2D) and cancer (Gluckman et al., 2007). In this respect, many stress factors in the 

womb that lead to abnormal ‘programming’ have been identified including suboptimal diet, 

hypoxia, abnormal circadian rhythm, hormonal disrupters, increased maternal age, 

microorganisms, chemical/ pharmaceutical exposures (drugs, nicotine, alcohol etc.). 



 

Fig.1. Country based prevalence of overweight (upper) and obesity (lower) in adults in 2005. 

Adapted from (Kelly et al., 2008) 
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The evidence of links between environmental conditions and disease risk in offspring is now 

compelling (Gluckman et al., 2008). While Barker’ hypothesis has led to extensive research 

on the role of undernutrition during gestation, it has been reported that, maternal overnutrition 

can also promote occurrence of metabolic problems in adulthood. However, only a handful of 

animal experiments have been reported about the impact of maternal overnutrition during 

pregnancy. Offspring from mice fed with an obesogenic diet (16% fat, 33% sugar) before 

mating and throughout pregnancy and lactation exhibit higher blood pressure, increased 

adiposity and insulin resistance in comparison with control offspring (Samuelsson et al., 

2008). In another study, exposure to a high-fat diet  (HFD, 60% fat) during pregnancy was 

shown to result in increased risk of metabolic diseases in the offspring of mice despite their 

being fed standard chow diet (10% fat) throughout postnatal life (Liang et al., 2009). 

Similarly, feeding rat mothers with a cafeteria diet (19.15% fat, 47.04% carbohydrates) during 

pregnancy and lactation leads to increased adiposity and hyperphagia in the offspring (Bayol 

et al., 2005). The impact of maternal overnutrition during pregnancy has been also studied in 

sheep models in order to understand early programming of later metabolic problems (George 

et al., 2010; Igwebuike, 2010; Zhang et al., In press). In a sheep model of maternal 

overnutrition, 20 day-old lambs showed correlation between hypothalamic leptin pathway 

gene expression and increased adiposity (Bispham et al., 2003). The link between maternal 

obesity and/or overnutrition and accelerated fetal overgrowth with altered angiogenic gene 

expressions has been demonstrated (Ma et al., 2010). Similarly, a recent article suggests that 

the early programming of obesity may result from maternal overnutrition during the peri-

conceptional period or increased fetal nutrition in late pregnancy in sheep (Zhang et al., In 

press). Furthermore, the effect of maternal HFD was demonstrated in primate models, where 

it disrupts in utero hemodynamics and results in altered gene expression (Aagaard-Tillery et 

al., 2008; Frias et al., 2011). Collectively, these studies demonstrate that overnutrition during 

early prenatal and postnatal life can promote long-term metabolic changes and increased risk 

of metabolic diseases in later life. 

The placenta is an interface between fetus and mother, responsible for nutrient and gas 

exchange of the fetus, removal of harmful waste products from the fetus, secretion of 

pregnancy-associated hormones and growth factors, and also serving as an immune barrier to 

protect the fetus from the immune system of the mother (Frost and Moore, 2010; Georgiades 

et al., 2002; Nelissen et al., 2010). During pregnancy, balanced maternal nutrition and normal 

placental functions are essential for the intrauterine development and growth of the healthy 

fetus. Previous studies have demonstrated that the placenta has a key role as a programming 



 

Fig.2. The mature placenta consists of three major cell layers according to the cell types: the 

labyrinth, the junctional zone and maternal decidua. The labyrinth layer contains epithelial 

cells and vascular cells, the junctional zone including spongiotrphoblasts, glycogen cells and 

giant cells respectively. The maternal decidua contains trophoblast giant cells and glycogen 

trophoblast cells and the junctional zone contains spongiotrophoblast cells, glycogen cells and 

secondary giant cells (Tycko and Efstratiadis, 2002). 
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agent for non-communicable diseases including the metabolic syndrome, cardiovascular 

diseases and cancer. Therefore, perturbations of the dialogues between mother and fetus have 

a negative impact on fetal growth and developmental programming (Barker et al., 2010; 

Godfrey, 2002; McMillen and Robinson, 2005; Thornburg et al., 2010a). The links between 

altered maternal nutrition and placental characteristics have been investigated by a number of 

studies. Maternal HFD in mouse causes up-regulation of placental nutrient transport, resulting 

in fetal overgrowth, which increases the risk for developing metabolic syndrome later in life 

(Jones et al., 2009). In another study, it has been shown that prenatal HFD alters glucose 

metabolism and elevates placental oxidative stress in mice (Han et al., 2005; Liang et al., 

2010). Therefore, the placenta is an appropriate organ to study how environmental factors in 

utero, such as maternal diet, thereby influence the fetal development (Gallou-Kabani et al., 

2010; Jansson and Powell, 2007; Mao et al., 2010).  

Due to the similarities between underlying structures and genetic mechanisms with human, 

mouse is a useful model for studying placental development. From an evolutionary 

standpoint, human and rodent placentation is analog, both are ‘hemochorial’, which means 

that there is direct interaction of maternal blood and trophoblasts (Knox and Baker, 2008). In 

mice, the mature placenta consists of three major cell layers according to the cell types: the 

labyrinth, the junctional zone and maternal decidua (Gallou-Kabani et al., 2010; Watson and 

Cross, 2005) (Figure 2). The maternal decidua is responsible for maintaining maternal 

immune tolerance for fetus derieved antigens (Vacca et al., 2010). The labyrinth is  

responsible for nutrient transfer, gas exchange between mother and fetus and waste 

elimination from fetus to mother (Watson and Cross, 2005). The junctional zone includes 

giant cells that secrete cytokines and hormones and glycogen cells which are providing a 

substantial glycogen energy source for the fetal growth (Coan et al., 2006; Gardner and 

Davies, 1993). Despite the remarkable roles of the placenta, very few studies have 

investigated how maternal overnutrition affects transcriptomic and epigenetic signatures in 

the placenta (Gallou-Kabani et al., 2010; Jones et al., 2009; Mao et al., 2010). 

