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Sammanfattning 
Växters förmåga att försvara sig varierar beroende på många olika orsaker. En teori säger att 

domesticeringen av vissa växter har sänkt deras resistens mot herbivorer i en trade-off med 

andra egenskaper så som ökad skörd som människan selekterat fram. 

!
I det här arbetet har jag undersökt effekten av domesticering på resistensen mot växtätande 

insekter genom att använda sorter och arter av bomull i olika stadier av domesticering.  Detta 

har gjorts i tre olika experiment. Först genomfördes ett utvecklingsexperiment i vilket jag 

studerade utvecklingen av larver av bomullsflyet, Spodopeta littoralis från ägg till 

förpuppning, samt puppornas vikt. Den andra delen var ett beteendeförsök där rotlevande 

larver från skalbaggarna Agriotes spp. fick välja mellan rotsystemen av olika bomullsplantor. 

En tredje del av arbetet var en insamling av växtdofter från bomullsplantor som inducerats 

antingen av S. littoralis, som ätit på bladen, Agriotes spp., som ätit på rötterna eller en 

kombination av skadorna från båda arterna. 

!
Mina data visar att det finns en skillnad mellan olika bomullssorter och att vildare sorter 

generellt har en högre resistens mot insektsangrepp än domesticerade sorter. De 

domesticerade sorterna Dpl 90 och glandless cotton gav en signifikant kortare utvecklingstid 

i utvecklingsexperimentet än de vilda sorterna Tx263, G. herbaceum och Tx 2259. Däremot 

var det inga signifikanta skillnader mellan bomullssorterna i vikten på pupporna mellan 

dieterna. Tvåvalstestet med Agriotes-larver gav inga signifikanta resultat vilket troligen 

berodde på ett för lågt antal av replikat. Jag fann dock en tydlig trend där larverna föredrog 

den domesticerade sorten Dpl 90 över alla andra testade sorter, förutom den vilda arten 

G.herbaceum. Analysen av insamling av växtdofter visar att plantorna som inducerats av S. 

littoralis reagerar starkare och har en högre avgivning av flyktiga ämnen såsom alpha pinene, 

1S-beta pinene, myrcene och terpinolene än plantor som inducerats av endast Agriotes spp. 

eller med en kombination av de båda arterna. Möjligtvis kan Agrioteslarverna manipulera 

bomullsplantan så att den inte startar sitt inducerade försvar eller så kan bomullsplantan inte 

upptäcka dem. Möjligen har också flyktiga ämnen släppts ut från rötterna av 

bomullsplantorna vilket inte detekterats eftersom endast ämnen från överjordiska delar 

insamlades. 
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Abstract 
A plant's defensive ability against herbivore attack can be influenced by many different 

factors, one of them being domestication. During human selection to improve the yield of 

plants, the resistance against herbivore attack can have been lowered, due to a trade-off for 

use of resources between these traits in the plants. 

!
In this thesis I investigated the effect of domestication on resistance against herbivorous 

insects in cotton plants. I used different varieties and species of wild and domesticated cotton 

in three different experiments. A feeding assay was conducted, the mortality, development 

time and pupal weight of larvae of the Egyptian cotton leaf worm Spodoptera littoralis was 

studied. In a second experiment the preference of the root-feeding beetle Agriotes spp. was 

monitored in a two choice assay comparing domesticated cotton to other cotton varieties and 

species. The third part of the thesis was an odour collection from domesticated cotton plants 

induced by either S. littoralis larvae feeding on the leaves, Agriotes spp. feeding on the roots 

or a combination of damage from both species. 

!
The data show that there is a difference between cotton cultivars and that wild varieties delay 

development time compared to domesticated cotton. The feeding assay showed that the 

domesticated varieties Dpl 90 and Glandless cotton had significantly shorter development 

times than the undomesticated varieties (Tx 263, Tx 2259 and G. herbaceum) The two choice 

assay with Agriotes spp. larvae did not give any significant results most likely because of a 

low number of repetitions. Agriotes spp. did not prefer either domesticated nor 

undomesticated varieties of cotton. However, a trend in favor of the domesticated cotton 

variety could be observed.  

!
Finally, analysis of the odour collection demonstrates that plants induced by Spodoptera 

littoralis alone release higher amounts of the volatiles alpha pinene, 1S-beta pinene, myrcene 

and terpinolene than plants induced with either only Agriotes spp. or a combination of the 

two types of larvae. It may be that Agriotes spp. can manipulate the defence of the cotton 

plants. Another explanation is that the cotton plants cannot detect the Agriotes larvae. Also, 

there might have been a release of volatiles below ground that was not detected due to the 

layout of the experiment. 
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Introduction 
!
The importance of resistance and different types of resistance 

Plants are faced with a major challenge when they come under attack by herbivores, as they 

cannot flee from their enemies and therefore need to rely on different defence strategies. One 

way of defence would be the existence of morphological barriers such as trichomes and 

waxes, which make it harder for an herbivore to feed or move on the plant, or by having 

tough leaves which can wear the insects’ mandibles down. Plants also possess chemical 

defences, which affect herbivores in different ways depending on type of chemical and 

species of insect larvae. The resistance trait can further be either non-preference, also called 

antixenosis, or antibiotic. Antixenosis means that the host plant has traits that make the plant 

unattractive as a host plant. Antibiotic resistance means that the plant contains traits that 

directly affect the pest insects’ fecundity, survival or size (Schoonhoven et al., 2005). All 

these resistance traits help the plants to reduce damage from attacking pest species, but they 

are also important for farmers as losses in fields vary greatly depending on cultivar. 

