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Abstract 
How the yield of mature stands changes in response to factors such as stand composition, 

planting density and abiotic conditions is a developing topic, and underpins models and 

generalizations used by forest managers today.  However, these generalizations are both the 

subject of debate and are limited to mature stands, leaving a knowledge gap concerning 

both mixed species stands and younger stands. I performed this study to address this 

knowledge gap. Using seedlings of two common boreal tree species (Betula pendula Roth 

and Pinus sylvestris L.), three planting compositions (two monocultures and one 50:50 

mixture), four planting densities (2, 8, 16 and 24 seedlings per pot) and four abiotic condi-

tions (high nutrient + high water, high nutrient + low water, low nutrient + high water and 

low nutrient + low water) I tested the effects of these factors on the yield characteristics of 

seedlings.    

Under greenhouse conditions seedlings were grown for 10 weeks in a full factorial block 

design experiment. Total seedling masses, mean seedling masses, above and below ground 

(A:B) masses, A:B ratio, mortality, height and diameter were measured to observe if 

changes in seedling yield characteristics occurred.  My results show that seedling yield is 

affected by all three factors; species composition, density and abiotic environment, as well 

as interactions among them. The significant interaction terms indicated not only that the 

seedling performance differed among planting compositions (e.g. between seedling mono-

cultures and mixtures), but that the effects were also dependent on both the planting density 

and the abiotic conditions. Total mass, above ground mass and below ground mass of 

monocultures and mixed planting composition significantly increased with increased densi-

ty in all planting compositions. While mean seedling mass, and seedling diameter showed 

significant decrease with increasing density. While often not statistically significant the 

change in seedling performance of each planting composition with increasing density var-

 
 



ied with abiotic conditions. Under conditions of high nutrient + high water an overyielding 

effect is observed, notably at intermediate planting densities. However, yield in mixtures 

was only significantly different from birch monocultures.  When mean seedling mass was 

plotted on a log mass - log density scale the observed relationships were all negative but 

varied in intensity, when planting composition and abiotic conditions were changed refut-

ing the self thinning rule and proposed constant slope.  The results from this experiment 

suggest that these three factors and their interactions influence yield in seedlings, and that 

overyielding may occur under specific conditions. These results also contribute to the de-

bate on the general applicability of the self-thinning law, by showing that the relationship 

between yield and density is not constant. Such findings contribute to the understanding of 

yield and the effects of stand characteristics on seedling performance.   

Keywords: Abiotic environment, Betula pendula, Density gradient, Interaction effects Pi-

nus sylvestris¸ Planting density, Planting composition, Seedling yield. 
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1 Introduction 
Stand structure and tree species composition are key attributes of forest ecosys-

tems, and are determinants of total stand yield (Griess and Knoke, 2011).  A great 

deal of effort has been put into developing a thorough understanding of how stand 

composition, population density, and abiotic conditions impact on total yield of 

forests (Skovsgaard and Vanclay, 2008, Pretzsch, 2009) as well as how these fac-

tors impact on forest production (Cater and Chapin, 2000, Skovsgaard and 

Vanclay, 2008, Treberg and Turkington, 2010, Griess and Knoke, 2011, del Río et 

al., 2014). For example, numerous studies have investigated how density-

dependent growth of entire stand communities including understory vegetation and 

canopy cover trees varies with soil resource availability (Treberg and Turkington, 

2010), and how total yield is impacted by density-dependent factors, such as re-

source competition and species interactions, that increase with crowding (Condes 

et al., 2013). Many of these studies are developed from uniform mono-specific 

mid rotation aged stands, and recently more studies addressing how these relation-

ships apply for stands of multiple species are being published (see Kelty (1992), 

Frivold and Frank (2002), Kelty (2006), Condes et al. (2013), Gamfeldt et al. 

(2013), Lundqvist et al. (2014)). The development of silvicultural systems that 
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maximize yield of monocultures has led to the conversion of once highly diverse 

European forest stands into monospecific conifer stands (Bjorse and Bradshaw, 

1998, Farrell et al., 2000).  This has in turn raised concern of the reduction of spe-

cies richness and brought attention to the effects of forest diversity (Hooper et al., 

2005). How forest diversity may impact on forest ecosystem productivity and total 

yield is therefore widely debated (Gamfeldt et al., 2013). Some authors present 

evidence that mixed species stands are more productive than monocultures 

(Condes et al., 2013, Kawaletz et al., 2013) or may better resist catastrophic events 

(such as storms) and predicted climate change (Drobyshev et al., 2013). However, 

there is limited understanding and agreement regarding the potential benefits of 

species mixing in practical forestry (Agestam et al., 2006). 

