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Abstract 

The main aim of this work was to investigate the propensity of bed materials to retain 

ash-forming elements from biomass under conditions relevant to dual fluidized bed 

gasification (DFBG). The investigation was carried out in a laboratory-scale bubbling 

fluidized bed reactor in which biomass was gasified with steam and the unconverted char 

was combusted in the temperature range 800–900 ° C. Three bed materials (sand, olivine 

and bauxite) and two biomass fuels (forestry residue and wheat straw) were studied.  

 

From the results obtained and literature on the ash transformation chemistry during 

thermal conversion of biomass, it was found that the extent to which ash-forming 

elements from biomass are retained on bed materials depend among other factors on (1) 

the abundance of ash-forming elements in the fuel, (2) the ability of the bed material to 

react and form compounds with ash-forming elements and (3) the atmosphere 

surrounding the fuel in the reactor. For example, Ca, P and K (which were among the 

most abundant ash-forming elements in the forestry residues) were also the main ash-

forming elements retained on sand, olivine and bauxite during thermal conversion of the 

forestry residues. However, the retention of these elements differed on the three bed 

materials. With respect to reactor atmosphere, Ca and P were retained on olivine 

primarily during char combustion while the retention of K on olivine was somewhat 

similar during gasification and char combustion.  

 

In addition to the experimental results, the effect of the retention of ash-forming elements 

on bed agglomeration tendency and the composition of the product gas is discussed as 

well as the relevance of the obtained results for the DFBG process. 

 

Keywords: Fluidized bed, ash retention, gasification, combustion, bed material 

  



 

 

 

Sammanfattning för beslutsfattare 
I detta arbete studerades ansamlingen av askämnen på bäddmaterial vid förgasning och 

förbränning av biobränslen i fluidiserad bädd. Bäddmaterialen (kvarts-)sand, olivin och 

bauxit jämfördes både med avseende på benägenhet att ansamla askämnen och motstånd 

mot agglomerering. Dessutom undersöktes i vilken omfattning askämnen ansamlades på 

olivin under förgasning av skogsavfall i jämförelse med under förbränning av den 

kvarvarande koksen. 

 

Resultaten visade att olivin var betydligt mer motståndskraftigt mot agglomerering än 

bauxit, som visade en motståndskraft mot agglomerering jämförbar med sandens. Det 

förväntades att sand skulle uppvisa lågt motstånd mot agglomerering på grund av högt 

innehåll av Si och påföljande bildning av kaliumsilikat med K från bränslet. Däremot var 

det oväntat att bauxit skulle uppvisa ett likartat lågt motstånd mot agglomerering trots att 

bäddmaterialet hade ett lågt innehåll av Si. 

 

Under förgasning och förbränning av skogsavfall upptog olivin mindre Ca medan bauxit 

upptog mer P och sand upptog mer K från bränslet. I litteraturen föreslås att ett ökat 

upptag av vissa askännen kan påverka sammansättningen av produktgasen vid förgasning, 

men ingen skillnad kunde fastställas mellan bäddmaterialen i detta avseende. Om ett val 

mellan bäddmaterial skall göras för lämplighet i en industriell förgasningsprocess visar 

resultaten inte på någon betydande påverkan på gassammansättningen mellan 

bäddmaterialen, vilket föranleder slutsatsen att det billigaste bäddmaterialet med fördel 

kan användas så länge det tilltänkta bränslet är fritt från föroreningar och av lågt innehåll 

av ämnen som kan leda till agglomerering. Om ett mindre rent bränsle med högre innehåll 

av ämnen som kan leda till agglomerering ärt tänkt att användas, eller om det efterstävas 

en större säkerhet mot agglomerering i processen, är olivin fördelaktigt. Däremot finns 

flertalet andra faktorer som kan vara avgörande för ett bäddmaterials lämplighet, 

exempelvis inverkan på nedbrytning av tjära i produktgasen, som inte tas upp i detta 

arbete. 

 

 

  



 

 

 

Populärvetenskaplig sammanfattning 
I takt med att den atmosfäriska koncentrationen av koldioxid stiger och tillgången av 

fossila bränslen sjunker är alla lösningar välkomna som syftar till att minska beroendet av 

importerade fossila resurser och samtidigt inte bidrar till ökade utsläpp av växthusgaser. 

Energitekniker som omvandlar biobränslen till mer lättillgängliga energibärare möjliggör 

användning av energi utan nettobidrag till atmosfärens koldioxidkoncentration. Därför är 

det önskvärt att ersätta fossila bränslen i exempelvis transportsektorn med sådana som 

härrör från biomassa. 

 

Det har visat sig svårt att omvandla all energi i biomassa på ett bra sätt: det är enkelt att 

exempelvis jäsa socker till etanol men svårare att få bakterier eller jästsvampar att bryta 

ned vedämne och andra komplicerade strukturer för att omvandla dem till flytande eller 

gasformiga energirika produkter. Det är problematiskt eftersom störst andel lättillgänglig 

energi i biomassa ofta finns i grödor som används till matproduktion, eller odlas på 

marker där mat kunde producerats. Biobränslen som inte konkurrerar med matproduktion, 

t.ex. med ursprung från skogsbruket, innehåller ofta större andel svårnedbrytbara 

strukturer. Processer som omvandlar dessa till energi är mycket eftertraktade. Det är 

relativt okomplicerat och mycket vanligt att exempelvis elda biomassa för att producera 

el och värme, och i framtiden är det sannolikt att stora delar av samhället kan vara 

eldrivet och hämta sin energi genom, bland annat, förbränning av biobränslen och från 

många andra förnybara källor. Men i väntan på att lagring av elenergi kan ske tillräckligt 

snabbt och i tillräckligt stora volymer behövs andra energibärare som ersätter fossila 

bränslen, i synnerhet inom transportsektorn. Att använda värme för att förgasa biomassa 

har samma fördelar som att elda dem och producera el, men med fördelen att energin i 

produktgasen relativt billigt kan lagras i stora kvantiteter och ”tankas” snabbt, i synnerhet 

om den syntetiseras till flytande bränsle.  

 

Förgasning av biobränslen i två sammankopplade fluidiserade bäddar är en relativt 

ovanlig förgasningsteknik som har funnit tillämpning bland annat för att producera 

fordonsdrivmedel. Genom att under höga gashastigheter passera ånga genom vanlig sand 

eller något annat mineral – vilket i dessa tillämpningar kallas bäddmaterial – börjar 

bäddmaterialet bete sig som en bubblande vätska. När man introducerar en liten mängd 

bränsle i taget till bädden hettas bränslet snabbt upp och förgasas i den syrefria 

förgasningsreaktorn. Koksen, det vill säga det som återstår av bränslet när de mer 

lättillgängliga beståndsdelarna av bränslet förgasats, cirkuleras därefter tillsammans med 

bäddmaterialet till en förbränningsreaktor där luft tillsätts, vilket frigör värme när koksen 

brinner. Det varma bäddmaterialet cirkuleras därefter åter till förgasningsreaktorn och 

tillför därmed den värme som krävs för att förgasningsreaktionen skall ske. Fördelarna 

med tekniken är flera. Produktgasen hålls fri från avgaser från förbränningen och får 

därmed högt energiinnehåll, samtidigt som processen drivs utan tillskott av energi från 

andra källor än från det bränsle som förgasas. Den goda omblandningen i det fluidiserade 

bäddmaterialet gör att förgasningen kan ske vid låga temperaturer, vilket gör att utsläppen 

av kväveoxider hålls låga. Dessutom kan många askämnen med relativt låg 

smälttemperatur bevaras i fast form vilket förhindrar flera askrelaterade driftproblem. Att 

bränslet utgör en mycket liten del av den totala bäddmaterialets vikt gör att 

omvandlingen, till skillnad från konventionella förgasare, är okänslig för bränslets 

kvalitet både vad gäller innehåll av vatten och bränslets askhalt. 

 

Asksammansättningen i bränslet spelar stor roll för processen. Ett högt innehåll av kalium 

i askan, till exempel, leder ofta till att legeringar av låg smältpunkt bildas om innehållet 

av kisel är högt i askan eller bäddmaterialet, vilket är fallet för vanlig sand. Detta kan 

göra så att bäddmaterialet klumpar sig – agglomererar – vilket kan leda till bäddkollaps 

och driftstopp. Därför är det viktigt att vara uppmärksam på hur bäddmaterialets 

sammansättning förhåller sig till bränsleaskans, framför allt vad gäller kalium, kisel, 



 

 

 

natrium, fosfor, kalcium och magnesium. Vissa förhållanden mellan förekomsten av 

dessa ämnen i kombinationen av bäddmaterial och bränsle har visat sig öka risken för 

agglomerering. Genom att antingen ändra bränsle eller bäddmaterial kan man på så sätt 

styra processen i önskad riktning. 

 

Alla askämnen ger däremot inte upphov till oönskade effekter. Till exempel motverkar 

flera askämnen agglomerering. Enligt vissa studier ökar nedbrytningen av tjära om 

kalium och klor avges från bränslet, vilket ökar kvaliteten av produktgasen. Andra försök 

har visat att tjärinnehållet i produktgasen minskar om järn finns i bäddmaterialet, eller att 

en katalytisk verkan på den s.k. vattengasskiftreaktionen erhålls om en beläggning av 

kalcium bildas på bäddmaterialet, vilket bildar mer koldioxid och vätgas vid förgasning i 

ånga. I samtliga fall är det relevant att veta i vilken omfattning olika askämnen binder till 

olika bäddmaterial för att kunna förutse driftproblem eller kunna dra nytta av askkemin. 

 

För att undersöka hur askämnen ansamlas på bäddmaterial och hur de i sin tur påverkar 

gasutbytet genomfördes en serie labbförsök. Två biobränslen, skogsavfall i form av 

grenar och toppar samt vetehalm, maldes och pelleterades. Bäddmaterialen sand, bauxit 

och olivin användes: alla tre är naturligt förekommande bergarter men har olika 

sammansättning och egenskaper som är av intresse för processen. Sand är rikt på kisel 

vilket kan leda till agglomereringsproblem, medan både olivin och bauxit tidigare har 

visats vara motståndskraftiga mot agglomerering. I försöken med vetehalm visade det sig 

att olivin hade större motståndskraft mot agglomerering än bauxit, som i sin tur hade 

ungefär samma motståndskraft mot agglomerering som sand. Resultatet var i enlighet 

med litteraturen vad gällde olivin och sand, men den låga motståndskraften hos bauxit var 

oväntad. 

 

I den serie försök där samma mängd skogsavfall matades till reaktorn framgick tydliga 

skillnader mellan bäddmaterialen angående i vilken omfattning askämnen ansamlades på 

bäddmaterialens yta. I samtliga fall dominerade upptaget av kalcium, fosfor och kalium. 

Olivin upptog däremot mindre kalcium än de andra bäddmaterialen, medan bauxit upptog 

mer fosfor och sand upptog mer kalium. I samma försök mättes sammansättningen av 

produktgasen. Sett till enbart sammansättningen av de enskilda gaserna var skillnaderna 

små mellan de olika bäddmaterialen. Däremot visade det sig att koncentrationen av 

kolmonoxid och metan sjönk allt eftersom försöket pågick, medan koncentrationen av 

koldioxid steg. Detta kan tydas som en successivt ökad katalys av 

vattengasskiftreaktionen under försöket, möjligen härrörande från askämnen. 

 

I ett försök på olivin provtogs bäddmaterialet på ett sätt som gjorde det möjligt att utröna 

i vilket skede de olika askämnena ansamlades på bäddmaterialet. Både kalcium och fosfor 

upptogs på bäddmaterialet i störst omfattning under förbränningssteget, medan kalium 

upptogs både under förbrännings- och förgasningssteget. Skälet är troligtvis att kalcium 

och fosfor bildar föreningar som inte avgår från bädden under de aktuella temperaturerna, 

medan kalium är mer lättflyktigt och därför kunde både avgå från bränslet och ansamlas 

på bäddmaterialet under båda stegen.  

 

Med stöd av resultaten kan en jämförelse göras mellan bäddmaterialens lämplighet. 

Eftersom skillnaden var liten mellan bäddmaterialen vad gäller inverkan på 

gassammansättningen kan det billigaste av dem med fördel användas i tillämpningar där 

bränslet är fritt från föroreningar och av låg halt av askämnen som smälter vid låg 

temperatur. Om bränslet däremot innehåller en viss andel föroreningar eller askämnen 

som medför risk för agglomerering finns anledning att använda olivin i processen. 

Eftersom olivin visade sig ha betydligt större motståndskraft mot agglomerering medför 

dess användning att risken för oplanerade driftstopp blir lägre, vilket även kan möjliggöra 

att bränslen av något lägre eller skiftande kvalitet kan användas i processen. Detta måste 

däremot vägas mot en rad andra faktorer, däribland en högre bäddmaterialkostnad.  
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Nomenclature 
Al  Aluminium (chemical element) 

Ba  Barium (chemical element) 

BFB  Bubbling fluidized bed 

Ca  Calcium (chemical element) 

CFB  Circulating fluidized bed 

Cl  Chlorine (chemical element) 

DFB  Dual fluidized bed  

DFBG  Dual fluidized bed gasification 

FB  Fluidized bed 

FBC  Fluidized bed combustion 

FBG  Fluidized bed gasification 

Fe  Iron (chemical element) 

K  Potassium (chemical element) 

LHV  Lower heating value 

Mg  Magnesium (chemical element) 

Mn  Manganese (chemical element) 

Na  Sodium (chemical element) 

NDIR  Nondispersive infrared 

P  Phosphorus (chemical element) 

S  Sulfur (chemical element)  

SEM-EDX Scanning electron microscopy with energy-dispersive x-ray spectroscopy 

Si  Silica (chemical element) 

SMD  Sauter mean diameter 

Ti  Titanium (chemical element) 

XRD  X-ray diffraction 

XRF  X-ray fluorescence 

Symbols in mathematical expressions 
µ  Absolute or dynamic viscosity [N s/m

2
] 

𝜇𝑐𝑔   Cold gas efficiency [-] 

𝜌𝑔  Gas density [kg/m
3
] 

𝜌𝑝  Bed material particle density [kg/m
3
] 

𝐴𝑟  Archimedes number [-] 

𝑑𝑖   Mean aperture size [µm] 

𝑑𝑝  Mean particle diameter [µm] 

�̇�𝑓𝑢𝑒𝑙   Mass flow rate of fuel [kg/h] 

�̇�𝑔𝑎𝑠  Mass flow rate of product gas from a gasifier [kg/s] 

𝑄𝑓𝑢𝑒𝑙   Lower heating value of fuel [MJ/kg] 

𝑄𝑔𝑎𝑠   Lower heating value of product gas from a gasifier [MJ/kg] 

𝑅  Molar gas constant [J/kmol] 

𝑅𝑒𝑚𝑓  Reynolds number at minimum fluidization velocity [-] 

𝑇  Temperature [K] 

𝑈𝑡  Terminal velocity [m/s] 

𝑈𝑚𝑓  Minimum fluidization velocity [m/s] 

𝑥𝑖   Mass fraction [-] 
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1 Introduction 

1.1 Background 
In line with increasing concern of diminishing fossil energy resources, rising atmospheric 

concentration of carbon dioxide and global mean temperature levels, much scientific effort has been 

focused on optimizing the use of renewable and carbon-neutral biomass for energy production. One of 

the more promising technologies that can be applied to produce readily available and storable energy 

from biomass is dual fluidized bed gasification (DFBG). In this process, which is carried out in two 

interconnected fluidized beds (FB), biomass is gasified to produce an energy-rich gas of energy 

content 10–18 MJ/Nm
3
 (Basu, 2006). The DFBG technology advantage over other types of gasifiers is 

mainly due to the ability to prevent nitrogen dilution of the product gas while simultaneously 

conducting the process without the need of addition of external heat. The gas can be directly 

combusted in a gas turbine to produce electricity and heat, or upgraded to biomethane and used as a 

transportation fuel or as a raw material in the synthesis of other fuels and high-value chemicals. Some 

biomass fuels that can be readily used in this process are wood and bark, and with proper care fuels 

such as forestry residues (occasionally denoted by the Swedish term grot) and straw can be used. 

