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Abstract 

Information from thousands of markers distributed across the genome can be used for a new 

selection method in animal breeding and genetics. This method which is called genomic 

selection estimated the genomic breeding value based on the estimation of marker effects 

covering the whole genome. For a successful application of genomic selection, accuracy of the 

prediction is an important factor that should be considered. Because it is important for genetic 

progress. Quantitative trait nucleotides (QTN) are polymorphisms that give useful information 

about gene function and QTL architecture. So prediction its effects and estimation its accuracy 

enhances rates of genetic gain. In this study, we investigated the accuracy of QTN prediction by 

neighboring markers, using the simulated data. Our dataset consisted of 1040 markers which 

were assigned to one chromosome of 500 genotyped animals. Method G-BLUP was used to 

estimate marker effects, and the accuracy of QTN prediction was estimated by using cross 

validation. As the accuracy can be affected by different number of surrounding SNPs, it was 

predicted at various number of surrounding markers ranging from 10 to 100 markers. In general, 

the accuracy of QTN prediction increased by increasing the number of flanking SNPs from 10 to 

60 SNPs. Further increase in number of SNPs resulted in a very small increase in accuracy in 

case of heritability 1 and 0.8 and a very small decrease in case of heritability 0.5. We also 

investigated the effect of other factors on accuracy such as Minor Allele Frequency cutoff 

threshold, heritability and number of phenotypes in the training set. We analyzed four data sets; 

data set with no selection of markers, data sets with different cutoff thresholds for MAF (0.02, 

0.05 and 0.1) in order to get the effect of MAF on accuracy. We observed the minimum SNP 

MAF of 0.02 is more appropriate for genomic selection studies. After filtering the data with the 

cutoff threshold of 0.02 for MAF, QTN could be predicted with 100 flanking SNPs, with a 
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maximum accuracy of 0.777. This is the maximum accuracy in the absence of any environmental 

effects. We also observed that there is a relationship between the accuracy of QTN prediction 

and the heritability of the phenotype. The accuracy of QTN prediction dropped when the 

heritability of phenotype decreased. In general, when we estimated the accuracy by 100 

surrounding SNPs and heritability decreased from 1 to 0.8 and from 0.8 to 0.5, the decrease in 

accuracy was 4.6 and 11%, respectively. In another analysis, when 50% of animals were masked, 

it means that the number of phenotypes decreased in training set, the accuracies were lower in 

comparison to 20% masking. When 50% of animals were masked, with 100 surrounding SNPs, 

the reduction of 6 and 9.25% was observed, when heritability of phenotype was 1 and 0.5, 

respectively.     
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1. Introduction 
 
Genomic selection (GS) is a marker based method that predicts breeding values for quantitative 

traits on the basis of a large number of molecular markers, which cover the whole genome. Using 

enough dense genome wide marker maps, a large part of genetic variance is expected to be 

explained by the markers, and all quantitative trait loci (QTL) are in linkage disequilibrium (LD) 

with at least one marker (Meuwissen et al. 2001). This approach has become possible 

particularly because of the discovery of high-throughput genotyping methodology, the 

development of the novel science bioinformatics, the identification of polymorphisms at DNA 

level and identification of new single nucleotide polymorphisms (SNPs) (Hocquette et al. 2007). 

SNPs are the most frequent type of DNA variation in the genome and using them are preferred 

over other genetic markers due to two reasons: they have low mutation rate, which makes them 

more useful for investigations of the history of populations and the second reason is that it is 

easy to genotype them (Romualdi et al. 2002; Youngerman et al. 2004). 

For a successful application of genomic selection, accuracy of the prediction is a key issue that 

should be considered (Goddard and Hayes 2009). Since the suggestion of genomic selection 

method by Meuwissen et al. (2001), many studies using simulated data have been done on this 

area (Habier et al. 2007; Calus et al. 2008). Also, research about the accuracy of genomic 

predictions has been performed in some animal species such as dairy cattle (Hayes et al. 2009) 

and chicken (Gonzalez-Recio et al. 2009). Meuwissen et al. (2001) predicted breeding values 

based on haplotype effects and found the maximum accuracy of 0.85 from marker data alone. 

Kolbehdari et al. (2007) also conducted a simulation study and obtained the same results. They 

found the accuracy of around 0.80.  
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According to the studies that have been done in genomic selection so far, by direct selection on 

QTLs, the genetic gain can be increased (Weller and Ron 2011). Till now, in all major livestock 

species, genome scans of QTL have been completed. The genotype of QTL is determined just for 

a few QTL with relatively large effects. The confidence interval for QTL location by linkage 

analysis still spans hundreds of genes. Detection of a polymorphism which is the casual mutation 

underlying the QTL, decreases the confidence interval obtained during linkage analysis. This 

polymorphism is called quantitative trait nucleotide (QTN) (Ron and Weller 2007).  

Till now, the methods that were applied to genomic selection did not need the QTN prediction 

and estimation of its accuracy. As QTN give useful information about gene function and QTL 

structure and helps us to understand the mechanisms through which the trait is influenced 

(Weller and Ron 2011), prediction of its effect and estimation of its accuracy enhances rates of 

genetic gain. 

In this study, we applied genomic selection to simulated data to predict the QTN effect, from 

surrounding SNPs. The method which is used for QTN prediction is Best Linear Unbiased 

Prediction (BLUP). Then, accuracies of QTN prediction will be assessed. Prediction of QTN 

with high accuracy would increase the rate of genetic gain. Since it is expected that the 

difference in number of SNPs surrounding the QTN is an important factor, accuracy was 

obtained at various number of surrounding markers, ranging from 10 to 100 markers. Other 

factors that can affect on genomic selection accuracy such as Minor Allele Frequency, 

heritability and size of test set and training set are also investigated. We analyzed a data set of 

1040 SNP markers which was allocated to one chromosome and genotyped on 500 animals. 

These analyses were performed for 25 replicates.  

Specifically; the aim of our study is: 
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• To obtain the accuracy of QTN prediction by surrounding SNPs  

• To study the accuracy of QTN prediction by increasing number of SNPs surrounding the 

QTN 

• To study the accuracy of QTN prediction using different cutoff thresholds for low Minor 

Allele frequencies   

• To study the accuracy of QTN prediction with different levels of masking 

• To study the accuracy of QTN prediction with different heritabilities  
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2. Literature Review 

2.1. Quantitative Genetics 

Quantitative genetics is the study of traits that indicate a continuous range of values and also the 

study of the mechanisms of those traits. Many genes control quantitative traits resulting in a 

continuous distribution of genetic values. The loci that control quantitative traits are named 

quantitative trait loci (QTL). 

There are three kinds of quantitative traits. The first type is continuous traits in which a 

continuous phenotype expression of the traits can be distinguished. Some examples are milk 

yield traits and growth rate. The second type is qualitative traits. For these traits, the phenotype 

expression is in a discrete form. The pattern of inheritance for these traits is monogenetic, which 

means that just a single gene controls the trait. The environment has little effect on the phenotype 

of these traits. Some examples are number of eggs and blood type. The third type is threshold 

traits. These are continuous traits that have only two or a few phenotypic classes, but their 

inheritance is determined by the effects of multiple genes. Also, the environment affects the 

phenotypic expression of these traits. Some examples are twining in cattle, fertility, mastitis in 

dairy cows and human genetic diseases. 

