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Abstract 

Like humans, other animals are also able to smell and differentiate a large number of odours 

with great accuracy. Chemosensory signals play a vital role in locating host plants by insects. 

Drosophila has a well-developed olfactory system which can differentiate between different 

odours and recognize food, oviposition sites and potential mates. Studies of olfactory 

behaviour in invertebrates may aid in understanding the link between odour recognition and 

behaviour. Some selected olfactory receptors from Spodoptera (Slit-ORs) were co-expressed 

in Drosophila with its olfactory receptor Or92-a in the Drosophila ab1B neuron type by 

means of existing DmelOR92a-Gal4 and UAS-SlitOR lines. Drosophila olfactory receptor 

92-a responses to acetoin. Acetoin is also detected by Drosophila olfactory receptor Or9-a 

which is located in ab8B neuron. Olfactory mediated behavioural responses of flies having 

modified olfactory systems were investigated to different odours, to determine which (if any) 

of the receptor modifications would change odour preference of flies. An olfactory attraction 

assay was employed for this purpose. In parallel, DNA sequences were cloned to prepare a   

transformation vector construct for stable expression of the Slit-ORs in DmelOR92-a neurons, 

containing the promoter sequence for Drosophila olfactory receptor Or92-a and selected 

olfactory receptor sequences from Spodoptera. The sequences were aimed to be cloned into a 

suitable Drosophila germ line transformation vector attB. There was no significant effect of 

co-expressing SlitOR in OR92-a neuron on the olfactory behaviour of D. melanogaster OR-a, 

OR-b, OR-c and OR6 receptors. Most strains were significantly attracted to acetoin, similar to 

wild type flies. In contrast, very few were attracted to the corresponding ligands for the Slit-

ORs, regardless whether the Spodoptera OR was expressed or not.  
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1 Introduction 

A majority of the known species of our planet are insect species and they are well adapted to 

different habitats which are the reason for their successful survival. Insects are beneficial for 

humans as they play an important role in pollination and they are harmful as well because 

they are disease carriers also which negatively affects the human life (Hill, 1997). Insects also 

need food for development and growth. They have to search the mates for reproduction as 

well, during these activities; they have the chances to meet predators (Bell, 1990).  

Like humans, other animals are also able to smell and differentiate a large number of odours 

with great accuracy (Voshall et al., 2007). Different studies showed that insects are able to 

recognize their host plants by the mixtures of specific volatiles with specific ratios (Bruce et 

al., 2005; Riffell et al., 2009). Chemosensory signals play a vital role for locating the host 

plant by insects, including the fruit fly, Drosophila melanogaster, as well (Hildebrand and 

Shepherd, 1997). Drosophila has a well-developed olfactory system which can differentiate 

between different odours and recognize food, oviposition sites and potential mates. Olfactory 

sensory neurons (ORNs) of the fruit fly are primarily located on antenna and maxillary palp 

which are present on the head. Olfactory sensory neurons have odorant receptors expressed on 

the surface of their dendritic branches (Clyne et al., 1999). There are sensory hair on the 

antenna and maxillary palp that are called sensilla. The ORNs project their dendrites up into 

the sensilla. In Drosophila, there are 410 and 60 sensilla on antenna and maxillary palp 

respectively. Sensilla are divided into three classes called basiconic, trichoid and coeloconic. 

There are further two types of basiconic sensilla, large and small (Fig1). Large basiconic 

sensilla are located on the medial part of antenna while the three types of trichoid sensilla are 

located on medio-basal part of antenna. Coeloconic sensilla are present on the central part of 

antennae. Trichoid sensilla are called T1, T2, T3 and T4 (Couto et al., 2005) have one, two or  

three olfactory sensory neurons respectively. Basiconic sensilla have two to four neurons. 

Coleconic sensilla own two or three neurons (Couto et al., 2005). Flies also have the ability to 

taste by proboscis, legs wings and vaginal plate (Fig1).     
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Fig1:	  Drosophila	  Olfactory	  system	  (Diagram	  Source	  Voshall and Stocker 2007).	  

When an odour molecule comes in contact with the odorant receptors, an electrochemical 

response is mediated (Bargmann, 2006). The odour molecules come in contact with the ORs, 

which are on the antenna or maxillary palp. Then there is electrical transformation through 

action potential of ORNs, and the message is first sent to the projection neurons from the 

antennal lobe and then the signal is passed to the higher brain centers including the mushroom 

body and lateral horn (fig 2).  

Antenna                     ORN                                 PN     Mushroom Body           
Maxillary Palp                        Antenal lobe                  Lateral Horn         
 
                   First order neurons      Second order neurons       Third order neurons  
Fig 2: Schematic diagram of olfactory processing (Source: Tanka et al., 2004) 
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Studies of olfactory behaviour in invertebrates may aid in understanding the link between 

odour recognition and behaviour. Insects provide an attractive model system for studying the 

peripheral and central events in olfaction. Still, the relationship between odour input channels 

(olfactory sensory neuron types) and recognition of specific odours is only superficially 

known.  

In the present project I will specifically study the influence of specific types of sensory 

neurons on insect odour perception. Are any individual types of sensory neurons essential for 

the perception of a defined class of odour molecules? If this is the case, can we “fool” the 

olfactory system by changing the response spectrum of these sensory neurons towards another 

type of odour molecule?  