 

Although not widespread, DFBG processes have been demonstrated to function in smaller scale for 

some years. A fast internally circulating fluidized bed gasifier in Güssing, Austria has been in 

operation since 2001 and converts biomass fuel at a fuel input rate of 8 MW in a steam-blown dual 

fluidized bed gasifier (Rauch et al., 2004, Ahrenfeldt et al., 2013). The Güssing system has a cold gas 

efficiency
1
 of 55–60 % while a commercial DFBG project in Gothenburg, Sweden is projected to 

produce 100 MW of biomethane from biomass at a cold gas efficiency of 65 %. Research into higher 

efficiencies is underway: a laboratory-scale circulating FB reactor at the Technical University of 

Denmark has achieved a cold gas efficiency around 90 % (Ahrenfeldt et al., 2013).  

 

One key aspect in improving cold gas efficiency as well as the lifetime and performance reliability of a 

plant for gasification or combustion of biomass in fluidized bed is the transformation of ash-forming 

elements in biomass fuels. While giving rise to several undesired effects such as agglomeration of bed 

material, corrosion and fouling of heat transferring surfaces, some of the effects of ash transformation 

are beneficial. During fluidized bed gasification, certain ash-forming elements that interact with bed 

material have been shown to reduce tars in the product gas. Other combinations of ash elements and 

bed material display a catalytic effect on the water gas-shift reaction, thereby increasing the hydrogen 

content in the product gas. 

 

Ash retention in the bed material is also the principle cause of sintering and agglomeration in the 

context of FB processes, on which much work has been focused (Skrifvars et al., 1994). The rate of 

agglomeration observed in the bed differs across bed materials. For example the presence of 

aluminium in e.g. bauxite inhibits sintering, while it has been shown that defluidization times (the time 

taken for a fluidized bed to collapse when continuously fed) are greatly prolonged if bauxite rather 

than silica sand is used as bed material when combusting coal. This suggests the use of bauxite might 

be strongly favorable in this regard (Vuthaluru et al., 1999, Kuo et al., 2008) In a similar manner, the 

use of olivine as bed material has been shown to increase the temperature at which defluidization 

occurs, as well as acting as a catalyst of tar cracking when gasifying fuels (Fryda et al., 2008, 

Mastellone and Arena, 2008).  

 

During DFBG or any other energy application of fluidized beds, it is of interest to avoid or to mitigate 

the negative effects of ash interaction with the bed material while taking benefit from its positive 

effects. In order to accomplish this, attention needs to be directed toward selecting the right 

combination of fuel and bed material. This choice can only be made if it is known how the ash-

forming elements interact with the bed material. 

                                                      
1
A relationship between the energy content of the product gas and the fuel energy input. For details, see Section 

2.3.1. 
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Ash deposition on the bed material is central for agglomeration behavior as well as for catalytic 

effects. Decisive factors that are crucial to manage well in any FB application for gasification or 

combustion include the mechanism with which ash elements interact with the bed material, which 

chemical form they take, which ash elements that are present in the fuel and the rate at which ash 

elements accumulate on the bed material. Yet, the tendency of bed materials to capture and retain ash 

elements is only partially reviewed in literature even though the underlying principles of the individual 

processes of sintering and agglomeration are well understood. In the context of ash retention on bed 

material, previous studies have more often focused on macro effects of ash retention, such as 

agglomeration. Fewer studies have focused on the ash retention itself, and fewer still have 

systematically compared different bed materials in this aspect. In addition, the papers on bed 

agglomeration have, to a large extent, been separated from those on catalytic effects owing to ash 

retention in the bed material. Since the retention of ash elements in the bed material is central to both 

phenomena, this work will be carried out with both in mind.  

 

If the processes of ash retention on bed material can be better understood, operational and economic 

benefits may be an outcome due to better knowledge of how to control thermal processes in fluidized 

beds. The results of this study should therefore be of value to the industries seeking to further 

understand the properties and behavior of biomass fuel and bed material in fluidized bed gasification 

and combustion. 

1.1.1 Aim  
The purpose of this thesis was to investigate the tendency of bed materials to retain ash-forming 

elements from biomass under conditions relevant to dual fluidized bed gasification. In addition, the 

influence of this retention with respect to product gas composition and the resistance of the bed 

materials to be agglomerated was investigated. 

 

The results obtained will provide knowledge on ash retention on bed materials during thermal 

conversion of biomass that can be used to enhance the beneficial effects of ash retention while 

avoiding or mitigating its disadvantages. From this, conclusions may be drawn which can be of use in 

the design and operation of fluidized bed reactors as well as for selecting a suitable bed material for a 

DFBG process with respect to agglomeration tendency and influence on gas composition. 

1.1.2 Scope 
Each industrial process for combustion and gasification in fluidized beds has different aims and 

operating parameters. For instance, gas yields and decomposition of tars can be controlled through 

managing the reaction temperature. Since the parameters are different for each application it is 

difficult to draw general conclusions about whether or not the ash chemistry of a fuel or bed material 

is beneficial for all processes. For this reason, the scope of this work is limited to the retention of ash-

forming elements for different combinations of fuels and bed materials under a single set of 

parameters. Aspects such as temperature dependency are not discussed. The application and relevance 

of results to specific processes are left to the reader. 

 

In order to compare the extent of the accumulation of ash-forming elements on the bed material across 

different fuels it might be useful to include a commonly used fuel, e.g. wood pellets, for reference. 

However, due to the low ash content in the fuel and low content of elements prone to react with the 

bed material, wood pellets was not included in this study. In order to achieve sufficiently high amounts 

of retained ash on the bed materials for analysis, an experiment of a longer run time would have been 

required. For this reason, wood pellets was not studied. 

 

This work is limited to surface analysis of virgin and used bed materials (carried out with x-ray 

fluorescence (XRF)). As such, standard chemical analysis of the samples to determine total weight 

concentration of elements or analysis to determine the chemical form of elements was not undertaken. 
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2 Literature review 
In the following sections, relevant topics and concepts are presented. Sources include reference 

literature for formulae and constants as well as textbooks covering technical aspects of fluidized bed 

gasification and combustion. The bulk of the material, however, is based on published journal articles 

on the topics. The literature review covers biomass fuel and its composition, fluidization principles 

and descriptions of fluidized bed reactors, the role of bed materials in the processes as well as theory 

concerning thermal conversion of fuel. Finally, the influence of ash elements on fluidized bed 

gasification and combustion processes are presented. 

2.1 Biomass fuels  
In every instant, solar radiation passes through the atmosphere and strikes the surface of the earth with 

a constant power in the range of 10
17

 W, accounting for a yearly insolation of roughly 3 000 000 EJ 

(Jenkins et al., 1998). A fraction of this irradiation strikes chlorophyll pigments in photosynthesizing 

organisms and is put to use in building carbohydrates with water and carbon dioxide as feedstocks. As 

such, the sun is the driving force in the production of what is referred to as biomass. In this definition 

are not only all plants included, seeing that they are composed of matter built through photosynthesis, 

but also as all organisms that nurture themselves on those that photosynthesize. Matter originating 

from organisms is included as well: animal wastes and discarded leaves are examples of this. In a 

wider sense, one could define biomass as all matter that constitutes or originates from organisms 

which draw their energy from the sun, or from consuming organisms that do. In terms of biological 

global production of biomass, some 1 000 EJ is produced annually (Jenkins et al., 1998). As a 

comparison, the world primary energy consumption in the year of 2012 was just under 200 EJ (BP, 

2013). 

2.1.1 Biomass composition 
The composition of biomass differs significantly for different fuels. Since the composition of biomass 

influences many of the properties exhibited by the fuel during thermal conversion, methods for 

determining biomass composition are presented in the following sections. An illustration of the 

composition of biomass is presented in Figure 2-1. 

 
Figure 2-1. Composition of biomass in a simplified illustration. 

2.1.1.1 Structural composition 
In determining the heating value of a biomass fuel it is of interest to evaluate its structural 

composition. Plant tissue, created through photosynthesis, consists of carbohydrates in various forms. 

The main constituents are cellulose, hemicellulose and lignin but other important components include 

simple sugars, starches, lipids, proteins and hydrocarbons (Jenkins et al., 1998).  

2.1.1.2 Ultimate composition 
In determining combustion and gasification properties, such as to what extent a given biomass fuel 

would give rise to emissions such as SOx and NOx, the ultimate composition is of importance. This 

analysis states the composition of the fuel in terms of its basic elements: often C, H, N, O and S (Basu, 

2010). Owing to the carbohydrate structure, biomass has a high content of oxygen, which commonly 

makes up around 30–40 % of the dry mass (Jenkins et al., 1998). Compared to bituminous or lignite 

coal which has an oxygen content (which does not contribute to the energy content) in the range of 
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10–20 %, this factor helps explain why coal is of higher energy content than biomass (McKendry, 

2002, Basu, 2010). 

2.1.1.3 Proximate composition 
In order to determine the behavior of biomass fuel under thermal conversion a proximate analysis is 

undertaken, which is indicative of heating value as well as expected tar yield and ash problems. A 

proximate analysis presents the fuel composition in terms of its principal components: moisture, 

volatile matter, fixed carbon and ash content.  

 

The compounds that burn, gasify or volatilize when subject to heating form the combustible fraction of 

the fuel where the volatile matter and the fixed carbon content of the fuel are parts (Jenkins et al., 

1998). Volatile matter is defined as the fuel constituents which volatilize and leave the fuel matrix as 

vapors when pre-dried biomass is heated according to set standards, commonly to around 900 °C 

(Basu, 2010). Biomass is usually high in volatile matter: a content in the region of 80 % is not 

uncommon, which can be compared to that of bituminous or lignite coals which have a volatile matter 

content of approximately 30 % (McKendry, 2002). 

 

The fixed carbon content is the combustible fraction of the fuel that is not volatilized upon heating. 

After measuring the moisture content, the ash content and the volatile matter content, the fixed carbon 

content is measured indirectly by subtracting these components from the initial fuel sample weight 

Together with the fuel ash, the fixed carbon of the fuel forms char in the process of devolatilization 

(Basu, 2010). 

 

The ash content, together with the moisture content, forms the incombustible fraction of the fuel. The 

ash content is the solid residue left after complete combustion (Basu, 2010). In the ideal ash, no 

combustible elements remain. In essence, the ash can be thought of as the concentrate of the 

incombustible and inorganic elements which are dispersed in the fresh fuel. However, the ash 

constituents are not fully representative of the original inorganic fuel constituents as the inorganic ash 

elements in the ash are found in oxidized forms, which is not necessarily the case in the fresh biomass 

(Jenkins et al., 1998, Basu, 2010). In addition, certain ash elements are prone to volatilize in the 

gasification or combustion process. 

 

Although the mentioned components are those that constitute all biomass, their relative proportions 

vary significantly across biomass fuels. This variation is important in the context of gasification and 

combustion properties. For instance, a high ash content when compared to woody biomass is typical of 

fast-growing crops and agricultural biomass fuels: wheat straw may contain 11 times as much ash as 

wood pellets as illustrated in Figure 2-2.  

 

The volatile matter content and fixed carbon content also differ between species. In Figure 2-2, the 

diverse nature of biomass composition is presented in terms of the dry basis content of fixed carbon, 

volatile matter and ash for a few example fuels. 
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Figure 2-2. Typical content of ash, volatile matter and fixed carbon in selected biomass species. Data from multiple sources 

(Jenkins et al., 1998, Strömberg and Svärd, 2012). 

 

The proximate composition of the fuel varies depending on which section of the plant is used. For 

example, stemwood has a lower ash content than bark, which typically has a lower ash content than 

the needles or foliage of a tree (Werkelin et al., 2005). This means that storage influences the 

proximate composition as well: for example, the ash content for coniferous biomass generally 

decreases with storage time through the process of defoliation (Lehtikangas, 1998). In addition, the 

proximate composition is also dependent on handling and harvesting methods and what stage of 

growth the plant was in at the time of harvest (Jenkins et al., 1998).  

2.1.1.3.1 Ash composition 

Since the focus of this work is on the retention of ash-forming elements on the bed material, it is of 

importance to look at the composition of the biomass ash in detail. In fact, the presence of ash-forming 

elements are highly decisive for the performance, life time and efficiency of a thermal conversion 

plant. Therefore not only the ash content but also the ash composition of a biomass fuel is essential, 

which is included in a detailed proximate analysis.  

 

The main ash-forming elements in biomass fuels are Si, K, Na, Al, Fe, P, S, Cl, Mn, Ca and Mg (Basu, 

2010, Saidur et al., 2011). In addition, several trace elements can be found in biomass ash. The 

concentrations of these elements vary from one biomass type to another. Woody biomass ash is 

typically high in Ca and low in Si. Agricultural crops in general are usually rich in Si while straws and 

cereals in particular are rich in K and Cl (Saidur et al., 2011). For example, the potassium 

concentration in wheat straw is 2 to 3 times higher and its Si content is 2 to 23 times higher than in 

ashes of woody biomass. This is illustrated in Figure 2-3, where element concentrations in ash are 

presented for common biomass fuels. The data was mainly taken from literature presenting the 

occurrence of the chemical compounds that constitute the ash, and have hence been recalculated to 

reflect the elemental composition. In many gasification and combustion applications, the properties of 

wood pellets are used as a benchmark. In order and to assist in comparison of fuels, data on element 

concentrations in common biomass ash is therefore presented in a normalized form with wood pellets 

as basis in Figure 2-3.  
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Figure 2-3. Normalized concentrations of elements in ash of common biomass fuels. Basis for normalization is wood pellets. 

Data from multiple sources (Strömberg and Svärd, 2012, Jenkins et al., 1998). 

It should be noted that harvesting, storage and handling methods influence ash content and ash 

composition and consequently the combustion and gasification behavior of a biomass fuel. Biomass 

subject to extensive handling and harvesting processes, such as forestry residues, may collect dirt or 

other incombustible substances during these processes. This increases the ash content of the fuel and 

influences the ash composition toward higher content of Si (Lehtikangas, 1998). This is shown in 

Figure 2-3. In the case of wheat straw, storage methods influence the alkali content. Exposure to 

precipitation has been shown to reduce the wheat straw’s content of water soluble ash elements, 

notably K and Cl, through leaching (Strömberg and Svärd, 2012). One study concluded, in accordance 

with other literature, that over 80 % of the K present in wheat straw was easily soluble in water 

(Tchoffor et al., 2013).  

2.2 Fluidized beds 
In the following sections, the theory describing the fundamental principles of operation of fluidized 

beds for are summarized. 

2.2.1 Fluidization principles 
Fluidized beds utilize a gas stream to suspend particles in the reactor vessel. This causes the collection 

of particles to behave much like a fluid both in the sense that it conforms to the container walls and 

that the surface of the fluidized bed remains flat, were the container to be tilted (Alvarez, 2006).  