 

2.2. Genetic markers  

Genetic markers are loci whose alleles can be used to keep track of a chromosomal region during 

the transmission form parent to offspring. So, according to this definition, genetic markers are 

polymorphic. Molecular biology provides us with a wide range of new genetic markers. From the 

beginning of the concept of genetic markers, three kinds of markers such as morphological 
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markers, protein based markers (like blood groups) and DNA based markers have been utilized 

in various fields to identify the variation among genotypes (Liu 1998).  

Some examples of genetic variation that happen at the DNA level are base substitutions (mostly 

SNPs), insertions and deletions of nucleotides and rearrangement of DNA segments around a 

locus of interest (Liu and Cordes 2004). These variations or polymorphisms that exist among 

individuals in the population for specific regions of the DNA have been detected by molecular 

techniques. These polymorphisms can be used for making genetic maps. They can also be used 

for evaluation of differences between genetic markers in the expression of a trait in a family that 

may show a direct effect of these differences in terms of genetic determination on the trait (Stein 

et al. 1996). 

Among DNA markers, Single Nucleotide Polymorphism (SNP) are the newest that have been 

developed. Although it is just a bi allelic marker, its use has become common. A SNP marker 

can be developed when at a particular position in the genome, a single nucleotide differs between 

animals. For such a position to be considered as a SNP, the least frequent allele should have a 

frequency of 0.01 or more (Vignal et al. 2002).  

There was a great development in the technology for SNPs genotyping. In many livestock 

species, many SNPs markers have been discovered and there are also more SNPs discovered 

each day because of the development of high-throughput genotyping technologies such as DNA 

sequencing technologies. For instance in human 500 000 SNPs are available nowadays. 

Nowadays, in animal breeding and genetics, SNPs are used in a new type of breeding value 

prediction method. This method which is called Genomic selection uses the genomic information 

of animals for prediction of breeding value. 
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2.3. Marker assisted selection (MAS) 

Over the past 50 years, genetic progress through artificial selection has been an important 

contributor to the great advances in productivity in plant and animals which are of agricultural 

importance. So far, most selection were based on selection of individuals with superior 

phenotypes and the genetic structure of the selected traits was unknown (Dekkers and Hospital 

2002). So, there were many problems regarding traditional selection. Some examples of these 

issues are: this method is not very efficient when the traits are difficult to measure or have a low 

heritability. Some traits are expressed late in life. In addition, when the selection objective 

includes several traits with unfavorable genetic correlation, the traditional selection is not very 

efficient (Schwerin et al. 1995). Using molecular techniques could solve some of the problems of 

traditional selection and made it possible to generate dense maps (Kinghorn et al. 1994). By 

discovering and analyzing the molecular genetics of traits in animal and plant populations, the 

genetics of quantitative traits were better understood. These genetic markers can be used to 

increase the genetic gain of livestock through marker assisted selection (MAS) approach 

(Dekkers and Hospital 2002). The purpose of MAS is to increase genetic gain, in terms of both 

accuracy and speed (Muir 2007). Application of MAS is mainly beneficial in situations where 

the accuracy of selection is low, for instance for the traits with low heritability, sex-limited traits, 

traits that are visible late in life, traits that are expensive to measure or can only be measured on 

relatives (Meuwissen and Goddard 1996).  

Much research has been done by using MAS. However, its implementation has been limited and 

enhancement in genetic gain has been small (Dekkers 2004). Factors that affect genetic gain 

include intensity of selection, accuracy of selection, genetic standard deviation and generation 
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interval. Marker information mainly influences the accuracy of selection. Therefore, in MAS 

approach, if the accuracy of selection increases, genetic gain also increases. 

In general, extra gains from MAS are because of the accuracy QTL prediction, the accuracy of 

existing estimated breeding values, the proportion of the genetic variance which is explained by 

genetic markers and reduction of generation interval (Goddard and Hayes 2002). 

Besides the benefits of MAS in breeding programs, its implementation faces some problems. 

One issue is that for each trait, separate markers are usually required. If the markers and the QTL 

are linked, the linkage phase variants cause the markers to be incorrect in some families. Also, 

another issue that should be considered is that the linked QTL may have pleiotropic effects on 

other traits (Dekkers and Hospital 2002). One possible solution to these problems is a new 

method of selection called genomic selection that was first suggested by Meuwissen et al. 

(2001).  

 

2.4. Genomic Selection  

Genomic selection is a form of marker assisted selection, in which dense genetic markers are 

used that cover the whole genome. The effects of dense genetic markers, across the whole 

genome, are summed up in order to get the genomic estimated breeding value (GEBV) 

(Meuwissen et al. 2001). Dense markers should be distributed across the genome in equal 

spacing without prior knowledge of QTL positions. Finally, the available genetic variation that is 

in linkage disequilibrium (LD) with these markers is captured. The method works better and the 

LD will be stronger when the markers are more dense (Muir 2007). Genomic selection can 

change the structure of animal breeding programs. For example, in dairy cattle, it is used to 

select bull calves for progeny testing. Therefore, the sires of sons can be selected based on 
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markers and it is not needed to do the progeny testing. This resulted in reduction in cost about 

92% for a breeding program. In addition, using genomic selection decrease the generation 

interval, because it is possible to genotype the markers at early age (Schaeffer 2006).   

 

2.5. Quantitative Trait Nucleotide (QTN) 

According to the research that has been done so far, by direct selection on QTLs, genetic gain 

can be increased (Weller and Ron 2011). Till now, in all major livestock species, genome scans 

of QTL have been completed. However, it is not enough to just detect the QTL for using it in 

breeding programs. So, in order to perform a very successful breeding program for the QTL, it is 

required to identify a type of specific polymorphism. This polymorphism that is responsible for 

the observed variation of QTL is called quantitative trait nucleotide (QTN). After identification 

of a QTN, if both of its alleles are segregating, it can be used by enhancing the frequency of the 

favorable allele within a breed. Also, the favorable alleles can be increased by introgression of 

the allele into breeds in which the allele is absent (Ron and Weller 2007). 

Until 2000, QTNs could be identified just for plants, microbes and organisms that are used as 

model. Four QTNs have been identified in dairy cattle genome. The first QTN that was 

discovered in dairy cattle was found in a QTL that affect fat and protein percentages of milk. 

This QTN was found in the centromeric region of bovine chromosome 14. This QTN contributed 

a lysine to alanine substitution at the gene that encodes diacylglycerol acyltransferase 1, and was 

called DGAT1 (Grisart et al. 2002; Winter et al. 2002). Another QTN that has been identified in 

cattle is ABCG2 that has significant effects on milk yield and milk composition (Olsen et al. 

2007). Blott et al. (2003) found another QTN by using fine mapping. This QTN which is called 

GHR was a phenylalanine to tyrosine substitution at the bovine growth hormone receptor gene. 
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This QTN was the direct cause of the effects that detected before. This QTN is also responsible 

for milk production traits. The fourth QTN discovered in bovine genome was osteopontin (SPP1) 

(Schnabel et al. 2005). It has been found that expression of the SPP1 influence the expression of 

milk protein genes, that shows the regulatory role for the gene product of SPP1 in lactation 

(Sheehy et al. 2009). 

So far, the methods that were applied to genomic selection did not need the QTN identification 

and estimation its accuracy. As QTN gives useful information about gene function and QTL 

structure and helps us to understand the mechanisms through which the trait is influenced 

(Weller and Ron 2011), prediction of its effect and estimation its accuracy enhances rates of 

genetic gain. 