Stand growth is regulated by a variety of factors, of which species identity, re-

source availability and population densities are considered to be among the most 

important (Pretzsch, 2009). The current body of literature on stand yield is based 

predominantly on past and present field observations of mature forest stands, and 

has led to varied results as to whether or not mixed stands are superior to mono-

specific stands.  For example, a review of previous studies by Pretzsch et al. 

(2010), showed that overyielding often occurred as the result of stand mixing in 

central European stands of Norwegian spruce (Picea abies [L.] Karst.) and Euro-

pean beech (Fagus sylvatica L.). Additionally, Hynynen et al. (2011) found that 

yield in mature mid rotational stands of southern Finland changed with the propor-

tion of each species within the stand and decreased as the ratio of silver birch 

(Betula pendula Roth) to Scots pine (Pinus sylvestris L.) increased.  In contrast, 

Pretzsch et al. (2012) concluded that the potential for overyielding in the mixed 
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stand varied with the environment as opposed to the species mixture ratio. It is 

unclear based on available evidence as to how mixed stands perform relative to 

single species stands (Pretzsch et al., 2012). The inconclusive nature of present 

evidence could be due to various factors that may differ among studies; notably 

species compositions, resource availability, measures of and account for tree inter-

actions (Hooper et al., 2005).  Furthermore, the regional and local climate, stand 

density, stand age, stand management and individual tree characteristics are not 

constant between studies and therefore contribute to the contradictory results 

(Pretzsch et al., 2012).   

While the precise development of a stand is subject to many factors it is gener-

ally assumed that the relative growth and biomass accumulation of tree popula-

tions becomes less when the stand reaches maturity, possibly due to finite resource 

availability and increasing volume (Pretzsch, 2002).  As the stand develops, each 

individual tree within the stand consumes more resources until crown closure or 

critical density levels are reached. Once this level of stand maturity is reached 

density-dependent growth effects start to emerge and competition effects begin to 

show in the growth and survival of the population (He and Duncan, 2000).   Early 

observations of the basic relationship between density and total yield of monocul-

tural even aged stands by Reineke (1933) and Yoda et al. (1963) led to the devel-

opment of a model which predicted stand yield, biomass (B) or weight (m),  based 

on stand density (N). This relationship is also known as the -3/2 power law or the 

self-thinning rule (Pretzsch, 2002). As an empirically based rule, it predicts that 

the relationship between size and density in an even aged mono-specific stand can 

be determined as the logarithm of average mass plotted against the logarithm of 
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plant density, with the resulting straight line as the ‘self-thinning line’ (Weller, 

1987). When the population increases above a critical density, self-thinning or 

density dependent mortality occurs (Lonsdale, 1990).  This self-thinning rule is 

represented by the basic equation: 

 B = kN(-a)   or   log B = (a) log N + log k.   

Where B is the stand biomass, k and a are constants and N is the stand density 

(Lonsdale, 1990). According to allometric observations and modeling of even 

aged single plant species, it is estimated that a, a species invariant scaling expo-

nent, should be approximately -3/2 (Lonsdale, 1990, Zeide, 2010, Weller, 1987, 

1979, Pretzsch, 2009). This rule has been often reviewed, adapted and debated; it 

was for long considered a universal relationship, but many studies have also refut-

ed its generality (Weller, 1987, Lonsdale, 1990, Charru et al., 2012). Moreover 

there is a lack of development of this type of relationship in mixed stands, leaving 

a knowledge gap and limited applicable knowledge for use in stand management.  

This gap has been cited as a potential reason for the limited use of mixed stands in 

practical forestry today (Treberg and Turkington, 2010). Although highly debated, 

the general understanding of the self-thinning rule has been frequently used by 

forest managers to determine the optimal thinning regimes and to predict natural 

mortality  (Vanclay and Sands, 2009). As such, further investigation is needed to 

assess how well the self-thinning rule is applicable in a given stage of stand devel-

opment for different stand compositions (Treberg and Turkington, 2010). 