 

In contrast to thermal conversion of biomass in fixed beds, thermal conversion of biomass in fluidized 

beds takes place with an inert material present in the bed. This inert material, commonly called bed 

material, serves the purpose of transferring heat to the fuel particles in the reactor. In this sense, the 

bed material can be said to act as a thermal buffer. Typically, less than 10 percent of the total bed 

weight is comprised of fuel particles while the inert bed material represents the bulk of the weight 

(Alvarez, 2006).  

2.2.1.1 Minimum fluidization velocity 
In a given system, the minimum fluidization velocity 𝑈𝑚𝑓 describes the minimum velocity of the 

fluidization medium at which the bed is fluidized. At minimum fluidization velocity, the bed material 

can be said to undergo a phase change. 

 

This behavior can be visualized if the pressure drop over the bed ∆𝑝 is plotted against superficial gas 

velocity 𝑈𝑚𝑓, creating a fluidization plot. As the gas velocity is increased, the pressure drop increases 
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at a lower rate or ceases to increase. The intersection between the lines describing the pressure drop 

over the bed in the non-fluidized versus the fluidized state defines the minimum fluidization velocity 

which can be read on the velocity axis. This is illustrated in a simplified manner in Figure 2-4. 

However, the transition to and from a fluidized state might not be well pronounced and subject to 

hysteresis (Ojha et al., 2000).  

 
Figure 2-4. Simplified illustration of minimum fluidization velocity. 

In the context of fluidized beds, the minimum fluidization velocity is denoted 𝑈𝑚𝑓 and can be 

expressed as (Basu, 2006): 

𝑈𝑚𝑓 =
𝑅𝑒𝑚𝑓µ

𝑑𝑝𝜌𝑔
. 

(2.1) 

Here, 𝑅𝑒𝑚𝑓 denotes the Reynolds number when the bed has reached minimum fluidization and µ 

denotes the absolute or dynamic viscosity of the fluidizing medium, while 𝑑𝑝 and 𝜌𝑔denotes the mean 

particle diameter and density of the bed material, respectively (Basu, 2006). 

 

The expression for minimum fluidization velocity can be combined with the simplified expression of 

𝑅𝑒𝑚𝑓 (Basu, 2006): 

𝑅𝑒𝑚𝑓 = [𝐶1 + 𝐶2𝐴𝑟]0.5 − 𝐶1. 
(2.2) 

The constants 𝐶1 and 𝐶2 are determined experimentally, and several suggestions of their value have 

been reported in literature. The different values suggested are based on different sets of experimental 

data for correlation (Yang, 2003). For fine particles the fit to experimental data has been shown to be 

best using values 27.2 for 𝐶1 and 0.0408 for 𝐶2 and these values have been chosen for this work 

(Grace, 1982). 𝐴𝑟 denotes the Archimedes number which in turn can be expressed as: 

 

𝐴𝑟 =
𝜌𝑔(𝜌𝑝 − 𝜌𝑔)𝑔𝑑𝑝

3

µ2
. 

(2.3) 

Combined, (2.1, (2.2 and (2.3 can be used to express the minimum fluidization velocity. If the 

minimum velocity is multiplied with the bed cross sectional area as in (2.8, the corresponding volume 

flow may be obtained. 

 

If not taken from literature, the absolute or dynamic viscosity µ for a certain temperature can be 

calculated for a given temperature using Sutherland’s equation (Sutherland, 1893): 

 

Fixed bed 

𝑼𝒎𝒇 
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µ = µ𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
)

3/2
𝑇𝑟𝑒𝑓 + 𝑆

𝑇 + 𝑆
. 

(2.4) 

Here, µ𝑟𝑒𝑓 is used to denote the absolute or dynamic viscosity of the gas at the reference temperature 

𝑇𝑟𝑒𝑓 (Sutherland, 1893), 𝑇 denotes the temperature for which µ is sought while 𝑆 denotes Sutherland’s 

coefficient for the gas (Sutherland, 1893). 

2.2.1.2 Terminal velocity 
In a FB reactor the minimum fluidization velocity describes the velocity at which the system 

undergoes transition to a fluidized phase. In a similar fashion, the terminal velocity 𝑈𝑡 describes the 

gas velocity at which the fluidized particles start to be transported out of the reactor along with the 

fluidizing medium. The term originates from the description of a freefalling particle in a homogeneous 

and stationary medium. It describes the velocity the freefalling particle reaches once the fluid drag and 

buoyancy forces acting on it reaches equilibrium with the forces of gravitation (Basu, 2006). In 

fluidization contexts, the terminal velocity describes the maximum superficial velocity of the 

fluidization medium where the particles forming the bed remain stationary, in average, as observed 

from a fixed external reference system. 

 

The superficial velocity where this occurs can be described by three laws, each valid for a specific 

region of Reynolds number and only for spherical particles: for a more accurate estimation of terminal 

velocity the sphericity of the particles should be corrected for (Basu, 2006).  

 

Stokes’ law is valid at lower Reynolds numbers (Basu, 2006): 

 
𝑑𝑝𝑈𝑡𝜌𝑔

µ
=

𝐴𝑟

18
               𝑅𝑒 < 0.4. 

(2.5) 

For the intermediate region of Reynolds numbers, the intermediate law applies (Basu, 2006): 

 

𝑑𝑝𝑈𝑡𝜌𝑔

µ
=  (

𝐴𝑟

7.5
)

0.666

              0.4 < 𝑅𝑒 < 500. 

(2.6) 

 At higher Reynolds numbers, Newton’s law is valid (Basu, 2006): 

  
𝑑𝑝𝑈𝑡𝜌𝑔

µ
=  (

𝐴𝑟

0.33
)

0.5

              𝑅𝑒 > 500. 
 

 

(2.7) 

2.2.1.3 Superficial gas velocity 
Minimum fluidization velocity and terminal velocity is expressed in terms of superficial velocity 𝑈, 

which in this context is defined as the gas volume flow 𝑄 through a cross section of the bed 𝐴 (Basu, 

2006): 

 

𝑈 =
𝑄

𝐴
. 

(2.8) 

In this work superficial velocity is occasionally referred to as the velocity. 

2.2.2 Particle classification 
The particle size distribution is an essential parameter for understanding both chemical and physical 

aspects of fluidized beds. It is a decisive factor in determining 𝑈𝑚𝑓 and 𝑈𝑡 and influences reaction 

rates involving the bed material as well. A smaller particle size yields significantly lower artificial 

velocities for 𝑈𝑚𝑓 and 𝑈𝑡 and increases reaction rates due to a higher surface to volume ratio. Since 

this ratio determines several aspects of bed material behavior, the surface to volume ratio is the basis 



9 

 

for expression of particle size distribution in calculations concerning fluidized bed systems. The 

surface-volume mean diameter, or Sauter mean diameter (SMD), is defined as the diameter of an 

equivalent sphere which has a surface to volume ratio equal to the actual particle population (Basu, 

2006). Empirically, it is determined through sieve analysis where the sample is passed through a stack 

of sieves with decreasing aperture size. The weight retained on each sieve after a period of agitation is 

divided by the total sample weight to obtain the weight fraction 𝑥𝑖. The weight fraction is divided by 

𝑑𝑖, the mean value of the aperture sizes of the sieve the material is retained on and the sieve through 

which it has passed. When inverted, this sum describes the SMD according to (2.9 (Basu, 2006): 

 

𝑆𝑀𝐷 =
1

∑ (
𝑥𝑖

𝑑𝑖
)

. 

(2.9) 

2.2.2.1 Geldart classification 
Different types of particles behave in a highly dissimilar fashion when subject to the fluidization 

medium. Some particle species fluidize easily with bubbles appearing close to 𝑈𝑚𝑓 while others are 

hard to fluidize at all. For the highest accuracy, the specific fluidization properties of every particle 

type needs to be empirically determined prior to selecting the bed material for a FB process.  

 

In order to circumvent this need, Geldart developed a characterization of powders into four 

distinguishable groups based on the mean particle size of the particles and their density difference in 

relation to the fluidization medium (Geldart, 1973). The properties of the particles within the group 

can be considered to correlate reasonably well within the group, which is of great use in predicting the 

properties of a given particle type using only simple metrics (Geldart, 1973).  

 

Determining the Geldart group of a particle type is done through reading the corresponding regions in 

the Geldart diagram, where mean particle size is plotted against density difference of particles and 

fluidization medium. Properties of particles in the four Geldart groups are presented in Table 2-1. 

Table 2-1. Geldart classification of particle species. Data from multiple sources (Geldart, 1973, Basu, 2006). 

 Geldart group A Geldart group B Geldart group C Geldart group D 
Mean particle size d  
(ρp = 2 500 kg/m3) [µm] 

20 < d < 90 90 < d < 650 d < 20 d > 650 

Special characteristics Small, light particles Sand-like particles Cohesive particles Large, dense 
particles 

Velocity for fluidization Low Medium Difficult to fluidize 
(channeling) 

High 

Expansion of bed Considerable Some None Some 
Mixing in incipient 
fluidization 

Good Some None Poor 

Velocity when bubbles 
appear (bubble point) 

Higher than 
minimum 
fluidization velocity 

Close to minimum 
fluidization 
velocity 

No bubbles Close to minimum 
fluidization 
velocity 

Bubble velocity relative 
interstitial gas velocity 

Faster Slightly faster No bubbles Slower 

Maximum bubble size Yes No No bubbles - 

2.2.3 Fluidization states 
The velocity of the gas coming into contact with the bed defines the type of FB system. An air velocity 

insufficient to break the cohesive forces of the bed material is characteristic of conventional grate 

combustion, where primary air is injected below the fuel bed. As the gas velocity is increased, the gas 

increasingly interacts with the bed material through frictional forces to weaken the cohesion of the fuel 

bed while simultaneously counteracting the gravitational pull on the fuel bed. In this fixed-bed phase, 

ranging from no to partial (or incipient) fluidization, the pressure drop over the bed is proportional to 

the gas velocity.  
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At speeds at or over minimum fluidization velocity, turbulence in the bed creates a pronounced stirring 

causing the fuel and bed material particles to be exposed to the gas stream uniformly. As the space 

between the particles increases, so does the apparent volume of the fluidized bed. The pressure drop 

over the bed in this phase is no longer proportional to the gas velocity, as is the case when a fixed bed 

is concerned. A higher gas velocity yields a proportionally smaller increase in pressure drop over the 

bed compared to the non-fluidized or partially fluidized state (Alvarez, 2006). Observations of the 

pressure drop over the bed can therefore be employed to determine its fluidization state. 

 

As the fluidization velocity is varied, different types of fluidization states can be distinguished, each 

with defining characteristics. In Table 2-2, which applies to Geldart type B particles, bed fluidization 

states are presented along with associated typical velocities of the gasifying medium and examples of 

their application. In Figure 2-5, these fluidization states are illustrated. 
 

Table 2-2. States of fluidization, typical gas velocities and applications. Modified from original source (Basu, 2006). 

 
Fixed 
bed 

Incipiently 
fluidized bed 

Bubbling 
fluidized bed 

Turbulent 
fluidized bed 

Fast 
fluidized bed 

Pneumatic 
transport 

Gas 
velocity 

 

0 ≤ 𝑈𝑚𝑓 = 𝑈𝑚𝑓  ≥ 𝑈𝑚𝑓   ≫ 𝑈𝑚𝑓 

e.g. 0–3 
m/s 

e.g. 0.5–2.5 m/s e.g. 4–6 m/s e.g. 15–30 m/s 

Application 
Grate 
firing 

BFB CFB 
Pulverized coal 

firing 

 
Figure 2-5. Fluidization states at varying velocity of fluidization medium. 

2.2.3.1 Bubbling fluidized bed 
When the gas velocity of the fluidization medium is lower than the minimum fluidization velocity, the 

bed does not lift. Such a state is prevalent in grate firing where primary combustion air is injected from 

under the bed. If the gas velocity is increased to the minimum fluidization velocity the particles 

present in the bed no longer adhere to each other. Here, the bed has reached the incipiently fluidized 

state (Basu, 2006). An increased gas velocity from this state results in the appearance of bubbles, 

marking the transition to the bubbling fluidized bed (BFB). A simplified schematic of a BFB for 

combustion is presented in Figure 2-6 (left). 
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If the gas velocity is increased to above that of the minimum fluidization velocity, the apparent volume 

of the bed increases as space between the particles increase. Turbulence becomes more pronounced 

and bubbles formed burst more frequently. Smaller particles and particles released upon bursting of 

bubbles are transported along the gas (Alvarez, 2006).  

 

As long as the bed expands along with the gas velocity in a predictable manner, the bed is said to be in 

the bubbling state. As soon as a further increment of gas velocity results in an irregularity in bed 

expansion, the bed enters the turbulent fluidization state (Basu, 2006). The transition is due to bubbles 

progressively shrinking in size with increasing gas velocity until individual bubbles are hard to 

identify (Basu, 2006). 

2.2.3.2 Fast fluidized bed 
As gas velocity increase from the turbulent fluidization state, the bed position becomes increasingly 

less pronounced as particles leave the bed. At a high enough gas velocity, it is difficult to define the 

surface of the bed. The bed state where these conditions reign is referred to as the fast fluidized bed 

(Basu, 2006). Such conditions are typical to those in a circulating fluidized bed (CFB) reactor, where 

some bed material and partially oxidized fuel particles are transported along the gas stream to be 

continuously reintroduced to the bed after being separated from the flue gas in a cyclone (Alvarez, 

2006). A CFB boiler is illustrated in Figure 2-6 (right). 

 
Figure 2-6. Simplified schematic of a bubbling fluidized bed boiler (left) and a circulating fluidized bed boiler (right) for 

fluidized bed combustion. 

2.2.3.3 Pneumatic transport 
If gas velocity is further increased from the fast fluidized state, the phase of pneumatic transport is 

reached when gas velocities reach the terminal velocity 𝑈𝑡 (Basu, 2006). Here, all bed particles are 

entrained and transported along the gas stream while the mixing of solids is reduced (Basu, 2006). 

Like other transitions between bed fluidization states, the gas velocity where this phase change occurs 

is dependent on the size and weight distribution of the bed particles. The phase change to pneumatic 

transport is less pronounced than the one to e.g. bubbling fluidization. The fluidization state of 

pneumatic transport is used in boilers for combustion of pulverized coal but less frequently for 

unprocessed biomass (Basu, 2006). 

2.2.4 Bed materials 
For use in a FB reactor, in principle any inert material with an adequate and homogeneous particle size 

and weight distribution may be used as bed material. Since the material is prone to both chemical and 

mechanical wear, a low-cost material is of interest as the material will need to be continuously 

replaced. Besides a low cost and high availability of the material, there are a number of desired 

characteristics that define a good bed material: 
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 High heat transfer capacity 

Since the primary purpose of a bed material is to carry heat between fuel particles, a high transfer 

capacity is desired. A high heat transfer capacity ensures sufficiently high heating rates and 

homogeneous temperature distribution and therefore good control of flue gas or product gas 

composition. 

 High melting point 

Even if fluidized bed reactors often are designed to operate in relatively low temperature ranges, it is 

required of a bed material to have a melting point above 1 000 °C, well above the temperature range of 

normal operation. This is to ensure no partial melting or softening of bed material occurs, which might 

otherwise be a cause of agglomeration. 

 Mechanically resistant 

Inherent in the fluidization process, the bed material is in constant motion. Due to the frequent 

collisions with particles and surfaces in the bed, abrasion of the bed particles is an issue. For this 

reason, the bed material should be mechanically resistant enough to withstand an acceptable length of 

time in the reactor. 