 

2.6. Accuracy of genomic selection 

The correlation between true breeding value and the estimated breeding value is measured as 

accuracy. Reliability is the square of accuracy. The implications of obtaining high accuracies for 

animals at early age are profound. In simulations that have been performed, it has been showed 

that the accuracy of genomic EBV for a bull calf can be as high as the accuracy of an EBV after 

the progeny test is done (Hayes 2008).   

 

2.7. Factors affecting the accuracy of genomic selection 

In a study in dairy cattle breeding program, Hayes et al. (2008) reported that four parameters 

influence the accuracy of genomic estimated breeding value (GEBV). The first one is linkage 

disequilibrium (LD) between the markers and QTL which is quantified with the parameter r2 
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(Hill and Robertson 1968). Calus et al. (2008) reported that by increasing r2 from 0.1 to 0.2, the 

accuracy of GEBV increased from 0.68 to 0.82. 

The second factor that influences the accuracy is number of animals in reference set. These 

animals have both phenotypes and genotypes from which the SNPs effects are predicted. With 

more phenotypic observations per SNP allele, the accuracy of estimated breeding value will be 

greater. Saatchi et al. (2010) investigated the impact of heritability and number of phenotypic 

records on accuracy of genomic selection in a simulation study. They found that by increasing 

the number of animals in the training set, the accuracy increased in the test set particularly for 

low heritable traits. They obtained accuracies 0.573, 0.639 and 0.706 for 500, 1000 and 2000 

records, respectively. Meuwissen et al. (2001) used different number of individuals in training 

sets and estimated the accuracy of genomic breeding values. By using G-BLUP model for 

analysis and by using data sets with different sizes of 500, 1000, and 2200 for training set, they 

obtained accuracies of 0.579, 0.659 and 0.732, respectively. In their study, the heritability of the 

trait was 0.5. De Roos et al. (2009) applied genomic predictions to multi-breed populations in a 

simulation study. They showed that combining two populations, by adding animals from a 

second population to the reference set, increased the accuracy of genomic predictions in the first 

population. They reported that this increase was most advantageous for the traits with lower 

heritability.  

The third factor is heritability of the trait that is under selection. One advantage of higher 

heritability is that fewer numbers of animals are needed for genomic prediction. Calus and 

Veerkamp (2007) estimated the accuracies of GEBV for juvenile selection candidates in range of 

0.38 to 0.55 for low heritability traits (with heritability 0.1) and 0.73 to 0.79 for the traits with 

heritability 0.5. They also showed that the accuracies are dependent on the number of phenotypes 
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in the training set particularly for the traits with low heritability. However, they showed that 

increasing the number of animals in reference set had limited effect for the high heritable trait. 

De Roos et al. (2009) showed that when the heritability of phenotypes is low, it is essential to 

have many individuals to estimate the marker effects. Having many individuals to estimate 

marker effects is more beneficial for low heritability traits than for high heritability traits. 

The fourth factor is the distribution of QTL effects. If the number of QTLs that has very small 

effect contributing to the variation of the trait, is high, a large number of phenotypic records are 

needed to predict these effects accurately.  

The first two factors are controllable in the experiments. However, the last two ones are not. In 

another study, Villumsen et al. (2008) reported that reliabilities are expected to depend on some 

factors such as on statistical method that is used, SNP frequencies, size of the data, on marker 

density, and on genetic event such as recombination and LD structure. 

 

2.7.1. Minor Allele Frequency  

SNPs are bi allelic and have two alleles. The less common allele of a SNP in a population has 

lower frequency. This frequency is defined as Minor allele frequency (MAF). When in a 

population, MAF for a SNP is less than 0.005, it is said that the SNP is monomorphic 

(http://www.experts123.com/q/what-is-the-frequency-of-a-certain-allele-in-the-following-

populations.html). It means that just a single form or allele can be identified. In genome-wide 

association studies (GWAS), monomorphic SNPs are not informative, because there is not any 

genotypic difference (Chan et al. 2008). When a SNP is monomorphic in a population, no 

heterozygote individual can be found for that SNP in that population. When a SNP is 

monomorphic, it dose not mean that it is monomorphic in all populations. It might be 
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polymorphic in a different population. Wiggans et al. (2009) found thousands of SNPs that were 

monomorphic in Jerseys or Brown Swiss. However, they were polymorphic in Holstein breed. 

They concluded that in selection of SNPs for the genomic evaluations, the breed specific SNP 

sets should be considered.  

When the plan is to select the SNPs for genomic evaluations, one important issue that is needed 

to be considered is MAF. There should be cutoff threshold for MAF. Wiggans et al. (2009) 

suggested a cutoff threshold of 0.02 for MAF. They believe that in genomic evaluations the 

purpose is to maximize the accuracy and SNPs with MAF less than 0.02 do not contribute to the 

accuracy. One reason of removing them is to decrease the computational challenges and another 

reason is to increase the stability of predictions of the effects of those SNPs that remained in the 

analysis (Wiggans et al. 2009). 

ShiYi et al. (2009) investigated the effect of different cutoff thresholds (0.01, 0.05 and 0.1) on 

the resolution of Haplotypes map.  They concluded that SNP allele frequency is one of the most 

important factors influencing the resulting HapMap. According to their findings, the average 

number of total haplotypes discovered decreased when cutoff values increased. So, they defined a cutoff 

threshold of 0.01 for MAF.  
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3. Materials and Methods 

3.1. Simulation of the data 
 

In this study, forward simulations were utilized (Hoggart et al. 2007). There were some 

assumptions about the population model which includes: the Fisher–Wright idealized population 

model (Falconer and Mackay 1996) and the model assumed was the infinite-sites mutation 

model (Kimura 1969). The mutation frequency was 2× 10-8 per nucleotide per generation. The 

effective population size was 1000. For obtaining a population which is in balance of drift-

mutation, 10,000 generations forward simulations were performed. According to the Haldane 

mapping function, the recombination frequency was assumed to be 10-8 per nucleotide per 

generation.  

After simulation of 10000 generations of the whole-genome sequence of one chromosome, 1040 

SNPs were generated. These 1040 marker alleles genotyped on 500 animals were used for the 

analysis. So, the data structure had 1000 rows and 1040 columns (number of markers). Two rows 

were allocated to each animal, it means that each locus had two alleles.  

 

3.2. Data information 

For this analysis, one chromosome with 1040 SNP markers was used. The number of records 

were 500 animals. Each animal had two alleles for each marker. The heritability of phenotype 

was 1. 

The alleles were converted to genotypes by using Matlab Program. For individuals that had allele 

1 from both parents, the genotype was set as 1. For those that had allele 1 and 2 from the parents, 

the genotype was set to be 2 (heterozygote) and for the individuals that had allele 2 from both 

parents, the genotype was set as 3. Then, the genotypes were standardaized to obtain a total 
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genetic variance of 1. For genotypes 11, 12, and 22, the standardized genotype of individual i for 

marker j (Xij) is -2pj/√ℎ, (1-2pj)/√ℎ  and 2(1-pj)/√ℎ  ,respectively. Where, pj is allele frequency at locus j 

and h = 2pj (1-pj) i.e. hetrozygosity. 

 

3.3. Training data 

Masking the phenotype is a way for making different cross validations. It means that the 

phenotype will be covered and considered as unknown for a defined number of animals. For 

making the first cross validation (CV1), as there were 500 animals in the dataset, phenotypes of 

the first 100 animals were masked as testing sample. For the second CV (CV2), phenotypes of 

the second 100 animals were masked as testing sample. This method of masking continued to 

generate five training samples and five test samples. As this method was without replacement, 

every phenotype was masked once in the training data. The training and test samples were not 

overlapping. In this method of masking, 20% of animals were masked. So, when 20% of animals 

were masked, we had 5 training sets and 5 test sets. Each training set included 400 animals and 

each test set included 100 animals. We also produced additional training sets by masking 50% of 

animals. This was done to test the effect of increasing the masked animals on accuracy of QTN 

prediction. When 50% of all animals were masked, there were only 250 individuals with 

genotypes in the training data set. Also, there were 250 individuals in each test set.  

