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ABSTRACT 
 

Tree cavities are major components of the forest ecosystem worldwide as they are required 

substrate for a large number of species (including nesting and roosting birds, mammals, 

fungi, and insects). The present study aimed to provide new knowledge on cavity density 

and cavity tree characteristics in the Swedish boreal zone where only little information 

exists on this subject. Assessing the impact of forest management on cavity availability was 

another main goal of this study. My study was conducted in old forests around Umeå in the 

Swedish middle boreal zone, in 25 managed and 25 unmanaged stands. The mean cavity 

density in managed forest (1.2 ha
-1

) was significantly lower than in unmanaged forests (2.5 

ha
-1

). Natural-decay cavities stood for only 5.5% of the cavities, while the remaining 94.5% 

were excavated. This result emphasizes the importance of primary cavity excavators, 

mainly woodpeckers (Picidae), for cavity supply in the Swedish boreal forest. Compared to 

their density in the forest, deciduous and dead trees were overrepresented as cavity trees. 

The different cavity densities observed between the two management categories could then 

at least partly be due to the fact that unmanaged forest presented a higher amount of dead 

trees and birch (Betula spp.). As recorded in previous studies, aspens (Populus tremula) 

were overrepresented as cavity trees. Although additional studies on nest occupancy and 

breeding success are necessary to further assess the impact of forestry on cavity-users, my 

study already highlights a negative effect of forest management on cavity availability. I 

recommend that management strategies should focus on increasing the amount of suitable 

excavation substrates, meaning standing dead trees and deciduous trees. Particular attention 

should be paid to the conservation and regeneration of aspen. 
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INTRODUCTION 
 

The boreal forest constitutes the largest continuous forest in the world and represents 

around one third of the world forested area. In Sweden, forests have been exploited by 

humans for centuries for different uses (e.g. tar production, charcoal; Larsson and Danell 

2001). Large-scale forestry started around 150 years ago (Esseen et al. 1997), but greatest 

changes in forest composition happened with the arrival of modern forestry in the 1950’s 

(Kruys et al. 2013, Lundmark et al. 2013). From then, forest policy changed from selective 

cutting to clearcuting, consisting in harvesting all or most of the trees in a defined area 

followed by planting or natural regeneration. Even-aged stands and monocultural 

plantations are two examples of modern forestry outcomes in Sweden (Berg et al. 1994). 

This intensive management resulted in habitat loss, fragmentation, and modification of 

natural disturbance regimes (Essen et al. 1997). The area of natural and old forests has 

considerably decreased (Mikusiński and Edenius 2006) to make way for young 

successional stages (Edenius and Elmberg 1996). Forest management has resulted in 

reduction of deciduous trees (Bjorse and Bradshaw 1998) and removal of dead and dying 

trees (Newton 1994, Straus et al. 2011). These major changes to forest ecosystems have 

resulted in habitat loss, associated with population declines in a large number of forest-

dwelling species (Kouki et al. 2001). Among them, birds show a high sensitivity to habitat 

loss (Angelstam et Mikusinski 1994, Edenius and Elmberg 1996). 

  

Cavity nesting birds depend on trees for roosting, breeding and for foraging substrate which 

make them sensitive to changes in forest structure, forest age and tree species composition 

(Imbeau et al. 2001). Obligate cavity nesters represent 5% of the avifauna in Europe and 

4% in North America (Newton 1994) and up to 30 to 45 % of the avifauna when only 

considering forested systems (Blanc and Martin 2012). 

 

Cavity users are divided in two main categories: primary cavity excavators, mainly 

woodpeckers (Picidae), which usually excavate one cavity per year, and secondary cavity 

nesters (e.g. some owls (Strigidae), ducks (Anatidae), tits (Paridae) and bats (Chiroptera)) 

which are dependent on cavities for roosting or nesting but cannot excavate themselves. 

Consequently, secondary cavity nesters are limited by the density of already available 

cavities which can be cavities excavated by primary excavators or cavities naturally formed 

by gradual wood decay process (Martin et al. 2004, Robles at al. 2011). Other species, as 

tits and nuthatches (Sitta spp.), belong to a group called weak cavity excavators. These 

species are able to excavate cavities in soft and decaying trees but they can also use natural-

decay and already excavated cavities (Aitken et al. 2002). In North American forests, 

natural-decay cavities represent only a very small proportion of the usable cavities (Aitken 

and Martin 2007, Edworthy et al. 2012). Primary excavators are then often key species on 

which many other species rely on and they are very important for the entire cavity nester 

community (Drapeau et al. 2009). In most Swedish boreal forests, the great spotted 

woodpecker (Dendrocopos major) and black woodpecker (Dryocopus martius) are the most 

important primary excavators. Both are generalist species, little affected by habitat 

alterations (Mikusiński et al. 2001). The great spotted woodpecker is the most abundant 

primary cavity excavator in the large part of the Fennoscandian boreal zone (Virkkala 

2006), while black woodpecker is of major importance in Swedish boreal forest as it is the 

only excavator creating cavities big enough for large-bodied secondary users (Johnsson 