 No cause of erosion 

Although it is desired that the bed material is mechanically durable, the bed material itself should 

preferably not be a cause of erosion of reactor walls and in-bed heat exchanger surfaces.  

 Inert to ash-forming elements 

Chemical reaction or interaction with the bed material can give rise to operational problems. It is 

therefore of importance that the bed material is not prone to react with ash-forming elements. 

 

The most commonly used bed material in fluidized bed reactors is silica sand. Its main constituent is 

SiO2 (Lin et al., 2003). Although the material is of low cost and is abundant, it has been shown to react 

with K from biomass ash to form low melting point eutectics that subsequently lead to agglomeration. 

In order to minimize these problems, other bed materials are increasingly being used. Some of these 

bed materials are olivine (main composition of (Mg,Fe)2SiO4) and bauxite (main composition Al2O3) 

(Wolf et al., 2004, Mastellone and Arena, 2008). These bed materials have similar properties in that 

they are all mechanically resistant, have melting points higher than the normal temperatures applied in 

fluidized bed reactors and have high heat transfer capacities. The difference lies mainly in to what 

degree the bed materials react with ash-forming elements in the biomass fuel. For more details, refer to 

Section 2.4.1. 

2.3 Thermal conversion of biomass in FB reactors 
In this section, a summary of the most relevant concepts for thermal conversion of biomass fuel in 

fluidized beds are presented. 

2.3.1 Gasification 
The primary aim for gasification of biomass in a fluidized bed is the production of energy-rich gas. 

This gas can be directly combusted in a gas turbine to generate electricity and heat. Furthermore, the 

gas can be upgraded to transportation fuels such as biomethane or used in the production of high-value 

chemicals.  

 

When a biomass particle is introduced into a hot FB reactor, it is dried when its temperature is 

≥ 100 °C. Thereafter, the fuel particle undergoes devolatilization or pyrolysis when its temperature is 

> 300 °C. In this rapid process (typically completed in less than 1 minute), most of the fuel is 

converted. The main products at this stage are permanent gases, char and tar (Basu, 2006).  
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After devolatilization, the char is gasified with an oxidizing agent, e.g. steam and air. The main 

reactions that take place during gasification are: 

 

 Boudouard reaction:  

C + CO2 ⇆ 2 CO  +172.47 kJ/mol   
Reaction 1 

 Water gas reaction: 

C + H2O ⇆ CO + H2  +131.3 kJ/mol  
Reaction 2 

 Hydrogenating gasification reaction: 

C + 2H2 ⇆ CH4   -74.9 kJ/mol  
Reaction 3 

These reactions as well as the drying and devolatilization of biomass are endothermic or weakly 

exothermic. The other reactions that occur during biomass gasification are presented below: 

 

 Water-gas shift reaction: 

CO + H2O ⇆ CO2 + H2  -41.2 kJ/mol  
Reaction 4 

 Methanation of hydrogen and carbon monoxide:  

CO + 3H2 ⇆ CH4 + H2O -206.17 kJ/mol 
Reaction 5 

 

For the reactions presented in the present and subsequent sections, enthalpies of reaction were 

calculated based on enthalpies of formation extracted from the JANAF Thermochemical Tables, Third 

Edition (M.W. Chase Jr, 1985). 

 

The concept of cold gas efficiency (µcg) is one of the main parameters that is used to assess the 

performance of a gasifier. Based on the energy content of the product gas compared to the fuel energy 

input, it is defined as (Basu, 2006): 

 

𝜇𝑐𝑔 =
𝑄𝑔𝑎𝑠 ∙ �̇�𝑔𝑎𝑠

𝑄𝑓𝑢𝑒𝑙 ∙ �̇�𝑓𝑢𝑒𝑙
. 

(2.10) 

Here 𝑄𝑔𝑎𝑠 and 𝑄𝑓𝑢𝑒𝑙 denotes the lower heating value (LHV) of the gas and gasified fuel, while �̇�𝑔𝑎𝑠 

and �̇�𝑓𝑢𝑒𝑙 denotes the corresponding mass flows of gas and fuel crossing the system boundary of the 

gasifier. 

2.3.1.1 Gasification medium 
In FBG, the fluidization medium reacts chemically with the fuel according to the reactions stated in 

the previous section. For this reason, the fluidization medium in FBG is synonymous with gasification 

medium. Gasification of fuels can take place with air, oxygen, steam or carbon dioxide or a 

combination of these. When air is used during gasification the product gas is diluted with the nitrogen 

present in the air to around 50 % of total product gas volume (Basu, 2006). Gasification with oxygen 

or steam is therefore common, as product gas using these gasification mediums is free of nitrogen 

dilution and therefore of higher calorific value. Gasification in air typically yields a product gas of 

energy content 4–6 MJ/Nm
3
, while gasification in steam or oxygen results in a gas of 10–15 MJ/m

3 

(Basu, 2010). 

 

The yield and composition of the product gas is affected among other factors by the ratio of the fuel to 

the gasification medium. In the case of steam gasification, this parameter is expressed as the ratio of 

the weight of steam introduced in the reactor to the weight of the biomass (Basu, 2010). By altering 

the steam-to-biomass ratio, the gas composition can be controlled (Lv et al., 2004). At a certain steam-

to-biomass ratio the gasification system exhibits a peak in carbon conversion efficiency and gas 

production (Lv et al., 2004). A higher steam-to-biomass ratio results in a slightly higher gas yield and 
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a slightly lower tar content (Rapagna et al., 2000). The composition of the product gas is also 

influenced. With increasing steam-to-biomass ratio less CO is formed while CO2 concentrations 

increase. Similarly, H2 concentration increases slightly while CH4 concentration is unaffected 

(Rapagna et al., 2000). Although gasification can be undertaken with steam-to-biomass ratios in a 

wide range between 0.5 and 2.5, a narrower range is more often used in practice (Basu, 2010). Two 

studies related to industrial fluidized beds applied steam-to-biomass ratios between 0.84–1.45 and 

0.84–1.06, respectively (Larsson et al., 2013, Xu et al., 2006). Steam-to-biomass ratios within these 

bounds are common in industrial applications. 

2.3.2 Combustion 
The main product of gasification of combustion is heat, which can be used to generate electricity in a 

steam turbine. The heat can also be used as process heat or for district heating. 

 

The combustion of biomass particles in a FB reactor follows the same sequence of events as for 

gasification, presented in the preceding section. The main differences are: 

1. The volatile matter that is released during devolatilization is ignited and combusted. 

2. The char resulting from devolatilization of the biomass is combusted instead of gasified, and 

char combustion is notably faster than char gasification. 

3. Only air or oxygen is used as fluidization medium and is supplied in equivalence or excess 

compared to the stoichiometric demand for complete combustion of the fuel (Basu, 2006). 

The following reactions typically occur during combustion: 

 

 Partial combustion with oxygen: 

C + ½O2 ⇆ CO    -110.5 kJ/mol   
Reaction 6 

 Combustion with oxygen: 

C + O2 ⇆ CO2   -393.5 kJ/mol   
Reaction 7 

 Combustion of carbon monoxide: 

CO + ½ O2 ⇆ CO2  -283.0 kJ/mol  
Reaction 8 

2.3.3 Dual fluidized bed gasification 
Biomass devolatilization and gasification of the generated char are both endothermic processes and 

thus a heat source is required to sustain the gasification process. If no external source of heat is applied 

to the gasification process, a fraction of the char will have to be combusted (Basu, 2006). When the 

combustion is carried out in the same reactor as gasification, the process is called direct gasification. 

In this case the product gas is diluted with nitrogen which lowers its heating value as mentioned in the 

preceding sections. This problem can be avoided by using oxygen as gasification medium. However, 

this requires an oxygen separation system and the associated cost may be undesirable.  

 

A technology that is increasingly being applied to provide the heat for gasification without diluting the 

product gas is based on combustion of the char in a separate FB reactor. This is commonly called dual 

fluidized bed gasification (DFBG) (Corella et al., 2007). A plant based on this technology has been in 

commercial operation for more than 10 years in Güssing, Austria. The DFBG pilot plant GoBiGas in 

Gothenburg, Sweden is projected to produce 100 MW of biomethane from pelletized biomass by 

2016.  

 

DFBG is typically carried out in two interconnected fluidized bed reactors, where one is dedicated to 

gasification of fuel and the other to combustion of char. In the gasification reactor which is fluidized 

with steam, endothermic reactions occur. Here, the fuel is devolatilized after which the generated char 

is partially gasified. The unconverted char is transported, along with bed material, to the combustion 
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reactor. The transport is carried out in a manner which prevents gas transfer between the reactor 

vessels, e.g. through loop seals. In this second fluidized bed reactor the char is oxidized with air, 

releasing heat that raises the temperature of the bed material. The hot bed material is then transported 

back to the gasification reactor, providing heat necessary for the endothermic reactions. In this 

manner, the product gas is kept free of nitrogen while heat released from char combustion can supply 

the energy needed for the endothermic steam gasification of the fuel (Corella et al., 2007, Tchoffor et 

al., 2013). Gasification can be undertaken in the wide temperature range of 750–870 °C although 

temperatures between 810–850 °C are common during gasification for industrial DFBG (Kirnbauer et 

al., 2013, Pfeifer et al., 2011, Larsson et al., 2013). A simplified schematic of a DFBG reactor is 

presented in Figure 2-7.  

 
Figure 2-7. Simplified schematic of a dual fluidized bed gasification reactor. 

2.3.4 Advantages of fluidized beds  
Gasification and combustion in fluidized beds has proven to have notable advantages over more 

conventional methods of gasification and combustion of biomass fuels. Besides a nearly completely 

uniform temperature distribution in the fuel bed advantages include high fuel flexibility, short start up 

times, good scalability and low temperatures (Basu, 2006).  

2.3.4.1 Uniform temperature distribution 
Particle collisions are frequent in the fluidized state since the bed is in constant motion. The uniform 

temperature distribution renders less need for additional heating of the bed in order to ensure that a 

minimum temperature is reached in all bed regions, thus making a low process temperature possible. 

The constant circulation of bed material also results in excellent heat transfer between bed and heat 

exchanger surfaces (Alvarez, 2006).  

2.3.4.2 Low temperatures 
The low temperatures in FBG and FBC reactors can be achieved due to the heavy stirring inherent in 

the fluidization process, as the bed is in constant motion through stimulation from the fluidization gas 

stream (Roy and Sarma, 1970). Due to a lower combustion temperature normally ranging around 800–
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900 °C, a FBC reactor exhibits low emissions of nitrous oxides (Alvarez, 2006). For FBG, reactor 

temperatures are slightly lower. The low temperatures reduce ash-related problems both in FBG and 

FBC since many ash-forming elements of low melting point can be kept in a solid state. Therefore, ash 

removal is simplified compared to other types of gasifiers or combustors (Basu, 2006). Fuels of high 

ash content or with content of low melting point ash-forming elements, such as biomass, is therefore 

suitable for thermal conversion in FB reactors.  

2.3.4.3 Fuel flexibility 
One prime feature of using fluidized beds in energy applications is its relative fuel flexibility, as the 

low fuel concentration in the bed material allows for varying water and ash content (Alvarez, 2006). 

Biomass is a highly heterogeneous fuel and fuel properties can vary between shipments, as can the 

availability of biomass over seasons. The possibility to gasify or combust different types of fuel or fuel 

mixtures therefore makes the usage of fluidized beds a good option for thermal conversion of biomass 

(Basu, 2006). 

2.4 Ash transformation and release 
During thermal conversion of biomass, volatile ash-forming elements in the fuel are released to the gas 

phase while less volatile or non-volatile ash-forming elements to a large extent remain in the char or 

ash. These elements undergo various transformations both in the gaseous and condensed phases. The 

compounds formed through transformation of ash-forming elements mainly result in undesired effects 

and give rise to ash-related problems in the reactor as well as in downstream processes (Tchoffor et al., 

2013). Common negative effects include sintering, agglomeration of bed material, corrosion and 

fouling of heat transfer surfaces. However, some of the transformations of ash-forming elements 

contribute positively to the thermal conversion process. In this work, these effects are referred to as 

ash-related benefits.  

2.4.1 Ash-related problems during thermal conversion processes 
While the intention is that the bed material stays fully inert and unaffected of the thermal processes in 

the FB reactor, the ash-forming elements in the fuel may interact with the bed material and cause 

operational problems in the reactor and downstream equipment. Consequences may include reduced 

availability, damage of equipment and associated costs. Some of these problems are presented in the 

following sections.  

2.4.1.1 Agglomeration 
One of the most troublesome consequences of interaction between ash-forming elements and bed 

material is agglomeration. In this process, bed material particles adhere to each other to form an 

agglomerate, which may prevent mixing in the bed or lead to defluidization (Skrifvars et al., 1994, Lin 

et al., 2003) 

 

Agglomeration may occur through the following mechanisms (Visser, 2004): 

1) Melt-induced agglomeration. Molten ash-forming elements in liquid phase adhere to bed 

particle surfaces, acting like glue to form necks between bed particles. Composition of the 

molten phase is similar to the ash composition of the fuel. 

2) Coating-induced agglomeration. The elements in the ash which have a low melting point are 

released to the gas phase. These elements coat bed material particles to form a uniform layer. 

If thick enough, the layer may form necks between bed particles.  

The fuel ash content of K and Na is a key factor in the process of agglomeration (Dayton and Milne, 

1995). Together with Si present in the bed material or ash, these elements form low melting point 

eutectic compounds of alkali silicates, e.g. potassium silicate, K2O ∙ 2SiO2. (Lin et al., 2003). For 

example, wheat straw ash has been shown to melt at 750 °C, a temperature well below the normal 

range of FBG operation (Lin et al., 2003).  
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Although Si based bed materials are more prone to cause agglomeration problems than other bed 

materials, ash melting problems might occur in fluidized bed reactors even if a non-silica based bed 

material is used. Compounds of low melting points can be formed from ash components alone if the 

fuel ash contains both K and Si in sufficient concentrations (De Geyter et al., 2007). 

 

The defluidization time and defluidization temperature are commonly applied benchmarks to assess 

the tendency of various bed material and fuel combinations to result in agglomeration. The 

defluidization time describes the time of defluidization in relation to when fuel feeding was initiated. 

The defluidization temperature describes the upper temperature limit within which the bed can remain 

fluidized. If the defluidization temperature is lower than the operating temperature in a FB reactor, the 

fuel is difficult to handle in a FB application. 

 

The following measures can be applied to mitigate agglomeration problems during thermal conversion 

processes (Basu, 2006): 

 Reducing the concentration of certain ash elements 

As has been previously mentioned, reducing the concentrations of K and Si can lower the risk of 

agglomeration as these elements may form low melting point eutectics. High concentrations of K in a 

fluidized bed reactor can be reduced or avoided by leaching the biomass fuel prior to thermal 

conversion or using a fuel with a low concentration of K such as wood pellets. High concentrations of 

Si in a fluidized bed can be reduced by using a fuel with a low concentration of Si such as wood 

pellets and/or a bed material with no or a very low concentration of Si. 

 Reducing the operation temperature 

If the operation temperature is kept below the melting points of ash, the risk of agglomeration 

occurring can be significantly reduced. 