It is well-known that predisposition to childhood and adult diseases exhibits sex bias: females 

are more prone to obesity whereas males are more prone to cardiovascular diseases. Animal 

studies indicate that the maternal programming, which affects the later phenotype, depends 

not only on the timing and intensity of the insult, but also on the sex of the offspring. For 

example, high calorie diets are known to favor male births over females by a sex ratio of 

almost 2:1 (Fountain et al., 2008; Mao et al., 2010; Rosenfeld et al., 2003). Obesity induced 

programming may give rise to sex differences in insulin secretion and glucose tolerance, with 
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females being more sensitive to environmental insults than males (Han et al., 2005). Thus, 

current evidence suggests that sex-specific adaptation of the placenta may play a critical role 

in differences in fetal response to the maternal environment, in contrast to the previous 

thoughts that the placenta was an asexual organ. Since the placenta is an extra-embryonic 

organ, the sex of the embryo is actually the sex of the placenta. Global gene expression 

patterns are sex-specific in human placenta (Sood et al., 2006). Mao et. al. showed that gene 

expression in the mouse placenta is affected by maternal diet and differs between the sex, 

where placenta of the females are more sensitive than placenta of the  males to the suboptimal 

nutrition in utero (Mao et al., 2010). Furthermore, there is a sex-specific contribution of 

prenatal stress on gene expression levels during murine fetal programming of development in 

early gestation. Males showed a non-significant trend to increased glucocorticoid-inactivating 

enzyme 11 β-hydroxysteroid dehydrogenase type II (11β-HSD2) gene expression, whereas 

female placentas had a significant reduction in this enzyme (Pankevich et al., 2009). 

According to Clifton et al., male and female fetuses and neonates develop different strategies 

to cope with environmental stress factors where male fetuses attempt to grow normally which 

is then associated with a greater risk of compromising for second adverse event. In contrast, 

female fetuses adapt to this insult by reducing growth, thus allowing them to further 

compromise for environmental insults (Clifton, 2010). However, there are still a limited 

number of studies investigating the link between sexual dimorphism, diet and gene expression 

in placenta (Gallou-Kabani et al., 2010; Mao et al., 2010; Pankevich et al., 2009; Sood et al., 

2006). Further molecular investigation of to what extent sexual dimorphism is shaped by 

maternal malnutrition is therefore of interest. 

While genome-wide association studies have identified several genomic loci that are 

associated with obesity, the rapid shift of populations towards a more overweight phenotype, 

within few generations, suggests that this change can not be explained only by genetic factors 

(Maher, 2008; Manolio et al., 2009). Moreover it has been hypothesized that in early life, the 

influence of environmental exposures, such as diet, can have a profound effect on epigenetic 

marks (Thornburg et al., 2010b). The term ‘epigenetics’ means heritable changes in gene 

expression that are not due to the changes in DNA sequence itself. The major epigenetic 

marks are DNA methylation and posttranslational histone modifications. It leads to long term 

covalent modifications, resulting in changes in gene expression through the complex cross-

talk between and within epigenetic machinery enzymes and epigenetic marks. Epigenetic 

processes act in a tissue-specific, stage/time dependent manner to direct development 

(Gheorghe et al., 2010; Ollikainen et al., 2010; Schneider et al., 210). DNA methylation is 
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which is involved in variable key mechanisms including silencing of genes and repetitive 

elements, DNA repair and replication, genomic imprinting, and X chromosome inactivation. 

DNA methylation is catalyzed by DNA methyltransferases (Dnmts) that transfer a methyl 

group to the 5’- C of cytosine in CpGs using S-adenosylmethionine (SAM) as a methyl donor 

(Fuso et al., 2011; Klose and Bird, 2006; Ross, 2003). Dnmt1 is responsible for maintenance 

of DNA methylation as it converts hemi-methylated into the fully methylated sites during 

DNA replication. Dnmt3a and Dnmt3b are de novo methyltransferases. They recognize 

unmethylated CpG sites and are responsible for the process by initiation of cytosine 

methylation. Dnmt3-like (Dnmt3l) is another protein involved in DNA methylation. It has no 

DNA methyltransferase activity but interacts with Dnmt3a and Dnmt3b and plays regulatory 

role in DNA methylation. Furthermore, the epigenetic marks are complemented by 

posttranslational histone modifications. Such modifications include acetylation, methylation, 

phosphorylation, and ubiquitination. These modifications are driven by several enzymes 

including histone methyltransferases (HMTs), histone acetyltransferases (HATs), histone 

deacetylases (HDACs), histone demethylases (HDMs) or phosphatases. Histone acetylation 

usually loosens chromatin packaging and correlates with transcriptional activation. Epigenetic 

marks are recognized by binding proteins that trigger either formation of heterochromatin and 

gene silencing or recruitment of transcription factors for gene activation. Overall, these 

complex interactions are involved in gene regulation, according to the cell type and time with 

consequences for programming cell fate decisions during the development.  

An increasing body of evidence from animal studies and epidemiological studies support that 

epigenetic marks acts as a memory of exposure to unfavorable environmental insults 

(chemical, nutritional or metabolic) during early life (Attig et al., 2010). Nutrition can 

influence gene expression and development, by triggering epigenetic changes of the genome 

(Dolinoy et al., 2007). Furthermore, as a result of aberrant demethylation, incomplete erasure 

of the epigenetic marks may lead to such ‘memory’ of epigenetic state at specific alleles 

(Angiolini et al., 2006).  A well-known example is the agouti mouse, which carries the agouti 

viable yellow (A
vy

) epiallele, which is responsible for coat color. The brown phenotype is due 

to the increased methylation at the (A
vy

) locus. It has been shown that the offspring born from 

methyl-supplemented mothers had brown coat color rather than yellow (Waterland and Jirtle, 

2003). Recently, Dolinoy et al. showed that maternal supplementation with genistein resulted 

in phenotypic changes in agouti viable yellow mice due to the increased methylation at (A
vy

) 

locus of agouti mouse (Dolinoy et al., 2006). Three types of mechanistic pathways have been 

proposed to explain how environmental factors, including diet, induce epigenetic changes 



 

Fig.3. Mechanistic pathways for environmental factors involved in epigenetic reprogramming 

(Gabory et al., 2009) 
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(Figure 3). Nutrient metabolites can be direct activators or inhibitors of the epigenetic 

machinery, ligands of nuclear receptors that triggers local epigenetic changes of their target 

genes, or ligands of classical membrane receptor signaling cascades where the last messengers 

are the epigenetic machinery enzymes (Gabory et al., 2009). The consequences can be altered 

tissue-, stage-, sex-, and age- specific epigenetic landscapes.  