1992). 
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Boreal woodpeckers are known to rely principally on dead or decaying trees for cavity 

excavation (Drapeau et al. 2009). Deciduous trees, especially aspen (Populus spp.), are 

preferred by many woodpeckers (Li and Martin 1991, Carlson et al. 1998, Drever and 

Martin 2010). In Sweden, intensive forest management decreases the amount of deciduous 

and dead trees and thereby reduces the supply of potential excavation substrates. Studies on 

cavity availability have already been conducted in North American forests (Peterson and 

Gauthier 1985, Rendell and Robertson 1989, Ouellet-Lapointe et al. 2012) and in European 

hemiboreal forests (Lõhmus et al. 2005, Sandström 1992, Carlson et al.1998). However, to 

my knowledge, no such study exists in the truly boreal zone of Europe, except a study by 

Pullinainen and Saari (2002) performed in subarctic environments at the very northern edge 

of the boreal zone. Therefore, there is an obvious lack of knowledge on cavity availability 

and characteristics in large parts of the European boreal zone.   

The general aim of this study was to provide knowledge about cavity densities and 

characteristics in Swedish boreal forest. More specifically, it aimed to compare cavity 

availability between managed and unmanaged old forests. To evaluate the potential impact 

of forestry on cavity availability, I will focus the comparison on: 1) forest characteristics; 2) 

cavity tree availability and characteristics; 3) cavity characteristics and true cavity densities 

between the two management categories. 
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MATERIALS AND METHODS 

 

Study area 

The study was conducted in 50 old forest stands (>100 years) within a radius of 30 km 

around Umeå (coordinates 63°49′30″N and 20°15′50″E), in Västerbotten county, Sweden 

(Figure 1). This area belongs to the middle boreal zone. The Swedish boreal forest is 

dominated by Scots pine, Pinus sylvestris and Norway spruce, Picea abies with occurrence 

of silver birch, Betula pendula and downy birch, Betula pubescens and less frequently 

trembling aspen, Populus tremula and willows, Salix sp. 

 

Figure 1. Map of Sweden with an enlarged image of Västerbotten County. The red circle indicates the 

study area. 

Study stand selection 

I randomly selected 25 unmanaged stands and 25 managed stands in a 30 km radius around 

Umeå. The radius of 30 km was chosen to contain enough managed and unmanaged stands 

fulfilling the selection criteria, and to be sufficiently small to minimize the time spent 

travelling from Umeå. Different dataset were used for the selection of unmanaged forests. 

Woodland key habitats data was obtain from the Swedish Forest Agency (Swedish Forest 

Agency 2012) data on nature reserves and biotope protection areas came from the Swedish 

Environmental Protection Agency (Swedish Environmental Protection Agency 2014). 

These data do not include information on forest age. The kNN database (Reese et al. 2002) 

displays information on age of Swedish forests and was used in GIS to keep only forests 

older than 100 years. Since the kNN reference year was 2000 and my study was conducted 

in 2014, the selected forests had to be at least 86 years in the year 2000. Old managed 

forests were displayed as the kNN old forests layer minus the unmanaged selection. Some 

unmanaged stands have been subjected to selective cuttings in the past but are now set-

aside from forest management. 

 

The Swedish Forest Agency clearcut database was used to remove stands which were cut 

between 2000 (i.e. the reference year of the kNN data) and 2014 (the year of the present 

study). To minimize spatial dependency among study sites, all stands in the survey had to 

be at least 1 km away from each other. In the process of analyzing the remote sensing data, 
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some stands were divided in several parts. In these cases, the biggest fragment was kept in 

further analysis. All stands smaller than one hectare were removed. 

 

After searching for stands that met my criteria I remained with 79 and 53 managed and 

unmanaged stands, respectively. From these 132 stands, I randomly selected 25 stands for 

each of the two management categories (Figure 2). The mean area of the 25 unmanaged 

stands was 6.7 ha, varying between 1.0 ha to 63.3 ha. The 25 managed stands had a mean 

area of 4.8 ha, ranging from 1.0 to 17.6 ha. Approximately 90% of the surveyed area of 

managed stands was owned by private forest owners and 10% by industrial forestry 

companies. 

 

 

Figure 2. Map showing the study area and the selected stand locations. The 25 managed stands are 

represented by the green dots and the 25 unmanaged stands by the red ones. Source for background: 

Esri. 

 

Sampling design for cavity survey 

The cavity tree survey was carried out within circular sampling plots with an area of 0.2 ha 

(plot radius 25.2 m). The plots were distributed systematically within stands according to a 

grid pattern. A between-plot center distance of 50 m seemed too time consuming and a 100 

m yielded too few plots, especially in the smallest stands. A between plot distance of 75 m 

was defined as a good compromise (Figure 3). In the biggest stands where the number of 

plots was too high, a maximum of 20 plots was randomly selected. 