!
Direct and indirect defences 

The defence in plants can be divided into direct and indirect defence. The direct defences 

affect pests directly, for example through toxins or hypersensitivity responses around egg 

batches. Indirect defences are traits that do not directly affect pests but creates a less 

favourable environment for the pest, for example by attracting natural enemies (Schoonhoven 

et al., 2005, Price et al., 1980).  

!
Induced and constitutive defences  

It is costly for plants to build up and sustain insect resistance mechanisms, especially when 

the herbivore pressure is low and the resistance is therefore not always needed (Karban, 

2011). As a response plants have developed different strategies to cope with pests i.e. 

constitutive and induced defences (Schoonhoven et al., 2005). 

!
Constitutive defences are structures or compounds that are always present in the plant 

(Schoonhoven et al., 2005). The benefit of constitutive defences is that they are always 

present and the plant can directly defend itself to an herbivore attack. Slow growing plants 

generally rely more on constitutive defences than faster growing plants, as they cannot 

replace lost tissues as quickly as faster growing plants (Karban, 2011). 
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!
Unlike constitutive defences, induced defences are only activated when needed, thereby 

saving resources for the plant that can be used for growth and reproduction. A typical 

example for induced resistance is the release of plant volatiles after an herbivore attack. 

These compounds can recruit parasitoids and predators of herbivores to the infested plant and 

therefore help to reduce the abundance of herbivores on the plants. The fact that the release of 

volatiles is induced allows the plant to fine-tune its different volatile blends to specific 

herbivores and thereby attract specialist beneficial insects. A constant release of volatiles 

would on the other hand give the plants location away, as well as removing a reliable signal 

for the beneficials and hence reducing their recruitment. (Zangerl, 2003). The fact that 

induced defence is turned on or up regulated could be a problem for the plant as it takes a 

while before they get their optimal defence (Karban, 2011). 

!
Domestication sometimes has been found to have an effect on the induced and constitutive 

defences in plants. In a comparison between domesticated olive trees and wild ones it was 

shown that the wild ones had higher levels of phenolics when grazed upon by ungulates 

(Massei & Hartley, 2000). Domesticated Brassica and Phaseoulus plants were shown to be 

less attractive to parasitoids than their wild relatives, which were most likely caused by 

reduced volatile release, thereby making it more difficult for parasitoids to locate infested 

plants (Benrey et al., 1998). Another example can be found in cranberries (Vaccinium 

macrocarpon). Cranberries were a good candidate to investigate the effect of domestication 

in as they were domesticated rather recently and there are both wild and intermediate 

varieties available to test for resistance against insect herbivores. The experiments showed 

that the domesticated cultivars had lower levels of volatiles, as well as lower levels of the 

defence chemical cis-Jasmonic acid (Rodriguez-Saona et al., 2011). Inbred plants have been 

shown to have a lesser defence against herbivore attack. Inbred horsenettle (Solanum 

carolinense) got significantly lower amounts of spines and trichomes than outbred ones after 

they had been induced by insect feeding. Inbred plants also had a lower constitutive defence 

than the outbred ones (Kariyat et al., 2013). Volatile emissions from plants are also lower in 

inbred plants than in outbred ones. This was shown both for emissions that are part of the 

constitutive resistance and induced emissions. The low emissions of volatiles lead to lower 

recruitment of predators and parasitoids when the plants were attacked by herbivores (Kariyat 

et al., 2012). 

!
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Cotton  

The genus Gossypium is an ideal model organism to study domestication effects on as there 

are many closely related species that are domesticated that also are present as wild types 

(Fryxell, 1979). Cotton fibres are a produced by a number of species from the genus 

Gossypium (Malvaceae) (McDougall et al., 1993). The genus is part of the Gossypieae tribe, 

which is distributed in the tropics and subtropics.  

!
Cotton is one of humanity’s primary sources of fibres. The cotton fibres are produced by the 

seeds produce and are elongated epidermal hair cells (McDougall et al., 1993). Selection has 

been done to get a white fibre (Fryxell, 1979). The harvested cotton fibre consists of a very 

high level of cellulose (83%), which means that it is a very strong fibre. Apart from the 

obvious use as fabric, cotton is used for a variety of reasons. Cotton oil is used as a vegetable 

oil and is often used in snacks. Hulls and meal left over after oil production are used as 

fodder for farmed fish or other animals and it can also be used as a fertilizer (Caliskan, 2010). 

!
Cotton is produced in 81 countries around the world and in 2014 the production of cotton lint 

was around 26 million tons, which was harvested from 34 million hectares of land (http://

faostat.fao.org/). China, India, USA, Pakistan and Brazil, which are the top five producers, 

together stood for over 75% of the world’s cotton production in 2012 (FAOSTAT, 2014). 95% 

of the world’s cotton production is Upland cotton i.e. Gossypium hirsutum (McDougall et al., 

1993). Other cultivated species include G. herbaceum, G.arboreum and G. barbadense 

(Fryxell, 1979).  