 

3.4. Statistical Model  
 

G-BLUP statistical model was used to estimate the SNP effects. G-BLUP estimates the effects of 

the markers by best linear unbiased prediction, which assumes each marker explains an equal 
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proportion of the total genetic variance (Henderson 1975). The mixed model equation is used in 

this method to calculate the marker effects. The following model was used for the G-BLUP: 

 

Y = µ1n + Xi gi + e 

 

Where, y= observation  vector  

 μ =the overall mean 

 1n =is a ones vector 

 gi = genetic effect of the ith SNP  

 Xi = design matrix that allocate records to the SNP effects 

 e = is the vector of random error 

The following mixed model was used to estmate mean and SNP effect:  

 

�
1𝑛𝑛′ ∗ 1𝑛𝑛 1𝑛𝑛′𝑋𝑋
𝑋𝑋′ ∗ 1𝑛𝑛 𝑋𝑋 ′ ∗ 𝑋𝑋 + 𝐼𝐼 ∗ ʎ� �

b�
𝑔𝑔�� = �1n′ ∗ Y

𝑋𝑋′ ∗ 𝑌𝑌 �  
 
 
For this model, 𝑏𝑏� is the mean estimate and 𝑔𝑔� shows the effect of the marker and  ʎ =  𝜎𝜎𝑒𝑒

2

𝜎𝜎𝑖𝑖
2 and 𝜎𝜎𝑖𝑖2 

is the variance of each SNPs and it was assumed to be  𝜎𝜎𝑔𝑔
2

𝑁𝑁
, where 𝜎𝜎𝑔𝑔2 is the additive genetic 

variance, N is the number of surrounding SNPs and 𝜎𝜎𝑒𝑒2 is the variance of error.  

Given the estimates of the surrounding marker effects, the genetic values of the animals that 

were in test sets were predicted by the following model:        
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𝑔𝑔𝑔𝑔 = �𝑋𝑋𝑖𝑖𝑖𝑖  𝑔𝑔�𝑗𝑗

𝑁𝑁

𝑗𝑗=1

 

Where 𝑋𝑋𝑖𝑖𝑖𝑖  is the genotype of the marker for animal i at locus j, and 𝑔𝑔�𝑗𝑗 is the effect of marker j 

that has been estimated.  

 

3.5. Data analysis 

For the estimation of marker effects, different number of SNPs surrounding the QTN was 

considered. First, the effect of 10 SNPs were estimated (half of the SNPs were upstream and half 

were downstream the QTN). Then, the number of SNPs was increased by 10 each time and this 

was continued to reach at most 100 flanking SNPs. Then, by validating these SNP effects to test 

set and predicting the QTN effects for animals in test set, the correlation coefficient between 

predicted and observed QTN was calculated and used as a measure of accuracy. These 

accuracies were compared for different numbers of markers surrounding the QTN. First, the 

analyses were done in the complete dataset, where there was no selection of SNPs. In another 

part, all marker loci with minor allele frequencies less than 0.02 were discarded form the analysis 

which resulted in a new data set with 519 markers. Then, two other data sets were generated by 

ignoring the markers with minor allele frequencies less than 0.05 and 0.1, respectively. For the 

last two data sets, the number of remaining markers was 410 and 325, respectively. In the end, 

we had four data sets. In all data sets, the number of QTN that were analyzed was 25. In other 

words, we had 25 replicates. We took the average of accuracies for 5 cross validations in each 

replicate. Then, the average of accuracies for all replicates were taken. In the end, the mean is an 

average of 125 values.  
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The QTNs had different frequencies ranging from 0.07 to 0.5. When discarding markers with 

MAF < 0.1, the QTNs that had frequency less than 0.1 were not removed. They were kept in the 

dataset and were analyzed. Finally, the results of analyzing these four data sets were compared.  

In another part, given the genetic variance, environmental effects were generated from normal 

distribution with a mean zero and the unit variance to be added to the phenotypic observations to 

obtain the desired specific heritability. The same analyses, as mentioned above, were performed 

for new phenotypes with lower heritabilities (0.8 and 0.5). For lower heritabilities, the phenotype 

was assumed to be the sum of the genotype and the environmental effects.  

In this part, the changes in accuracies of QTN prediction were compared when the heritability 

changed. As the general formula for heritability is: 

 

h2= 𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔2+𝜎𝜎𝑒𝑒2
 

Where 𝜎𝜎𝑔𝑔2 is the additive genetic variance and 𝜎𝜎𝑒𝑒2 is the error variance (environmental variance). 

For calculation the simulated additive genetic variance at each locus j (𝝈𝝈𝒈𝒈𝒈𝒈𝟐𝟐 ), allele frequencies of 

the QTN locus were used. The formula for this calculation is (Falconer and Mackay 1996): 

𝜎𝜎𝑔𝑔𝑔𝑔2 = 2pj (1-pj) a2 

Where 𝑝𝑝𝑗𝑗 is the allele frequency of one of both alleles at a QTN locus, and 𝑎𝑎 is the allele 

substitution effect (the effect of substituting one allele in the population with the other allele). 

Here, the value of a is 1. It was estimated using three marker genotypes (1, 2, or 3). In order to 

obtain the heritabilities of 0.8 and 0.5, the residuals were drawn from a random distribution N(0, 

0.25𝜎𝜎𝑔𝑔2)  and N(0, 𝜎𝜎𝑔𝑔2), respectively.  
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3.6. Prediction 

As it was mentioned above, of the 1040 loci, 25 loci that had MAF > 0.05 were randomly 

selected as QTN. The values for QTNs were considered as observation vector in the model. The 

selectively neutral SNPs in the sample, excluding the QTN, were taken to be surrounding 

markers (half of the SNPs were upstream and half were downstream of the QTN). The SNP 

effects (surrounding marker effects) were obtained from the training sets. Estimates of SNP 

effects were used to predict QTN effect in test sets. BLUP method was used for prediction (the 

model was explained in previous section).  

 

3.7. Accuracy  

Following evaluation from G-BLUP method, the accuracy of QTN predication was calculated as 

the correlation between true and predicted QTN effects.  

 

3.8. Standard error 

Standard errors of the cross validation predictions were calculated using the following formula: 

s.e = 𝑆𝑆𝑆𝑆
√𝑛𝑛

 

Where SD is the standard deviation of cross validation predictions (accuracy predictions) and n 

is the number of cross validations that were performed. Standard error was used as a measure of 

error to observe how much the values of accuracies for each cross validation differ from each 

other in a standardized form. 
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3.9. Software used 

Matlab (2008a) was used to analyze the data. It was used for genotyping the data, for splitting 

the data into training and test sets (cross validations), for filtering the data and also for analyzing 

the data by G-BLUP method.  
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4. Results 

 

4.1. Effect of number of surrounding SNPs  

Figure 1 shows accuracies of QTN prediction estimated with 10 to 100 surrounding SNPs in four 

analyses. Analyses include:  analysis of the complete data set, when there was no selection for markers  

and when markers with MAF < 0.02, < 0.05 and < 0.10 were selected and removed from the analysis (In 

this study, the threshold 0.02, 0.05 and 0.1 for removing MAF are called cutoff thresholds for MAF). The 

accuracies were calculated based on average predictive accuracies of 25 replicates. Because there 

were 5 cross validations for each replicates, the mean was therefore an average of 125 values. 