The majority of studies investigating over-yielding and density-dependent 

growth relationships are from mature stands, and there is a lack of studies address-

ing this issue for boreal saplings and seedlings.  As early stages of tree establish-
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ment are strongly influenced by growing conditions in different ways than mature 

stands (Ponge et al., 1998),  it is expected that seedlings will respond differently to 

stand conditions (density, composition and resource availability) than the equiva-

lent mature stand. It is also suggested that responses to planting density of seed-

lings will differ from those seen in mature stands, which would cause seedling 

self-thinning curves to differ from the suggested self-thinning law (Charru et al., 

2012). Using two common native boreal and commercially important tree species 

in Sweden, Pinus sylvestris (Scots pine) and Betula pendula (Silver birch) (Frivold 

and Frank, 2002), I performed a full factorial 10-week greenhouse experiment to 

develop a better understanding of how seedling yield in mixtures differs from that 

in monocultures under different density and environmental conditions. This study 

contributes to the advanced understanding of density dependent growth in seedling 

mixtures and monocultures under different abiotic conditions, and further if spe-

cies in mixture could alleviate reductions in seedling performance expected with 

modified abiotic conditions. Specifically, I intend to address the following ques-

tions: (1) Is there a difference in final seedling performance between tree seedling 

planting compositions and is this affected by planting density?  (2) Is there an 

effect on final seedling biomass yield by density and does it differ under different 

abiotic conditions? and (3) Are there differing effects on final seedling yield by 

planting composition in different environments? By testing for these questions I 

seek to also review the nature of the self-thinning rule and how the curve-linear 

relationship between density and plant biomass yield in seedlings may vary be-

tween monocultures and mixtures as well as under adverse environmental condi-

tions. 
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2 Materials and Methods 

2.1 Experimental design  

In order to examine how tree species composition and density affect total bio-

mass yield and how this relationship is modified by different abiotic conditions, I 

established a full factorial standard replacement series in which different densities 

of tree seedlings were grown in pots in a greenhouse in monocultures and polycul-

ture under two levels of moisture and fertility. The experiment consisted of 48 

treatment combinations; three seedling combinations (B. pendula in monoculture, 

P. sylvestris in monoculture, and B. pendula plus P. sylvestris mixture), four plant-

ing densities (a total of 2, 8, 16 or 24 seedlings per pot, with these total densities 

maintained in both monocultures and mixtures), and four growing conditions con-

sisting of high and low nutrient soils fully crossed with two levels of water addi-

tions.  A total of 5 replicates of the 48 different treatments and treatment combina-

tions were established in a randomized complete block design resulting in 240 

experimental units. Each unit (hereafter ‘experimental unit’) was composed of 

prescribed growing medium (see below) and seedlings within a 200 cm3 (2.5 cm 

radius by 10 cm height) cylindrical opaque plastic pvc tube.  B. pendula and  P. 
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sylvestris seedlings were planted in monocultures at each of the four densities as 

well as in a 1:1 species: species s combinations using a substitutive replacement 

series design  (Freckleton and Watkinson, 2000). This involved that for each of the 

four densities, seedlings in the mixture had the same total density as the species in 

the corresponding monocultures. By using this design I expected to be able to 

compare and contrast the differences from imposed experimental treatments be-

tween the monocultures and the mixture. The design was chosen for the ability to 

manipulate the components in a continuous range of densities, despite the inability 

to distinguish between inter-and intra-species competition effects (Freckleton and 

Watkinson, 2000).      

2.2 Growing medium  

The growing medium was prepared as three soil layers to mimic natural soil ho-

rizons (Rothe and Binkley, 2001)(Figure 1). First, all experimental units were 

filled at the bottom with 3-cm of a mixed base layer of industrial quartz sand and 

Hasselfors K-jord soil, in a 2:1 volume to volume ratio to allow for drainage (Fig-

ure 1). On top of this layer, 3 cm of a 2:1 mix of natural mineral soil: Hasselfors 

K-jord was added allowing for drainage and incorporation of natural soil nutrients 

and biota. Lastly a top layer was added consisting of 3 cm of either (a) a 1:1 mix-

ture of natural humus: Hasselfors K-jord (hereafter high nutrient) or (b) a 14:1 

mixture of natural humus:Hasselfors K-jord  (hereafter low nutrient). By using two 

different growth medium mixtures for the top layer I imposed a nutrient treatment, 

with two soils that differed in fertility, notably macro nutrients, thus representing 
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contrasting conditions likely to be found on spot scarified clear-cuts prior to seed-

ing or planting.  All natural soil materials, humus and mineral substrates, were 

collected from a 2 year old harvested P. sylvestris stand in Bergsboda, Sweden  

(63°46’N, 20°20’E) in November, 2013 prior to ground freeze. Both mineral and 

humus collected materials were cleaned of all large woody debris, stones and 

green living plant material, then stored separately until the experimental units were 

prepared. Hasselfors K-jord is a potting mix, consisting of 95 % light peat (2-30 

mm white H2-4 humification) and 5 % sand. The mix has a pH of 6.0, density of 

340 kg/m3, >60% organic matter content, and N:P:K 14:7:15 (Holmberg, 2014). 