 

Some plots were expected to be on stand edges (Figure 3). The field surveyed allowed 

determining if the whole plot was inside an old forest or not. If the mean DBH (Diameter at 

Breast Height) of trees outside the edge was more than one-half of the mean DBH of the 

trees located on the inside, the whole plot area was surveyed. Otherwise, the part located 

outside was excluded from the plot. The proportion of the plot excluded was noted at the 

nearest 10 percent. This was done to determine more precisely the total area of forest 

surveyed. 
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Figure 3. Example of the plot distribution within a managed stand. Black lines indicate the stand limits 

and the red circles the 0.2 ha plots. 

 

I initially expected to survey a total of 418 plots; 218 in managed forests and 200 in 

unmanaged forests. However, 61 plots turned out to be outside of the study stands. A total 

of 175 plots were investigated in the managed forests and 182 plots in the unmanaged 

forests. The total surveyed area was 67.3 ha, 32.6 in managed forests and 34.7 ha in 

unmanaged forests. 
 

Cavity survey 

Using binoculars, I searched for cavities in all standing dead and living trees within the 0.2 

ha plots. Each 0.2 ha plot was divided in two halves using a tape, or whenever possible, 

physical structures (rocks, dead trees, streams) as targets. Each half was investigated 

separately. The tree survey was conducted in a standardized fashion as follows: I started by 

standing in the middle of the plot and looking at every single tree towards the outer edge of 

the plot. Then I walked 10 to 15 m from the center to look at the same trees from the other 

side. After that, from the same distance, I looked again towards the outer edges of the plot. 

Finally, trees were scanned from the outer edge of the plot towards the center (Figure 4). 

The second plot half was surveyed in the same manner by the other fieldworker. 
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Figure 4. Path followed by one observer during the stage of cavity survey. The blue circle represents the 

0.2 ha plot limits; the red line, the path of the observer and the red arrows, the direction towards which 

the observer looks at. Another observer follows the same path pattern in the second half. 

 

For all the trees with presumed cavities, a GPS coordinate was taken by holding the GPS as 

close as possible to the tree trunk. For each suspected cavity tree an identity number was 

given. The tree species and the number of cavities were also recorded. The following 

information concerning cavities was noted: reachable from the ground, reachable with the 3 

m ladder, reachable with the 6 m ladder, reachable with a telescopic pole or unreachable 

(Table 1). The presence of nest boxes and the approximate diameter of their entry hole were 

also recorded. The cavity survey conducted from the 20
th

 of March to the 25
th

 of April 2014 

before the leafing out of the vegetation. The presence of leaves would have complicated the 

survey of cavities in deciduous trees as leaves would have reduced the visibility of the 

stem. 

 
Table 1. Classification of the required equipment according to the height of the potential cavity during 

the observation of cavity trees. 

 

Equipment required Cavity Height (in m) 

Reachable 0 – 1.8 

3 m ladder 1.8 – 3.5 

6 m ladder 3.2 – 6.5 

Telescopic pole 6.5 – 11.5 

Unreachable > 11.5 

 

Cavity checking and measurement   
This second pass was performed from the 29

th
 of April to the 23th of May. 

 

A ground survey does not allow differentiating a true cavity (see the definition below) from 

a cavity not usable by animals (e.g. an incomplete excavation). This might lead to an 

overestimation of the number of true cavities (Ouellet-Lapointe et al. 2012). To estimate the 

true cavity density, all potential cavities found in the ground survey were checked. Each 
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potential cavity was checked and classified as “false”, “usable”, “presumed usable”, or 

“unreachable”. To be considered as usable, a cavity had to be reachable directly from the 

ground or with a ladder and had to fulfill the following dimensions: 1) horizontal cavity 

depth and horizontal cavity width ≥ 6.0 cm; 2) entrance hole diameter ≥ 23 mm if circular 

or width ≥ 18 mm if slit-like; 3) bottom-top dimension ≥ 10.0 cm; 4) closed bottom; 5) no 

substantial amount of water in the cavity;  6) cavity bottom above ground level (e.g. not 

between roots); 7) cavity at least partly roofed, i.e. not an open “chimney”. The criteria 1 to 

5 come from Van Balen et al. (1982). The latter also stipulates that “the entrance should not 

be so large so the nest is exposed”. In the present survey, cavities with large entrance holes 

were not excluded as they may be useful for some species. When cavities were not 

reachable with the ladder, a camera on the top of a 10 m telescopic pole was used to check 

the inner cavity (Figure 5, picture a.). This method allowed verifying if a cavity could be 

defined as a presumed usable one. A presumable cavity should fulfill the following 

conditions: 1) diameter ≥ 23 mm (if circular) or a width ≥ 18 mm (if slit-like), estimated by 

comparing the size of the entrance hole with the camera diameter; 2) cavity at least partly 

roofed, i.e. not an open “chimney”; 3) the telescopic pole camera should penetrate at least 7 

cm into the hole and be moveable sideways to ensure that the hole was not a cavity trial 

without an internal chamber, and the camera image should confirm that the cavity is usable 

(e.g. figure 5, picture b.). As with the cavity trees, an identity number was given to cavities 

belonging to the three last categories. If a tree had more than one cavity, the cavity number 

was given in order from the ground and up. 