One chemical may often excite more than one type of receptor and vice versa (Dobritsa et al., 

2003: Hallem et al. 2004, 2006). Nevertheless, many receptors appear to be evolved to detect 

certain key ligands with high sensitivity and specificity. Our aim was to express Spodoptera 

olfactory receptors OR-a, OR-b, OR-c (Larsson et al., unpublished data) and OR6 (Montagne 

et al., 2012) in the Drosophila ab1B neuron, with its native receptor 92-a, which responds to 

acetoin odour (a fermentation product) (Stensmyr et al., 2003; Couto et al., 2005). Or92-a was 

chosen to avoid the involvement of other neurons as it is expressed singly and in a few 

neurons not in the whole brain. Acetoin is also detected by Drosophila olfactory receptor Or9-

a which is present in ab8B neuron (Hallem et al., 2004).  

Or 92a is not the only receptor in D. melanogaster that responds to acetoin (Hallem et al., 

2004), but it is likely to be an important input channel. The question is whether activating this 

single receptor alone would be sufficient for the flies to perceive the olfactory impression of 

acetoin? If this would be the case, we would expect an attraction response to any ligand 

known to activate S. littoralis ORs co-expressed with the Or92a receptors, if the flies perceive 

the two compounds as similar based on this shared input channel.  

Olfactory receptor Or-a of S. littoralis responds to linalool, a naturally occurring terpene 

alcohol found in many flowers and spice plants. Or-b responds to beta ocimene while OR-c 

responds to eugenol (Unpublished data Larsson et al.,). S. littoralis employs receptor OR6, 

which responds to pheromone component (Z9, E12-14:OAc), for long-range sex pheromone 

attraction (Montagne et al., 2012). 

 

 



4	  
	  

1.1 Aims and/or formulation of objectives: 

• Heterologous co-expression of receptors from the moth S. littoralis in defined 

olfactory neurons of Drosophila, together with their native receptors.  

• Investigation of the behavioural response of the flies that have a modified olfactory 

system in the detection of different odours.  

• Preparation of transgenic constructs with direct fusions of Drosophila promoters and 

Spodoptera receptor genes in order to obtain constitutive expression of selected 

Spodoptera receptors in Drosophila. For further investigations we aim to express 

optical imaging dyes in the brain, while heterologously expressing a SlitOR in the 

Or92a neuron. To avoid the interefecnce of the Gal4 system, we would choose to use a 

direct fusion construct for the SlitORs, thus freeing the brain for using the Gal4 

system there (Ng et al., 2002; Wang et al., 2003).   

1.2 Hypothesis  

The olfactory mediated behaviour of Drosophila that co-expresses Spodoptera olfactory 

receptors with its native receptor 92-a, to the tested corresponding Spodoptera ligands should 

be similar to flies native response to acetoin based on this shared input channel. 

Theoretical assumptions regarding shared input channels. A ligand may be detected by the 

combination of two or more olfactory receptors. The modification of one of these olfactory 

receptors may expand olfactory attraction towards a novel ligand based on this single input 

channel. Alternatively, this single input channel may not be sufficient, or there could be non-

specific activation of the novel ligand on other receptor neurons, which may change the 

olfactory perception of the other animals.   

  

Native Receptor                                                                              Olfactory Sensory neuron 

 

 

 

    

 

Fig: 3a: Combined olfactory response of the two neurons mediated for the ligand 

Novel	  Ligand	  Native	  Ligand	   Novel	  Receptor	  
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On the basis of my hypothesis that a single input channel would be sufficient for attraction, I 

expect the olfactory behaviour to the tested compound similar to that of acetoin which is 

shown in a hypothetical figure (4) in terms of attraction index (A.I).  

	  

Fig: 4 Expected attraction index of fly lines based on the hypothesis 

Olfactory mediated behaviour responses of each fly strain to each tested odour can be 

assessed independently by one-sample T-test determining whether the mean is significantly 

different from 0 (indicating significant attraction/repulsion). Within each strain, the mean 

responses to acetoin and to the corresponding signature odour for the SlitOR can also be 

compared by using a two-sample T-test.  
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OrX	  x	  
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23140	  

A.I	  

23139x	  Dalby	  W-‐	  Acetoin	  

23139x	  Dalby	  W-‐	  Compound	  

23140x	  Dalby	  W-‐	  Acetoin	  

23140x	  Dalby	  W-‐	  Compound	  

OrX	  x	  Dalbyw-‐	  Acetoin	  

OrX	  x	  Dalbyw-‐	  Compound	  

OrX	  x	  23139	  Acetoin	  

OrX	  x	  23139	  Compound	  
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2. Materials and Methods:  

2.1 Experimental Organism 

D. melanogaster was used as a model organism. Readily available mutants and genetic tools 

for research make Drosophila an advantageous model organism (Greenspan, 2004). Genetic 

manipulations can be carried out both in Drosophila cell culture (Bai et al., 2009) and in adult 

flies (Dzitoyeva et al., 2001). Short generation time (about 2 weeks) of Drosophila allows for 

rapid experiments within a short period of time.  

2.2 Genetic tool used for the modification of Drosophila olfactory System:  

UAS-Gal4 is a powerful gene expression technique that is used worldwide for the genetic 

modification of the D. melanogaster. For the induction of expression of S. littoralis ORs, 

males of Delta-Halo/Cyo; UAS-SlitOR(x) were mated with virgin females of Delta-Halo/Cyo; 

OR92a-Gal4. With the Gal4-UAS expression system, in F-1 generation, Delta-Halo/Delta-

Halo; OR92a-Gal4/UAS-SlitOR(x), the promoter for the DmOR92a gene drives expression of 

the yeast Gal4 transcription factor, whereas Gal4 binding to the UAS drives expression of the 

downstream transgene, SlitOR(x).  