!
Direct defences in cotton 

Cotton has several direct and indirect resistance mechanisms against insect herbivores 

(Hagenbucher et al., 2013). Most species have the ability to produce Gossypol or other 

similar terpenoids (Fryxell, 1979). Gossypol is a toxin that is an important direct defence trait 

of cotton plants. Although its exact mode of action is still not understood, it might act by 

binding to proteins in the insects’ gut decreasing the amount of proteins that can be absorbed 

by the larvae. Gossypol might also block enzymes in the larvae’s guts, which further 

decreases the amount of protein the larva can absorb leading to a longer development time for 

the larva (Schoonhoven et al., 2005). Gossypol is deposited in glands on most surface tissue 

of the plant, including the seeds (Lusas & Jividen, 1987). Another direct chemical defence in 

cotton is tannins (Hagenbucher et al., 2013). In recent years genetically engineered Bt cotton 
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plants were introduced, that express toxins from the insect pathogen Bacillus thurengiensis 

(so called Bt-toxins), which offer protection against important lepidopteran pest species 

(Hagenbucher et al., 2013, Schoonhoven et al., 2005). 

!
Morphological defences in cotton include leaf structure and trichomes (Schoonhoven et al., 

2005, Fryxell, 1979). Trichomes make it harder for insects to move across leaves in turn 

making them an easier prey for predators and exposing them longer to abiotic stresses 

(Schoonhoven et al., 2005). Unfortunately the trichomes might also slow down the predators 

hunting them depending on the predator’s species. The effect of trichomes on insect pests 

also varies vastly; some are warded off while other benefit from hairy leaves. (Hagenbucher 

et al., 2013). 

!
Indirect defences in cotton 

Indirect defence of cotton consist of the release of volatiles by the plant and the presences of 

extra-floral nectaries. Cotton plants can alter their volatile blend once under attack by an 

insect pest and the new volatile mixture can be used by predators and parasitoids to locate 

their prey and hosts on the cotton plants (Hagenbucher et al., 2013). These volatiles can 

however also influence herbivores. Damaged cotton plants are less attractive for ovipositing 

female S. littoralis moths than undamaged plants, possibly to reduce competition for the 

larvae or that food quality is reduced. In experiments where volatiles from damaged plants 

were added to undamaged plants, these were significantly less attractive for the females 

(Zakir et al., 2013). The same effect has also been shown with root feeders, which made the 

attacked plants unattractive for ovipositing moth females and larvae (Anderson et al., 2011). 

In the case of the larvae this might be due to increased levels of terpenoids as root feeding 

has been shown to increase the levels of terpenoids in the leaves of G. herbaceum (Bezemer 

et al., 2003, Bezemer et al., 2004). 

!
Extra-floral nectaries are another way to attract insect predators to plants (Schoonhoven et al., 

2005). Extra-floral nectaries (EFNs) are structures that produce sugar rich nectar outside 

flowers (Bentley, 1977). In cotton they are found on the underside of the leaves. This nectar 

attracts predators or parasitoids to the plant, which helps the plant with the defence. The 

nectar production of cotton EFNs is increased after insect damage, which can increase the 

recruitment of beneficials such as ants (Schoonhoven et al., 2005, Wackers & Bonifay, 2004). 

!
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Domestication of cotton 

The domesticated cotton species are geographically separated and therefore they have been 

domesticated separately at different times and places. There are currently four species of 

cotton, which were domesticated: G. barbadense, G. hirsutum, G. herbaceum and G. 

arboretum. Two of these were domesticated in the new world (G.barbadense, G. hirsutum) 

and are tetraploid while the remaining two were domesticated in the old world and are 

diploids. Archaeological finds have shown that cotton may have been domesticated to be a 

feed for animals 4500 years ago (Fryxell, 1979). 

!
Selection of cotton 

From the time cotton was domesticated up until today, growers of cotton have selected plants 

based on different traits. The first trait that was selected was the amount of fibre around the 

seed. Later bigger fruits became an important trait in the selection. When agriculture became 

more intense pests became an increasing problem and one solution for this was to select for 

early varieties. Another trait selected was hairy plants, which provided resistance against 

certain insect pests. The next step was fibre quality, which became important at the time of 

the industrial revolution. Quality in this case means uniform, long and strong fibres, which 

could be used in the industrialized production of fabric (Fryxell, 1979). 

!
In the 1970’s there was some breeding done to create cultivars with better resistance against 

insects and diseases. Cultivars adapted to local conditions were also developed (Lusas & 

Jividen, 1987). In later years a lot of focus in cotton breeding has been on transgenic 

cultivars, such as Bt-cotton, which are useful tools for the control of pest insects (Wu et al., 

2008). Until recently it was thought that it was the crystals in the toxins that killed cells by 

making holes in the cell membranes. Recently however, it was shown that a Bt-toxin binds to 

a Mg2+ -dependent signaling system in the insect’s cells and thereby kills the cell (Zhang et 

al., 2005). However, insects have been shown to be able to develop resistance against the Bt-

toxins (Akhurst et al., 2003). 