  
Figure 1. Growing substrate layers within experimental units. Layer 1 -industrial quartz sand and 
Hasselfors K-jord mixture (2:1 volume/volume ratio); layer 2 -mixed  natural mineral soil and Has-
selfors K-jord mix (2:1 v/v), and; layer 3 -either a  1:1 or a 14:1 mix (v/v) of collected humus and 
Hasselfors K-jord. (Not to scale)  

2.3 Seedlings 

Seeds of B. pendula and P. sylvestris were pre-germinated on cleaned coarse 

grained industrial quartz sand watered to field capacity under artificial light at 

room temperature (Nilsson and Zackrisson, 1992). These species were selected on 

the basis that mixed forests in Scandinavia are most often B. pendula admixtures 

in B. pendula or Picea abies (Norway spruce) dominated stands (Hynynen et al., 
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2011).  B. pendula and P. sylvestris are both early successional species which may 

enhance effects in the mixed species planting composition within the short 10 

week growing period. The use of early successional species has been cited as a 

practical method to examine the life history during the seed to sapling life stages 

(Dalling and Hubbell, 2002). However, both species have differing niches (notably 

stress responses, and resource use) and as such have differing site requirements 

and reactions to disturbance. B. pendula is generally more common in naturally 

regenerating sites of higher fertility relative to P. sylvestris and is often found on 

mid to high points within pine stands, whereas P. sylvestris is more common in 

sites of poor fertility or moisture (Frivold and Frank, 2002).  By having two spe-

cies with different niches, I maximized the potential for differences between site 

conditions and any effect in the mixed species planting composition may be great-

er.  

 After germination, seedlings were left to grow for approximately 18 days until 

primary needles and leaves had developed and stems were strong enough to un-

dergo transplanting. Minimal amounts of a weak N:P:K fertilizer was applied to 

enhance initial growth as per manufacturer dosage. Seedlings were planted to es-

tablish a density gradient for the density treatment. In monoculture treatments, 

each experimental unit was planted with 2, 8, 16 or 24 seedlings of B. pendula or 

P. sylvestris in rows within each pot maintaining equal space between seedlings 

across all treatment densities. In mixed treatments seedlings of B. pendula and P. 

sylvestris were planted in rows with the two species planted in alternating postions 

and in a 1:1 proportion across the four densities (Figure 2).  A total of 750 seed-

lings were initially planted into a total of 240 units for the 5 replicates used.  
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Figure 2. Planting configuration, showing mixed species alternating pattern and equal spacing dis-
tance between seedlings. (Not to scale) 

All units were left to acclimatize for a period of 2 weeks in the greenhouse until 

the moisture treatment was applied. This involved establishing units of limited 

moisture by amending these units with 50% of the volume of water added to non-

limited units as done by Agestam et al. (2005) with the moisture limited units re-

ceiving the minimal amount of water to maintain growth (e.g. 25 ml vs 12.5 ml). 

All units were watered every second day. Replicate blocks were rotated systemati-

cally within the greenhouse over the course of the study to reduce impact from 

variation in environmental conditions in the greenhouse. Greenhouse conditions 

throughout the experiment were maintained with 18 hours of light, relative humid-

ity of 60 ± 10 %Rh and daytime and night time temperatures of 20˚C and 15˚C 

respectively. Misting spray for maintaining the relative humidity was directed 

away from the planted pots to limit influence on moisture treatments. Throughout 

the growth period units were cleared of various bryophyte species that established 

from spores on the humus surface. Planted seedlings were left to grow with ap-

plied treatments for a period of 10 weeks. 

2.4 Harvesting and measurements  

The initial biomass differed between B. pendula and P. sylvestris seedlings and to 

avoid possible bias comparing mass between  two species of different size 

21 
 



(Freckleton and Watkinson, 2000) 100 random seedlings of B. pendula and P. 

sylvestris, respectively,  were selected from the pre-germinated batches at the time 

of planting (i.e., after 18 days of germination on sand). These were oven dried 

over 24 hours at 60°C, weighed to determine the initial mean mass per seedling 

and then used in calculating the final yields. B. pendula seedlings weighed on av-

erage 0.0024 (± 0.002 SE) g and P. sylvestris on average 0.0063 (±0,006 SE) g 

seedling-1. Following 70 days of growth with applied treatments, height, diameter 

and species identity of the tallest seedling in each pot regardless of species was 

recorded before seedlings were harvested sequentially by replicate (Dehlin et al., 

2004).  Seedlings were removed from the pots, roots were carefully hand washed 

to remove soil, and plants then divided into above ground biomass and below 

ground biomass. The above ground and below ground biomass of the seedlings 

was oven dried for 24 hours at 60 °C and weighed separately.  Using the dry 

weights the above: below ground biomass (A:B) ratio was determined for each 

experimental unit. To determine treatment mortality, the number of dead seedlings 

per pot and their species identity was recorded; total percent mortality per pot was 

determined to depict survival across all treatments.   