Previously, the impact of maternal HFD during pregnancy on the gene expression of total 

mouse placenta at E15.5 was investigated by our laboratory using an Affymetrix microarray 

approach. This analysis revealed that diet altered the expression of genes involved in many 

pathways including metabolic, cellular, and immune response. These findings demonstrate 

how a single environmental challenge, maternal HFD, has an impact on programming in a 

sexually dimorphic manner. Furthermore, this study provided several candidate genes, 

including genes encoding epigenetic machinery enzymes, which are dysregulated by high-fat 

HFD and/or altered depending on the sex of the fetus, namely: Suv39h1, Suv39h2, Dnmt3L, 

Jarid 1c.  

In this project, in order to answer the question of how epigenetic marks and machinery 

enzymes and their interactions with each other evolve during early development, we focussed 

on tissue-, sex- and stage-dependent epigenetic marks and on kinetic aspects during different 

stages in mouse embryogenesis. In addition, since epigenetic modifications are cell-specific, 

we studied gene expression and epigenetic signature changes in the labyrinth, in contrast to 

the previous study that was performed on total placenta. Therefore, our aim was to analyze 

the labyrinth layer of the mouse placenta, at three different embryonic stages: E12.5, which is 

the beginning of the fetal period, E15.5 as a middle of fetal period and E18.5, since the term 

placenta may carry valuable information about the pregnancy to transfer this information from 

animal experiments to on the human placenta. 



 

Fig.4. The experimental design of the study 

 

 
 

 

Table 2. Diet compositions (Research Diets, New Brunswick, USA; HFD: D12492, CD: 
D12450B)  
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2. MATERIAL AND METHODS 

2.1. Animal model and experimental design 
 

All experiments on animals were done according to the European Communities Council 

Directive of 1986 (86/609/EEC) and the laboratory has accreditation from the French 

Ministry of Agriculture for experimentation with mice (No. A 75-15-02). 

C57BL/6JOlaHsd mice (10 males, 80 females) were obtained from Harlan
®
 Laboratory (The 

Netherlands) at 7 weeks of age and housed in groups until mating. All animals were housed 

under controlled light (12-hour light/ 12-hour dark cycle) and temperature (22°C ± 2ºC). The 

animals had free access to water and chow diet during the 2-weeks of adaptation period. 

Males and females were mated during the night. Evidence of a vaginal plug denoted day 0.5 

of gestation and the female mice housed individually either received ad libitum CD (10% of 

calories from fat, 20% proteins and 70% carbohydrates) or HFD (60% of calories from fat, 

20% proteins and 20% carbohydrates) throughout the gestation (Figure 4) (Gallou-Kabani et 

al., 2010). Diets were supplied in pellet form from Research Diets (New Brunswick, USA; 

HFD: D12492, CD: D12450B) (Table 2). Daily weight gain and food intake were recorded 

throughout gestation. Daily weight gain was estimated according to the following formula:  

% Weight gain = ([Weight of day (n) - weight of day 0.5] / weight of day 0.5)  

Daily food intake was estimated by subtracting the amount of food left on the grid from initial 

food weight. Calorie intakes were calculated on the basis of 3.8 kcal/g for CD and 5.2 kcal/g 

for HFD. 

The pregnant females were sacrified at E12.5, E15.5 or E18.5. Before dissection, maternal 

blood was collected from the jugular vein, centrifuged at 3500 rpm and plasma samples were 

stored at –20°C for later analysis. Blood samples were taken from the tail-tip for blood 

glucose measurement performed with glucometer (Optium Xceed™, Abbott).  

Following dissection, the fetuses and placentas were removed rapidly and placed in a petri 

dish containing PBS 1X solution. Entire placentas were isolated via dissection and maternal 

deciduas and endometrial tissues were removed under the binocular loop before recording 

weights of the placentas. The labyrinth and junctional zone were mechanically separated with 

forceps under the loop, snap frozen in liquid nitrogen, and stored at -80°C. Placental labyrinth 

tissue was powdered by grinding in liquid nitrogen. The tissue powder was separated in three 

tubes, two of them for later DNA and RNA extraction, respectively. The absence of any 
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external malformations and developmental stages of the embryos were confirmed by visual 

inspection according to a modified Theiler staging system (4). Wet weight of embryos was 

recorded and sexes were determined by visual observation of gonads under the loop for E15.5 

and E18.5 stages. 

2.2. DNA precipitation and genotyping for embryonic sex 

determination 
 

Tissue lysis was performed from the body of the E12.5 mouse fetuses, by incubation in lysis 

buffer (2M Tris-HCl pH 8.0, 0.5M EDTA, 20% SDS, 5 M NaCl) and 0.4 µg/µl of proteinase 

at 56 °C overnight. DNA was precipitated with isopropanol and pellet was washed in 70% 

ethanol. Pellet was dried in the SpeedVac centrifuge and resuspended in 100µl dH2O 

(Versol). 