 

 

 

 

Figure 5. a) Cavity checking with the camera on the top of the telescopic pole. b) Inside view of the 

cavity using the camera. 

 

All the suspected cavities which did not fulfill the criteria of the “usable” or “presumed 

usable” categories were categorized as “false cavities”. When cavities were not reachable 

even using the 10 m telescopic pole, they were called “unchecked”. 

 

The following data were collected for cavities. The measurements identified by an asterisk 

(*) were only possible for cavities which were reachable directly from the ground or with 

the ladder, i.e. usable cavities according to the definition above.   

 Vertical diameter of entrance hole. 

 Horizontal diameter of entrance hole. 

 Shape of entrance hole: round, oval, pear-shaped, slit/crack, rectangular, irregular. 

 Aspect of entrance hole: direction of entrance hole. 

 Excavating species (only if the bird was seen excavating). 

a. b. 

© Cloé Lucas 
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 Height of the cavity entrance above ground. 

 Bird-excavated cavity (Figure 6, pictures a. and b.) or natural decay cavity (Figure 

6, picture d.). 

 Fresh or old: for bird-excavated cavities, the cavity was recorded as fresh if it was 

excavated the present year; otherwise it was written as old. 

 *Vertical cavity depth: from the lower lip of the hole to the bottom of the cavity.  

 *Vertical cavity height: from the cavity roof to the lower lip of the entrance hole. 

 *Horizontal cavity depth: length from the back of the cavity to the inside edge of 

the hole. 

 *Lateral cavity width: widest dimension of the inside of the cavity measured at right 

angle from horizontal cavity depth. 

 *DCH (diameter at cavity height): at the bottom of the cavity opening. 

 It was noted if the cavity was a black woodpecker foraging excavation for carpenter 

ants or not (Figure 6, picture c.). 

 

 

        
   

 

 

 

Figure 6. Four different cavities (a) excavated cavity. (b) Excavated cavity used by Eurasian nuthatch 

(Sitta europae) which reduced the original entrance hole with dried mud. (c) Black woodpecker feeding 

hole. (d) Natural-decay cavity. 

 

c. d. 

 

a. b. a. 
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When a single cavity had more than one entrance hole, it was considered as one cavity and 

the measurements were based on the largest entrance hole. 

Several measurements were taken for each verified cavity tree. I recorded if the tree was 

dead or alive; if alive, its health (Appendix 1); if dead, its decay class (Hunter 1999); its 

status (full-height tree, naturally broken top or cut high stump); species, its total number of 

cavities. I also measured tree DBH; full tree height; height to the living crown (vertical 

distance from the level of the base of the tree to the lowest live branch); mean slope within 

20 m from the tree; mean slope aspect within 20 m from the tree. 

 

Forest characteristics 

To allow linking cavity densities with forest stand characteristics, I measured trees and 

stumps within a circular subplot of 0.01 ha (radius 5.64 m) centered on each 0.2 ha plot. 

For each standing tree with DBH ≥ 5 cm (with midpoint of the stem section within 5.64 m 

from the plot center), I recorded its DBH, its species and its status (living, dead, or high-

stump). Within the subplot, I also counted the number of low stumps with a diameter ≥ 10 

cm. I also made a rough estimation of stump age by using a knife. Stumps were noted as 

“recent” if the blade penetrated less than 2 cm in the stump section. If the blade went 

deeper stumps were categorizes as “old” (see Renvall 1995 for a detailed description).  

 

Data analyses 

To test for potential differences in tree species distribution and tree status (dead or alive) 

between the two management categories, I used Fisher exact test. The comparison between 

cavity trees DBH and mean subplot tree DBH was performed using a paired Wilcoxon test 

as the samples were non-normally distributed and dependent.  

To compare cavity density between the managed and unmanaged forest stands, I used a 

generalized linear mixed model (GLMM) with a Poisson distribution. A zero inflated 

model was used because many plots had no cavity at all. I used the number of cavity in 

each plot as the response variable. Forest type (managed or unmanaged) and plot area were 

included as fixed factors. Stand identity was added as a random factor to account for the 

aggregation of the plots at stand level. 

The area of the entrance holes was estimated using the formula of an ellipse area: π ×   ⁄  vd 

×   ⁄  hd; where vd is the vertical diameter of the entrance hole and hd the vertical diameter 

of the entrance hole (figure 7). The inner cavity volume was approximated with the formula 

of an ellipsoid volume:   ⁄  π ×   ⁄  (vcd + vch) ×   ⁄  hcd×   ⁄  lcw; where vdc is the vertical 

cavity depth, vch is the vertical cavity height, hcd the horizontal cavity depth and lcw is the 

lateral cavity width. 
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Figure 7. Measurements taken for each reachable cavity. vd: vertical diameter of entrance hole; hd: 

horizontal diameter of entrance hole; vcd: Vertical cavity depth; vch: Vertical cavity height; hcd: 

Horizontal cavity depth; lcw: Lateral cavity width. Domingo Gómez 2014. 
 