♂/♀           X ♂/♀  
 

 

Fig 5: UAS/GAL4 Sysytem (Modified Image: Cold Spring Harb. Protoc; 2008;doi:10.1101/pdb.top49)  

2.3 Fly lines 

Transgenic lines were generated to make use of the Gal4/UAS system. Gal4 is a yeast 

transcription activation factor and UAS is upstream activation sequence, Gal4 exclusively 

binds to UAS to initiate the transcription of genes positioned downstream of the UAS binding 

site sequence.  

We used the lines that were maintained in our lab, Chemical ecology group SLU, Alnarp 

campus, Sweden. White eyed Dalby-HL strain (Collected from outside environment of the 

	  	  	  	  	  	  	  	  	  GAL4	  Promoter	   UAS	   Gene	  X	  
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campus), made by repeated back-crosses of white mutant flies into a Dalby-HL (Ruebenbauer 

et al., 2008) line was used as control while the experimental lines were  

(1) +/+; DOr92-a Gal4 (strain code 23139 from Blomington), in this strain the Gal4 is on 

the 3rd  chromosome  

(2) DOr92-a Gal4; +/+; (Strain code 23140 from Blomington), in this strain the Gal4 is on 

the 2nd chromosome. 

(3) dHalo/cyo ; UAS-SlitOr-a/ SlitOr-a    

(4) dHalo/cyo ; UAS-SlitOr-b/ SlitOr-b  (SlitOrs; Alnarp strains) 

(5) dHalo/cyo ; UAS-SlitOr-c/ SlitOr-c   (dHalo/cyo; Dobritsa et al., 2003) 

(6) dHalo/cyo ; UAS-SlitOR6/ SlitOR6   

 

 

 

	  

	  Fig	  6:	  An	  overview	  of	  the	  genetic	  crosses	  of	  Spodoptera	  ORs(X)	  wild	  type	  and	  experimental	  strains 

DOR:	   Drosophila	   olfactory	   receptor,	   SlitOR:	   Spodoptera	   Olfactory	   receptor,	   UAS:	   Upstream	   activation	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
sequence:	  	  G4:	  Gal4	  which	  is	  transcription	  activator	  factor	  from	  yeast,	  d-‐Halo:	  a	  deletion	  that	  is	  not	  relevant	  
here	  as	   it	   is	  used	  in	  a	  heterozygous	  state:	  CYO:	  Balancer	  Chromosome	  with	  curly	  wings	  phenotypic	  marker	  
(wild	  type	  condition	  is	  straight	  wings),	  +:	   	  wild	  type	  chromosome,	  Strain code 23139: in this strain the 
Gal4 is on the 3rd chromosome,	   Strain code 23140, in this strain the Gal4 is on the 2nd 

chromosome	  

Parental	  Genotypes	  	   F1	  Generation	  used	  
for	  behaviour	  
studies	  

Strain	  code	  
23139	  

Strain	  code	  
23140	  
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The F1 generations of the crosses carried out were subjected to behavioural studies. The flies 

were exposed to different types of odours for a certain time period and their response was 

scored. A choice assay was employed for this purpose (described below). As a result we 

expect e.g. a wild type response (attraction) to the acetoin odour (a fermentation product) 

normally detected by the fly receptor Or92a. 	  

2.5 Rearing conditions  

Flies were fed with the standard laboratory diet. All the lines were maintained at 25 oC with 

12:12 dark: light cycles with relative humidity 60%. 

2.6 Exposure of flies to Acetoin 

Drosophila olfactory receptor 92-a responds to acetoin (Stensmyr et al., 2003). To increase 

the behavioural attraction of flies towards acetoin, all lines were exposed to 1% acetoin and 

1% sucrose during the day (Simpson and White 1990: Colomb, et al., 2009). Then all fly lines 

were starved overnight and odour attraction assay was carried out. The set up used for this 

purpose is shown in the following figure 7. 

 

Fig 7: Set up for training of flies for acetoin 

We have adopted a modified method for the fly olfactory training as used by Burke and 
Waddell (2011).  

2.7 Odour attraction assay 

The flies were kept in the round container (110 mm diameter and 60 mm height made of 

plastic material) with the test compound (0.1%) and the blank for 24 hours at 25OC with 12:12 

dark: light cycles with relative humidity 60%. Triton 0.01% was added in vials containing test 

solution and blank also. After 24 hours the numbers of flies drowned in the test compound or 
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in the blank were counted. Then attraction index (A.I) was calculated by using the following 

equation 

A.I= (Treatment – Control)/ Total flies 

Behavioural responses of different strains to acetoin (“native” control response odour) and the 

signature odour for each respective heterologously expressed SlitOR were assessed 

independently against water controls, and presented as mean A.I. from several replicates. 

About 32% flies died until the completion of the experiment (24 hours period). Two types of 

statistical comparisons were made, using Minitab 15. Responses of each strain to each odour 

was assessed independently by a one-sample T-test determining whether mean was 

significantly different from 0 (indicating significant attraction/repulsion). Within each strain, 

the mean responses to acetoin and to the corresponding signature odour for the SlitOR were 

also compared using a two-sample T-test. 