In order to determine the sex of the fetus at E12.5, primers ZFY3 (5’-

cctattgcatggactgcagcttatg-3’), ZFY5 (5’-gactagacatgtcttaacatctgtcc-3’) and Rtl1F (5’-

gcccaggaacactatgtggaactc-3’) and Rtl1R(3’-aagtctcatcatctgcctccctcg-5’) were used for PCR 

amplification in 12.5µl reaction, containing 0.15µM of each primer, ~50 ng of genomic DNA, 

0.2mM dNTP,1.5 mM MgCl2, 1X PCR buffer and 0.0625U Taq polymerase (Go Taq®,  

Promega, USA). The Zfy primers (Zfy-3 and Zfy-5) assayed the sex of mouse embryos (i.e., 

presence of Y chromosome) whereas primers detecting the autosomal Rtl1 gene served as a 

control for DNA extraction. The PCR amplification was carried out following cycling 

parameters: 94 °C, 30 s; 30 cycles 94 °C, 30 s; 60 °C, 30 s; 72 °C, 30 s; followed by a final 

cycle at 72 °C for 10 min. 

2.3. Extraction of genomic DNA from mouse placentas 
 

20 mg of labyrinth tissue powder was resuspended in 200 µl Lysis Buffer (1M Tris-HCl pH 

8.0, 0.5M EDTA, 10% SDS, 5 M NaCl) and incubated with 0.02 µg/µL proteinase K at 55 °C 

overnight. The DNA was isolated using standard phenol:chloroform:isoamyl alcohol 

(24:24:1) extraction method: aqueous and phenol phases were separated by centrifugation and 

the aqueous phase, containing DNA, was isolated. The DNA was precipitated in 0.2 M NaCl 

with 100% ethanol, washed in 70% ethanol, dryed at room temperature and resuspended in 60 

µl dH2O (Versol) and stored at 4°C. 



 

Table 3.  Primer sequences and corresponding annealing temperatures used in qPCR 

 

Gene Sequence (5'-3') 
Annealing 

temperature 
(°C) 

Eif4A2 (mouse)_R ACA-CCA-TCG-GGG-TCC-ATT-CC 
62 

Eif4A2 (mouse)_F CCT-GTC-TTT-TCA-GTC-GGG-CG 

SDHA (mouse)_R AGG-TCT-GTG-TTC-CAA-ACC-ATT-CC 
64 

SDHA (mouse))_F TTC-CGT-GTG-GGG-AGT-GTA-TTG-C 

TBP (mouse)_R CAA-GTT-TAC-AGC-CAA-GAT-TCA-CGG 
66 

TBP (mouse)_F TAT-GAC-CCC-TAT-CAC-TCC-TGC-CAC 

Jarid1c_F GAA-GGA-ACC-ACA-GCA-ATG 
60 

Jarid1c_R CAG-CCA-TCA-CAC-AGT-AAG-AG 

Dnmt3l_F TGA-CTG-AGG-ATG-ACC-AAG-AGA-CAA-C 
62 

Dnmt3l_R TCC-ACA-CCC-GCA-TAG-CAT-TC 

Suv39h1_F GCA-CAA-GTT-TGC-CTA-CAA-TG 
60 

Suv39h1_R TTC-TGG-ACT-ACA-CGG-TTT-GG 

Suv39h2_F ACC-TGA-ATG-TCC-CAA-TAG-G 
62 

Suv39h2_R TTT-TAC-ACC-CCA-ACC-ACA-GC 
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2.4. RNA extraction 
 

Labyrinth powder was disrupted and homogenized by Mixer Mill MM 300 (Qiagen) in RLT 

buffer (Qiagen, France). Total RNA was extracted from mouse placenta with the RNeasy 

Mini kit according to the manufacturer’s instructions (Qiagen, France).  RNA was 

resuspended in 50 µl RNase-free water. 

2.5. Nucleic Acid quality and quantity 
 

A NanoDrop® ND2000 Spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE, 

USA) was used to measure the nucleic acid concentration and the absorbance ratios 

(A260/A280 and A260/A230). Nucleic acid quality was further assessed by 1% agarose gel 

electrophoresis and visualized by ethidium bromide staining under UV light by E-BOX- VX2 

photodocumentation system (Vilber Lourmat, France). 

2.6. Reverse transcription-quantitive PCR (RT-qPCR) 
 

RNA samples of the same litter were pooled separately according to their sexes (n=5, litter 

per diet). After incubation with 0.0625 U DNAse I (Ambion) 37°C 15 minutes, 75°C 10 

minutes, the RNAs were reverse transcribed in duplicates from 6 μg of total RNA in the 

presence of 50ng random primers (hexamers, Invitrogen), 500nM dNTPs, 10nM DTT 

(Invitrogen) and 10U of Supercript II, reverse transcriptase (Invitrogen). The cDNA 

duplicates were pooled. One –RT control was also performed for each sample. SYBR Green 

based RT-qPCR was set up in 96-well plate in a total volume of 15μl containing 0.3 μM of 

each primer, 1x Absolute Blue qPCR SYBR Green Rox Mix (Thermo Scientific) and 2ng of 

the cDNA sample. Each amplification was carried out in duplicates, and –RT controls in 

simplicate, in the presence of 10-fold dilutions (8 points) of standart cDNA in an ABI PRISM 

7300 apparatus (Applied Biosystems), under the following conditions: 15 minutes incubation 

at 95°C, followed by 40 cycles of 15 seconds at 95°C and 30 seconds at the annealing 

temperature corresponding to the gene of interests (Table 3). The house-keeping genes of 

Eif4a2, TBP, Sdha were used as reference genes and normalization factor was obtained using 

the GeNorm software to normalize the qPCR. Data were analyzed in Microsoft Excel. The 

primer sequences are shown in the Table 3.  