2.5 Statistical analysis  

I analyzed all response variables using a full factorial general linear model (GLM) 

performed with Minitab® 16 Statistical Software  (MinitabInc., 2013). I used 

planting composition (i.e. monocultures of B. pendula and P. sylvestris or the 1:1 

mixture), planting density and environment as fixed factors and block as a random 
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factor to determine statistically significant effects of the factors and their interac-

tions on the dependent variables. The dependent variables included total biomass, 

above ground biomass, below ground biomass, A:B ratio, individual seedling mass 

(total mass/ planting density), maximum seedling height, diameter of tallest seed-

ling,  and mortality.  First I tested for normality of distribution, using graphic 

probability plots and Levene’s test of equal variance (Minitab Inc., 2013). Where 

needed (i.e., for A: B ratio, mortality and individual seedling mass) data was log 

transformed to satisfy the model assumptions of normal distribution and equal 

variance.  

In all statistical analyses a 95 % confidence level was used ( i.e. α = 0.05) to test 

null hypothesis stating that all means are equal (Ho : βi = 0) against the alternative 

hypothesis, means are not equal (Ha : βi ≠ 0). Significant results, showing differ-

ence between the means, were recorded where a p-value was lower than the α = 

0.05 confidence limit.  Where significant effects of factors were detected in the 

GLM, a post hoc test was performed to explore differences among means. The test 

I used was Tukey’s HSD with a family error rate of 0.05 (Minitab Inc., 2013).  

Where log transformations were performed I used antilog transformations to return 

data to enable graphic depiction.  

Lastly I reported and commented on the yield-density relationship of each plant-

ing composition under each of the four different environments.  
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3 Results 

3.1 Main Treatment Effects  

3.1.1 Composition 
Seedling planting composition had significant effects on total biomass, below 

ground mass, above: below ground (A:B) mass ratio, mortality and mean seedling 

mass per pot, while above ground mass and diameter were not significantly affect-

ed (Table 1). The P. sylvestris monocultures resulted in greater total biomasses 

than the mixed species planting compositions and the B. pendula monocultures, 

with the mixed species composition resulting in intermediate total biomasses (Fig-

ure 3). The composition effect on mean seedling mass was similar to that of total 

mass, with the greatest mean mass in P. sylvestris monocultures and the lowest 

mass in B. pendula monocultures, while the mixed species planting composition 

again resulted in intermediate biomasses (Figure 4). The A:B ratio was significant-

ly lower in P. sylvestris monocultures than either the mixed species planting com-

position or the B. pendula monocultures (Figure 5). Similar to the total mass and 

mean seedling mass, the mixed species planting composition resulted in interme-
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diate values while B. pendula monocultures resulted in the greatest A:B ratio (Fig-

ure 5). The difference in A:B ratio between planting compositions was supported 

by the significant effect of composition on below ground masses (Table 1). As 

such, P. sylvestris monocultures clearly had the greatest below ground mass, the 

mixed species composition had intermediate below ground mass values and B. 

pendula monocultures had the lowest below ground mass (Figure 6).  The planting 

composition also had a significant effect on seedling mortality (Table 1), with B. 

pendula monocultures presenting the highest mortality, P. sylvestris monocultures 

the least, and the mixed planting composition presenting values for mortality in 

between both monocultures (Figure 7).   
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Table 1. The effects of manipulated variables; planting composition (Betula pendula in monocultures, Pinus sylvestris in monocultures, or Betula pendula and 
Pinus sylvestris in polyculture), planting density and abiotic environmental conditions and their interaction effects on seedling biomass yield and yield character-
istics). Values represent the results (F-value) of a three-way ANOVA with block as a random factor and significant levels (p-values) in parentheses. Significant 
effects are shown in bold (p < 0.05). 