 

Fig 8: The set-up for the odour attraction assay 

2.8 Preparation of constructs    

I sought to prepare different vector constructs with the aim of achieving a permanently 

modified experimental olfactory system in Drosophila. A transformation vector construct 

containing the promoter sequence for Drosophila olfactory receptor Or92-a and selected 

olfactory receptors sequences from Spodoptera was prepared from both organisms and the 

sequences were aimed to be cloned into a suitable Drosophila germ line transformation vector 

attB (Bischof et al., 2007). A future aim would be for final constructs to be injected in the 
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Drosophila embryos for purposes of stable genomic transformation, outside the scope of the 

present project.  

We have adopted a kit method called infusion cloning technique (Provided by clone tech), to 

polymerize the Drosophila 92-a Promoter containing overlapping sequence of Spodoptera 

ORs a, b, c and 6 individually, to the OR(X) sequences, which also include overlapping 

sequence from the 92a-Promoter. After PCR amplification the corresponding fragments were 

gel purified and the attB injection plasmid was digested. Then, attempts were made to fuse 

these fragments and the plasmid together in a single step reaction. 

 

Fig:9 Schematic strategy for the fusion of fragments in the attB Plasmid 

The primers were designed with primer 3 soft ware. The sequence of the primers is as follows  

OR92aF – TTAACCCTTAAGGTTACCCAACTTTGACACCAAATGCAAGGGTAA 

OR92a-aR - GCTGTTTGATCGGCTGACAGAATAAGTCTACCACTTGTGTAAAGCACC 

OR92a6R - GCTGTTTGATCGGCTGACAGAATAAGTCTACCCAAATTTTTTCAAAGAA 

OR92a-bR – GCTGTTTGATCGGCTGACAGAATAAGTCTACTTAAGCAAAGAAGTCTC 

OR92a-cR - GCTGTTTGATCGGCTGACAGAATAAGTCTACCTTCTATTACATCGTAT 

OR-aF - GACTGTCTTATTCAGATGGTGAACACATTTCGTGG 

OR6F – GACTGTCTTATTCAGATGGGTTTAAAAAAGTTTCTT 

OR-bF – GACTGTCTTATTCAGATGAATTCGTTTCTTCAGAG 

OR-cF – GACTGTCTTATTCAGATGGAAGATAATGTAGCATA 

OR4RattB - GGCCGCAGATCTGTTAACCTAAACTTTAAATATAGTGACAAAC 

OR6RattB - GGCCGCAGATCTGTTAACTCAAATGCTGCGTAGGAA 

OR29RattB – GGCCGCAGATCTGTTAACCTACACTTTGTTGAGGAAATAA 

OR31RattB – GGCCGCAGATCTGTTAACCTAGCGATTCAAGAACGTAAACAATG 

Spodoptera	  	  	  	  OR(X)	  

Drosophila	  
Promotor	  92-‐a	  

attB Plasmid	  
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Blue is the sequence overlap for plasmid, whereas red is HPA digest site overlapped Greens 
are complementary overlaps. 

2.8.1 Polymerization of Fragments 

Polymerase Chain Reaction (PCR) was carried out for the synthesis of following fragments  

I. attB-92aF----------OR92a-aR 

II. attB-92aF----------OR92a6R 

III. attB-92aF----------OR92a-bR 

IV. attB-92aF----------OR92a-cR 

The composition of master mix for the PCR    

1. Water                                                     18.75µl 

2. Advantage 2 Buffer 10X                        2.50 µl 

3. DNTPs 10mM                                        0.50 µl 

4. Advantage 2 Taq polymerase 1U           0.25 µl      

5. gDNA                                                     1.00 µl 

6.  Forward primer 10µM                           1.00 µl 

7.  Reverse primer 10µM                            1.00 µl 

 Running Conditions for the reaction  

1. Melting temp. 940C for 2 min. 

Melting temp. 940C for 30 S 

2.  Annealing Temp. 550C  30S          32 cycles 

Extension 680C for 90S 

3. Final Extension 680C  for 10min 

2.8.2  

Another PCR was carried out for the synthesis of the following fragments  

I. 92a-OR-aF----------OR-a-RattB  

II. 92a-OR6F----------OR6RattB 

III. 92a-OR-b-F---------OR-b-RattB 

IV. 92a-OR-c-F---------OR-c-RattB  
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Master Mix   

1. Water                                             18.75µl 

2. Advantage 2 Buffer 10X                 2.50µl 

3. DNTPs 10mM                                 0.50µl 

4. Advantage 2 Taq polymerase 1U    0.25µl 

5. cDNA                                               1.00µl 

6. F-Primer 10µM                                1.00µl 

7. R-Primer 10µM                                1.00µl 

PCR running conditions 

1. Melting temp. 940C for 2 min. 

             Melting temp. 940C for 30S 

2. .Annealing temp. 550C for 30S      32 cycles 

             Extension 680C for 3 min 

3. Final extension 680C  for 10min 

2.8.3 Purification of the PCR products 

The PCR products were run on the gel for confirmation of the success of the experiment; the 

running conditions for the gel electrophoresis were 100 volts for 45min. After electrophoresis, 

the bands on the gel were cut and purified as described. The gel bands were weighed and gel 

binding solution was added at volume equal to the mass of the excised gel: the gel then was 

melted in binding solution at 600C for 15 minutes. The melted contents were transferred into 

the spin column and centrifuged at max speed for 1 min and the flow through was discarded. 