Cross validations were performed to assess the performance of the model. The standard errors 

which were based on the variance between the replicate means can be found in tables in 

appendix 2.   

 

Figure1. Comparison of accuracies of QTN prediction estimated with 10 to 100 surrounding SNPs, when 
there was no selection for markers and when markers with MAF < 0.02, < 0.05 and < 0.10 were selected 
and removed. (heritability was 1) 
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According to Figure 1, in absence of any environmental effects (h2=1), the accuracy of QTN 

prediction was affected by increasing the number of SNPs surrounding the QTN and also by 

removing the SNPs with different MAF from the analysis. As it can be observed, by increasing 

the number of flanking markers, the accuracy increased. Accuracies varied from 0.482 to 0.786 

with different number of surrounding SNPs in all analyses. In all analyses, when there were 10 

surrounding SNPs for prediction, the accuracy was lowest and when the number reached to 100, 

the highest accuracies were obtained. For example, when there was no selection for the markers, 

a low accuracy of 0.482 was realized for the model with l0 surrounding markers which increased 

to 0.786 for a model with 100 surrounding markers. When cutoff thresholds for MAF were 0.02, 

0.05 and 0.10, the ranges of accuracies varied from 0.551 to 0.777, 0.575 to 0.744 and 0.547 to 

0.689, respectively (see the tables in Appendix 2). When moving from 10 to 100 flanking SNPs, 

an increase of 41, 29 and 26% in accuracy was observed for these data sets with cutoff threshold 

0.02, 0.05 and 0.1, respectively. 

Except the curve corresponding to the accuracies in case of no selection for markers, the other 

curves were almost flat between 60 to 100 SNPs. It means that any increase beyond 60 

surrounding SNPs was very small. Since the curves were flat, we expect hardly any improvement 

in accuracy, by increasing the SNP panel beyond 100 surrounding SNPs. For exception case (no 

selection), because the increase was very small after 80, it can be found that our expectation 

regarding to gradual decrease in accuracy by adding more than 100 surrounding SNPs is true.   
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Figure 2. Comparison of accuracies of QTN prediction estimated with 10 to 100 surrounding SNPs, when 
there was no selection for markers and when markers with MAF < 0.02, < 0.05 and < 0.10 were selected 
and removed. (heritability was 0.5) 
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Although with a heritability of 0.5 the trend of increasing accuracy with increasing number of 

SNPs did not change a lot, the accuracies decreased by lowering heritability.  

When h2=0.8, the accuracies of QTN prediction followed the pattern of accuracies when h2=1. In 

general, with heritability 0.8, the accuracies increased with increased number of SNPs, but were 

lower compared to the accuracies for phenotypes with heritability 1. More explanation for result 

of heritability 0.8 is described in next sections. The figure and the table for the result of 

heritability 0.8 are in appendix 1 and 2.  

 

4.2. Effect of MAF cutoff threshold 

According to Figure 1 and 2, we understand that some markers with small or with no variation 

should be removed from analysis. Because the highest accuracies were obtained when markers 

with MAF < 0.02 were excluded. With 80 and less surrounding markers for QTN prediction, using 

the data set with MAF cutoff threshold 0.02 yielded higher accuracies than using the complete 

data set (no selection) (Figure 1). For example, with 10 flanking markers, an accuracy of 0.482 

was realized when the complete data set was used compared to 0.551 when markers with MAF < 

0.02 were selected and removed from analysis. It means a relative increase of 14%. 

Knowing that some markers should be discarded from analysis, the most appropriate minimum 

threshold for SNP MAF in genomic selection studies should be determined. From the previous 

Figures (1 and 2), it seems the best cutoff threshold for MAF is 0.02. Because by shifting cutoff 

values from 0.02 to 0.05 and 0.1, more markers were removed and therefore more information of 

those markers were lost. Because the markers that have high average MAF are more informative, 

due to more variation. Therefore, lower accuracies were yielded by losing those markers. As an 
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example, when h2=1 and QTN was predicted by 100 surrounding SNPs, the decrease in accuracy 

was 4.25% (accuracy 0.777 compared to 0.744) and 7.4% (accuracy 0.744 comapred to 0.689) 

when the cutoff threshold for MAF increased from 0.02 to 0.05 and from 0.05 to 0.1, 

respectively. The reduction in accuracies was to a large extent due to loss of markers that are 

polymorphic.   

Here, the curve that shows the accuracies of QTN prediction when there was no selection for the 

markers was compared to the curve that presents the accuracies in the data set with MAF 

threshold cutoff 0.02. As it is observed, when there was no selection for markers, the accuracies 

of QTN prediction were lower with 10 to 80 surrounding SNPs, in comparison to the situation 

that markers with MAF < 0.02 were ignored from analysis. However, further inclusion of SNPs 

resulted in the accuracies that were almost the same for both situations and the curves were 

overlapped. As mentioned above, the reason for the lower accuracies might be due to markers 

that are monomorphic (MAF < 0.005) and the markers with MAF lower than 0.02. These markers 

give no information for increasing accuracy. For example, if there were 10 surrounding SNPs, 

when 5 of them had no information, the accuracies were estimated as if just 5 flanking SNPs 

surrounded the QTN. As it was proved, prediction of QTN with lower number of SNPs gives 

lower accuracy. One reason that the accuracies obtained from complete dataset, became identical 

to the accuracies obtained from dataset in which MAF cutoff threshold was 0.02, (when moving 

from 80 to 100 neighboring SNPs) could be due to the effect of previous markers that were 

accumulated and the accuracy reached to its maximum point by adding more genetic markers. 

So, by increasing number of markers, the number of markers becomes sufficient even if many 

markers with low information content (low MAF) were included.  
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By excluding the markers with MAF less than 0.02, the maximum accuracy that were obtained 

based on mean of accuracies of 25 replicates, was 0.777. Because most replicates yielded the 

accuracy that ranged from 0.7 to 0.8.  In Figure 4, the histogram of the number of replicates that 

had accuracies in range of 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9 and more than 0.9 was shown. As it is 

clear more than half of the replicates had the accuracy ranged from 0.7 to 0.8.   

 

 

Figure 3: Number of replicates that belong to different ranges of accuracies (1: 0.6-0.7, 2: 0.7-
0.8, 3: 0.8-0.9 and 4: more than 0.9)  
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with 400 individuals in the training data set changed compared to 50% masking with 250 

individuals in the training data set. Accuracies with 20% masking was higher in comparison to 

50% masking. This can be due to higher amount of information in training set which results in 

better estimates of marker effects. In other words, when more phenotypes are available to 

estimate marker effects, the accuracy increases. 

 

 

 

Figure 4. Accuracies of QTN prediction with masking 20% and 50% of all individuals when markers with 
MAF < 0.02 were excluded and heritability of phenotypes was 1. 
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Figure 5. Accuracies of QTN prediction with masking 20% and 50% of all individuals when markers with 
MAF < 0.02 were excluded and heritability of phenotypes was 0.5. 
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Figure 4 also shows that the increase in accuracy of QTN prediction, when moving from 50 to 

100 SNPs, was smaller for 50% masking than 20% masking. 

For confirmation of the results of 20 and 50% masking, the same analyses were performed on a 

data set in which cutoff threshold for MAF was 0.05. The curves followed the same pattern. 