Fig.5. LUminometric Methylation Assay- A high throughput method to the analysis of 

genomic DNA methylation (Karimi et al., 2006b) 
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2.7. Luminometric Methylation Assay (LUMA) 
 

This method is used to quantify global DNA methylation (Karimi et al., 2006a; Karimi et al., 

2006b). The principle of the technique is based on digestion of genomic DNA by CpG 

methylation sensitive and insensitive restriction enzymes, namely Hpa II and Msp I, 

respectively. EcoRI was included in all reactions as a normalization reference. MspI and 

HpaII both leave 5'-CG overhangs after DNA cleavage, whereas EcoRI produces 5'-AATT 

overhangs. Using the pyrosequencing technology, the digestion sites were filled separately by 

polymerase extensions through the sequential addition of dNTPs (Figure 5): A, C+G, T. For 

each extension step, pyrophosphate (PPi) is released and converted to ATP by ATP-

sulfurylase. Luciferin is converted by luciferase using ATP into oxy-luciferin, which produces 

light detected by a charge coupled device (CCD) camera. Light emission is proportional to the 

quantity of extended nucleotide. Peak heights were calculated by PyroMark Q24
 

Software 

(Qiagen). A and T peaks represents EcoRI digestion profile and C+G peak corresponds to 

MspI or HpaII digestion profile, respectively (Figure 5). The assay was carried out in 

duplicates. Briefly, a total of 500ng genomic DNA was cleaved with HpaII+EcoRI 

or MspI+EcoRI in separate reactions. The enzymatic reaction incubated at 37C for 4 h. 

Following the digestion, 20μl the annealing buffer was added to 20μl of the digestion 

products. Enzyme mix, substrate mix and dNTPs were added by the apparatus (Pyrosequencer 

Q24, Qiagen). (C+G)/A ratio were calculated for all digestion, representing MspI/EcoRI or 

HpaII/EcoRI ratio, depending on the digestion mix. MspI/EcoRI ratio represents the total 

amount of CCGG restriction sites on the genome, and HpaII/EcoRI represents the amount of 

unmethylated CCGG restriction sites. As a quality control of the experiment, MspI/EcoRI 

ratios must be constant in all samples. Global DNA methylation level was calculated from 

the (HpaII/EcoRI) / (MspI/EcoRI) ratio. Fully methylated DNA gives a ratio close to 0 

whereas unmethylated DNA ratio is close to 1.  Each experiment was carried out in 

duplicates. The HpaII/MspI ratio for each sample corresponds to the average of the two 

values. 
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2.8. Statistical Analysis 
 

All data were expressed as means ± standard error of the mean (SEM). The effects of sex and 

diet on development (weight gain of fetus, placenta and mother), on expression of the 

candidate genes and differences between methylation profiles were assessed by using a non-

parametric Mann-Whitney test with StatEl (ADscience, France). All statistical tests were 

considered to be statistically significant at P<0.05 (Table 4 and Table 5). 

 



Fig.6. Fetus, placental weight and Fetus to Placenta weight ratio Index (FPI) of E15.5 (17 
FCD, 17 FHFD, 18 MCD, 19 MHFD) and E18.5 (19 FCD, 13 FHFD, 26 MCD, 19 MHFD  

(P values are shown  below in the Table 1).  
 
 

  

   

   
Table 4. P values according to Mann & Whitney test for fetus weight, placental weight and 

FPI at E15.5 and E18.5  

E15.5 E18.5 
  Fetus Placenta FPI   Fetus Placenta FPI 

Diet 0,0005 0,19 0,74 Diet 0,24 0,12 0,88 
Sex 0,024 0,0004 0,82 Sex 0,087 0,0099 0,03 
Diet in F 0,0008 0,45 0,12 Diet in F 0,79 0,62 0,88 
Diet in M 0,79 0,23 0,27 Diet in M 0,26 0,051 0,11 
Sex in CD 0,0034 0,0022 0,28 Sex in CD 0,42 0,41 0,88 
Sex in HFD 0,24 0,0081 0,15 Sex in HFD 0,13 0,0014 0,00054 
 

E15.5 E18.5 
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3. RESULTS 

3.1. Developmental Studies 
C57BL/6 mice were crossed and diet was changed when a vaginal plug was observed 

(Embryonic day (E) 0.5 = vaginal plug). The mice received either a control diet (CD, 10% fat) 

or a high-fat diet (HFD, 60% fat) (Table 2). Dams were sacrified at three different stages 

(E12.5, E15.5 and E18.5), fetus and placenta were collected and empty dams were weighted. 

The data from E12.5 samples is excluded since we could not collect sufficient number 

mothers. At E15.5, we collected 19 female and 22 male fetuses from 6 CD mothers, and 18 

female and 20 male fetuses from 6 HFD mothers. At E18.5, we obtained 18 female and 26 

male fetuses from 6 CD mothers and 16 female and 20 male fetuses from 6 HFD mothers. 

Neither the CD nor the HFD litters resulted in external physical malformations. Pregnancy 

rate was not affected by diet modification. Litter size (8 in CD, 8.3 in HFD at E12.5; 7 in CD, 

6.3 in HFD at the stage of E15.5 and 7.3 in CD, 6 in HFD at E18.5) and female/male ratio 

(86.36 % in CD and 90% in HFD at E15.5, 69.2% in CD, 80% in HFD at E18.5) were not 

affected by the maternal diet.  

3.1.1. Fetus, placental weight and Fetus to Placenta Weight ratio Index (FPI) 

At E15.5, the fetus weight was significantly affected by diet (p<0.01) and sexually dimorphic 

(p<0.05), with an increased weight under the HFD and male fetuses were heavier than female 

fetuses (Figure 6). In addition, the impact of maternal HFD was significant particularly on 

female fetuses, with increased weight under the HFD (p<0.01). When sexual dimorphism was 

estimated on CD and HFD separately, male fetuses were significantly heavier than the female 

on CD only. No effect of diet nor sex was observed on fetus weight at E18.5.  

At stages E15.5 and E18.5, there was a significant sex effect on placental weight: male 

placentas were heavier than the female placentas, regardless of diet (p<0.01).  Moreover, at 

E15.5, male placentas were heavier than the female ones (p<0.01) under the CD and HFD, 

when analyzed separately but at E18.5 (Figure 6), the sexual dimorphism on placental weight 

was significant only under the HFD (p<0.01). Diet did not affect placenta weight at term. 

No sex nor diet effect was observed at E15.5 on the FPI, which reflects nutrient transfer from 

mother to the fetus through the placenta. Remarkably, at E18.5, the FPI is sexually dimorphic, 

regardless of the diet or under the HFD, with higher FPI values in female than in males 

(p<0.05). 