 Promoting the formation of compounds of higher melting point 

Since agglomeration is the result of the formation of low-melting eutectic compounds such as 

potassium silicate, agglomeration problems can be reduced if the formation of compounds of low 

melting point is suppressed in favor of compounds with higher melting points. The presence of Al in 

the bed (as additive or a component in bed material) promotes the formation of alkali aluminosilicates 

(e.g. K2O∙Al2O3∙2SiO2) which have melting points above the normal range of FB operation (Aho and 

Silvennoinen, 2004). Compared to silica based bed material, the usage of Al-rich bed material such as 

bauxite has been shown to extend the defluidization time by 7 to 10 times (Vuthaluru et al., 1999). The 

presence of Fe has also been suggested to have similar effects through formation of K2Fe2O4 with 

melting point above 1 135 °C (Werther et al., 2000).  

 

Similar effects have been observed when P, Mg and Ca is present in the system. For example, the 

formation of phosphates of high melting point is possible if the P/K ratio is below 1.5–2 (Grimm et al., 

2012). Molar ratios of relevant elements, index ratios, are frequently used in order to indicate whether 

a fuel mixture or a bed state is prone to agglomeration. The lower the molar ratio of (K+Na)/(Ca +Mg) 

in a biomass ash, the lower the risk of agglomeration (Sommersacher et al., 2011). Similarly, the lower 

molar ratio of Si/(Ca+Mg) in P poor systems and (Si+P+K)/(Ca+Mg) in P rich systems, the lower the 

risk of agglomeration (Grimm et al., 2012).  

2.4.1.2 Fouling and slagging 
Apart from agglomeration, fuels high in alkali or with ash of low melting point may disturb the 

operation of the FB reactor through fouling and slagging. During thermal conversion processes, 

volatile ash-forming elements such as K, Cl and S can be released from the fuel. Non-volatile elements 

such as Ca and Si can be entrained by the fluidization gas. If the released and entrained ash is 

deposited inside the reactor, slagging is said to occur. If the ash condenses on cooler surfaces 

downstream of the reactor, fouling is said to occur (Dayton and Milne, 1995, Miles et al., 1996). The 
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deposition reduces heat transfer capacity of heat exchangers and other surfaces, increasing the metal 

temperature which may shorten the reactor lifespan and increase maintenance needs (Basu, 2006). 

2.4.1.3 Corrosion 
Certain compositions of slag or fouling deposits are corrosive which may lead to wear on surfaces 

where fouling or slagging occurs (Basu, 2006). In addition, Cl-rich fuels pose a significant high-

temperature corrosion potential (Basu, 2006). Alkali metals tend to react with chlorine to form alkali 

chlorides which are highly corrosive. Of this reason, methods that act to bind alkali in higher melting-

point compounds are effective also to reduce corrosion problems. As previously presented, the 

presence of Al, Ca, Fe, Mg and P in the fuel or bed material can contribute to this effect. 

2.4.2 Ash-related benefits during thermal conversion processes 
A number of ash elements have been shown to exhibit desirable effects on thermal conversion 

processes. These effects occur when certain ash-forming elements are deposited on the bed material 

surface and act catalytically on certain reactions. A summary of the presented ash-related effects and 

the elements associated with these are presented in Table 2-3. For references, see Sections 2.4.1 and 

2.4.2. 

Table 2-3. Summary of ash-related effects and the responsible components. 

Component in ash or bed 
material 

Effect Mechanism 

CaO, Fe (and oxides)  
Reduces tar content in product gas 

Catalytic cracking of tars 
Fe (and oxides)  Circulation of oxygen 
CaO, Fe (and oxides)  Increases CO2 and H2 yield, decreases CO Water-gas shift catalysis  
Ca 

Reduces risk of agglomeration 
Increases ash melting point to retain 
alkali in solid form 

Al  

P, Ca, Mg  

Si, K  Increases risk of agglomeration Forms low-melting compounds 
Cl, K Increases risk of corrosion Formation of KCl 

2.4.2.1 Tar reduction 
A reduction in tar content in the product gas has been noted when olivine is used as bed material 

during biomass gasification. The presence of CaO on the bed particle surface is thought to give rise to 

the catalytic effect (Kirnbauer et al., 2012).  

 

CaO on the particle surfaces has been shown to accumulate during gasification of biomass to reach 

more than 10 times its original mass concentration, composing over 10 % of the bed material mass 

(Kirnbauer et al., 2012). Compared to fresh olivine, a CaO-coated olivine bed material exhibited better 

tar decomposition properties as the tar content of the product gas was decreased by 82 % (Kirnbauer et 

al., 2012).  

 

Metallic iron and its oxides FeO, Fe2O3 and Fe2O4 also exhibit catalytic tar cracking properties (Abu 

El-Rub et al., 2004). However, in a DFBG system the exhibited tar reduction could also be attributed 

to the iron oxides of the bed material circulating oxygen from the combustion stage to the gasification 

stage. In this manner a fraction of the tars formed during gasification might then be combusted along 

with some amount of the product gas, resulting in a tar reduction at the cost of a lower product gas 

yield.  

2.4.2.2 Water-gas shift catalysis 
The presence of CaO on bed particles has been observed to favor the water-gas shift reaction 

(Reaction 4) resulting in a higher hydrogen and carbon dioxide content and a lower carbon monoxide 

content in the product gas (Kirnbauer et al., 2012). Additionally, iron and iron oxides have been 

reported to catalyze the water-gas shift reaction (Abu El-Rub et al., 2004).  
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3 Materials and methods 

3.1 Method 
The method applied involved 3 steps. Step one consisted of a literature review on ash transformation 

chemistry and FB processes such as the DFBG process. In addition to identifying gaps in knowledge, 

the aim of this step was to select appropriate bed materials, biomass fuels and reactor operation 

conditions to be applied in the experimental investigations.  

 

In step two, experiments were conducted using a laboratory-scale fluidized bed reactor. The reactor 

was operated under well controlled conditions that were defined with information obtained from step 

one. During the experiments, the fuels studied were gasified and the resulting char was subsequently 

combusted. The gas exiting the reactor was analyzed. The bed material was sampled either during the 

experiment or at the end of the experiment.  

 

In the third step, the ash-forming elements from the fuels retained on the outer layer of the bed 

material coating was analyzed. Possible connection between the characteristics of this layer and 

positive/negative effects of ash transformation on the DFBG process was studied. In Figure 3-1 a 

schematic of steps 2 and 3 of the applied method is presented. 

 

 
Figure 3-1. Illustration of bed material particle coating. 

3.2 Fuels 
Wheat straw (Ws) and forestry residues (Fr) were the biomass fuels studied. As previously mentioned, 

these fuels both present a somewhat untapped biofuel potential as these biomass fuels have 

traditionally been used for non-energy purposes or simply left after harvesting.  

 

The forestry residue was sampled from the Sävenäs CHP plant in Gothenburg, Sweden. In order to 

ensure that the samples used during the experiments were homogeneous, the forestry residue was 

milled, well mixed and pelletized. The commercial wheat straw used was received in pelletized form 

and was free from additives and binding agents according to the manufacturer. In order to ensure 

homogeneity also of this fuel the wheat straw pellets were again milled, well mixed and pelletized. All 

pellets produced had a diameter of 8 mm. Necessary moisture for binding the pellets was added using 

distilled water. For further details regarding fuel preparation, see Appendix A. 

 

The ash composition of the fuels is presented in Figure 3-2. In certain experiments, mixtures of 

forestry residue and wheat straw were applied through alternately feeding the reactor with pellets of 

Ws and Fr. The fuel mixtures were denoted 20%Ws and 33%Ws, respectively. The first mixture, 

20 wt% wheat straw to 80 wt% forestry residue, yielded a total K concentration close to twice that of 
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pure forestry residues. The second mixture, 33 wt% wheat straw to 66 wt% forestry residues, yielded a 

total K concentration half of that of pure wheat straw.  

 

 
Figure 3-2. Ash composition of the fuels. 

3.3 Bed materials 
Three bed materials were selected: silica sand (Sa), olivine (Ol) and bauxite (Bx). As discussed in 

Section 2.2.4 and Section 2.4.1, silica sand is one of the most commonly used bed materials in 

fluidized bed reactors. However, due to a high Si content this bed material is prone to agglomeration 

problems when alkali-rich fuels are used, see Section 2.4.1.1. In this work, silica sand was chosen to 

act as a reference for agglomeration tendency. Both olivine and bauxite have far lower contents of Si 

than silica sand (see Figure 3-4) and are thus less likely to cause agglomeration problems. Therefore 

both olivine and bauxite are promising bed materials which can be used in a DFBG process and were 

thus selected to be studied. The bed materials used are presented in Figure 3-3. 
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Figure 3-3. The prepared bed materials and fuels used. Upper row: sand (left), olivine (center) and bauxite (right). Lower 

row: forestry residue pellets (left) and wheat straw (right). 

 

The olivine and bauxite were provided by project partners while the sand used was commercial quartz 

sand of the trade name Baskarpsand 35. The sand particles as received had a SMD of 350 µm as stated 

by the manufacturer.  

 

As received, the bed materials varied substantially in size. The three bed materials all had a size 

distribution that practically would have enabled their direct usage in the reactor since they all fulfilled 

the criteria for Geldart particles type B. However, in order to avoid any uncontrolled loss of finer 

particles through entrainment during the experiments, all bed materials were sieved to attain a target 

particle diameter of 250 ≤ d < 500 µm. The fractioning method and the sieve analysis of the fractioned 

materials are presented in Appendix B. 

 

The chemical composition of bed materials determined through standard chemical analysis is 

presented in Figure 3-4. The full results of the lab analysis are presented in Appendix C, along with an 

account of the analysis methods used to obtain the analysis results. 

 

Since the ash-forming elements from the biomass fuels are deposited on the surface of the bed 

materials during thermal conversion, the surface of the bed material particles were also analyzed. In 

Figure 3-5 the elemental composition of the bed material particle surfaces, as analyzed through XRF, 

is presented. 
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Figure 3-4. Elemental composition of bed materials measured with standard chemical analysis. 

 
Figure 3-5. Elemental composition of bed material surfaces measured with XRF analysis. 

3.4 Experimental setup 
The experiments were carried out in a laboratory-scale BFB reactor. The cylindrical reactor which has 

a diameter of 7 cm and a length of 144 cm is divided into two sections by a perforated ceramic 

distributor plate (see Figure 3-6). The lower section, which is 62 cm in length, functions as a gas 

preheater. The bed material rests upon the distributor plate which is situated directly above the gas 

preheater. The upper section functions as the freeboard. Near the distributor plate is a bed material 

sampling system. Fuel was fed manually from the top of the reactor. 

 

The reactor was electrically heated with surrounding heating elements which were controlled with a 

temperature regulator. The bed temperature was measured with a K-type thermocouple submerged in 

the bed. The pressure drop over the bed was monitored through a pressure sensor resting on the 

distributor plate. The pressure sensor was connected to a manometer. 

 

The gas exiting the reactor was analyzed with nondispersive infrared (NDIR)/paramagnetic (for O2) 

gas analyzers connected downstream the reactor. For details on principles of measurement, refer to 

Appendix D. The experimental setup is illustrated in Figure 3-6. 
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Figure 3-6. Schematic of the experimental setup. Solid lines indicate physical flows, dotted lines indicate flows of data. 

3.5 Experimental design 
Three sets of experiments were carried out:  

 

Set i. Here the aim was to compare the propensity of the three bed materials to retain ash-forming 

elements from biomass fuels under conditions relevant to DFBG. To achieve this, experiments were 

carried out in which biomass was thermally converted under similar conditions with each of the three 

bed materials. At the end of each experiments the bed material was sampled and analyzed. The 

biomass fuels used in these experiments were 1) forestry residues and 2) a mixture of forestry residues 

and wheat straw (consisting of 20 wt% wheat straw and 80 wt% forestry residues).  

 

Set ii. Here the effect of the atmospheres surrounding the fuel particles (during gasification and 

combustion) on the retention of ash-forming elements on the bed material was studied. An experiment 

was carried out with forestry residues and olivine under conditions relevant to DFBG. During the 

experiment the bed was sampled at the end of the gasification and char combustion stages. After the 

last sample was taken, the bed temperature was increased steadily in order to determine the 

agglomeration temperature of the residual ash.  

 

Set iii. Here, the agglomeration tendencies of the three bed materials was investigated under conditions 

relevant to DFBG. Experiments were carried out in which biomass was thermally converted under 

similar conditions with each of the three bed materials. The time taken for agglomeration to occur in 

each experiment was determined. The main fuel used in this experiment was wheat straw. In order to 

study the effect of K concentration in biomass on agglomeration tendency, a mixture of wheat straw 

and forestry residue consisting of 33 wt% wheat straw (33%Ws) was also used. The concentration of 

K in this mixture was twice that of the pure forestry residue. 

 

The experiments carried out are summarized in Table 3-1. 
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Table 3-1. Summary of the experiments performed. 

Set 
Aim 

Fuel 
Bed 

material 
Denotation Experiments 

performed 
Temperatures [°C] 

Gasification Combustion 

i 

Investigate 
the tendency 
of bed 
materials to 
retain ash-
forming 
elements 

Forestry 
residue 

Sand 
Fr+Sa 

 
1 860 890 

Forestry 
residue 

Olivine Fr+Ol 3 860 890 

Forestry 
residue 

Bauxite Fr+Bx 2 860 890 

20 wt% 
Straw/forestry 
res. mixture 

Olivine 20%Ws+Ol 1 860 890 

ii 

Investigate 
the effect of 
gasification 
and 
combustion 
atmospheres 
on the 
accumulation 
of ash-
forming 
elements on 
bed material 

Forestry 
residue 

Olivine ii,Fr+Ol 1 860 
890 

(+ temp. ramping)   

iii 

Investigate 
agglomeration 
tendency of 
bed materials 

Straw Sand Ws+Sa 1 860 890 
Straw Olivine Ws+Ol 1 860 890 
Straw Bauxite Ws+Bx 2 860 890 
33 wt% 
Straw/forestry 
res. mixture 

Olivine 33%Ws+Ol 1 860 890 

3.6 Experimental procedure 
All experiments consisted of several cycles of gasification and combustion. Each cycle consisted of a 

gasification stage in which a given virgin biomass fuel was gasified followed by a combustion stage in 

which the unconverted char from the gasification stage was combusted.  

 

The combustion and gasification stages of each cycle were carried out as follows: 

 

a) Gasification stage. During the gasification stage of each cycle, the reactor was initially set to 

860 °C. The reactor and bed material sampling system were purged with nitrogen to ensure an 

inert environment in the reactor. Distilled water was pumped in a controlled rate into the 

steam generator located in the gas preheater section of the reactor, producing steam. The 

preheated steam entered the bed of the reactor through the distributor plate. When the 

conditions in the reactor met the target values, biomass pellets were fed manually at a 

controlled rate into the reactor. During the fuel period which lasted 4 minutes, 277 g was fed 

into the reactor. The steam-to-biomass ratio was maintained at 0.9 during each experiment. 

For more details, see Appendix Table E-1. Due to the endothermic nature of gasification, the 

bed temperature dropped during this period. In most cases the temperature dropped to around 

800 °C. See Appendix E for details. 

b) Combustion stage. After the gasification stage of each cycle, the fluidization gas was switched 

from steam to air consisting of 6 vol% O2. The low O2 concentration was chosen in order to 

avoid a sharp increase in the bed temperature above the target combustion temperature of 

890 °C. As a result of the low O2 concentration, the unconverted char was combusted for a 

longer period of time (12 minutes) than the 4 minutes allowed during the gasification stage. 

This was to ensure that the unconverted char from the gasification of the biomass fuels was 
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completely or close to completely combusted. During char combustion the temperature rose 

above the target temperature of 890 °C . See Appendix E for details. 