Figures and tables for this analysis can be found in appendix 1 and 2. 

 

4.4. Effect of heritability  

Figure 6 to 9 compares the accuracies of QTN prediction with different levels of heritability (1, 

0.8 and 0.5) in different data sets. In all analyses, the accuracies decreased with a reduction in 

heritability, and the trend of decrease was almost the same for all analyses. The accuracies of 

QTN prediction for the heritability 1, 0.8 and 0.5 of phenotypes, using any of the data sets and 

any number of surrounding SNPs, ranged between 0.482 to 0.786, 0.478 to 0.741 and 0.47 to 

0.67, respectively. In general, with 100 surrounding SNPs, from heritability 1 to 0.8, the decrease 

in accuracies was 6.5, 4.63, 4 and 5.2% for the analysis with no selection and for analyses in 

which cutoff thresholds for MAF were 0.02, 0.05 and 0.1, respectively. From heritability 0.8 to 

0.5, the decrease in accuracies was 10, 11, 10 and 8.27% for the analysis with no selection and 

analyses in which SNPs with MAF < 0.02, < 0.05 and < 0.1 were removed, respectively.  

The reduced accuracies for lower heritabilities were mainly as the result of larger environmental 

variance and lower proportion of estimated genetic variance that is explained by the markers.  

Since the pattern of reduction in accuracies, by lowering heritability, is the same for all data sets, 

heritabilities are compared for the dataset in which cutoff threshold for MAF was 0.02. When 
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decreasing heritability from 1 to 0.8, the accuracies decreased from 0.551 to 0.548 and from 

0.777 to 0.741 with 10 and 100 flanking SNPs, respectively. It means a reduction of 0.54 and 

4.63%. When reducing heritability from 0.8 to 0.5, the accuracies decreased from 0.548 to 0.536 

and from 0.741 to 0.660 with 10 and 100 flanking SNPs, respectively. It means a reduction of 2.2 

and 11%. This shows that when heritability was reduced, the reduction in accuracy was larger 

when the number of surrounding SNPs was large. This might be due to the accumulation of 

environmental variance with adding more markers. For example, when just 10 neighboring SNPs 

were used for QTN prediction, the environmental variance is less than the situation that 100 

surrounding SNPs were used for prediction. 
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Figure 6. Comparison of accuracies of QTN prediction for heritabilities 1, 0.8 and 0.5 when there 
was no selection for markers 

 

Figure 7. Comparison of accuracies of QTN prediction for heritabilities 1, 0.8 and 0.5 when the 
cutoff threshold for MAF was 0.02  
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Figure 8. Comparison of accuracies of QTN prediction for heritabilities 1, 0.8 and 0.5 when the 
cutoff threshold for MAF was 0.05 

 

Figure 9. Comparison of accuracies of QTN prediction for heritabilities 1, 0.8 and 0.5 when the 
cutoff threshold for MAF was 0.1  
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5. Discussion 

In this study, we applied the genomic selection to simulated data and predicted the effect of QTN 

rather than QTL to assess the accuracy of QTN prediction by surrounding SNPs.  A total of 500 

animals with 1040 markers on one chromosome were used in this study. The overall average 

accuracy based on mean accuracies of 25 replicates were obtained. The accuracies of the 

estimates were obtained by calculating the correlation between predicted and true QTN effects.  

In this study, we found that the accuracy of QTN prediction depends on the number of SNPs 

surrounding the QTN, minor allele frequencies of the markers, the number of animals which 

were masked as well as the level of heritability for the considered phenotype. A number of 

authors have shown that the number of phenotypes in the training set, the number of genetic 

markers and the heritability of the phenotypes can influence the accuracy of genomic predictions 

(Meuwissen et al. 2001; Muir 2007; Calus et al. 2008). 

The presented results on accuracy of selection are for one QTN. However, we expect that the 

same results hold when many QTN are present. The difference between one and many QTN is 

that the total breeding value is the sum of many QTN, and that many markers will be needed to 

trace all these QTN (some markers tracing more than one QTN). The latter condition is however 

met in genomic selection, where dense genome wide marker sets are used. 

In general, for all heritability assumptions, the accuracy of QTN prediction increased by 

increasing the number of flanking SNPs from 10 to 60 SNPs. Further increase in number of 

SNPs resulted in a very small increase in accuracy in case of heritability 1 and 0.8 and a very 

small decrease in case of heritability 0.5. When h2=1, by moving from 10 to 100 flanking SNPs, 

the increase in accuracy was 41%. So, in absence of environmental effects, it was possible to 

predict the QTN with a high accuracy of 0.777, by combining information from 60 SNPs or more 
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neighboring SNPs1. From this it is concluded that given a dense marker map, QTN can be 

predicted with a high accuracy.  

When h2=0.8, by moving from 10 to 100 flanking SNPs, the increase in accuracy was 35% 

(accuracy 0.548 compared to 0.741). So, when h2=0.8, it was possible to predict the QTN with a 

high accuracy of 0.741, by combining information from 60 SNPs or more neighboring SNPs. 

However, when h2=0.5, by moving from 10 to 60 flanking SNPs, the increase in accuracy was 

about 25% (accuracy 0.536 compared to 0.67). So, when h2=0.5, the maximum accuracy was 

0.67 by combining information from 60 SNPs.  

Heaton et al. (2007) developed a set of markers (100 SNPs) with an average MAF bigger than 

0.41. These SNPs were from a group of 216 sires. They sequenced the region of about 1000 base 

pair flanking these SNPs to get additional polymorphisms. They calculated the accuracy of DNA 

test by using the information of these surrounding nucleotides and found an increase in accuracy 

of DNA tests by increasing the number of surrounding SNPs. They suggested this set of SNPs 

for multiple DNA diagnostic uses, for use by researchers, producers and commercial genotyping 

laboratories. 

We applied different cutoff thresholds for MAF (0.02, 0.05 and 0.1) in order to see the effect of 

various cutoff thresholds for MAF on accuracy. Also, we compared the results of analyzing data 

sets with different MAF cutoff thresholds to the results of complete data set with no selection, in 

order to see if removing markers with low MAF has effect on accuracy or not. Our results 

showed that markers with very low frequencies (less than 0.02) had little impact on accuracy 

estimation and should be ignored from analysis. However, as it was shown in Figure 1, in case of 

no selection, with increasing the number of markers, from 10 to 100, the accuracy reached to its 

1 As we proposed cutoff threshold 0.02 for MAF, the results of data set with this threshold are discussed. 
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maximum point (0.786). So, from this result, it is concluded that adding more markers for 

prediction led to greater usefulness of markers with MAF less than 0.02. Because by increasing 

the number of markers, QTN can be traced better by the inheritance of markers even with small 

effects. But it should be noted that more markers can enhance the accuracy by providing SNPs 

that are located closer to the QTN. It means that adding markers that are very far from the QTN 

have little effect on accuracy. Previously, some authors reported that reliability of genomic 

prediction for young animals increased gradually as marker numbers increased from a few 

hundred up to 50000 (Calus et al. 2008; Van Raden et al. 2009). 

Till now, most studies that have been done in genomic selection removed SNPs with MAF < 

0.05. However, in this study, the minimum threshold 0.02 is proposed for SNP MAF. We 

observed that even SNPs with a MAF of 0.02 to 0.05 had enough information to obtain a useful 

estimate of accuracy and they increased the accuracy about 4.5%. 