Mann-Whitney U tests were used for continuous data, i.e. cavity tree DBH, height and 

height to living crown, entrance hole area, cavity volume, cavity height and DCH. The aim 

of these tests was to compare the potential differences between the managed and 

unmanaged forest stands. A Rayleigh test of uniformity was used to assess if the orientation 

of the entrance holes were randomly distributed or not.  

All the analyses were performed in R version 3.0.3 (R Development Core Team 2014). The 

“glmmADMB” package (Fournier et al. 2012; Skaug et al. 2014) was used to fit the 

GLMM. The Rayleigh test was performed using the “circular” package (Agostinelli and 

Lund 2013). 

 

 

RESULTS 

 

Forest characteristics 

Mean densities of 969 trees.ha
-1

 and 1 030 trees.ha
-1

 were found in the managed and 

unmanaged forests respectively. The tree species distribution in subplots differed 

significantly (Fisher, p < 0.0001) between the managed and unmanaged forests. The 

principal differences lied in a higher density of birch and spruce in unmanaged forests than 

in the managed forests (Figure 8). The opposite trend was found for pine; higher density of 

pine in the managed forests. There was also a significantly (Fisher, p < 0.0001) higher 

density of dead standing trees in the unmanaged forests. 
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Figure 8. Mean tree density of each species in the 25 managed stands and the 25 unmanaged stands. 

Errors bars indicate the SD from the mean. The numbers above the bars indicates the number of trees 

recorded. 

 

Cavity trees 

Of the 118 presumed cavity trees found during the first pass, 85 turned out to be true cavity 

trees after the second part of the survey where the cavities were checked and measured. I 

also recorded 3 other cavity trees which remained unchecked due to unreachable cavities. 

Considering that unchecked cavity trees represent only 3% of all cavity trees, I then decided 

to consider all 88 cavity trees in the results. I found 32 cavity trees in managed forests and 

56 in unmanaged forests. 

 

There was a mean density of 1.0 cavity trees per hectare (SD = 2.0) in the managed forests 

while in the unmanaged forests the mean density was 1.6 cavity trees per hectare (SD = 

2.8). The mean DBH of the cavity trees was 26.3 cm in the managed area and 27.4 cm in 

the unmanaged one (Table 2). Overall, the cavity tree DHB ranged between 10 and 47 cm. 

The mean cavity tree height was 11.7 m in the managed forests. The mean cavity tree 

height in unmanaged forests was 9.1 m, which was significantly smaller (Mann-Whitney, p 

= 0.013) than in managed forest. The height to the living crown was only measurable for 

the living cavity trees. A number of 16 living cavity trees were found in managed forest 

with a mean height to the living crown of 8.2 m. In unmanaged forest, 15 living cavity trees 

presented a mean height to the living crown of 9.3 m. In managed forests, 50% of the cavity 

trees were alive, where in unmanaged forests; living trees represented 27% of the cavity 

trees. Dead naturally broken trees represent 64% of the cavity trees in the unmanaged 

stands and 41% of the cavity trees in managed stands.  
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Table 2. Mean dimensions of the cavity trees. Standard deviation is indicated in parenthesis. Height: 

total height of the tree (m); height live crown: height to the living crown (m). 

  Managed  Unmanaged 

p 
(1)

 
 

 
Mean (SD) Median Range n  

Mean 

(SD) 
Median Range n 

DBH (cm) 26.3 (7.6) 24.5 
11.0-

42.0 
32  27.4 (8.2) 27 

10.0-

47.0 
56 0.498 

Cavity tree 

height (m) 
11.7 (5.0) 11 1.7-19.8 32  9.1 (6.9) 6.5 

1.2-

25.6 
56 0.013 

 

Cavity tree 

height - 

living (m) 

14.3 (4.1) 14.8 7.0-19.8 16  17.1 (6.7) 19.6 
6.0-

25.6 
15 0.105 

 

Cavity tree 

height - 

dead (m) 

9.1 (4.5) 10.3 1.7-16.2 16  6.1 (4.1) 5 
1.2-

18.0 
41 0.022 

Height live 

crown (m) 
8.2 (2.5) 8.4 3.1-11.8 16  9.3 (3.7) 9.8 

2.0-

14.5 
15 0.384 

(1)
 Mann-Whitney U test 

 

In both management categories, a significant (Fisher, p < 0.0001) difference was found 

between the species distribution of cavity trees and the species distribution of all available 

trees in the 0.01 ha subplots. In the managed area, aspen was the most common cavity tree 

(47% of all cavity trees in the managed forests) while at the same time it only constituted 

1% of the trees in this forest type. Spruce and birch were the second and third most 

important species in the managed forests, with a proportion of 31% and 16%, respectively 

(Figure 9). Like in the managed forests, aspens were also overrepresented in the unmanaged 

forests (18% of the cavity trees but only 0.1% of all trees in the subplots), although spruce 

was the most common cavity tree species in unmanaged forest (43% of all cavity trees). 