Response variable Total biomass  Above ground 
biomass 

Below ground 
biomass 

Above: below 
ground mass 
ratio* 

Mortality* Mean seedling 
mass*  Diameter 

Composition (C) 16.71 (<0.001) 0.02 (0.982) 129.90 (<0.001) 21.83 (<0.001) 17.29 (<0.001) 14.24 (<0.001) 1.49 (0.229) 

Density (D) 29.98 (<0.001) 1.41 (0.241) 146.10 (<0.001) 13.22 (<0.001) 32.83 (<0.001) 154.43 (<0.001) 11.31 (<0.001) 

Environment (E) 4.21 (0.007) 1.26 (0.288) 8.97 (<0.001) 0.06 (0.982) 1.82 (0.145) 4.05 (0.008) 10.98 (<0.001) 

C x D 1.45 (0.196) 0.87 (0.517) 24.54 (<0.001) 3.20 (0.006) 2.09 (0.057) 0.62 (0.713) 2.75 (0.014) 

C x E 4.40 (<0.001) 4.99 (<0.001) 0.37 (0.900) 3.16 (0.376) 0.84 (0.543) 2.30 (0.036) 2.68 (0.016) 

D x E 0.63 (0.773) 0.92 (0.513) 1.01 (0.437) 1.08 (0.013) 0.89 (0.537) 1.30 (0.237) 0.72 (0.692) 

C x D x E 3.47 (0.124) 2.10 (0.007) 0.56 (0.927) 1.97 (0.14) 0.91 (0.565) 1.12 (0.34) 0.45 (0.975) 

Block 3.47 (0.009) 0.25 (0.907) 18.52 (<0.001) 1.75 (0.005) 0.31 (0.87) 1.36 (0.249) 13.55 (<0.001) 

Environment: Df= 3, Fcrit: 2.64 Density: Df= 3, Fcrit: 2.64; Composition: Df= 2, Fcrit: 3.03; Environment x density: Df= 9, Fcrit: 1.91; Environment x composi-
tion: Df= 6, Fcrit: 2.13; Density x composition: Df= 6, Fcrit: 2.13; Environment x density x composition: Df= 18, Fcrit: 1.64; Block: Df= 4, Fcrit: 2.40; residuals: 
Df = 188.  
* Data are log transformed 
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3.1.2 Density  
Total seedling mass, mean seedling mass, A: B ratio, and below ground mass per 

pot, as well as the diameter of the tallest seedling were significantly affected by 

planting density, and only above ground mass was unaffected (Table 1).  When 

planting density increased from 2 seedlings to 24 seedlings per pot, both total mass 

(Figure 3), and below ground mass (Figure 6) significantly increased. Mean seed-

ling mass showed the opposite pattern and significantly decreased with increasing 

density (Table 1, Figure 4 and 8), as revealed by the negative slope value for all 

regression lines of the log biomass- log density relationship (Table 2). Increasing 

density also significantly reduced the A:B ratio, however, this effect of density 

was weaker than for  the other mass variables and showed a minor decline in ratio 

with increased density (Figure 5).  This was also true for the diameter of the tallest 

seedling, which showed only a slight observable decline with increasing density 

(Figure 8).  

3.1.3 Environment  
The abiotic environment had significant effects on total seedling mass, mean seed-

ling mass, below ground mass and seedling diameter while above ground mass,  

A:B ratio  and mortality were unaffected (Table 1). Under conditions of low nutri-

ents (irrespectively of water), total seedling mass was the lowest (Figure 3); this 

was exacerbated when both nutrients and water were decreased. When water was 

reduced irrespective of nutrients, in general total mass was only marginally lower 

in low nutrient conditions compared to high nutrient condition or showed no re-

sponse (Figure 3).  Below ground mass was significantly greater in conditions of 

high nutrients irrespective of water conditions. Under conditions of low nutrient + 
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low water the below ground mass was marginally lower than under conditions of 

low nutrient + high water (Figure 6). 

 
Figure 3. Total mass (g) per pot of seedlings grown in experimental units consisting of three 
different planting compositions (i.e., B. pendula in monocultures, P. sylvestris in monocultures, or 
B. pendula and P. sylvestris in polyculture), four planting densities and four abiotic environmental 
conditions. Values for polycultures are the combined total mass of both species. Capital letters 
indicate significant difference between density treatments within each environment treatment, and 
lower case letters indicate significant differences between seedling composition means within 
each density x environment combination; ns indicates no significant difference between means 
(Tukey HSD, α = 0.05). Data are means + SE. 
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Figure 4. Mean seedling mass (total g pot-1 / total planting density) of seedlings grown in experi-
mental units consisting of three different planting compositions (i.e., B. pendula in monocultures, P. 
sylvestris in monocultures, or B. pendula and P. sylvestris in polyculture), four planting densities and 
four abiotic environmental conditions. Values for polycultures are the combined total masses of both 
species / total planting density of the unit. Symbols and letters as for Figure 3.  