After that, 700 µl membrane wash solution was added and centrifuged at max speed for 1min 

and the flow through was discarded. Then 500 µl membrane wash solution was added and 

centrifuged at max speed for 3min and the flow through was discarded. The next step was just 

spinning without any reagent to remove any excess wash buffer. Finally the DNA was eluted 

with water by spinning for 1 min at maximum speed (kit method provided by Clone tech, 

USA) and then the DNA was quantified by nanodrop method. The purified product was again 

run on the gel for the confirmation of required product. 
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2.8.4 Digestion and purification of plasmid (attB) 

The plasmid was linearized by digestion with the HPA-1enzyme. The components of the 

reaction were mixed and incubated at 370C for 3 hours followed by incubation at 650C for 20 

min to stop the reaction. The components of the reaction mixture are  

(I). Undigested plasmid (attB)         5 µl  

(II). 10 X buffer                               2 µl 

(III). HPA1                                      1 µl 

(IV). Water                                      12 µl 

Total Volume                                  20 µl 

Afterwards, purification of the digested plasmid was done by the same procedure adopted for 

the purification of previously synthesized PCR products.  

2.8.5 Infusion of fragments 

The components for the infusion reactions are as follows 

1. Infusion enzyme mix                                                                          4 µl 

2. Digested plasmid                                                                                2 µl 

3. Fragment X having full OR sequence and promoter 92-a sequence as a smaller portion                                                                                                                                             

                                                                                                           5 µl 

4. Fragment X having promoter 92-a as a major portion                       5 µl 

5. Water                                                   4 µl  

The reaction mixture was incubated at 500C for 15 min. 

2.8.6 Transformation by heat shock method 

For transformation TOP10 invitrogen chemically competent E.coli cells were used provided 

by Clonetech, USA. The cells were thawed on ice and 2.5 µl of fused fragments were added 

to the 25 µl competent cells and were given heat shock at for 30S at 420C. 

2.8.7 Cell culturing  

250µl SOC media (Provided by New England, Biolabs) was then added to the transformation 

mixtures and the cells were incubated at 370C for 1 hour on the shaker- incubator maintained 
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at 225Rpm. Petri plates containing LB-Ampicillin media were preheated at 370C for 30 

minutes. Then the cells were inoculated on the Petri plates and were grown over night. 

2.8.8 Diagnostic Colony PCR 

After overnight growth, individual bacterial colonies were picked and added to the eppendorf 

tubes contacting 50µl of the LB-Ampicilin media and were grown for 2hrs at 370C on the 

shaker-incubator maintained at 225 Rpm. 

Then 2 µl of the cell cultures were used for the diagnostic PCR. The components of the 

reaction mixtures are  

(I). Cell culture                             2.00 µl 

(II). Dream taq. Buffer 10X         2.50 µl 

(III). Dream Taq. Enzyme            0.25 µl 

(IV). dNTPs 10mM                      0.50 µl 

(V). Primer F  10µM                    1.00 µl 

(VI). Primer R   10 µM                 1.00 µl 

(VII). Water                                 17.75 µl 

Running Conditions 

1. Melting temp.950C for 2 min. 

            Melting temp. 950C for 30S 

2. Annealing 54 0C for 30S                             32 Cycles 

           Extension 72 0C for 1min and 20S 

3. Final Extension 72 0C for 5 min 

2.9 Alternative method for the preparation of constructs 

We performed an alternative method for the preparation of constructs. The incorporation of 

the promoter 92-a and the other ORs was done in two steps rather than in a single step. There 



15	  
	  

are no changes for the rest of procedures of digestion, purification, transformation cell 

culturing and colony PCRs etc. The following primers were used   

For EcoRI Flanked Dmel. OR92-a Promoter 

Forward Primer TATGAATTCCAACTTTGACACCAAATGCAAGGGTAA 

Reverse Primer ATTGAATTCGCTGTTTGATCGGCTGACAGAATAAGTC 

For NotI Flanked Slit OR-a gene 

Forward Primer TATGCGGCCGCATGGTGAACACATTTCGTGG 

Reverse Primer ATTGCGGCCGCCTAAACTTTAAATATAGTGACAAAC 

For NotI Flanked SlitOR-c gene 

Forward Primer  TATGCGGCCGCATGGAAGATAATGTAGCATACT 

Reverse Primer  ATTGCGGCCGCCTAGCGATTCAAGAACGTAAACAATG 

 Note: Red sequences are the enzymatic cut sites, greens are the OR sequences and the 

underline sequences are the random structural elements. 

2.9.1 Polymerization of Fragments 

PCR I 

Polymerase Chain Reaction (PCR) was carried out for the synthesis of Slit OR-a and OR-c  

The composition of master mix for the PCR    

(I). Water                                                     15.75µl 

(II). Advantage 2 Buffer 10X                        2.50 µl 

(III). DNTPs 10mM                                       0.50 µl 

(IV). Advantage 2 Taq polymerase 1U          0.25 µl      

(V). gDNA                                                     1.00 µl 

            (VI).  Forward primer 10µM                          2.50 µl 

(VII). Reverse primer 10µM                          2.50 µ 
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Running Conditions for the reaction  

1. Melting temp. 940C for 2 min. 

Melting temp. 940C for 30 S 

2.  Annealing Temp. 550C  30S          32 cycles 

Extension 680C for 90S 

3. Final Extension 680C  for 10min 

PCR II 

Polymerase Chain Reaction (PCR) was carried out for the synthesis of promoter OR92-a from 