At the end of the char combustion stage of each cycle, the fluidization gas was switched from air to 

nitrogen to create an inert atmosphere in the reactor. The reactor was manually cooled down to 

860 °C. When the conditions in the reactor again reached target parameters, steam was introduced in 

the reactor and a new gasification stage was carried out as described in a). At the end of this stage, a 

new combustion stage was carried out as described in b). The cycling is illustrated in Figure 3-7.  

 
Figure 3-7. Illustration of the gasification and combustion periods forming cycles. 

The number of cycles carried out varied across sets of experiments. 

 

For the set i experiments (See Table 3-1), 6 cycles were carried out. The total experimental time was 

2–2.5 hours. At the end of the 6
th
 cycle, the fluidization gas was switched from air to nitrogen gas. The 

bed was sampled through the sampling port and the samples taken were cooled in a stream of nitrogen.  

 

For the set ii experiment, 3 cycles were carried out. The total experimental time was 1 hour and 20 

minutes. The bed material was sampled at the end of each gasification and combustion period. After 

the last sample was taken at the end of the 3
rd

 cycle, the residual char was combusted and the bed 

temperature was increased in order to determine the agglomeration temperature. 

 

For the set iii experiments, the number of cycles carried out was increased until the bed defluidized. 

The total experimental time was 0.5–2 hours. Samples of the agglomerated beds were taken after the 

reactor was let to cool in air.  

 

For data on actual flows of fluidization gases and fuel in the experiments, see Appendix E. For details 

on the calculation of the operating parameters, see Appendix F. Example logger data for a set i 

experiment is presented in Appendix G. 

3.7 Analysis of bed materials 
The outer layer of the bed material particles sampled in the experiments were analyzed using XRF. 

Prior to analysis, char particles were separated from the bed material samples with sieves. A sieve of 

aperture size of approximately 1 mm separated large char particles and agglomerates from the bed 

material. A sieve of aperture size 500 µm was applied to separate fine char particles from the bed 

material. A few char particles < 500 µm could still be observed in the bed material samples after the 

sieving process.  

 

 

Cooling 

800 °C 

𝑻 

900 °C 

860 °C 

4 min (Gasification) 

Cycle 

𝒕 
(Combustion) 12 min 
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4 Results 

4.1 Propensity of bed materials to retain ash-forming 

elements 
The results presented in this section are those of the set i experiments described in Section 3.5.  

 

In Figure 4-1 the elemental composition of the outer layer of the bed material particles are presented 

for the virgin and the used olivine. The ash-forming elements from the forestry residues that were 

retained to the largest extent on the bed material particle surfaces during thermal conversion were Fe, 

P, Ca and K in the case of olivine. In the case of bauxite, the ash-forming elements that were retained 

to the largest extent were P, Mg, Ca and K, see Figure 4-2. In the case of sand, Ca and K were retained 

to the largest extent on the particle surfaces, see Figure 4-3. 

 

 
Figure 4-1. Elemental composition of the outer layer of the virgin and used olivine. 
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Figure 4-2. Elemental composition of the outer layer of the virgin and used bauxite. 

 

 
Figure 4-3. Elemental composition of the outer layer of the virgin and used sand. 

 

The results presented in previous paragraph indicate that the main ash-forming elements from the 

forestry residue that were retained on the bed materials were Ca, K and P. In order to compare the 

intrinsic propensity of each of the three bed materials to retain the aforementioned ash-forming 

elements, the concentration of these elements on the surface of the virgin bed materials were 

subtracted from their corresponding concentrations on the used bed materials. The result obtained of 

this subtraction (see Figure 4-4) represents the amount of ash-forming elements from the forestry 

residues that were deposited on the surface of each of the bed materials. The result of this subtraction 

is presented for all elements in Appendix H. 

 

It can be inferred from Figure 4-4 that bauxite and sand have a similar propensity to retain Ca on their 

surfaces during thermal conversion of biomass fuels. Both bed materials have a higher propensity to 
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retain Ca than olivine. P is retained to the highest extent on bauxite followed by sand and olivine. Sand 

retains K to the largest extent followed by bauxite and olivine.  

 

 
Figure 4-4. Change in surface concentration of ash-forming elements on the bed material particles during the set i 

experiments. The presented values are averages of 2 to 3 replicate analyses of each sample. 

To verify that no significant amount of bed material particles were entrained from the bed during the 

experiments, a reference experiment using olivine was carried out under the same conditions as the set 

i experiments but with the exception that no fuel was fed to the reactor during the experiment. More 

than 99,5 % of the initial bed material weight was recovered at the end of the experiment. Thus, the 

entrainment of olivine particles did not significantly affect the concentration of ash-forming elements. 

It can be assumed that the other bed materials behaved in a similar manner since they were of similar 

size distribution: see Appendix B and Appendix F.4 for details. 

4.2 Effect of atmosphere on ash-forming element retention 
The results presented in this section were obtained from the set ii experiments described in Section 

3.5. The effect of the surrounding atmosphere in the reactor on the retention of ash-forming elements 

from the forestry residues on the surface of olivine particles is shown in Figure 4-5. In this figure, G1 

and C1 respectively denote the gasification and combustion stages of the first cycle during the 

experiment. Similarly, G2 and C2 denote the gasification and combustion stages of the second cycle 

during the experiment. G3 and C3 follow the same pattern. G0 denotes the sample taken before fuel 

feeding was started. 

 

It can be seen in Figure 4-5 (center) that the concentration of Ca on the surface of the olivine particles 

increased after each char combustion stage (C1, C2 and C3) and remained virtually unchanged during 

each gasification stage (G1, G2 and G3). This indicates that Ca was mainly retained on the surface of 

the olivine particles during char combustion. Similarly, P was mainly retained on the surface of the 

olivine particles during char combustion, see Figure 4-5 (left). K was to some extent retained on the 

surface of the olivine particles during both gasification and combustion, see Figure 4-5 (right). 
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Figure 4-5. P, Ca and K concentrations on the outer layer of the olivine particles sampled during the ii,Fr+Ol experiment. The 

presented values are averages of 2 to 5 replicate analyses of each sample. 

4.3 Agglomeration resistance 
The results presented in this section were obtained from the set iii experiments described in Section 

3.5. 

 

The time taken for defluidization to occur during each experiment is presented in Table 4-1. This time 

represents the time at which the bed defluidized as compared to the start of the experiment, not 

including the time taken to switch from gasification to combustion and vice versa as this varied 

between experiments. 

 
Table 4-1. Set iii experiment results. 

Fuel-bed material combination 
Defluidization 
on cycle no. 

Defluidization time  
(minutes) 

Ws+Sa 2 19.7 
Ws+Ol 3 44.8 
Ws+Bx,2 2 23.9 
33%Ws+Ol 6 92.0 

 

From the defluidization times shown in Table 4-1 it can be inferred that bauxite and sand have similar 

resistance to agglomeration and that both of these bed materials are less resistant to agglomeration 

than olivine. 

 

An attempt was made to determine the agglomeration temperature of olivine (see set ii experiments 

described in Section 3.5. At a bed temperature of 1 025 °C, the bed did not agglomerate. The 

experiment was stopped at this temperature as it was close to the maximum temperature (1 100 °C) the 

reactor could handle. 

 

4.4 Concentrations of CO, CO2 and CH4 in the product gas 
The concentration of CO, CO2 and CH4 in the product gas resulting from the gasification of forestry 

residues (set i experiments described in Section 3.5) with each of the bed materials olivine, bauxite 

and sand are presented in Figure 4-6 to Figure 4-8. The presented data points where CH4 concentration 
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exceeds 10 % are estimations, as the span of the methane instrument was limited to 10 %. However, 

the instrument displayed estimates of methane concentration even when above this range, and these 

values were noted manually. Refer to Appendix I for details. 

 
Figure 4-6. Product gas concentrations during gasification of forestry residues using olivine as bed material. The maximum 

standard deviations in the concentrations of CO2, CO and CH4 calculated in 3 replicate experiments were respectively 1.8, 0.9 

and 0.6 vol%. 

 
Figure 4-7. Product gas concentrations during gasification of forestry residues using bauxite as bed material. The maximum 

standard deviations in the concentrations of CO2, CO and CH4 in 2 replicate experiments were respectively 1.9, 2.9 and 0.4 

vol%. 
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Figure 4-8. Product gas concentrations during gasification of forestry residues using sand as bed material. Only a single 

experiment was performed. 

 
Figure 4-9. Product gas concentrations during gasification of a fuel mixture of 20 wt% wheat straw and 80 wt% forestry 

residues using olivine as bed material. Only a single experiment was performed. 

 

For all three bed materials, the concentrations of CO and CH4 gradually decreased over time while the 

concentration of CO2 increased. As a result, the CO/CO2 ratio decreased in all experiments as shown 

in Figure 4-10. When taking uncertainty into account, no significant differences in this quantity could 

be distinguished between the bed materials. 
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Figure 4-10. CO/CO2 ratio of the product gas during gasification of forestry residues.  

 

Regarding gas composition the difference between the bed materials was small, with the exception of 

sand where CO2 production was slightly lower and CO and CH4 concentrations were slightly higher. 

The average gas yields during gasification are presented in Figure 4-11.  

 
Figure 4-11. Average gas yields for the set i experiments. 
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5 Discussion 
As presented in Section 4.1, the main ash-forming elements in the forestry residues that were retained 

on the surface of the three bed materials were P, Ca and K. As can be seen in the fuel analysis 

presented in in Figure 3-2, these elements were also among the five most abundant ash-forming 

elements in the forestry residues. It is therefore reasonable to conclude that the high extent of retention 

of these ash-forming elements was due to their abundance in the forestry residues. This conclusion is 

also in line with the fact that the outer layer of the bed materials were analyzed, and it has been shown 

in literature that the composition of the outer layer of used bed materials typically resembles that of the 

fuel ash (Grimm et al., 2012). However, even though the same amount of forestry residues (and 

therefore similar amounts of ash-forming elements) was thermally converted using each of the three 

bed materials (see set i experiments, described in Section 3.5), the extent of the retention of P, Ca and 

K on each of the three bed materials differed. For example, the retention of K from the forestry residue 

was higher on sand than that on olivine and bauxite. This indicates that the bed materials have certain 

intrinsic chemical and/or physical properties that influence their retention of ash-forming elements 

from biomass. 

 

Under temperatures commonly applied in fluidized bed gasification and combustion processes, Si-rich 

bed materials favor the formation of potassium silicates when K-rich biomass fuels are fired (see 

Section 2.4.1.1). The higher concentration of Si in the sand compared to that of the olivine and bauxite 

(see Figure 3-4) thus explains why K was retained to a larger extent on sand than on bauxite or olivine. 

According to literature, Ca reacts with Si in bed materials to form calcium silicates, especially in the 

cases when the concentration of Ca is higher than that of the K in the fuel ash (Brus et al., 2005). 

While this may explain the higher retention of Ca on sand than olivine, the high retention of Ca on 

bauxite compared to that on olivine still lacks an explanation as the concentration of Si in the virgin 

bauxite was far lower than that in the virgin olivine. An explanation for this outcome will be sought in 

a planned future work, where the inner and outer layers of the used bed materials will be analyzed. 

 

The retention of Ca, P and K was also influenced by the reactor atmosphere as presented in 

Section 4.2. P and Ca were retained on olivine primarily during char combustion as opposed to during 

gasification of the forestry residues. It might be tempting to conclude that this was solely a result of 

the char combustion lasting 3 times as long as the gasification of the forestry residues. However, K 

was retained to similar extents during both gasification of the forestry residues and combustion of the 

unconverted char. The discrepancy in the extents to which Ca, P and K were retained on olivine during 

thermal conversion of the forestry residues indicates that these elements possess certain intrinsic 

properties which enables them to be retained on the olivine under given atmospheres. According to 

previous studies on the release of ash-forming elements from biomass fuels, K is released during 

thermal conversion processes while Ca and P are mainly retained in the ash (Tchoffor et al., 2013, 

Zhang et al., 2012, Pedersen et al., 2010). Since most of the ash remains in the char during 

gasification, only a limited amount of Ca and P can be retained on the bed material during gasification. 

During char combustion, the organic matrix of the char is completely combusted which allows the 

residual ash to be deposited on the bed material. This explains why Ca and P were retained on the bed 

material mainly during the combustion stage. Although K is volatile at temperatures over 700 °C and 

therefore may be released during both gasification and combustion of biomass fuels, it has been 

observed in previous studies that K is mainly released from biomass during char combustion (Tchoffor 

et al., 2013, Knudsen et al., 2004). However, not all of the released K is retained on the bed material as 

a certain amount may leave the reactor with the product gas (during gasification) or flue gas (during 

combustion). This plausibly explains why the retention of K on the olivine was not higher during char 

combustion than during gasification of the forestry residues, as was the case for Ca and P.  

 

The retention of ash-forming elements on the bed material particles may impact the thermal 

conversion process positively or negatively. From the set iii experiments (described in Section 3.5) in 

which wheat straw was thermally converted with each of the three bed materials, it was observed that 

sand was the least resistant to agglomeration while olivine was the most resistant. The difference in 

agglomeration tendency can be attributed to the propensity of ash-forming elements from the fuel to be 
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retained on the particle surfaces. Table 5-1 shows the molar ratios of (Si+P+K)/(Ca+Mg) on the outer 

layer of the bed materials which were sampled from the reactor after thermal conversion of forestry 

residues and wheat straw (or a mixture thereof). This ratio is indicative of the probability of ash 

melting and subsequent agglomeration to occur, where a higher ratio represents a higher probability. 

The results show that the experiments with wheat straw produced higher molar ratios for sand and 

bauxite, which suggests that these two bed materials were coated with molten ash material to a larger 

extent than olivine. This would explain why olivine was more resistant to agglomeration than sand and 

bauxite. 

 
Table 5-1. Index ratios for the samples collected during the set i and iii experiments. 

Bed material 

 
Forestry residue 
experiment  
Unagglomerated 
samples 

𝑺𝒊 + 𝑷 + 𝑲

𝑪𝒂 + 𝑴𝒈
 

Wheat straw  
experiment  
Agglomerated 
samples 

Molar ratio  
Unagglomerated  

sample 

  Molar ratio  
Agglomerated  

sample 
Sand Fr+Sa 27.1 212.3 Ws+Sa 

Olivine 
Fr+Ol,3 2.1 

2.2 Ws+Ol Fr+Ol,2 2.0 
Fr+Ol,1 2.1 

Olivine (fuel mix)* 20%Ws+Ol 2.2 2.1 33%Ws+Ol 

Bauxite 
Fr+Bx,2 4.8 54.8 Ws+Bx,2 
Fr+Bx,1 4.0 51.6 Ws+Bx,1 

 

Although K is prone to cause agglomeration, it has been observed in previous studies that K may 

catalyze char and tar conversion. Therefore, a fuel with a low K content (e.g. forestry residues) may 

limit char and tar conversion. It may then be desirable to increase the K content of a fuel, but not to an 

extent which approaches that of common K-rich fuels (e.g. wheat straw) since a high fuel content of K 

is associated with a high risk of agglomeration. A way to achieve this is to mix a K-lean fuel with a K-

rich fuel. An experiment carried out with a mixture of forestry residue and straw consisting of 20 wt% 

straw under similar conditions as an experiment carried out with only forestry residues did not result in 

agglomeration. If a higher fuel K content it is desired, the results suggest that it may be possible to 

blend small amounts of wheat straw (e.g. 5 wt%) into a forestry residues/wheat straw fuel mix to be 

used in DFBG. 