 
Figure 5. Above: below ground mass ratio of seedlings grown in experimental units consisting of 
three different planting compositions (i.e., B. pendula in monocultures, P. sylvestris in monocultures, 
or B. pendula and P. sylvestris in polyculture), four planting densities and four abiotic environmental 
conditions. Values for the polycultures are the combined totals of both species. Symbols and letters 
as for Figure 3. 
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Figure 6. Total below ground mass per pot of seedlings grown in experimental units consisting of 
three different planting compositions (i.e., B. pendula in monocultures, P. sylvestris in monocultures, 
or B. pendula and P. sylvestris in polyculture), four planting densities and four abiotic environmental 
conditions. Values for the polycultures are the combined totals of both species. Symbols and letters 
as for Figure 3. 

 
Figure 7. Total mortality (% pot-1) consisting of three different planting compositions (i.e., B. pendu-
la in monocultures, P. sylvestris in monocultures, or B. pendula and P. sylvestris in polyculture) and 
four planting densities Values for the polycultures are the combined total of both species. Symbols 
and letters as for Figure 3. 
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Figure 9. Diameter of the tallest seedling per pot, measured at the above: below ground interface 
grown in experimental units consisting of three different planting compositions (i.e., B. pendula in 
monocultures, P. sylvestris in monocultures, or B. pendula and P. sylvestris in polyculture), four 
planting densities and four abiotic environmental conditions. Values for polyculture are from the 
tallest seedling, regardless of species. Symbols and letters as for Figure 3. 
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greater than 2 seedlings per pot, the A:B ratio of B. pendula monocultures was 

either higher than that of the other two planting compositions or higher than that of 

the P. sylvestris monocultures. The A:B ratio was also the only response variable 

to be significantly impacted by an interactive effect between planting density and 

the abiotic environment treatments (Table 1). At conditions of high nutrient + high 

water and low nutrient + low water, the A:B ratio in general decreased with in-

creasing density while in conditions of high nutrient + low water and low nutrient 

+ high water the A:B ratio did not decline with increasing density (Figure 5).  The 

change in A:B ratio under the effect of planting composition and density is also 

supported by the interactive effect of planting composition and planting density on 

below ground mass. A general trend of increasing below ground mass occurred 

when planting density was increased (Figure 6).  This trend was strongest in P. 

sylvestris monocultures and weakest in B. pendula monocultures where the below 

ground mass showed only a marginal increase or remained relatively constant 

across all densities; this difference between planting compositions became more 

evident with increased density. Further, at low planting densities (e.g.  2 seedlings 

per pot) there were no statistical differences in below ground mass between plant-

ing compositions, while at higher planting densities (e.g.  > 2 seedlings per pot) B. 

pendula monocultures consistently had the lowest below ground mass.  

Moreover, there was an interactive effect between planting composition and 

density on seedling diameter. This effect resulted in B. pendula monocultures hav-

ing the largest diameter at low planting densities, yet not significantly different 

from the mixed species planting composition, while P. sylvestris monocultures had 

the smallest diameter. The diameter of the P. sylvestriss in monocultures remained 

relatively constant with increased density.  Both the mixed species planting com-
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position and the B. pendula monocultures showed a decrease in diameter with 

increased planting density, however the reduction was weaker in the mixed species 

planting composition (Figure 9).  

There was a significant interactive effect between planting composition and the 

abiotic environment on total mass, mean seedling mass, above ground mass and 

diameter, but not on the A:B ratio, below ground mass or mortality (Table 1).  The 

mixed species planting composition had the greatest total mass under conditions of 

high nutrient+ high water, whereas P. sylvestris monocultures had the greatest 

total mass in conditions of low nutrient + low water (Figure 3). However, the 

mixed species planting composition was never significantly greater than both of 

the corresponding monocultures. In contrast to the mixed species treatment and P. 

sylvestris monocultures, the production of mass in the B. pendula monocultures 

remained relatively constant across contrasting nutrient and/or water conditions.  

There was also a significant interactive effect of planting composition and abiot-

ic environment on mean seedling mass (Figure 4).  Under low nutrient conditions, 

all three planting compositions showed an overall lower mean seedling mass than 

in high nutrient conditions, with the lowest in B. pendula monocultures and 

strongest reduction in P. sylvestris monocultures. Under conditions of low water, 

the mean seedling mass of both monoculture planting compositions was greater 

than the mixed species planting composition and greater than in conditions of high 

water. The mean seedling mass in conditions of low nutrient + low water had simi-

lar but less extreme differences between planting compositions than that of the 

high nutrient + low water conditions.  Both monocultures had marginally greater 

mean seedling mass than the mixed species composition in conditions of low nu-
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trient + low water while the mixed species composition had a lower mean seedling 

mass (Figure 4).   