Fig.7. Food (a) and caloric (b) intake of the pregnant dam (n = 13 CD, 13 HFD from E1.5 to 

E12.5; n = 12 CD, 10 HFD from E12.5 to E15.5, n = 6 CD, 5 HFD from E15.5 to E18.5) 

CD HFD
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Fig.8. Body weight gain of the pregnant mice (n=28) (a) and net weight gain after gestation 

(b) (n = 13CD, 13 HFD at E12.5, n = 12 CD, 10 HFD at E15.5, n = 6 CD, 5 HFD at E18.5) 

CD HFD
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3.1.2. Food intake of the pregnant dam 

The daily food intake of HFD mothers was higher than that of the CD mothers on the first day 

and then the food intake of HFD dams decreased while food intake of the CD dams increased. 

We then observed a significant difference in food intake throughout the gestational period 

(Figure 7), with HFD mothers eating 22 % less than the CD group. Daily caloric intake was 

calculated from the food intake records, on the basis of 3.85kcal/g for the CD diet and 

5.24kcal/g for the HFD. Overall, no differences in caloric intake were found between HFD 

and CD groups, except for days E1.5, E2.5, E5.5, E6.5, E7.5, E10.5 and E13.5.  

3.1.3. Body weight gain of the dam 

We observed that weight gain of the HFD pregnant dam was increased compared to the CD 

dams until E11.5 (P< 0.05). After this stage, the difference between the two groups was no 

longer significant (Figure 8 [a]). Moreover, there was no statistically significant difference in 

maternal net weight gain after removal of the fetuses by dissection section at E12.5, E15.5 

and E18.5 stages (Figure 8 [b]). 

3.2. Analysis of gene expression by Reverse Transcription-quantitative 

PCR 
In a precedent Affymetrix microarray analysis, four genes encoding epigenetic machinery 

enzymes were dysregulated on total mouse placenta by the HFD at E15.5 (Gabory et al., 

submitted): the DNA methyltransferase3 cofactor Dnmt3l, the H3K9 trimethyltransferases 

Suv39h1 and Suv39h2 and the H3K4 demethylase Jarid1c. To understand the underlying 

mechanism of programming under the effect of maternal HFD throughout pregnancy, we 

analyzed these four candidate genes by RT-qPCR in the mouse labyrinth tissue at two 

different embryonic stages (E15.5 and E18.5). There was a significant decrease of Dnmt3l 

expression under the HFD regardless of the sex (p< 0.05) at E18.5 but no differences was 

found at E15.5 (Table 5). There was a non-significant tendency to downregulation of Suv39h1 

in the HFD placentas vs. CD placentas when the analysis was done regardless of fetus sex at 

both stages. No differences were found for Suv39h2 and Jarid 1c, neither between the diet nor 

the sexes (Figure 9).  

 



Table 5. P values for the gene expression analysis by qPCR  

 

 

a) 

  

P values for E15.5 gene exression 

Jarid1c Suv39h1 Suv39h2 Dnmt3l 

sex effect 0,82 0,29 0,65 0,23 

diet effect 0,17 0,60 0,82 0,76 

diet effect on females 0,69 1,00 1,00 0,69 

diet effect on males 0,22 0,69 0,84 1,00 

sex effect in CD 0,42 0,69 0,84 0,42 

sex effect in HFD 0,31 0,22 0,84 0,55 

 

b) 

  
P values for E18.5 gene exression 

Jarid1c Suv39h1 Suv39h2 Dnmt3l 

sex effect 0,13 0,71 0.94 0,45 

diet effect 0,41 0,10 0.36 0,05 

diet effect on females 0,69 0,42 1.00 0,22 

diet effect on males 0,15 0,22 0.31 0,22 

sex effect in CD 0,84 0,55 0.42 0,69 

sex effect in HFD 0,15 0,42 0.69 0,55 

 

 

 



 Fig.9. Gene expression profiles analyzed by Reverse Transcription-quantitative PCR (6 FCD, 

5 MCD, 4 HFD, 5MHFD at E15.5 vs 5FCD, 5MCD, 5HFD, 5MHFD at E18.5). There is a 

significant diet effect on Dnmt3l expression at E18.5 (p<0.05). 
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Fig.10. LUMA analysis of global DNA methylation levels at E15.5 (5 FCD, 13 FHFD and 

5 MCD, 11 MHFD) (a) and E18.5 (9 FCD and 9 FHFD and 8 MCD, 9 MHFD) (b). The ratio 

of HpaII/MspI would be 1.0 if DNA is completely unmethylated and approach to zero if DNA 

is fully methylated.  
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3.3 Analysis of global DNA methylation by Luminometric Methylation 

Assay (LUMA) 
Global DNA methylation levels were analyzed by the LUMA assay. Figure 10 shows the 

distribution of methylation levels in the placentas of E15.5 and E18.5. We did not observe any 

statistically significant differences on global DNA methylation. However, there was a trend 

towards hypomethylation in males versus females under the CD at E15.5 (Figure 10).  
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 4. DISCUSSION 

In order to understand the impact of maternal malnutrition on the underlying molecular 

mechanisms of programming in utero, we developed a HFD fed mouse model during 

gestation. We studied C57BL/6J mice, a strain susceptible to diet-induced obesity (Gallou-

Kabani et al., 2007; Tallman et al., 2009). Moreover, unlike previous reports using diets 

composed of mainly saturated fatty acids, we chose a HFD composed of 20% protein, 20% 

carbohydrate, and 60% fat including different levels of monounsaturated fatty acids (MUFA), 

polyunsaturated fatty acids (PUFA) and saturated fatty acids (SFA) in order to better 

represent Western diet (Table 1).  

In this study, we could analyse E15.5 and E18.5 but not E12.5 since the collections are 

ongoing. However, it will be important to make analysis at this stage for having a complete 

picture of kinetics aspect of placental development. The main observations that we obtained 

regarding developmental features and epigenomic analysis were the following:  

- The pregnant mice fed with HFD, reduced their food intake and subsequently had the same 

caloric intake as CD fed mice. 