!
All these modifications are probably ‘not for free’ and there is some evidence that 

domestication weakened the insect resistance in cotton. Additionally, with the rise of modern 

pesticides, breeders started to breed varieties for environments with a low herbivore pressure, 

e.g. discontinuation of early varieties (Bottrell & Adkisson, 1977).  Since the 1940`s there 

have been trials with glandless cotton, varieties without glands and therefore very low levels 
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of Gossypol (Lusas & Jividen, 1987), which leads to that the plants have a very low 

defensive capacity against insect herbivores (Sunilkumar et al., 2006). However, they have 

the benefit of producing seeds and plant material which are not toxic to humans, which 

means they can be used to produce food or used as feed for livestock (Lusas & Jividen, 1987, 

Fryxell, 1979). 

!
Some primitive and undomesticated varieties of cotton have been shown to have higher 

resistance to insect attacks than domesticated cotton due to higher levels of terpenoids 

(Stipanovic et al., 1978). This effect has also been shown in other species where there were 

no release of volatiles in domesticated varieties (Tamiru et al., 2011). Gossypium raimondii 

has better defence than G. hirsutum, which might be explained by the presence of a special 

terpenoid called Raimondal (Stipanovic et al., 1980). Furthermore, a naturalized variety of 

cotton was shown to produce much more volatiles than domesticated cotton when attacked by 

herbivores (Loughrin et al., 1995), which could make it more attractive to natural enemies 

!
Objectives and hypothesizes  

In this project I investigated how different varieties of cotton, with different levels of 

domestication, could affect herbivores and if domestication had a negative impact on the 

insect resistance. 

!
Therefore we conducted three different experiments. First I did a feeding assay with larvae of 

the generalist moth Spodoptera littoralis (Noctuidae: Lepidoptera) were reared on different 

species and varieties of cotton until pupation. Secondly, a two choice preference trial with the 

generalist root feeders Agriotes spp. (Elateridae: Coleoptera) was performed. Lastly I did an 

odour collection on cotton plants that were either damaged by S. littoralis, Agriotes spp. or 

with a combination of both species. 

!
I hypothesize that:  

1. Larvae will develop slower on wild varieties of cotton due to their better insect 

resistance  

2. In the two choice assays Agriotes larvae will avoid wild cultivars  

3. Plants release different blend of volatiles depending on what pests are attacking them 

!
!
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Materials and Methods  
Spodoptera littoralis 

Spodoptera littoralis from a laboratory colony (Alnarp x wild strain) were used for these 

experiments. The animals were originally collected in Egypt and the population is regularly 

refreshed with wild moths. The larvae were reared in a climate chamber at 25°C, 70% 

relative humidity and 16 L : 8 D long-day conditions and fed with artificial diet based on 

potato (Hinks & Byers, 1976). 

!
Agriotes spp. 

Agriotes spp. larvae were collected in an apple orchard on the Alnarp campus during autumn 

2013 and spring 2014. Larvae were kept in a box (30*10cm) containing soil and were fed 

with potatoes. Climate conditions were 25°C, 70% relative humidity and 16 L : 8 D long-day 

conditions. 

!
Plants 

A selection of wild and domesticated cotton plants were used in these experiments. From the 

species G. hirsutum, which stands for more than 90% of the world’s production of cotton 

(Wendel & Cronn, 2003) the following four plant types were used: 

!
• DPL 90 (Deltapine 90) is a commercial available cotton variety from Delta & Pine 

Land company (now part of Monsanto) 

• TX 8702gl is a glandless cotton variety released by Texas Agricultural Experiment 

Station (TABS) 

• TX 263, which was originally collected in Oaxaca, Mexico. 

• TX 2259 is a naturalized cotton variety, which releases high levels of volatiles when 

attacked by insects (Loughrin et al., 1995). The seeds were collected in the 

Everglades, FL (USA). 

!
Furthermore two other species of cotton was used. 

!
Gossypium herbaceum is a species of cotton originating in the Indus valley in India. G. 

herbaceum was domesticated at around the same time as G. hirsutum i.e. around 8000 to 

4000 years ago (Hancock, 2004). The seeds originate from India. 

!
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Gossypium raimondii is a new world species of cotton that contains a chemical called 

Raimondal which gives resistance against insect attack (Stipanovic et al., 1980). The seeds 

used in the experiment originate from Peru. 

!
Lastly cabbage (Brassica oleracea v. capitata, Brassicaceae) was also used as it is known to 

be an inferior host plant for S. littoralis (Thoming et al., 2013). The cultivar was Stenhuvud 

from Weibulls. 

!
All species and varieties were potted in 1.5 L pots with a commercial substrate (Kronmull, 

Weibull Trädgård AB, Hammenhög, Sweden) and were grown at 22°C, 75% relative 

humidity. 