By comparing different cutoff thresholds for MAF, we observed that by increasing the cutoff 

thresholds for MAF, the accuracies decreased. The decrease was due to losing the information 

from the polymorphic markers that were avoided. Different studies have chosen different cutoff 

thresholds for SNP MAF for genomic predictions. VanRaden et al. (2009) used the SNPs data 

for estimation the reliability for genetic gain by using genomic prediction methods for a large 

population of Holstein bulls. They removed the SNPs with MAF less than 0.05. However, they 

proposed that SNPs with frequencies lower than 0.05 could be used in the analysis in future if the 

sample size increased. They also concluded that when the number of SNPs increased, the 

reliability of evaluations enhanced. Because by using more SNPs for genomic evaluation, the 

QTL is tracked better by SNPs and reliability increases by tracing the inheritance of genes even 

with small effects. The total number of SNPs that they applied for genomic prediction of 9 traits 
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in Holstein was 38,416. In another analysis, they used 50% (19,208) or 25% (9,604) of those 

SNPs. They observed more reliability when more markers were used. For example for milk 

yield, the coefficient of determination increased 4.44% by increasing the number of markers 

from 9604 to 19208. In our study, with 100 surrounding SNPs, accuracy increased by around 

4.5% when the markers with MAF between 0.02 and 0.05 were included in the analysis.  

Wiggans et al. (2009) applied a minimum SNP MAF of 0.02 for genomic predictions. They 

reported that SNPs with a low MAF (less than 0.02) were expected to have a very small effect on 

genomic evaluation. They suggested this threshold, because the number of genotyped animals 

have been increased nowadays and has resulted in increase in usefulness of markers with MAF 

between 0.05 and 0.02. The studies that have been done on human genetics discarded MAF less 

than 0.05, they also suggested a larger sample size to identify the effects that are very small 

(Hirschhorn and Daly 2005). Wiggans et al. (2010) increased the number of SNPs that were used 

for genomic evaluations. They used a minimum SNP MAF of 0.01 for Holsteins, Jerseys, or 

Brown Swiss cows. They reported that it is possible to use SNPs with a low frequency to 

evaluate the accuracy, because the number of genotyped animals is increasing.  

In genome-wide association studies (GWAS), it is common to remove the SNPs with MAF 

lower than 0.1 (Florez et al. 2007). There are some reasons for avoiding MAF less than 0.1. One 

reason is that markers with low frequencies reduces genotyping rates. Another reason is related 

to perceptions about the statistical inferences that result from analyzing these SNPs. It means that 

it is hard to draw conclusion from the results of analysis these SNPs. However, this threshold 

leads to losing large information of those SNPs (Tabangin et al. 2009). Also, ignoring SNPs with 

low MAF will decrease the ability for detection the polymorphisms causing rare diseases 

(Gorlov et al. 2008). Tabangin et al. (2009) investigated the effect of removing the SNPs with 
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low MAF on the likelihood of getting false positives. They showed that discarding those markers 

from analysis increased false-positive rates in GWAS. 

We also investigated the effect of increasing masked animals in test set on accuracy when the 

heritability of phenotype was 1 and 0.5. It was shown that 50% masking compared to 20% 

masking, had a strong influence on the accuracy of QTN prediction.  Increasing masked animals 

from 100 to 250 decreased the accuracies by 6% and 9.25% when heritability was 1 and 0.5, 

respectively. So, it is concluded that higher accuracy can be achieved by increasing the size of 

training set. One reason for higher accuracies with masking fewer animals can be explained 

regarding the size of training sets. When training sets are larger, they give more information for 

estimation of marker effects. So, with more information, accuracy improves. It should be noted 

that test sets do not contribute in the estimation of marker effects. Luan et al. (2009) used the 

random masking method on Norwegian red cattle milk data (milk yield, fat yield and protein 

yield) for calculating the accuracy of GEBV. They found that the accuracies of GEBV for 20% 

masking with 400 animals in training set was significantly higher in comparison to masking 50% 

of animals with 250 animals in training set. The accuracies that they obtained for milk yield with 

heritability around 0.3 were 0.599 and 0.457 for 20 and 50% masking, respectively. In our study, 

when h2=0.5 and when 100 SNPs surrounds the QTN, with 20 and 50% masking, the accuracies 

were 0.660 and 0.599, respectively 

We found that there was a relationship between the heritability and accuracy of QTN prediction. 

The accuracy reduced when the heritability decreased which corresponds to results by 

Kolbehdari et al. (2007). In general, when we estimated the accuracy by 100 surrounding SNPs 

and heritability decreased from 1 to 0.8 and from 0.8 to 0.5, the accuracies decreased 4.6 and 

11%, respectively. Nielsen et al. (2009) investigated the effect of heritability on accuracy of 
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genomic breeding value in aquaculture breeding schemes and showed an increase of about 4% 

when heritability enhanced from 0.2 to 0.4. 

We obtained the accuracy of 0.66 when there were 100 flanking SNPs and when h2=0.5. 

Meuwissen et al. (2001) obtained accuracy of 0.579 for G-EBV. The heritability for their 

phenotype was 0.5 and the size of their data was 500. Luan et al. (2009) compared the accuracies 

of genomic prediction for high and low heritable traits in Norwegian Red cattle and found the 

accuracies of G-EBV prediction were higher for the traits with higher heritability.  
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6. Conclusion 

It is concluded that with higher number of surrounding SNPs, accuracy of QTN prediction is 

higher. Since further increase in number of flanking markers beyond 60 SNPs showed a very 

small increase in accuracy, we do not propose using more than 100 surrounding SNPs for QTN 

prediction. 

The markers that have no variation should be excluded from analysis, because they found not to 

be useful for QTN prediction. In all analyses, when markers with MAF less than 0.05 and 0.1 

were avoided, there was a decreasing trend in the accuracies. According to these results, we 

showed that a cutoff value of 0.02 for MAF is more appropriate for genomic selection studies. 

Considering this MAF minimum threshold also provide a tool to avoid monomorphic SNP with 

MAF < 0.005. However, we showed that by using more flanking markers, even the SNPs with 

MAF lower than 0.02 can be useful for improvement the accuracy. Because with 80 to 100 

surrounding markers the accuracies for the data set with no selection and for the data set with 

MAF cutoff threshold 0.02 were almost identical (Figure 1). After filtering the data with the 

determined cutoff threshold for MAF, the QTN could be predicted with 100 flanking SNPs with 

a high accuracy of 0.777.  

The accuracies of prediction with 50% masking followed the trend of accuracies with 20% 

masking, for different number of surrounding SNPs. There was an increasing trend with 

increasing the number of flanking SNPs. However, with 50% masking, the accuracies were 

lower in comparison to 20% masking. So, it is suggested to reduce the size of test sets especially 

for phenotypes with lower heritability. It is concluded not to mask more than 20% of all animals 

in test sets. It means that at least 80% of animals should be analyzed in training set.  
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The accuracy of QTN prediction dropped when the heritabilities of phenotypes decreased. This 

happened due to larger environmental variance and smaller genetic variance for phenotypes with 

lower heritabilities.  

  

39 
 



7. Suggestions 

• As this study was performed on simulated data, it is proposed to estimate the accuracy of 

QTN predictions for the QTNs that have been identified in farm animals so far.  

• Because of the limited number of animals in this study, further studies using larger data 

sets are needed to investigate the minimum cutoff threshold for MAF in genomic 

selection studies. 