Drosophila 

The composition of master mix for the PCR    

(I). Water                                                      15.75µl 

(II). Advantage 2 Buffer 10X                       2.50 µl 

(III). DNTPs 10mM                                      0.50 µl 

(IV). Advantage 2 Taq polymerase 1U         0.25 µl      

(V). cDNA                                                     1.00 µl 

     (VI). Forward primer 10µM                           2.50 µl 

(VII). Reverse primer 10µM                         2.50 µl 

 Running Conditions for the reaction  

1. Melting temp. 940C for 2 min. 

Melting temp. 940C for 30 S 

2.  Annealing Temp. 550C  30S          32 cycles 

Extension 680C for 90S 

3. Final Extension 680C  for 10min 

2.9.2 Purification of the PCR products 

The PCR products were run on the gel for confirmation of the success of the experiment; the 

running conditions for the gel electrophoresis were 100 volts for 45min. After electrophoresis, 
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the bands on the gel were cut and purified as described. The gel bands were weighed and gel 

binding solution was added at volume equal to the mass of the excised gel: the gel then was 

melted in binding solution at 600C for 15 minutes. The melted contents were transferred into 

the spin column and centrifuged at max speed (13000 rpm) for 1 min and the flow through 

was discarded. After that 700 µl membrane wash solution was added and centrifuged at max 

speed for 1min and the flow through was discarded. Then 500 µl membrane wash solution 

was added and centrifuged at max speed for 3min and the flow through was discarded (which 

was collected in the collection tube). The next step was just spinning without any reagent to 

remove any excess wash buffer. Finally the DNA was eluted with water by spinning for 1 min 

at maximum speed (13000 rpm) and then the DNA was quantified by nanodrop method. The 

purified product was again run on the gel for the confirmation of required product. 

2.9.3 Digestion of Plasmid attB 

2.9.3.1 Components of the reaction for Digestion of Plasmid attB 

(I). Undigested plasmid (attB)         2 µl  

(II). Buffer 10X                                2 µl 

(III). Not.1                                        1 µl 

(IV). BSA                                       10X 

(IV). Water                                     12 µl 

Total Volume                                  20 µl 

2.9.3.2 Digestion of ORs (a and b) 

Components of the reaction 

(I). OR-a/b                                    35 µl  

(II). Buffer 10X                              5 µl 

(III). Not.1                                      5µl 

(IV). BSA 10X                               5µl                          

Total Volume                                 50 µl 



18	  
	  

2.9.3.3 Ligation of fragments 

The components for the infusion reactions are as follows 

1. T4 DNA ligase                                                                         0.50 µl 

2. attB digested plasmid Not. I                                                     2.0 µl 

3. OR-a/b digest of Not. I                                                             4.0 µl                                                                                                                                                                                                          

4. T4 DNA ligase buffer                                                               1.0 µl 

5. Water                                          2.50 µl  

The reaction mixture was incubated at 220C for 1hour. 

2.9.3.4 Transformation by heat shock method 

For transformation TOP10 invitrogen chemically competent E.coli cells were used provided 

by Clonetech. The cells were thawed on ice and 2.5 µl of fused fragments were added to the 

25 µl competent cells and were given heat shock at for 30S at 420C. 

2.9.3.5 Cell culturing  

250µl SOC media was then added to the transformation mixtures and the cells were incubated 

at 370C for 1 hour on the shaker- incubator maintained at 225Rpm. Petri plates containing 

LB-Ampiciline media were preheated at 370C for 30 minutes. Then the cells were inoculated 

on the Petri plates and were grown over night. 

2.9.3.6 Diagnostic Colony PCR 

After overnight growth, individual bacterial colonies were picked and added to the ependorf 

tubes contacting 50µl of the LB-Ampicilin media and were grown for 2hrs at 370C for 1 hour 

on the shaker-incubator maintained at 225 Rpm. 

Then 2 µl of the cell cultures were used for the diagnostic PCR. The components of the 

reaction mixtures are  

(I). Cell culture                             2.00 µl 

(II). Dream taq. Buffer 10X         2.50 µl 

(III). Dream Taq. Enzyme            0.25 µl 

(IV). dNTPs 10mM                      0.50 µl 
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(V). Primer F    (10µM)                 1.00 µl 

(VI). Primer R   (10 µM)               1.00 µl 

(VII). Water                                  17.75 µl 

Running Conditions 

1. Melting temp.950C for 2 min. 

            Melting temp. 950C for 30S 

2. Annealing 54 0C for 30S                             32 Cycles 

           Extension 72 0C for 1min and 20S 

3. Final Extension 72 0C for 5 min 
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3. Results  

3.1 Behavioural Studies 

There was little overall effect on the olfactory behaviour of Drosophila to the tested 

compounds on the basis of shared input channel of OR92-a co-expressed with the other 

receptors of interest from S. littoralis.  

Most strains were significantly attracted to acetoin, as expected because this compound is a 

known attractant for Drosophila. In contrast, very few were attracted to the corresponding 

ligands for the Slit-ORs, regardless whether the Spodoptera OR was expressed or not. There 

was no consistent case of attraction to Slit-OR ligand odours only in the presence of Slit-OR 

expression. 

3.1.1 Response to linalool: 

The attraction indices of the fly lines are shown in Figure 10. Neither of the lines displayed 

any significant attraction to linalool, regardless whether they expressed the linalool-

responding SlitOR-a or not. However, there was a consistent difference among the fly strains 

in their response to acetoin. All three control lines were significantly attracted to acetoin, 

whereas both strains expressing SlitOR-a in the acetoin-responding Or92a ORNs were not.  