The tree species distribution in the managed forests was found to be nearly significantly 

different (Fisher, p = 0.080) from the one in the unmanaged forests (Figure 9). 
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Figure 9 The percentage distribution of the cavity tree species in the managed forests (left) and the 

unmanaged forests (right). In parenthesis, the number of cavity trees found for each species. 

Cavity trees in both forest types displayed a significantly higher proportion of dead trees 

than all available trees (Fisher, p < 0.0001). Dead cavity trees were also found to be more 

common in the unmanaged forests than in the managed forests (Fisher, p = 0.038). To be 

considered as usable, a cavity had to have a horizontal depth and a lateral width of at least 6 

cm. Taking also into account the wall thickness, trees with a DBH below 10 were 

considered unlikely to hold cavities fulfilling these minimum size requirements. To 

compare the DBH of the cavity trees to the DBH of all the ‘available’ trees found in the 

subplot, I removed all the subplot trees with a DBH under 10 cm. This allowed keeping 

only trees which could potentially hold cavities. The mean DBH of the remaining available 

trees (meaning the trees in the subplots) were 17.4 cm and 16.3 cm in the managed and 

unmanaged areas respectively. These mean DBH were significantly smaller than the mean 

cavity tree DBH for both forest types (Paired Wilcoxon, p < 0.0001). 

Cavities 

In the first pass, 225 potential cavities were found. After checking, 117 (52%) were 

determinate as true and 11 (4.9%) remained unchecked. As for cavity trees, all the 128 

cavities will be included in the analyses. A total of 40 cavities were recorded in managed 

forests while 88 were found in unmanaged forests. Cavities excavated by primary cavity 

nesters for breeding or roosting represented 79.7% of the cavities in both areas. Natural-

decay cavities and black woodpecker feeding holes were represented respectively at 5.5% 

and 14.8%. In managed areas, the density of cavities was 1.2 cavities.ha
-1

 and ranged from 

0 to 10 cavities.ha
-1

. The density was twice as high in the unmanaged area, with a mean of 

2.5 cavities.ha
-1

 (Generalized linear-mixed model, p = 0.020) and range from 0 to 8.6 

cavities.ha
-1

 (Table 3). I also calculated the densities of the cavities with large entrance 

holes. The mean diameters of black woodpecker entrance holes were chosen as the 

minimum dimensions for large entrance cavities. Therefore, the horizontal diameter had to 

be at least 7.6 cm and the vertical diameter 10.4 cm (Johnsson 1992). The mean densities of 

cavities with large entrance holes were 0.1 cavities.ha
-1

 in managed forest and 0.3 

cavities.ha
-1

 in unmanaged forest (Table 3). 

 

47 (15) 

16 (5) 

31 (10) 

6 (2) 

18 (10) 

27 (15) 
43 (24) 

9 (5) 

2 (1) 
2 (1) 

Aspen

Birch

Spruce

Pine

Alder

Willow
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Table 3. Mean cavity densities in the managed and unmanaged forests (SD in parenthesis).  

 
Managed   Unmanaged  

p 
(1)

 

 
Mean (SD) Range n  Mean (SD) Range n 

Mean density 

(cavities.ha
-1

) 
1.2 (2.5) 0-10.0 40 

 
2.5 (2.8) 0-8.6 88 0.020 

Mean density of large 

entrance cavities 

(cavities.ha
-1

) 

0.1 (0.3) 0-1.7 3 

 

0.3 (0.9) 0-2.7 11 
Too little 

sample size 

(1)
 Generalized linear-mixed model Poisson distribution zero inflated   

 

The above ground height of the cavities was measured for all 128 cavities found in the 

survey, including the unreachable ones. The mean height of the cavity in the managed 

forests did not differ from the mean height in the unmanaged forests (Mann-Whitney, p = 

0.51). The DCH, the area of the entrance hole and the volume of the cavity were only 

available for cavities directly reachable (with or without ladder), that is 21 cavities in the 

managed forests and 38 in the unmanaged forests. No significant difference was found 

between the two forest types in respect of these parameters (Table 4). 

 
Table 4. Mean, SD and median of the cavity measurements. Height (height of the entrance hole above 

ground), DCH (diameter at Cavity Height), Entrance area (estimated area of the entrance hole) and 

Cavity volume (estimated volume within the cavity). 