- E15.5 fetal weight was both affected by the diet and sexually dimorphic. However, E18.5 

fetal weight was neither influenced by diet nor sexually dimorphic.  

- Under the CD, fetal weight and placental weight were both affected by the sex of the fetus in 

the middle of fetal period (males were heavier than the females) but no more at term. 

Moreover, while female fetal weight was affected by the HFD, male fetal weight was not 

affected in the middle of fetal period.  

- We observed sexual dimorphism in placental weight in both stages with males having larger 

placenta the females. 

- There was a sexual dimorphism in FPI (fetus to placental weight ratio index) at term under 

the HFD -regardless of diet- with average female FPI higher than average male FPI when 

analyzed seperately.  

- The HFD had an influence on the gene expression in Dnmt3l at E18.5: there was a 

significant decrease of Dnmt3l expression, regardless of the sex, at the end of the gestation. 

The other candidate epigenetic machinery genes were not differentially expressed between the 

4 groups (F CD, F HFD, M CD and M HFD). 

- The global methylation pattern, analysed by LUMA, was not statistically different between 

the groups at the two different stages in the labyrinth.  
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4.1. Developmental Studies 

4.1.1. The link between placental and fetal growth and structure 

Our model is not a model of maternal obesity, the diet being changed after mating. According 

to the reports on food intake of HFD fed rodents during gestation, the mothers either adjust 

their food intake in terms of calories regardless of the diet (Theys et al., 2010) or do not adjust 

and increase the caloric intake (Jones et al., 2009; Samuelsson et al., 2008). In our model, we 

observed that dams that were fed with HFD, decreased their food intake leading to a balanced 

caloric intake. Our model is therefore not a model of overnutrition but a model of maternal 

malnutrition, with disrupted lipid and carbohydrate metabolism. This switch in HFD dams 

may provide clues in adaptation to environmental insults by altering response of metabolism 

during pregnancy. This result is in contrast to findings in overweight and obese pregnant 

women, who have increased insulin and intake of fat, carbohydrates, and total energy (Jones 

et al., 2009). 

One of the main observation in this study was the sexual dimorphism in placental weight at 

both stages with male placentas being heavier than females placentas. Moreover, while female 

fetal weight was affected by the HFD in the middle of fetal period, male fetal weight was not 

affected. We can speculate that females respond to HFD more robustly than the males. This is 

consistent with previous findings showing that females are more sensitive to the 

environmental exposures in utero (Clifton, 2010; Han et al., 2005; Mao et al., 2010). Despite 

the observation of E15.5 fetal weight being affected by the diet and sexually dimorphic, E18.5 

fetal weight was neither influenced by diet nor was sexually dimorphic. In addition, female 

fetal weight was no more affected at the term of gestation. We observed neither intrauterine 

growth restriction nor macrosomia at term. This raises the question as to whether there is any 

fetal adaptation. If there is, this supports the statement that developmental plasticity and fetal 

adaptations arise from the impact of maternal nutrients on the placenta which plays a key role 

in the delivery of nutrients to the fetus (Godfrey, 2002). 

Experimental and epidemiological studies in humans and animal models have demonstrated 

that predisposition to metabolic syndrome is associated with either low or high FPI (Gallou-

Kabani et al., 2010; Godfrey, 2002; Thornburg et al., 2010a). In our malnutrition model, we 

could observe a sexual dimorphism in FPI at term -regardless of diet- with female FPI higher 

than the male FPI.  It has been suggested that lower FPI is driven primarily by higher 

placental weight (Nelson et al., 2008) and the lower FPI in males might be associated with 

adult risk of cardiovascular disease (Risnes et al. 2009, Eriksson et al., 2000, Eriksson et al., 
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2010, Barker et al.,1993). This finding is consistent with the previous findings in the 

laboratory which demonstrates that FPI is significantly higher in female mice than male mice, 

however in contrast to the findings of HFD reducing the FPI (Gallou-Kabani et al., 2010).  

In order to determine structural differences in the placenta under the high-fat exposure, 

histological analysis was performed and revealed no differences in the proportion of the 

different layers nor shape of the placenta between the 4 groups (Gabory et al., submitted). A 

more detailed analysis of histological sections in different tissues and embryonic stages, 

immunocytochemistry based analysis (for detecting leptin, adiponectin, insulin, vimentin and 

cytokeratin) is therefore of interest. Insulin and leptin have been proposed as a regulator of 

placental growth (Nelson et al., 2009). Leptin and adiponectin are reported to be influenced 

by body fat status and associated with increased risk of metabolic diseases. In addition, leptin 

is found to be negatively correlated with insulin and adiponectin negatively correlates with 

plasma triglycerides (Smith et al., 2006). The transcript and protein levels of adiponectin are 

reported to be down-regulated in obesity and diabetes, both in animal models and in humans 

(Wong et al., 2008). Vimentin and cytokeratin are markers of blood vessels at maternal-fetal 

interface in the placenta (Litwin et al., 2010). 

4.2. Epigenomic Analysis 

4.2.1. Changes in expression of genes involved in the epigenetic machinery 

In a previous study, Dnmt3l, Suv39h1 and Suv39h2 were downregulated in the HFD placentas 

(Gabory et al submitted). Moreover, sexual dimorphism was observed for Suv39h2 and 

Jarid1c, with higher expression of Suv39h2 in male than female placentas, and higher 

expression of Jarid1c in female than male placentas. On the other hand, the expression of 

Dnmt3a, Dnmt3b and Dnmt1 did not differ between the sexes or between diets (Gabory et.al, 

submitted). Suv39h1 and Suv39h2 encode methyltransferases involved in trimethylation of the 

lysine 9 of histone H3, thereby resulting in a repressive chromatin structure (Ozdag et al., 

2006). Jarid1c, which has a crucial role in H3K4me3 demethylation (H3K4me3 is an active 

chromatin mark), is X chromosome linked, escapes X inactivation and is more strongly 

expressed in females than in males (Li and Carrel, 2008). Dnmt3l has been shown to recruit 

histone deacetylases and to interact with H3K4me3 (Deplus et al., 2002; Ooi et al., 2007). 