• Also, it is suggested to investigate the accuracy of QTN prediction when many QTN are 

present 

• As we used just BLUP method for our analysis, it is also proposed to use different 

models for QTN prediction and compare the results of these methods in order to 

understand which model gives highest accuracy and finally performs best 
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Appendix 1 

Figures: 

 
Figure10. Comparison of accuracies of QTN prediction estimated with 10 to 100 surrounding SNPs, 
when there was no selection for markers and when MAF < 0.02, < 0.05 and < 0.10 were selected and 
removed. (heritability was 0.8) 

 

Figure 11. Accuracies of QTN prediction with masking 20% and 50% of all individuals when markers 
with MAF < 0.05 were excluded and heritability of phenotypes was 1. 
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Figure 12. Accuracies of QTN prediction with masking 20% and 50% of all individuals when markers 
with MAF < 0.05 were excluded and heritability of phenotypes was 0.5. 
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Appendix 2 

Tables: 

 
Table 1: Comparison of different cutoff thresholds for MAF, when heritability of phenotype was 1. 

Number of 
surrounding 

SNPs 

Cutoff thresholds for MAF 
No selection 0.02 0.05 0.1 

Acc SE Acc SE Acc SE Acc SE 
10 0.482 0.033 0.551 0.030 0.575 0.028 0.547 0.033 
20 0.578 0.027 0.658 0.026 0.652 0.028 0.607 0.029 
30 0.645 0.027 0.713 0.024 0.695 0.022 0.633 0.025 
40 0.689 0.025 0.736 0.022 0.706 0.020 0.657 0.025 
50 0.713 0.025 0.751 0.020 0.717 0.019 0.666 0.024 
60 0.733 0.023 0.761 0.019 0.725 0.019 0.680 0.022 
70 0.754 0.021 0.766 0.019 0.737 0.019 0.684 0.021 
80 0.769 0.020 0.770 0.019 0.742 0.018 0.686 0.022 
90 0.781 0.019 0.775 0.018 0.744 0.018 0.687 0.023 

100 0.786 0.019 0.777 0.017 0.744 0.020 0.689 0.024 
 Acc: Accuracy, SE: Standard error 

 

 

Table 2: Comparison of different cutoff thresholds for MAF, when heritability of phenotype was 0.5. 

Number of 
surrounding 

SNPs 

Cutoff thresholds for MAF 
No selection 0.02 0.05 0.1 

Acc SE Acc SE Acc SE Acc SE 

10 0.470 0.032 0.536 0.030 0.559 0.028 0.528 0.032 
20 0.547 0.027 0.626 0.027 0.619 0.029 0.574 0.030 
30 0.603 0.028 0.660 0.027 0.647 0.025 0.589 0.030 
40 0.630 0.027 0.669 0.025 0.650 0.025 0.606 0.029 
50 0.642 0.027 0.673 0.025 0.651 0.027 0.606 0.028 
60 0.649 0.027 0.671 0.025 0.653 0.028 0.610 0.030 
70 0.657 0.026 0.671 0.026 0.652 0.028 0.608 0.031 
80 0.662 0.026 0.667 0.026 0.650 0.027 0.605 0.030 
90 0.664 0.025 0.664 0.024 0.647 0.027 0.602 0.032 
100 0.661 0.026 0.660 0.024 0.643 0.028 0.599 0.032 

Acc: Accuracy, SE: Standard error 
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Table 3: Comparison of different cutoff thresholds for MAF, when heritability of phenotype was 0.8. 

Number of 
surrounding 

SNPs 

Cutoff thresholds for MAF 
No selection 0.02 0.05 0.1 

Acc SE Acc SE Acc SE Acc SE 
10 0.478 0.032 0.548 0.029 0.571 0.028 0.539 0.034 
20 0.570 0.027 0.650 0.027 0.643 0.029 0.595 0.030 
30 0.632 0.028 0.699 0.024 0.680 0.024 0.619 0.026 
40 0.669 0.026 0.716 0.021 0.688 0.022 0.639 0.027 
50 0.689 0.025 0.729 0.020 0.696 0.022 0.643 0.026 
60 0.703 0.024 0.734 0.020 0.704 0.022 0.653 0.025 
70 0.717 0.022 0.738 0.020 0.710 0.021 0.655 0.024 
80 0.728 0.021 0.738 0.020 0.714 0.020 0.655 0.025 
90 0.734 0.021 0.740 0.020 0.715 0.021 0.654 0.025 

100 0.735 0.020 0.741 0.019 0.714 0.022 0.653 0.026 
Acc: Accuracy, SE: Standard error 

 

 

Table 4: Accuracies of QTN prediction with 20% and 50% 
masking of all individuals, when heritability was 1 and 
cutoff threshold for MAF was 0.02 

Number of 
surrounding 

SNPs 

% of all animals masked 
20 50 

Acc SE Acc SE 
10 0.551 0.030 0.546 0.026 
20 0.658 0.026 0.650 0.020 
30 0.713 0.024 0.699 0.014 
40 0.736 0.022 0.720 0.015 
50 0.751 0.020 0.730 0.015 
60 0.761 0.019 0.734 0.016 
70 0.766 0.019 0.736 0.016 
80 0.770 0.019 0.734 0.014 
90 0.775 0.018 0.735 0.016 
100 0.777 0.017 0.730 0.012 

                        Acc: Accuracy, SE: Standard error 
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Table 5: Accuracies of QTN prediction with 20% and 
50% masking of all individuals, when heritability was 
0.5 and cutoff threshold for MAF was 0.02 

Number of 
surrounding 

SNPs 

% of all animals masked 
20 50 

Acc SE Acc SE 
10 0.536 0.030 0.517 0.021 
20 0.626 0.027 0.591 0.018 
30 0.660 0.027 0.620 0.018 
40 0.669 0.025 0.625 0.019 
50 0.673 0.025 0.623 0.017 
60 0.671 0.025 0.619 0.016 
70 0.671 0.026 0.618 0.015 
80 0.667 0.026 0.610 0.015 
90 0.664 0.024 0.608 0.016 
100 0.660 0.024 0.599 0.015 

                                       Acc: Accuracy, SE: Standard error 

 

 

Table 6: Accuracies of QTN prediction with 20% and 
50% masking of all individuals, when heritability was 1 
and cutoff threshold for MAF was 0.05 

Number of 
surrounding 

SNPs 

% of all animals masked 
20 50 

Acc SE Acc SE 
10 0.575 0.028 0.574 0.023 
20 0.652 0.028 0.638 0.026 
30 0.695 0.022 0.683 0.019 
40 0.706 0.020 0.687 0.016 
50 0.717 0.019 0.694 0.015 
60 0.725 0.019 0.698 0.015 
70 0.737 0.019 0.704 0.014 
80 0.742 0.018 0.703 0.016 
90 0.744 0.018 0.700 0.017 
100 0.744 0.020 0.696 0.016 

                         Acc: Accuracy, SE: Standard error 
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Table 7: Accuracies of QTN prediction with 20% and 
50% masking of all individuals, when heritability was 
0.5 and cutoff threshold for MAF was 0.05 

Number of 
surrounding 

SNPs 

% of all animals masked 
20 50 

Acc SE Acc SE 
10 0.559 0.028 0.542 0.014 
20 0.619 0.029 0.593 0.020 
30 0.647 0.025 0.616 0.012 
40 0.650 0.025 0.612 0.013 
50 0.651 0.027 0.610 0.012 
60 0.653 0.028 0.612 0.010 
70 0.652 0.028 0.610 0.011 
80 0.650 0.027 0.604 0.012 
90 0.647 0.027 0.599 0.011 
100 0.643 0.028 0.592 0.012 

                                      Acc: Accuracy, SE: Standard error 
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