 Managed Unmanaged  

p
 (1)

 
 

Mean 

(SD) 
Median Range n 

Mean 

(SD) 
Median Range n 

Height 

(m) 
4.4 (3.2) 4.3 

0.1-

10.8 
40 4.2 (3.7) 3.4 

0.1-

14.6 
88 0.514 

DCH 

(cm) 
27.7 (6.6) 29.0 14-35 22 

30.5 

(17.2) 
27.0 9-82 38 0.466 

Entrance 

area 

(cm
2
) 

64.7 

(57.4) 
36.9 

19.4-

263.9 
22 

76.2 

(77.8) 
38.6 

8.9-

354.6 
40 0.825 

Cavity 

volume 

(dm
3
) 

5.3 (11.5) 1.8 0.4-5.3 21 2.7 (3.5) 1.4 
0.3-

18.2 
38 0.585 

(1)
 Mann-Whitney U test 

 

The orientations of the cavities’ entrance holes did not differ from random (Rayleigh , p = 

0.177). The same trend was found after removing the 7 natural-decay cavities (non-

woodpecker excavated cavities) (Rayleigh , p = 0.210) and after removing both natural-

decay cavities and the 19 black woodpecker feeding cavities (Rayleigh , p = 0.535) (Figure 

10).  
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Figure 10. Orientation of the surveyed entrance holes (n = 102) after removing the natural-decay 

cavities and the black woodpecker feeding holes. The black lines show the number of cavities found 

within groups of 30 degrees intervals. 

 

DISCUSSION 
 

My results showed that in both management categories, aspen represented only 1% of all 

trees in the stands, while it represented 47% and 18% of the cavity trees in the managed and 

unmanaged stands, respectively. This result is consistent with numerous studies which 

identified aspen (Populus tremula in Europe and Populus tremuloides in North America) as 

the preferred cavity excavation substrate of cavity-nesting birds (Hagvar et al. 1990, Li and 

Martin 1991, Carlson et al. 1998, Drever and Martin 2010, Domingo Gómez 2014). Living 

aspens are susceptible to heartwood rot (Martin et al. 2004) which facilitate woodpecker 

excavation. With proportions of 50% and 73% in managed and unmanaged forests, 

respectively, dead trees (all species pooled) were also overrepresented as cavity trees. Dead 

trees are recognized to be favored by woodpeckers as decay makes them softer for cavity 

excavation than healthy living trees (Schepps et al. 1999). 

 

Natural decay cavities represented only 5.5% of all the cavities found in my study. Similar 

results were also found in North American forests (Aitken and Martin 2007, Cockle et al. 

2011, Ouellet-Lapointe et al. 2012) and in clearcut retention trees in the Swedish boreal 

zone (Domingo 2014). This finding is also consistent with Remm and Lõhmus (2011) 

suggestion that natural decay is not a significant agent of cavity formation in forest 

ecosystems where wood decay is slow, such as in boreal forests. In Swedish boreal forests, 

primary excavators are thus the main source of cavity formation. Therefore, woodpeckers 

are then a fundamental group on which secondary cavity nesters rely. In particular, the 

great spotted woodpecker and black woodpecker could be considered as keystone species in 

the Swedish boreal forest as they are the most abundant primary excavators (see e.g. 

Johnsson 1992). 

 

Checking the presumable cavities allowed determining that 52% of them were true cavities. 

A similar result was found by Domingo Gómez (2014), who found that around half of the 
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cavities identified upon a ground survey with binoculars turned out to be true after 

checking. As suggested by Ouellet-Lapointe et al. (2012), ground surveys will lead to a 

substantial overestimation of usable cavities. Thus, ground survey is fast and requires little 

equipment, but should be followed by cavity checking if the aim is to accurately assess the 

true density of usable cavities. 

  

I obtained a mean cavity density of 1.2 ha
-1

 in the managed forest stands. The mean density 

in the unmanaged forest stands was 2.5 cavities ha
-1

 which is more than twice as many. To 

my knowledge, only one other study on cavity availability has been conducted in the 

Swedish boreal zone. In this earlier study, Domingo Gómez (2014) found a density of 0.4 

cavities ha
-1

 in retention trees on clearcuts in the same region as the present study. All these 

results imply that cavity availability is heavily reduced in managed boreal forest compared 

to naturally-dynamic forest. In my study, the observed difference could be due to higher 

proportions of potential cavity trees in unmanaged stands. Indeed, dead trees, which 

represented high proportion of cavity trees, were more abundant in the unmanaged forest 

stands. The same pattern was found for birch and spruce. 

 

The cavity density found in my study was higher than those found by Pulliainen and Saari 

(2002) (1.1 cavities.ha
-1

in Finnish subarctic forest) and by Lõhmus et al. (2005) (1.0 

cavities.ha
-1

 in Estonian hemiboreal forest). However, the densities obtained in my study 

remain within the lower range of most cavity densities reported in the literature for boreal 

and hemiboreal forests (Sandtröm 1992, Carlson et al. 1998, Bai et al. 2003, Ouellet-

Lapointe et al. 2012). North American boreal forests are populated by a different 

composition of cavity tree species and excavators, but they also present broad ecological 

similarities with European boreal forests (Imbeau et al. 2001). Yet, the cavity density found 

in North American boreal forests by Ouellet-Lapointe et al. (2012) is five to ten times (11.2 

cavities.ha
-1

) higher than those found in my study. This may be explained by the fact that 

my study was conducted in a region with a much longer history of intensive forest 

management than in boreal North America (Imbeau et al. 2001). Indeed, in my study, most 

unmanaged stands have probably been subjected to some forms of selective loggings in the 

past. Even larger differences can be found between my results and the results found in 

Swedish hemiboreal forests; Sandström (1992) reported 15.2 cavities ha
-1

 and Carlson et al. 