!
Feeding Assay 

The effect of different cotton varieties on the development of insect herbivores was tested 

with S. littoralis., the larvae were allowed to emerge overnight and placed in individual 30 ml 

cups with a plaster layer on the bottom to keep the leaves from wilting. A leaf disc covering 

the plaster was cut and placed on the wet plaster before the larvae were put in. Once the 

larvae reached 4th instar they were moved to 250 ml individual cups and fed with complete 

leaves or large pieces of leaves. Leaves were kept fresh with damp cotton wrapped around the 

petioles. Larvae were fed with either artificial diet or leaves of various wild and domesticated 

cotton plants. Additionally, cabbage was used as a control treatment. Plants used during the 

experiment had at least 4-6 true leaves. Leaves were changed as they dried out or when 

consumed and artificial diet was changed daily. 

!
To control the effects of plant quality, leaves from a single plant were fed exclusively to four 

larvae. For one run of the experiment three plants of each of the species and varieties listed 

above under “Plants” were selected. Twelve insects per diet were used for each run. The 

larvae were taken from three different egg batches and were distributed accordingly. The 

experiment was conducted in four different runs making a total of 48 repeats per diet, fed 

with leaves from 16 different plants. Treatments were randomized. Survival, pupal weight 

and development time, total and for each larval stage, was recorded. The experiment ended 

when all larvae had pupated or died. 

!
!
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Agriotes distribution assay 

In a box (30*10cm) filled with soil, two different cotton plants were planted in opposite 

corners. Comparisons were made between DPL 90 and the other cotton varieties listed above 

under ”Plants”. In each box six Agriotes larvae were placed on the top of the soil between the 

two plants and were allowed to enter the soil. After a week the larvae’s distribution was 

recorded by examining the position of each larva: within the roots of plant A, within the roots 

of plant B, if the larvae had died or if they had not made any decision, i.e. the larvae were 

found in the soil between the cotton plants. The experiment was repeated five times per 

treatment. 

!
Induced volatile release in DPL 90 

DPL 90 cotton plants were infested with either S. littoralis, the root feeder Agriotes spp. or by 

both herbivores. After three days S. littorals larvae were removed, while the wireworms were 

allowed to stay in the soil for the full experimental period. A week after the insect attack 

started, head space collections of volatiles was performed.  

!
The plants were put in sealed, airtight plastic cooking bag (35x45 cm). Extraction was done 

using standard aeration columns (length: 60 mm; width: 3mm) using Porapak (60-80 mesh) 

as adsorbent. Flow rate through each column was established beforehand using a flow-meter 

(flow-rate: 100– 200 ml/min). Before use the columns were cleaned two times with each 

methanol, dichloromethane and pentane and dried with nitrogen. The columns were 

connected to aquarium pumps and inserted into the bags in a top corner of the bag. Incoming 

replacement air was filtered over charcoal and supplied from a lower corner of the bag 

diagonally from the column to get an air flow across the plant. The supplied air was ordinary 

air from the room that the odour collection was done in. Collection of samples were 

terminated after one 24 hour cycle. Volatiles were extracted from the column using 0.5 ml of 

pentane. The extracts were stored in a freezer at -20°C until they could be run on the GC-MS. 

!
Analysis of the extracts was done using a 689N Network GC System (Agilent Technologies, 

Santa Clara CA, USA) GC-MS. A USB351916H 5% phenyl /95% Methyl Siloxane (Length 

60meters. diameter 0,25 mm. df 0.25 µm) (Agilent Technologies, Santa Clara CA, USA) 

column was used as a stationary phase. Helium was used as a carrier gas, with a pressure of 

26.69 psi, resulting in a gas flow of 1.9 ml/min or 35 cm/sec. A temperature program with the 

following specifications was used 0.0–2.00 min: 50°C, 2.01-28 min: temperature was 
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increased by 8°C/min to 275°C. The temperature was then maintained at 275°C for 10 

minutes. A post-run temperature of 300°C was maintained for one minute. Total run time: 

40.13 min. The detection of compounds was done using MS with an electron spray ionisator. 

The MS was set to the following conditions: solvent delay 4:30 min, 70eV ionization energy. 

Scanning occurred between 29 m/z and 400 m/z. The database used for identification of 

compounds was Alnarp11. To make verify that the compounds were what the program 

identified them as Kovats retention indexes were calculated and compared to values for wax 

columns at pherobase.net. 

!
Statistics 

The programmes used were Minitab statistical software 16 and R 3.0.2. The larval mortality 

and the virus infections was analyzed with a χ2 test in Minitab comparing all other treatments 

to the domesticated variety Dpl 90. Total larval development time, duration of instars and 

pupal weight were analyzed in Minitab with ANOVA:s and then followed up by Tukey tests. 

Lastly the data from the Agriotes two choice trial was analyzed in R using a McNemar’s test. 

!
Results 
Feeding Assay 

During the feeding assay no significant differences in mortality was detected between DPL 

90 and the remaining treatments, except for cabbage, which had a significantly lower 

mortality (p-value 0,038; X2=4,286, df=1) (Table 1). 

!
Tab. 1 Larval mortality. Mortality of S. littoralis larvae between 1st instar and pupation, 

when being fed on different types of Gossypium, artificial diet or cabbage. Data was analysed 

using a χ2 test comparing DPL 90 and the other treatments. (n-values=48 for all treatments). 

  

!  

!
!
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Tab. 2. Total larval development time. Mean development time of S. littoralis larvae (days 

± standard error) when fed on different types of Gossypium, artificial diet or cabbage. Means 

within one line followed by different letters are significantly different (p ≤ 0.05; Tukey HSD 

test). 