 

The extents of the retention of K, Ca and P on the bed materials had a marginal effect on the 

concentrations of CO, CO2 and CH4 in the product gas during gasification of the forestry residues. 

According to literature (see Section 2.4.2.2), the retention of Ca on bed materials catalyzes the water-

gas shift reaction. The CO/CO2 ratio can give an indication of the extent of water-gas shift occurring 

during gasification (Simonetti, 2008). In the present work, Ca was retained to a larger extent on 

bauxite (and sand) than on olivine during thermal conversion of forestry residues. However, the 

CO/CO2 ratio in the product gas was similar for all three bed materials which indicates that the degree 

of water-gas shift catalysis was similar for the three bed materials (see Figure 4-10).  

6 Conclusions 
The main aim of this work was to investigate the propensity of bed materials to retain ash-forming 

elements from biomass under conditions relevant to DFBG. In addition, the effect of the retention of 

ash-forming elements on the composition of the product gas and the resistance of the bed materials to 

be agglomerated was investigated. 

 

The investigation was carried out in the temperature range 800–900 °C. Three bed materials were 

studied: sand, olivine and bauxite. The propensity of these bed materials to retain ash-forming 

elements from biomass fuels was studied with forestry residues and a mixture of wheat straw and 

forestry residues consisting of 20 wt% wheat straw. In order to determine the resistance of the bed 

materials to be agglomerated within the investigated temperature range, a long operation time would 

have been needed owing to the low ash content of the forestry residues. Since the fluidized bed reactor 
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used in the present work could only be operated for a limited length of time during each experiment, a 

biomass fuel of higher ash content (wheat straw) was used to assess the resistance of the bed materials 

to be agglomerated.  

 

Based on the results from the experiments and literature on ash transformation during thermal 

conversion of biomass, the following conclusions were drawn: 

 

1) During dual fluidized bed gasification of biomass using sand, olivine and bauxite, the ash-

forming elements that are retained to the largest extent on the bed materials are those that are 

most abundant in the biomass. However, ash-forming elements are retained to different 

extents on different bed materials. During thermal conversion of biomass with a composition 

similar to the forestry residues studied in the present work, it is likely that Ca, P and K are the 

ash-forming elements retained to the largest extent on the bed materials. The extent of 

retention of P on the bed materials is likely to follow the order of bauxite > (sand ≈ olivine). 

The retention of Ca is likely to follow the order of (bauxite ≈ sand) > olivine. The retention of 

K is likely to follow the order of sand > (bauxite ≈ olivine). The difference in the extents to 

which the ash-forming elements are retained on the bed materials is plausibly related to their 

respective tendency to form compounds.  

2) The retention of ash-forming elements on bed materials during DFBG is influenced by the 

atmosphere surrounding the fuel particles in the reactor. Non-volatile ash-forming elements 

like Ca and P are more likely to be retained on the bed material during the char combustion 

stage than during the gasification stage. Contrary to Ca and K, volatile ash-forming elements 

like K can be retained to similar extents during the gasification and char combustion stages. 

3) If a biomass fuel with a high ash content and/or a high K content is to be thermally converted 

with sand, olivine or bauxite under conditions relevant to DFBG, the resistance of the bed 

materials to be agglomerated will follow the order of olivine ≫ bauxite > sand. This trend was 

found to correlate with the molar ratio of (Si+P+K)/(Ca+Mg) on the outer layers of the bed 

material samples. According to literature, the higher this ratio, the more likely agglomeration 

is to occur. This ratio followed the order of (sand > bauxite) ≫ olivine.  

 

If it is desired to increase the presence of K in an olivine DFBG system, the high 

agglomeration resistance of olivine suggests it may be possible to use a fuel mixture where a 

small amount of a K-rich fuel (e.g. wheat straw) is mixed with a K-lean fuel while maintaining 

a low risk of agglomeration. 

4) No significant difference in the concentrations of CO, CO2 and CH4 in the product gas can be 

expected upon gasification of forestry residues when sand, bauxite or olivine is used in a 

DFBG process. While the retention of Ca differs between bed materials and it has been 

suggested in literature that retained Ca catalyzes the water-gas shift reaction, a marginal 

difference in the CO/CO2 ratio in the product gas was observed in the present work when 

forestry residues were gasified using each of the bed materials. 

In summary, if a choice is to be made among the bed materials sand, bauxite and olivine for suitability 

in a DFBG process in terms of degree of water-gas shift catalysis and risk of agglomeration, the results 

suggest that sand (being the cheapest of the three bed materials) can be used if the fuel is virtually free 

of contaminants and of low ash content. Its usage should pose no additional risk of agglomeration 

under these circumstances. However, if the fuel is of a higher ash content and/or contains K to a large 

extent, olivine is considerably more resistant to agglomeration which may favor its usage. It is also 

important to mention that there are other effects on the DFBG process that can be attributed to the 

retention of ash-forming elements which should be considered when selecting a suitable bed material. 

For example, the ability of a bed material to catalyze tar conversion may be of importance. 
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7 Future work 
In the present work, the bed materials used during thermal conversion of biomass were analyzed with 

XRF in order to determine the elemental composition of the outer layer of the retained ash-forming 

elements. In a planned future work the inner layer of the retained ash-forming elements will be 

analyzed with SEM-EDX (Scanning electron microscopy with energy-dispersive x-ray spectroscopy). 

In addition, XRD (X-ray diffraction) analysis of the outer layer will be undertaken in order to 

determine in what chemical form the ash-forming elements are present on the bed material particle. In 

order to better understand the connection between retention of ash-forming elements and breakdown 

of tars, it may be desired to investigate differences in tar yield during thermal conversion of biomass in 

fluidized bed reactors operated with different bed materials. In addition, it may be valuable to measure 

the concentration of H2 in the product gas during gasification of biomass in fluidized beds in order to 

better understand the effect of the retained ash-forming elements regarding e.g. catalysis of the water-

gas shift reaction. 
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Appendix A. Fuel preparation and feeding 
Prior to each experiment, the pellets were dried to constant mass in an oven where the temperature was 

held at 105 °C for at least 8 hours. In order to ensure a constant fuel feeding rate during the 

experiments, the dried pellets were sorted into 3 weight fractions: 0.55 g ≤ m < 0.65 g, 

0.65 g ≤ m < 0.75 g and 0.75 g ≤ m < 0.85 g. No pellet in a fraction had a weight deviating more than 

0.05 g from the mean, which was assumed to lie in the middle of the weight span. In order to maintain 

a constant fuel mass flow in the different experiments the frequency of fuel feeding was altered 

depending on fuel weight fraction. Fuel feeding was performed manually. See Appendix Table A-1.  

 
Appendix Table A-1. Fuel feeding intervals used to obtained constant mass flow across fuel weight fractions. 

Average fuel pellet weight [g] Pellets per second [pcs/s] Fuel mass flow [g/min] 
0.60 0.32 

11.56 0.70 0.28 
0.80 0.24 
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Appendix B. Physical properties of bed materials 

B.1  Size distribution 
Primary bed material fractioning was performed for all bed materials using a rotating sieve shaker to 

remove fractions larger than or equal of 500 µm and smaller than 250 µm. The sieve shaker was 

operated at 200 RPM for 2 minutes. Secondary bed material fractioning of the material was thereafter 

performed through additional mechanical or manual sieving. This was conducted in order to ensure no 

unreasonable amounts of undersizes (< 250 µm) remained. The fractioned materials were thereafter 

evaluated through sieve analysis. 

 

The particle size distribution of the fractioned material was determined through sieve analysis where a 

stack of sieves of mesh aperture sizes 1000, 500, 355, 250, 180 and 75 µm were used. A small 

amount
2
 of randomly sampled bed material was sieved manually for one minute. The retained weight 

on each sieve was noted and the percent passing was calculated and plotted. In Appendix Figure B-1, 

particle size distributions for the bed materials used are presented. As each sieve analysis was 

performed in duplex, the mean value is presented for each bed material. 

 
Appendix Figure B-1. Sieve analysis of the fractioned bed materials of target diameter 250 ≤ d < 500 µm. 

 

Based on the sieve analyses of the bed materials, the SMD was calculated as presented in the table 

inset of Appendix Figure B-1. 

 

Through sieve analysis of the samples it was determined that no presence of particles smaller than 180 

µm could be detected with the equipment available in the case of olivine and sand. However, the 

bauxite did contain a certain amount of small particles after fractioning: the content of particles of 75 

µm or larger was close to 5 %, but no amount of particles smaller than 75 µm could be detected. The 

bauxite was determined to be feasible for study in this regard despite the presence of particles in the 75 

µm range. The implications of this are discussed in Appendix F.4. 

 

Notable dusting was observed upon handling of all fractioned bed materials which was indicative of a 

continued presence of smaller particles even after fractioning. Judging from the precision of the scales 
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used, an estimation of potential content of particles of size < 75 µm is that this fraction should not 

constitute more than 0.1 % of the mass of the total bed material for any of the bed materials studied. 

As it would demand numerous repeated sieving runs with smaller batch sizes and longer agitation 

periods to remove all particles of size < 250 µm, a certain amount of undersizes were allowed to 

remain in the bed material.  

 

Besides the practical difficulties involved, the arguments for this decision were two. Firstly, the 

particle size distributions in the relevant size range was relatively similar across the bed materials. It is 

worth noting that most studies use raw bed material where little attention is paid to bed material 

particle size distribution on this level of detail. In this regard, the sieved bed materials studied here can 

be regarded as similar despite the smaller fraction remaining in the bauxite. Secondly, no substantial 

amount of particles small enough to be entrained out of the bed were believed to be prevalent, as the 

sieve analysis indicated. The fractioning was therefore considered sufficient and all bed materials were 

deemed to be feasible for study in this aspect.  
 

B.2  Particle density 

The particle density of the bed materials is relevant to the calculation of 𝑈𝑚𝑓 and 𝑈𝑡. As only simple 

equipment was available, particle density was measured with approximate methods. A weighed 

amount of bed material was introduced into a 100-ml volumetric flask, which was then filled to the 

mark using a measured amount of water from a 100-ml graduated cylinder. When the volumetric flask 

was filled to the mark, the volume occupied by the bed material was then approximately equal to the 

residual amount of water present in the graduated cylinder. Using this method, the particle density was 

approximated to 2,700 and 3,300 kg/m
3
 for sand and olivine, respectively. 

 

It is worth noting that the particle density should be equal for a given material irrespective of its 

particle size distribution. Particle density determination of a bed material, one finely ground and one 

coarsely ground, was carried out in order to indicate the magnitude of the experimental error. The 

difference was found to be close to 300 kg/m
3
. While residual air bubbles in the material is one 

probable cause of error, a more likely source of error is the reading of the graduated cylinder, which 

was graduated and read in steps of 1 ml. Sensitivity analysis showed that a misreading of ½ ml can 

result in a particle density value differing close to 250 kg/m
3
 under these circumstances. The 

calculated particle densities of bed materials should therefore be regarded as a coarse approximation. 
 

B.3   Moisture content 
The moisture content of all bed materials was determined by heating bed material samples 105 °C in 

an oven where temperatures were kept constant for 24 hours. After drying, the weight difference was 

calculated. With the scales used, no moisture content could be detected for any of the bed materials. 

Based on these results, the bed materials used in the experiments were not dried prior to usage and the 

influence of bed material moisture content was neglected. 
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Appendix C. Lab analysis results 
 
Appendix Table C-1. Lab analysis results for fuels and bed materials. 

On sample in state of submission  Straw Forestry residue Bauxite Olivine Silica sand 

Total moisture, wt%  10.4 11.8 -  -  -  

Ash, wt%  3.9 1.5 -  -  -  

Chlorine, Cl, wt%  0.17 0.01 -  -  -  

Sulfur, S, wt%  0.07 0.03 -  -  -  

Carbon, C, wt%  42 44.4 -  -  -  

Hydrogen, H, wt%  6.4 6.7 -  -  -  

Nitrogen, N, wt%  0.62 0.44 -  -  -  

Higher heating value    

   

  

at constant volume, MJ/kg  16.97 17.86 -  -  -  

Lower heating value    

   

  

at constant pressure, MJ/kg  15.57 16.39 -  -  -  

On dried sample  Straw Forestry residue Bauxite Olivine Silica sand 

Ash, wt%  4.3 1.8 -  -  -  

Chlorine, Cl, wt%  0.2 0.01 -  -  -  

Leachable chloride, Cl-, wt%  -  -  <0.01  0.01 <0.01  

Sulfur, S, wt%  0.07 0.03 0.02 0.02 0.01 

Carbon, C, wt%  46.8 50.3 -  -  -  

Hydrogen, H, wt%  5.8 6.1 -  -  -  

Nitrogen, N, wt%  0.69 0.5 -  -  -  

Oxygen, O, (diff) wt%  42 41 -  -  -  

Aluminium, Al, wt%  0.032 0.021 47.7 0.15 2.66 

Silica, Si, wt%  0.87 0.12 4.07 19.8 45 

Iron, Fe, wt%  0.042  0.026 1.07 5.4 0.34 

Titanium, Ti, wt%  0.002  0.001 1.77 0.07 0.07 

Manganese, Mn, wt%  0.003  0.021 <0.05 0.08 0.01 

Magnesium, Mg, wt%  0.097  0.053 0.05 32.4 0.06 

Calcium, Ca, wt%  0.30  0.43 0.15 0.05 0.31 

Barium, Ba, wt%  0.003  0.006 <0.05 <0.05  <0.05  

Sodium, Na, wt%  0.045  0.013 <0.1 0.06 0.93 

Potassium, K, wt%  0.96 0.19 0.19 0.16 1.78 

Phosphorus, P, wt%  0.07  0.04 <0.1 <0.1  <0.1  

Higher heating value 18.93 20.24 -  -  -  

at constant volume, MJ/kg      

Lower heating value  17.66 18.91 -  -  -  

at constant pressure, MJ/kg       
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Appendix Table C-2. Lab analysis results of thermally treated fuels. 

On sample after ashing at 550 °C Straw Forestry residue 

Aluminium, Al, wt%  0.73 1.15 

Silica, Si, wt%  20.2 6.73 

Iron, Fe, wt%  0.97 1.38 

Titanium, Ti, wt%  0.04 0.06 

Manganese, Mn, wt%  0.06 1.16 

Magnesium, Mg, wt%  2.25 2.87 

Calcium, Ca, wt%  6.91 23.3 

Barium, Ba, wt%  0.07 0.34 

Sodium, Na, wt%  1.03 0.73 

Phosphorus, P, wt%  1.69 2.01 

 
Appendix Table C-3. Measurement methods of the lab analysis. 

Element Method of measurement 
Fe Mod. ASTM D 3682 

Mn Mod. ASTM D 3682 
Ti Mod. ASTM D 3682 
Al Mod. ASTM D 3682 
S SS-EN 15289 
P Mod. ASTM D 3682 
Si Mod. ASTM D 3682 

Mg Mod. ASTM D 3682 
Ba Mod. ASTM D 3682 
Ca Mod. ASTM D 3682 
K Microwave digestion and ICP-OES 
Cl Leaching and ion chromatography 

Na Mod. ASTM D 3682 
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Appendix D. Principles of measurement 
The gases studied were CO, CO2, and CH4. These gases have major roles in combustion and 

gasification reactions as outlined in Sections 2.3.1 and 2.3.2. While measurement of H2 would be 

desirable no measurement of this gas was undertaken due to unavailability of instruments. 