Moreover, Suv39h1 was recently shown to be involved in the ‘metabolic memory’ in the 

endothelial cells of diabetic patients, suggesting that dysregulation of the epigenetic 

machinery maybe a major underlying factor in disease phenotype (Villeneuve et al., 2008). 
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Therefore, consistent with previous studies, such a complex network includes cross-talks 

between epigenetic marks.  

It is well-known that the epigenetic modifications regulate gene expression in a cell- and sex-

specific and time-dependent manner. At the middle of the fetal period, neither diet nor sex 

had impact on gene expression in our current analyses in the labyrinth whereas in total 

placenta, it was observed that the genes dysregulated under HFD, due to effects of diet, sex or both, 

included four genes encoding enzymes from an important network of the epigenetic machinery 

(Gabory et al., submitted). Dnmt3l, Suv39h1 and Suv39h2 were downregulated in the HFD 

total placentas in the previous study gene expression analysis which was conducted at E15.5 

(Gabory et al., submitted). We had the same trends for Dnmt3l, Suv39h1 and Suv39h2, in the 

labyrinth, at the same stage, however it was not statistically significant. Jarid1c was more 

expressed in females than males (Gabory et al., submitted) whereas we had observed contrast 

trend for this gene in the labyrinth, although it was not significant (Figure 9).  The differences 

in the gene expression profiles with the previous study, can be explained mainly by stage and 

tissue specifity in our current model. Therefore, in addition to studies in the labyrinth tissue, it 

would be essential to study gene expression patterns within the junctional zone. One other 

potential limitation of our study was the small sample size in our current study, which may 

not be sufficient to reach statistical power. Another factor leading to different gene expression 

profiles could be due to the use of C57BL/6J males instead of DBA2/J males for mating in 

this animal model. The different genetic bakground may respond differently to the HFD. This 

is consistent with the previous findings showing that C57BL/6J are comparatively more 

resistant than the DBA2/J to the HFD (Li and Churchill, 2010; Tortoriello et al., 2004).  

In addition, it will be important to determine how the crosstalk between key repressive or 

activating epigenetic marks and their modifying enzymes can be disturbed by environmental 

insults, leading to developmental and metabolic malprogramming at different embryonic 

stages. Moreover, besides the gene expression analysis, the identification of modifications on 

histone marks will be another ongoing aspect of research. 

4.2.2. Coupling gene expression profile with global methylation 

The present study has demonstrated that exposure to HFD during pregnancy contribute to 

epigenetic regulation of Dnmt3l in the labyrinth tissue, at E18.5. Among the genes studied, 

only Dnmt3l was significantly decreased under the HFD, regardless of the sex. In parallel, 

there was no significant difference in global DNA methylation at E18.5. Therefore, the 
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decreased Dnmt3l is not linked with a change in global DNA methylation in term placenta. 

This can be explained by at least four reasons.  

First, Dnmt3l itself lacks DNA methylase activity and function as a cofactor recruiting 

Dnmt3a and Dnmt3b to stimulate de novo methylation. Since we were analysing global DNA 

metylation, it can be important to test further Dnmt3a and Dnmt3b with Dnmt1. Moreover, 

Dnmt3l appears to require properly packaged DNA within chromatin for stimulating de novo 

methylation which is consistent with the findings that Dnmt3l binds to histones directly (Ooi 

et al., 2007; Wienholz et al., 2010). Therefore, in order to better understand the implications 

of diet, histone post-translational modifications need to be further analysed.  

Second, decreased Dnmt3l expression was analysed by RT-qPCR which detect mRNA level. 

An expression analyse at the Dnmt3l protein level would allow us to verify if the active form 

of this protein is reduced.  

Third, there might be differences in global methylation but this might not be detectable by 

LUMA in which we analysed CpG-specific metylation. So, different approaches including 

high-performance liquid chromatography (HPLC) and MALDI-TOF MS) (Ragoussis et al., 

2006; Sulewska et al., 2007).  

Last, there could be differences in methylation but in specific sequences in the genome, 

targeted by Dnmt3l, but not detectable by a global approach. Here, the right choice of the 

method also depends on the amount, quality, and type of the biological material to be 

analyzed, the equipment in the laboratory and specialists.  
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5. CONCLUSION 

In parallel to the obesity epidemic, the increasing prevalence of obese or overweight women 

of childbearing age is becoming an alarming public health concern. Even more alarming is the 

adverse consequences of obesity, not only on pregnancy outcome and maternal health, but 

also on the quality of life and further health of the next generation. The prevention of obesity 

must therefore begin in early stages of life. However, few studies focus on both sex- and diet-

dependent differences in epigenetic programming of predisposition to metabolic syndrome in 

utero. In human studies, it is difficult to assess the impact of overnutrition on the placenta and 

developing embryo at certain critical stages important for programming of metabolic 

syndrome due to the difficulties related to dietary questionnaires and ethical issues. The 

animal models therefore provide valuable information about epigenetic modifications in 

response to the early environmental events resulting in modified gene expression patterns and 

phenotypes later in life in a sex-specific manner. Increasing evidence reveals a placental 

signature of maternal HFD impact that clearly differs according to the fetus sex. Our current 

data also support an epigenetic basis of nutritional placental programming. Research on 

nutritional programming of obesity has many avenues of research (physiology, metabolism, 

epigenetics), paving the way to new hypotheses about the origin of metabolic diseases. With 

the transferring the data obtained in our study, to human health research, we want to decipher 

how epigenetic marks could be used as bio- markers, since they provide an "archive" of the 

effects of deleterious maternal metabolism and diet during development. In this respect, 

evidence- based dietary recommendations during the prenatal period via clinical counseling 

could help women of childbearing age and also the next generations to improve their health. 
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