!  

  

Tab. 3 Duration of instars. Mean duration of larval instars of S. littoralis (days ± standard 

error) when fed on different types of Gossypium, artificial diet or cabbage. Means followed 

by different letters are significantly different (p ≤ 0.05; Tukey HSD test). 

!

!  

  

Development time of larvae was however significantly prolonged in larvae fed with wild 

cotton plants (F =50,53 ; df =198 ; p <0,001 ). The total development time from emergence to 

pupation was longer in G. herbaceum, Tx263 and Tx2259, while DPL 90, Glandless cotton 

and artificial diet had the shortest development time. Cabbage and G. raimondii had 

intermediate development times (Table 2). There was no significant difference between the 

different diets during the first instar (F =1,49 ; df =201 ; p =0,172 ), but for later instars there 

was a difference (Table 3). On average, there was a one week difference between the diets 

which promoted the fastest pupation, i.e. glandless cotton, and the diet which delayed 

pupation the most i.e. Tx 263. 

!

Total development time (Days) n-values
G. raimondii 21,6±0,07B 25
G. herbaceum 25,1±0,10A 20
Tx2259 26,3±0,14A 24
Tx263 26,7±0,22A 22
Glandless 18,4±0,05C 29
Artificial diet 18,6±0,06C 23
Dpl 90 20,0±0,07BC 23
Cabbage 19,5±0,04C 33
ANOVA P-value 0,000

Diet First instar Second instar Third instar Fourth instar Fifth instar Sixth instar n-values
G. raimondii 5,4±0,04A 3,4±0,07BC 4,7±0,08ABC 2,3±0,04B 3,2±0,05AB 2,2±0,06ABC 25
G. herbaceum 6,0±0,03A 4,4±0,11AB 5,4±0,12A 2,9±0,07AB 2,8±0,058C 3,4±0,08A 20
Tx2259 5,7±0,05A 5,9±0,140A 3,9±0,07ABC 3,2±0,05AB 4,3±0,07A 3,3±0,10AB 24
Tx263 5,8±0,08A 4,3±0,09AB 5,1±0,11AB 3,9±0,09A 4,3±0,14AB 3,2±0,09ABC 22
Glandless 5,4±0,04A 2,5±0,030C 3,6±0,04C 2,4±0,03B 2,6±0,04C 1,9±0,04BC 29
Artificial diet 5,23±0,04A 2,4±0,04C 3,7±0,05C 2,4±0,04B 2,1±0,04C 2,8±0,05ABC 23
Dpl 90 5,2±0,04A 2,6±0,07C 4,4±0,07ABC 2,4±0,05B 2,9±0,04BC 2,9±0,07ABC 23
Cabbage 5,53±0,03A 3,4±0,05BC 3,4±0,04C 2,7±0,03B 2,7±0,02C 1,9±0,03C 33
ANOVA P-value 0,172 0,000 0,000 0,000 0,000 0,001
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Tab. 4. Weight of pupae. Mean weight of S. littoralis pupae (mg ± standard error) when 

being fed with different types of Gossypium, artificial diet or cabbage. Means within one line 

followed by different letters are significantly different (p ≤ 0.05; Tukey HSD test). 

!

 !  

!
Additionally, there was a significant difference between in the pupal weights depending on 

larval diet (F =11,47 ; df =176 ; p <0,001 ) (Table 4). Artificial diet lead to the highest pupal 

weights followed by cabbage, while G. raimondii and Tx 263 had the lowest pupal weights. 

The only significant difference between treatments was between artificial diet and all the 

other treatments.  

!
Tab 5. Virus infections. Mortality of S. littoralis larvae due to virus between 1st instar and 

pupation, when being fed on different types of Gossypium, artificial diet or cabbage. Data 

was analysed using a χ2 test comparing DPL 90 and the other treatments. (n-values=48 for all 

treatments). 

!   

In addition, I investigated if there was a connection between virus infection and diet (Table 

5), no significant differences between the treatments were found. 

!
!
!
!
!
!

Treatment Weight (mg) n-values
G. raimondii 198,77±1,179C 25
G. herbaceum 227,65±2,725BC 20
Tx2259 231,37±2,305BC 24
Tx263 206,05±2,966C 22
Glandless cotton 238,15±2,431BC 29
Artificial diet 335,41±3,414A 23
Dpl 90 238,65±2,197BC 23
Cabbage 258,43±2,423B 33
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Agriotes choice assay 

!
Tab. 6 Agriotes two choice test. Data was analysed using a McNemar’s test comparing DPL 

90 and the other treatments. 

!  

  

There was no significant difference in the choice behaviour of Agriotes spp. when they were 

presented with different cotton varieties. However, in all comparisons, except between DPL 

90 and G. herbaceum, significance was close to the significance threshold (Table 6).  

!
Odour blend of damaged cotton plants 

Tab. 7 Volatile blends. Compounds released from insect damaged DPL 90 G. hirsutum 

plants during a 24 h time period (µg ± standard error). 

!  