(1998) 60.4 cavities ha
-1

. A reason for these differences could be that these studies were 

conducted in forests with a high abundance of deciduous trees and with higher productivity 

than in purely boreal forest. Moreover, woodpecker density and diversity is generally 

higher in hemiboreal than boreal forest (Ottosson et al. 2012). In contrast to the present 

study, natural-decay cavities stood for more than half of all the cavities found in the two 

studies. 

 

Cavity trees in managed forest stands were on average taller than in unmanaged forest 

stands. This is most probably due to the fact that all cavity trees were taken into account in 

this comparison. Indeed, if living and dead trees are treated separately, only dead cavity 

trees showed a height difference between the two management categories. Dead trees 

include naturally broken trees which are in general shorter than full-height trees. Naturally 

broken cavity trees are more abundant in the unmanaged than in the managed stands, 

respectively 64% and 41%. Cavity tree height difference might therefore be explained by 

the higher amount of naturally broken trees in unmanaged area. This result is not surprising 

as commercial forest management aims to minimize tree death in the forest. 
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Cavity-nesting species select cavities depending on their properties, e.g. height of the 

cavity, entrance hole diameter (Sandström 1991). Indeed, some cavity characteristics are 

particularly important as they directly affect the risk of predation (Nilsson 1984). No 

difference was found in the mean cavity characteristics between the two management 

categories in my study. However, even though no statistically significant differences were 

found in terms of mean cavity measurements, my results indicate that there might be a 

difference in the availability of large entrance cavities between managed and unmanaged 

forests. Cavities with large entrances are of particular interest importance since they 

provide breeding substrates for larger-bodied species of birds such as common goldeneye 

(Bucephala clangula) or Tengmalm owl (Aegolius funereus) (Johnsson 1992). Large 

entrance cavities were found in higher abundance in unmanaged forest stands, but the 

limited sample size did not allow performing statistical analyzes. 

 

My results suggest that forest management has a negative impact on cavity availability. 

Thus, it would be interesting to evaluate the impact of e.g. different thinning intensities on 

cavity density in managed stands. The density and the age class (recent or old) of low 

harvested stump could be a good indicator of this intensity. It may also allow finding if an 

unmanaged stand happened to be harvested in the past. In this study, the harvested stump 

data remained incomplete in several stands as the snow cover prevented recording stumps.  

 

In my study I examined cavity density in old managed and unmanaged Swedish boreal 

forest and cavity availability has previously been evaluated in retention trees in recent 

clearcuts (Domingo Gómez 2014), but no study have so far been conducted in intermediate 

successional stages. Future studies should focus on assessing cavity availability in young 

and middle-aged forests, i.e. forest stands that originated from clearcutting and which have 

been managed intensively for timber production. A study conducted by Stenbacka et al. 

(2010) in the Swedish boreal zone compared different successional stages and found that 

these intermediate stands were the ones with the lowest volume of dead wood. Low cavity 

tree density is then expected in these intermediate aged stands. Additional studies on nest 

occupancy and breeding success in Swedish boreal forests will be necessary to further 

assess the impact of forestry on cavity utilization. This could improve knowledge on cavity 

nesting birds in Swedish boreal forests and also on some mammals (e.g. bats, squirrels 

(Sciuridae), martens (Mustelidae)) and invertebrates (e.g. red-listed beetles specialized on 

hollow trees). 

 

To ensure a sufficient supply of cavities in forest, I suggest that conservation management 

should aim to protect suitable habitat for woodpecker species. As already suggested by 

other studies (Angelstam and Mikusinski 1994, Roberge et al. 2008), trees with large DBH 

and dead standing trees are of particular importance. Increasing the amount of deciduous 

trees and especially aspen should also be an objective of sustainable forest management and 

future set asides. Dead standing trees represent the majority of the cavity trees in my study, 

but retention of living trees is also fundamental as they represent a prerequisite for the 

recruitment and continuity of future cavities (Edworthy et al. 2012). 
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APPENDIX 1. Tree health and decay class 

 

Tree health (based on a protocol obtained from Kathy Martin (pers. comm. 2013)) 
1) BT broken top 

2) BF bracket fungus (= polypore) 

3) BU burned trunk 

4) RB rust broom (on SX or FD) 

5) BI boring insect (can generally see their entry/exit holes/tunnels) 

6) BN brown needles 

7) TG trunk gall 

8) MD mechanical damage (e.g. axe wound or scar from forestry operations) 

9) AR antler rubbing (scars the bark, sometimes girdles the tree – this code also covers 

‘cribbing’, or bark feeding) 

10) BD beaver damage 

11) BL bark blistering & seeping sap 

12) SL split leader (= forked tree shape -- only applies to conifers) 

13) UK unknown/undetermined 
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