 

Measurement of product gas composition was conducted with NDIR instruments. These rely on 

difference in absorption of infrared light between gases to determine gas concentrations. The absorbed 

wavelength is a characteristic of the gas and the strength of absorption is indicative of gas 

concentration (Rosemount Analytical, 1997).  

 

For the on-line measurement of O2 paramagnetic measurement was used. The measuring principle is 

based on that oxygen, unlike many other gases, is attracted to magnetic fields. Owing to the attraction 

of O2 to magnetic fields, a sensor placed in a magnetic field is displaced when exposed to an oxygen-

containing gas. Through measuring this displacement through optical and electrical means, the 

concentration of O2 in the gas can be determined (Ankarsmid Sampling, 2010).  

 

For analysis of bed material surfaces XRF analysis was used. It is a non-destructive surface analysis 

method based on x-ray excitation of electrons in materials: when an excited electron returns to the 

normal state, radiation is emitted that is characteristic for the element (Kramar, 1997).  
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Appendix E. Operating parameters 
The target operating parameters are presented in Appendix Table E-1. These were taken in order to be 

representative of commercial biomass FB gasifiers. However, nitrogen was added both in the 

gasification and combustion stage in order to maintain concentrations of measured gases within the 

range of sensitivity of the instruments. The appropriate nitrogen flows for this purpose was determined 

experimentally during pre-trials. It was considered that the presence of nitrogen did not influence the 

chemistry of reactions significantly. 

 
Appendix Table E-1. Target operating parameters for one experiment cycle. 

 Gasification Combustion 
Steam-to-biomass ratio (mass) 0.9 0 
Fuel feeding rate 11.56 g/min 0 
Water flow 10.4 ml/min (l) 0 
Temperature 860 °C (start)–800°C (end) 900 °C (peak) 
Steam concentration [wt%] 65 % 0 % 
Oxygen concentration [vol%] 0 % 6 %

3
 

Nitrogen concentration [wt%] 35 % 94 % 
Time period 4 minutes 12 minutes 
Nitrogen flow 4.82 l/min 9.86 l/min 
Air flow 0 3.94 l/min 

 

Due to the relatively small amount of bed material present in the reactor, the introduction of fuel 

caused the reactor temperature to drop. This was primarily due to the endothermic reactions involved 

in gasification of the fuel. While the reactor was electrically heated, the temperature dropped at a rate 

faster than what could be compensated for. In most cases, temperatures reached around 800 °C at the 

end of the gasification period. Similarly, most combustion stages were undertaken with temperatures 

reaching close to 900 °C. However, these temperatures are in the range of normal operational 

parameters applied in industrial DFBG systems as presented in Section 2.3.3. 

 

In Appendix Figure E-1, the maximum temperature of the cycle with the highest combustion 

temperature is presented as well as the lowest temperature of the cycle with the lowest gasification 

temperature. The temperatures of the 5 less extreme cycles in the set i experiments are not presented. 

 

 
Appendix Figure E-1. Maximum temperatures of combustion periods and minimum temperatures of gasification periods 

during the set i experiments. Note that the temperatures axis is broken.  

                                                      
3
 The air feeding system lowered the oxygen concentration in air to approximately 19.5 %, which resulted in a 

slightly lower oxygen concentration (around 5,6 vol%) during combustion. 
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Appendix F. Hydrodynamic calculations 
In order to be able to perform calculations of minimum fluidization velocity Umf and terminal velocity 

Ut in a flexible manner, a spreadsheet model was developed. These quantities were calculated using 

the equations listed in Sections 2.2.1.1 and 2.2.1.2, as was the corresponding air volume flows to the 

reactor.  

 

F.1  Dynamic or absolute viscosity of air 
As suggested by (2.4, the dynamic or absolute viscosity µ of air can be calculated using a reference 

value of dynamic viscosity at a known temperature. However, the usage of the equation also involves 

using Sutherland’s constant for air, here denoted 𝑆. Since a reliable source of it proved difficult to find 

in literature, literature values for the dynamic viscosity were used instead of (2.4. Values were taken 

from a data series of dynamic viscosities of air in the temperature range of 100 to 1 600 K (Basu, 

2010). The tabulated range was considered sufficiently large to not limit the validity of the following 

calculations outside of practically realistic bounds. Values from the data series were interpolated using 

a third-degree polynomial curve fit. 
 

F.2  Gas density 
The gas density was calculated from the ideal gas law: 

 

𝜌𝑔 =
𝑝𝑀

𝑅𝑇
 

Appendix Equation D-1 

The gas density is dependent on the temperature and pressure of the fluidization medium. The 

temperature is a variable, but the pressure is assumed to be constant and atmospheric. The molar mass 

of the gas is dependent on the gas composition. For atmospheric air
4
, the simplification was made that 

air has four constituents in proportions according to Appendix Table F-1. 
 

Appendix Table F-1. Atmospheric gas composition (Basu, 2010). 

Atmospheric air composition 
Gas Share by volume [%] 
N2 78.09 % 
O2 20.95 % 
Ar 0.933 % 
CO2 0.03 % 

 

The value of the molar gas constant 𝑅 was taken from Nordling and Österman (2004) where  

𝑅 = 8.314472 𝐽 𝑘𝑚𝑜𝑙⁄ . 
 

F.3  Calculation results 
The fluidization and terminal velocities are both dependent on temperature and bed material 

properties. Therefore, for each combination of temperature and bed material a specific set of 

fluidization and terminal velocities is valid. The results of the calculation for sand in pure steam are 

presented here along with values of corresponding volume flows. 

 

                                                      
4
 The calculation results presented are based on gasification in a pure steam environment, but the developed 

model was used for calculations of Umf and Ut during combustion (in atmospheric air) as well. 
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Appendix Table F-2. Input and calculation of minimum fluidization velocity. 

Input 
Symbol Physical quantity Value Source 
𝑇 Temperature [°C] 800 850 900 Chosen 

𝑑𝑝,𝑠𝑎𝑛𝑑  mean particle diameter [µm] 
325.7 

Measured 
(Sand) 

𝜌𝑝  bed material density [kg/m3] 
2727 

Measured 
(Sand) 

𝑝 Air pressure [kPa] 101.3 Chosen (1 atm) 

𝑑 Reactor diameter [mm] 70.0 Measured 

𝐶1 Empirical constant 1  

for (2.2 (for 𝑅𝑒𝑚𝑓) 
27.2 (Grace, 1982) 

𝐶2 Empirical constant 2  

for (2.2 (for 𝑅𝑒𝑚𝑓) 0.0408 (Grace, 1982) 

µ Absolute/dynamic  
viscosity of air [N s/m2] 

4.4206E-05 4.5458E-05 4.6710E-05 (Basu, 2010)5 

Calculation result 
Symbol Physical quantity Value Source 
𝑇 Temperature [°C] 800 850 900 Chosen 

𝜌𝑔 gas density [kg/m3] 0.205 0.195 0.187 Calculated 

𝐴𝑟 Archimedes number [-] 114.8 100.6 88.9 Calculated 

𝑅𝑒𝑚𝑓 Reynolds number at minimum  
fluidization velocity [-] 0.086 0.075 0.067 

Calculated 

𝑈𝑚𝑓 Minimum fluidization velocity [m/s] 0.052 0.050 0.048 Calculated 

𝑄𝑚𝑓 air volume flow at 𝑈𝑚𝑓  [l/min] 12.1 11.6 11.1 Calculated 

𝑈𝑡  Terminal velocity 3.75 3.75 3.76 Calculated 

𝑄𝑡 air volume flow at 𝑈𝑡  [l/min] 865.5 866.3 867.4 Calculated 

 

F.4  Umf, Ut and particle entrainment 
The calculations of minimum and ultimate fluidization velocity are based on a series of assumptions, 

such as that the gasification medium used is pure steam and that only sand is used. It can be argued 

that such assumptions are associated with uncertainties. However, the values of minimum and ultimate 

fluidization velocity are only used to define the limits of reactor operation: gas flows during 

gasification in the experiments were no more than 6 times greater than the calculated 𝑈𝑚𝑓 and never 

above 7 % of the calculated 𝑈𝑡. Since the 𝑈𝑡 defines the upper limit of operation above which 

pneumatic transport would occur, this constitutes a large margin of error and rules out the possibility 

that the gas flows used were high enough to entrain bed material particles of the SMD in question.  

 

Rather than the particles of a diameter close to the SMD for the entire particle population, it is more 

likely that the smaller particle sizes that was not be removed from the bed materials leaves the system 

since smaller particles are more easily entrained from the bed. But according to estimations based on 

calculation of 𝑈𝑡 in steam, particle entrainment does not happen unless particles are as small as 40 µm 

even if the gas flows are doubled from the normal values. While the sand and olivine did not contain 

measurable amounts of particles below 75 µm, the bauxite had a 5 % content of these fines. Given that 

only a smaller fraction of these fines are of a diameter less than 40 µm, particle entrainment of raw bed 

materials is not considered to have occurred on any significant scale. However, it is possible that bed 

materials or char particles are subjected to a size reduction through mechanical abrasion, causing these 

particles to leave the bed. These effects are assumed to be similar across the experiments in the same 

set since conditions were similar, and therefore to not influence the results of the work. This 

                                                      
5
 Interpolated using 3

rd
 degree polynomial of data series in Appendix C, page 332 of BASU, P. 2010. Biomass 

gasification and pyrolysis: practical design and theory, Academic press. 
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assumption is supported by the mass balance calculations presented in Appendix J, as no systematic 

difference between bed materials could be noted. 

 

The reference experiment showed that no particle entrainment occurred on a large scale, where a 

maximum of 0.5 % of the bed material was entrained in the case of olivine. The sieve analysis 

indicated this might be an overstatement of particle entrainment as it was estimated that no more than 

0.1 % of the bed material was of a size small enough to be entrained. If the particle entrainment was 

within the bounds as shown in the reference experiment, entrainment would have a small effect on the 

analysis results. Particle entrainment is therefore not considered a significant source of uncertainty for 

the conclusions. 
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Appendix G. Example logger data from a set i experiment  
  

  

0

100

200

300

400

500

600

700

800

900

1000

0

5

10

15

20

25

1
3

:3
7

:0
0

1
3

:4
1

:3
5

1
3

:4
6

:1
0

1
3

:5
0

:4
5

1
3

:5
5

:2
0

1
3

:5
9

:5
5

1
4

:0
4

:3
0

1
4

:0
9

:0
5

1
4

:1
3

:4
0

1
4

:1
8

:1
5

1
4

:2
2

:5
0

1
4

:2
7

:2
5

1
4

:3
2

:0
0

1
4

:3
6

:3
5

1
4

:4
1

:1
0

1
4

:4
5

:4
5

1
4

:5
0

:2
0

1
4

:5
4

:5
5

1
4

:5
9

:3
0

1
5

:0
4

:0
5

1
5

:0
8

:4
0

1
5

:1
3

:1
5

1
5

:1
7

:5
0

1
5

:2
2

:2
5

1
5

:2
7

:0
0

1
5

:3
1

:3
5

1
5

:3
6

:1
0

1
5

:4
0

:4
5

1
5

:4
5

:2
0

1
5

:4
9

:5
5

1
5

:5
4

:3
0

1
5

:5
9

:0
5

1
6

:0
3

:4
0

1
6

:0
8

:1
5

1
6

:1
2

:5
0

1
6

:1
7

:2
5

0
0

:0
0

:0
0

D
if

fe
re

n
ti

al
 p

re
ss

u
re

 [
P

a]
  

T
em

p
er

at
u

re
 [

°C
] 

G
as

 c
o

ce
n

tr
at

io
n

 [
%

] 

Fr+Ol,3 

Luft l/min Kväve l/min CH4 % CO % O2 %

CO-LR % CO2 % Tbädd °C Tbotten °C Pdiff Pa



51 

 

Appendix H. XRF analysis: set i experiments 
 

 
Appendix Figure H-1. XRF analysis result of the set i experiments expressed in terms of surface concentration change, 

including all elements. 
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Appendix I. Calibration details 
Before conducting the first experiment the water pump and mass flow regulator used were calibrated. 

Calibration curves from these was used in order to correct the subsequent instrument settings 

throughout the experiment period.  

 

Prior to every experiment, the gas measuring instruments were calibrated for zero and span values 

using calibration gases of known concentration or feeding appropriate flows of pure gases using the 

mass flow regulator. The measurement of CO was carried out on an instrument that was not span 

calibrated due to unavailability of a calibration gas of a sufficiently high concentration. The instrument 

did show correct readings for gases of 2.5 and 8 % CO, respectively. However, all CO readings above 

this concentration might be subject to error. As stated in Section 4.4, the methane instrument exceeded 

the 10 % range for all gas measurements of gas yield in, at least, the first cycle of all set i experiments. 

The values presented which give a value over 10 % are therefore to be regarded as estimations. These 

values, however, fit the general trends of the gas yield of methane in the calibrated ranges. In this 

context it should be noted that the absolute concentrations of the gases are not a core interest of this 

work, as the objective is to distinguish trends in gas concentrations. Even when regarding the potential 

systematic error in CH4 and CO measurement due to calibration errors, this purpose is fulfilled. 
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Appendix J. Mass balance 
If bed material particles are entrained out of the bed at a different rate for different bed materials, this 

would affect the mass balance and therefore the XRF measurements of element concentration giving 

rise to systematic errors. In the ideal case, no bed material particles would be entrained out of the bed 

during the course of the experiments and the mass of the samples taken should equal the mass of the 

virgin bed material plus the ash content of the added fuel. In order to evaluate this, all samples taken 

were weighed. From the total sample mass, the calculated addition of ash elements from the fuel was 

subtracted. The results are presented in Appendix Figure J-1. 

 

 
Appendix Figure J-1. Mass balance of all samples taken. Includes hot samples, residual samples and documented spillage 

 

In Appendix Figure J-1, the unaccounted mass difference is defined as: 

 

𝑈𝑛𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠 − 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎𝑠ℎ 𝑎𝑑𝑑𝑒𝑑 
 

The ash mass added is calculated based on the ash content of the fuel used. The fuel ash content was 

taken from the lab analysis data presented in Appendix C. 

 

The sum of the black bars and the non-black bars corresponds to the total mass balance comparing the 

outputs (sample mass) to the inputs (virgin bed material and ash elements originating from fuel). The 

black bars represent the calculated addition of ash elements from fuel and is always positive. The non-

black bars represent the mass balance unaccounted for: the change in mass that cannot be explained by 

ash addition. Positive non-black bars correspond to a mass gain over the course of the experiment, 

most likely originating from residual char that has not fully combusted. Negative non-black bars 

correspond to mass loss over the course of the experiment. Probable causes of mass loss are spillage in 

sampling and/or entrainment of fine particles. Note that the calculation assumes all ash elements are 

retained on the bed material, which is not the case. 
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In the majority of the experiments a positive mass balance was noted, most likely due to not fully 

combusted char remaining in the bed material. This gives rise to different mass concentration of all 

elements measured in the sample: uncombusted carbon dilutes the sample and affects the XRF 

analysis results, since these are expressed as mass concentration of elements. It is therefore desired to 

have a similar (and positive) mass balance for all experiments. However, the difference in mass 

balance comparing any two experiments, where samples were analyzed using XRF, is not above 20 

grams. This should be weighed against the total mass of virgin bed material added: 300 g. Therefore, 

the difference in char content of the samples should not give rise to any larger uncertainties in 

comparing the XRF analysis results.  
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