  

Comparing the composition of odour plants of herbivore damaged cotton plants, the 

following was observed: the amount of alpha-pinene, 1S-beta-Pinene and myrcene was 

higher in plants infested with S. littoralis than in plants infested with Agriotes spp. Also, 

terpinolene follows the pattern of having a higher level in plants with S. littoralis and lower 

in the presence of Agriotes spp. The plants with both species of larvae have levels of these 

compounds intermediate to the other treatments. The other identified compounds, camphene, 

3-carene and gamma-terpinene do not vary very much depending on what insects are 

infesting the plants (Table 7). 

!
!
!
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Discussion  
During the course of evolution plants have developed many different ways to defend 

themselves against insect herbivores. These can be chemical or morphological, induced or 

constitutive and direct or indirect as explained above but their purpose is to make the 

conditions for herbivores trying to use the plant as a host plant as unfavorable as possible. 

The results showed that domesticated cotton varieties generally mediated shorter developing 

times than wild varieties for S. littoralis larvae, which mean that domestication and selection 

may have lowered the defensive capacity of the plants. The Agriotes two-choice trial showed 

no significant results but a clear trend towards preference for Dpl 90 in all treatments except 

G.herbaceum. Lastly the odour collection showed that some induced volatiles in the cotton 

were lower if Agriotes were on the plants than when they had not been. 

!
We sought to investigate if domestication has lowered the defensive abilities of cotton in 

trade-offs with other traits such as yield or whiteness of fibre. The importance of the defence 

can be seen when looking at the results for glandless cotton. Cotton seeds with very low 

levels of pigment glands were first observed in the late 1940: s and during the next 

decennium some crosses were made until a glandless seed was created. During the 60’s 

further crosses between glandless and commercial cultivars where made (Lusas & Jividen, 

1987). Since the Gossypol is located in these glands (Fryxell, 1979) plants without glands 

had very small amounts of Gossypol. A big problem with glandless cotton is that it has very 

low resistance to insect attack because of the lack of gossypol (Sunilkumar et al., 2006). This 

was shown in the feeding assay where glandless cotton leads to the shortest development 

time of the larvae. Short development time means that the larvae have better conditions on 

the glandless cotton than on other varieties.    

!
The wild cotton varieties’ (Tx266, Tx2259, G.raimondii and G. herbaceum) better resistance 

could be seen in longer development time and in the case of Tx263 and G.raimondii and a 

lower pupal weight than the other treatments. Pupal weight is often used as an indicator of 

fitness (Carriere et al., 2004) so even if survival of the larvae was not lowered the adult moth 

might be affected . Dpl 90 and Glandless cotton had shorter development time than the other 

cottons, however the pupal weight did not vary much. Cabbage was included as a poor host 

as it has been reported to delay development of S.littoralis larvae (Thöming et al., 2013). The 

cabbage contains glycosinolates that are toxic to many insect generalist herbivores and also 

can work as a feeding deterrent due to its bitter taste (Schoonhoven et al., 2005). Larvae also 
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react differently depending on instar. Older larvae are affected less by growth inhibitors than 

younger larvae (Wiseman et al., 1996). Even though pupal weight is used as a indicator of 

fitness it is likely that the larvae on the artificial diet are actually to big as pupae. In nature, 

individuals this big would have trouble competing with lighter conspecifics and would be out 

selected. The relatively short development time of G. raimondii compared to G. herbaceum 

might be a bigger advantage for the larvae than pupal weight. A shorter development time 

means that the larvae get a head start and might even be able to have an extra generation 

during a growing season. 

!
In some cases plants without defensive chemicals might prove to be a disadvantage for 

larvae. Linalool is a green leaf volatile released from many different plants when they are 

under herbivore attack (Schoonhoven et al., 2005) and it is also a compound present in some 

male insects sexpheromones (Landolt & Heath, 1990). This means that male moths raised on 

plants with low amounts of linalool might be less attractive to females than larvae raised on 

better defended plants. 

!
In Table 2 it shows that there is a difference in the variance between slow developing diets 

(G.herbaceum; 0,10; Tx2259; 0,14 and Tx263; 0,22) and the diets which promoted the fastest 

growth (Glandless cotton 0,05;  Dpl 90 0,07; Artificial diet 0,06 and cabbage 0,04). This 

implies that the undomesticated varieties are less genetically uniform meaning that there 

could be many different genes or traits that offer resistance within the cultivar, but are not 

necessarily present in each individual plant. Glandless cotton is of special interest as it not 

only is based on domesticated cottons that have been developed through intensive breeding to 

not have gossypol (Fryxell, 1979). This can help to explain why glandless cotton lead to one 

of the shortest development times of all diets. The selection process have lowered the general 

defensive ability of the cotton plant and the lack of gossypol further makes glandless cotton 

an ideal host for insect herbivores (Sunilkumar et al., 2006). 

!
The wild cotton varieties could be used in breeding programs to develop more resistant 

varieties. The strains Tx263 and Tx 2259 could be bred into commercial cultivars to create 

new insect resistant cultivars that are cheaper for farmers. This could help farmers that do not 

use Bt-cotton or pesticides, either if they cannot afford it, or if they just do not want to use it. 