 

Fig10:	   The	   Attraction	   index	   (A.I)	   of	   the	   fly	   lines	   to	   Acetoin	   and	   Linalool:	   NS-‐	   Non	   significant;	   *-‐	  
significant	  against	  zero	   	  :	  Comparison	  between	  acetoin	  and	  the	  test	  compound	  of	  the	  same	  
genotype,	  which	  are	  significantly	  different	  from	  each	  other	  	  
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3.1.2 Response to beta ocimene: 

Responses to beta-ocimene were different than to all other Spodoptera related odours in that 

some fly strains displayed significant attraction to this odour. However, there were no 

consistent differences between SlitOR-b-expressing lines and control lines that would indicate 

that attraction was specifically mediated by SlitOR-b expression. The Or-b-expressing line 

Or-b x 23140 displayed significant attraction to beta-ocimene, but not to acetoin, whereas 

attraction to beta-ocimene in the other Or-b-expressing line Or-b x 23139 was near 

significant, and significant to acetoin. However, the control line Or-b x Dalby W- also 

displayed significant attraction to beta-ocimene, possibly suggesting a general contribution 

from the genetic background of the Or-b parental line rather than specifically from Or-b-

expression in Ab1B (Or92a) neurons. From these results it can be concluded that there is no 

unambiguous effect on the olfaction of D. melanogaster when the beta-ocimene receptor from 

S. littoralis is incorporated.  

 

Fig 11: A.I towards Acetoin Beta ocimene: NS; Non significant, *;	   significant	   against	   zero,	  
	   :	  Comparison	  between	  acetoin	  and	  the	  test	  compound	  of	  the	  same	  genotype,	  which	  are	  

significantly	  different	  from	  each	  other	  	  

3.1.3 Response to Eugenol:	  

The olfactory response in-terms of attraction indices of the fly lines are shown in Figure 12. 
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olfaction of D. melanogaster when the eugenol receptor from S. littoralis was co-expressed 

with 92-a receptor in the defined olfactory neurons of Drosophila, together with their native 

receptors.  

 

Figure 12: Behaviour response of fly lines to Acetoin and Eugenol: NS; Non significant, *;	  
significant	  against	  zero, 	  :	  Comparison	  between	  acetoin	  and	  the	  test	  compound	  of	  the	  same	  
genotype,	  which	  are	  significantly	  different	  from	  each	  other	  	  

3.1.4 Response to Pheromone (z914OAc) 

Results for the response to pheromone (z914OAc) are compared in the figure 13, in-terms of 

attraction indices. All the lines responded significantly to acetoin. There was no attraction to 

the pheromone component (z914OAc dissolved in hexane, adsorbed 2 µl on a filter disc 

which was immersed in the blank solution in the vial) by any of the lines. So, there is no 

explicit effect on the olfaction of D. melanogaster when pheromone receptor from S. littoralis 

was incorporated.  
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Figure 13: Response of fly lines measured in-terms of attraction index (A.I) to Acetoin and 

pheromone: NS; Non significant, *;	  significant	  against	  zero,	   	  :	  Comparison	  between	  acetoin	  
and	  the	  test	  compound	  of	  the	  same	  genotype,	  which	  are	  significantly	  different	  from	  each	  other	  	  

So it can be conclude from the results, there is no effect on Drosophila olfactory behaviour in 
case of manipulation of Slit-OR-6.  

3.2 Molecular studies 

3.2 Single step infusion method  

3.2.1 Results for the PCR for the synthesis of fragments  

The gel image after PCR of all the fragments is shown below (fig:14). The fragments OR-a 

and OR-c were successfully amplified while there was no product formation for OR6 and OR-

b.  
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                            Fig 14: Gel image of the PCR products (purified) of the fragments 

3.2.2 Cell culturing 

There was growth of E.Coli colonies which were transformed by product of infusion reaction 

attB-(92-a)-OR-a and attB-(92-a)-OR-c by heat shock method, grown in separate plates and it 

is to be confirmed by the colony PCR.  

 

Fig 15: Colony growth of bacteria transformed with plasmids containing OR sequence grown 
overnight for the receptor attB-(92-a)-OR-a 

	  	  	  	  	  OR-‐a	  

OR-‐c	  

PromoterOR92a	  
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3.2.3 Colony PCR  

The result of the colony PCR shows no PCR product for OR-a and OR-c which are shown in 
fig. 16.  

                

                Fig 16: Gel Image for Colony PCR for the fragments OR-a and OR-c 

                                                                                                       OR-c                                    

                                        OR-a Replicates                                           Positive control for OR-c 

                                                                       Positive control for OR-a 

There was no PCR product for the required fragments. All are the primer dimers. 

3.3 Two step infusion method 

3.3.1 Results for the PCR for the synthesis of OR-a and OR-b 

The two step infusion method, in which I aimed to incorporate Drosophila promoter 92-a and 

the other SlitORs fragment separately into the plasmid, was unsuccessful. During PCR 

amplification the fragments OR-a and OR-c were successfully amplified while there was no 

product formation for Or92-a promoter. The gel image after PCR of all the fragments is 

shown below (fig.17).  
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Fig17: Gel image for the PCR (purified) Or-a & Or-b 

3.3.2Results for Cell culturing for the OR-a and OR-b 

There was E. Coli growth after transformation with attB-Or-a and attB-Or-c overnight 
incubation at 37OC. 