As the variance was relatively high, the plants with the longest development times would 

have to be identified from these strains.  
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!
One important thing to note is that there are other factors that may have effected the outcome 

of the trial. Domesticated plants have been shown to have fewer stomata than wild varieties 

(Navea et al., 2002). This could mean that the wild varieties lost water faster than the 

domesticated ones meaning that their quality deteriorated faster. The slow development might 

actually just be due to the wild varieties losing nutrients faster.  

!
Domesticated of plants has in some cases lead to leafs that are less though. Tougher leaves 

are avoided by ovipositioning females (Bellota et al., 2013). The reson for this is unclear, 

possibly the insects cannot oviposit or perhaps they find the host plant unsuitable for the 

larvae due to the toughness of the leaves. 

!
In the feeding assay the development time was recorded. For future studies it would be 

interesting to investigate what made the larvae develop slower on wild varieties. Also a 

comparison of volatile release between the different G. hirsutum varieties would be 

interesting to investigate if they release the same volatiles and if so, how much does it vary? 

!
The volatile emissions in the odour collections differed depending on which larvae induced 

the plant (Table 7). In the plants where Agriotes spp. were present the levels of alpha pinene, 

1S-beta pinene, terpinolene and myrcene were lower than when only S.littoralis where 

present. The lowest release of volatiles occurred when only Agriotes larvae induced the 

plants. Possibly, Agriotes spp. can manipulate the plant to not produce as much defensive 

compounds. It has been shown that some insects have compound in their saliva that can 

disrupt the induction of the plants induced defences (Weech et al., 2008). Another group of 

scientists showed that bacteria that live in the gut of Colorado potato beetle (Leptinotarsa 

decemlineata) can be transferred from the beetle and lower the plants defensive response 

(Chung et al., 2013). However, the fact that Agriotes spp. does induce a response in above 

ground defence is in line with earlier findings (Bezemer et al., 2004). The other compounds 

did not vary between the treatments; this could be because they are not part of the induced 

defence.  

!
As the volatiles were only collected from the aboveground parts of the plants, any volatiles 

released by the roots in the soil would not be detected by this experimental setup. In maize, it 

was shown that below ground herbivores can induce the roots to start releasing (E)-beta-
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caryophyllene, a sesquiterpene which attracts a nematode that attacks the insect herbivores 

(Hitpold & Turlings, 2008). 

!
The Agriotes two choice trial did not give any significant results. There is however a clear 

tendency in all treatments except G.herbaceum that the larvae prefer Dpl 90. The preference 

for Dpl 90 might be proven with a larger sample size. A resent trial showed that Agriotes spp. 

larvae do not move unless their food source is depleted (Sonnemann et al., 2014). This might 

explain why there were no significant results in my trial. In a trial with Agriotes ustlatus it 

was shown that the larvae can migrate 60 cm down in the soil if the conditions at soil level is 

unfavourable, for example to dry or to cold (Furlan, 1998). This shows that Agriotes larvae 

have the ability to move away from bad host plants. If the larvae do prefer Dpl 90 it would be 

in line with the findings in the feeding assay that domesticated plants are better hosts for 

insect herbivores. 

!
Today 95% of the cotton produced is of the species G. hirsutum (McDougall et al., 1993) but 

that does not necessarily mean that it is the best species for every farmer in every land. There 

most likely are local adaptations to pests in for example G. herbaceum that have evolved 

together with pests in India. There are also cultural values in keeping old varieties and 

cultivars that have been grown for centuries in an area like G. herbaceum in India and G. 

arboreum in China (Fryxell, 1979). 

!
Lastly, Bt-cotton might not be the ultimate solution to pest problems. As I have shown in this 

report inbreeding and domestication of plants lead to plants with weaker defences. Bt-cottons 

are intensively bred varieties that have been genetically engineered putting one or a few 

genes in that produce toxins that kill insect herbivores feeding on the cotton (Fryxell, 1979). 

There are however evidence that suggest that pests are developing resistance against these 

toxins (Gassmann et al., 2014). If or when the insects overcome the Bt-toxins the cultivars 

are just as vulnerable as any other cotton variety to the resistant insect strains. Therefore, it is 

important to look into more resistance traits and investigate further what makes the wild 

cottons more resistant. The more of these resistance traits that can be identified and bred or 

genetically engineered into cotton varieties the better protection they will have. However the 

new resistance traits might come with the price of a trade off with yield. 

!
!
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Conclusions 
The findings in this report show that there is a clear effect that domesticated plants have a 

weaker defence than wild species. Dpl 90, glandless cotton, Tx269 and Tx2259 are all the 

same species yet they vary from the shortest development time to the longest. This 

knowledge could also be used by plant breeders, especially ones that do not want to use Bt-

cotton for different reasons. The fact that the variance was bigger in the wild cotton varieties 

shows that they are more genetically diverse than the domesticated varieties. The genetic 

diversity within the wild strains means that within the cultivar resistance varies and different 

traits are expressed at different levels.  The Agriotes two choice trial showed no significant 

differences but a clear trend that the larvae preferred Dpl 90 over all other cultivars except 

G.herbaceum. Also this indicates that domestication have made the plants more attractive for 

pests. 

!
!
!
!
!
!!!!!!!!!!!!!!!!!!!!!
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