 

Fig18: Colonies for the Or-a and Or-c  

3.3 Results for the Colony PCR for OR-a and OR-b 

The bacterial growth of the required colonies attB-OR-a and attB-OR-b indicated that the 

fragment was taken up by the bacteria. The presence of the construct in the bacteria was 

further confirmed by diagnostic PCR. The gel image of the PCR is shown in the fig: 19.   

Marker	  

	  	  	  OR-‐a	  
OR-‐b	  
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Fig: 19 Gel image of colony PCR for the OR-a and OR-c  

I successfully incorporated fragments OR-a and OR-c in the plasmid. However, I repeatedly 

failed to amplify the OR-6, OR-b and Drosophila Promoter 92-a fragments. Without the 

Drosophila Promoter 92-a fragment, which was intended to be incorporated, together with the 

SlitOrs within the attB plasmids, I could not proceed further with this construct within the 

time frame of the project. 
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4. Discussion 

My aim was to investigate the olfactory behaviour response of the Drosophila to different 

odours, having olfactory receptors from the moth S. littoralis together with their native 

receptors. Preparation of transgenic constructs with direct fusions of Drosophila promoter and 

Spodoptera olfactory receptor genes in order to obtain constitutive expression of selected 

Spodoptera receptors in Drosophila. There was no significant effect of co-expressing SlitORs 

in OR92-a neuron on the olfactory behaviour of D. melanogaster. 

Most strains were significantly attracted to acetoin, as expected (Stensmyr et al., 2003). In 

contrast, very few were attracted to the corresponding ligands for the Slit-ORs, regardless of 

whether the Spodoptera OR was expressed or not. Neither of the experimental lines displayed 

any significant attraction to linalool, pheromone or eugenol.  

      In some cases there was attraction towards the test compound by the experimental and control 

lines of the same genotype, possibly suggesting a general contribution from the genetic 

background of the ORs parental line rather than specifically from ORs expression in Ab1B 

(Or92a) neurons. There was only one case where Or-b-expressing line Or-b x 23140 

displayed significant attraction to beta-ocimene. From these results it can be concluded that 

there is no unambiguous effect on the olfaction of D. melanogester when ORs from S. 

littoralis is incorporated. It could also be due to the lack of other signalling components that 

have been shown to be important for reception of the tested odour in the environment of the 

92a sensilla such as odour binding proteins (Hildebrand and Shepherd, 1997). Another factor 

may be sensillum environment (Trichoid to basiconic) that may lack certain components of 

the transduction cascade: Odorant/Pheromone binding proteins and other pheromone-related 

transduction components (Syed et al., 2006; Benton et al., 2007).  

      In this case it seems that a single neuron ab1B type is not sufficient for the behavioural 

response to acetoin. Activation of a single neuron ab1B by the tested compound is not 

sufficient to replicate the behavioural response to acetoin. This indicates either that acetoin 

needs to be detected by more than one neuron or the non-specific activation of other neurons 

by the tested compound that may inhibit the olfactory response towards acetoin. There does 

indeed seem to be receptors and ORNs functioning as so-called labelled lines, mediating 

information about single compounds to the olfactory system as in CO2-sensitive pathway (de 

Bruyne et al., 2001, Suh et al., 2004). Detection of CO2 is dependent on specific receptors 

detecting this unique stimulus (Jones et al., 2007). Another example is the strong avoidance of 
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the fungal odour geosmin in Drosophila, which is mediated by a specific receptor (Stensmyr 

et al., 2012). 

Most odours are to a greater or lesser extent detected by combinations of ORN types rather 

than individual types as in the case of both moths and flies (de Bruyne et al. 2001;Carlsson et 

al., 2002; Wang et al., 2003; Hallem et al. 2004, 2006; Binyameen et al., 2012;) 

The reason for ambiguous behavioural responses to our alternative compounds could be that 

the acetoin attraction is dependent on responses from more than one ORN type. Acetoin 

sensory neuron responses are shown sometimes in some large-scale screens of 

neurons/receptors of Drosophila, and the two most similar compounds: 2,3-butanedione 

(detected by Or92-a, Or42-a) and 2,3-butanediol (detected by Or9-a) also appear to elicit 

responses from some other receptor(s) (Hallem et al., 2004). 

Another option could be that our alternative compounds elicit responses in other types of 

sensory neurons than the Or92a neurons (based on native fly receptors). The presence of these 

responses (if any) along with the Or92a response could be enough to shift the overall 

impression of the olfactory system away from the acetoin perception.  

According to the fly data base, 92-a also responds to eugenol (a very weak response) and 

linalool is detected by Or9-a. (http://neuro.uni-konstanz.de/DoOR/content/DoOR.php#). 

Various concentrations of the tested compounds can be tried for behaviour studies in-order to 

overcome any effect due to the concentration of the compound if there is any. Another 

possible strategy may be to test these compounds as a blend of different common plant 

volatiles as the insects are also known to respond to the blends of volatiles (Bruce et al., 2005; 

Riffell et al., 2009).  

Regarding the preparation of constructs, in the first methodology, there was no PCR 

amplification for fragments attB-(92a)-OR6 and attB-(92a)-OR-b. In the second methodology 

I successfully managed to PCR amplify attB-OR-a and attB-OR-c while no amplification 

formation of promotor92-a. The possible reason for this may be I was unable to find the 

optimum running conditions for PCR or primers are not compatible. 
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