The interactive effect of planting composition and abiotic environment on above 

ground mass (Table 1) resulted from that B. pendula monocultures responded dif-

ferently than did both the P. sylvestris  monocultures and mixed species planting 

compositions to environmental conditions (Figure 5). Although B. pendula mono-

cultures had generally higher above ground mass than that of both P. sylvestris 

monocultures and the mixed species composition, it was lower at high nutrient + 

high water conditions (Figure 3), which was more evident in low densities. This 

result was further supported by the significant three-way interaction on above 

ground mass between planting composition, planting density and environment 

(Table 1). This showed that above ground yield differences among planting com-

positions was not only dependent on density, but also on environmental condi-

tions. In low nutrient + low water conditions, above ground mass of B. pendula 

monocultures did not differ from the high nutrient + high water conditions. This 

was contrary to the mixed species planting composition. The mixed species com-

position had a lower above ground mass and the P. sylvestris monocultures a 

greater above ground mass in conditions of low nutrient + low water. These effects 

of the planting composition x abiotic environment effects were also shown to be 

density dependent (Table 1). In conditions of high nutrient + high water as well as 

low nutrient + high water B. pendula above ground mass increased with increasing 

density, where as in high nutrient + low water and low nutrient + low water condi-

tions there was little to no change in above ground mass in B. pendula monocul-

tures. This is different from P. sylvestris  monocultures which showed decreasing 

above ground mass in high nutrient + high water conditions, relatively constant 
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above ground mass in low nutrient + high water and low nutrient + low water con-

ditions and increasing above ground mass with increasing density in conditions of 

low nutrient + high water. Furthermore, as density increased, the mixed species 

composition showed relatively constant above ground mass in high nutrient + high 

water, low nutrient + high water and low nutrient + low water  conditions, but 

increasing above ground mass in high nutrient + low water conditions.    

The interactive effects of planting composition and abiotic environment on 

seedling diameter resulted from no change in the diameter of P. sylvestris mono-

cultures across environments, which was contrary to the other planting composi-

tions where the diameter was lower at lower nutrient conditions (Figure 9). 

3.3 Mass-density relationship  

All biomass variables changed with increasing density, showing at least that plant-

ing at densities of two seedlings per pot had significantly different effects from 

planting 24 seedlings per pot. Those variables representing total pot masses in-

creased with the addition of more seedlings while the mean seedling mass, repre-

senting the weight of an individual within the pot, showed a negative relationship 

with planting density (Figure 9 and Table 2).  The nature of this relationship, alt-

hough untested and as seen in the intercept values and slopes, varied with planting 

composition and abiotic conditions. The strongest negative relationship between 

mean seedling mass and density occurred in high nutrient + high water conditions 

for the mixed species planting composition and the weakest relationship occurred 

in the low nutrient + high water conditions for P. sylvestris monocultures. Fur-

thermore, each relationship presented different y-axis intercepts by species and by 
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abiotic condition. The greatest intercept was found in the mixed species planting 

composition in high nutrient + high water conditions while the lowest was in B. 

pendula monocultures in low nutrient + high water conditions.  In high water con-

ditions regardless of nutrient addition, the mixed species planting composition had 

the greatest intercept, while in low water conditions regardless of nutrient the P. 

sylvestris monocultures had the greatest intercept value (Table 2). 

 
Figure 8. Mean seedling mass – density linear relationship for three different seedling planting com-
positions (i.e., B. pendula in monocultures, P. sylvestris in monocultures, or B. pendula and P. syl-
vestris in polyculture), four planting densities and four abiotic environmental conditions. Values for 
the polycultures are the total masses per pot of both species/ total planting density per pot. Values are 
plotted on a log-log scale of mean seedling mass and planting density with power regression.  R2-
values, slopes and intercepts are found in Table 2.
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Table 2. Power regression, slope intercept and R2 values for the mass-density relationship of seedlings in three 
planting compositions (i.e., B. pendula in monocultures, P. sylvestris in monocultures, or B. pendula and P. 
sylvestris in polyculture), four planting densities and four abiotic environmental conditions. Values for the 
polycultures are the total masses per pot of both species/ total planting density per pot. Regression line ex-
pressed in Figure 10.   

Treatment Composition n Slope Intercept R2 

High nutrient + 
High water 

Betula pendula  20 -0.0031 0.0811 0.5702 
Betula + Pinus 20 -0.0065 0.1585 0.4633 
Pinus sylvestris 20 -0.0056 0.1346 0.6078 

Low nutrient + High 
water 

Betula pendula  20 -0.0025 0.0720 0.2634 
Betula + Pinus 20 -0.0041 0.1006 0.4581 
Pinus sylvestris 20 -0.0016 0.0613 0.4143 

High nutrient + Low 
water 

Betula pendula  20 -0.0051 0.1174 0.4330 
Betula + Pinus 20 -0.0024 0.0774 0.5850 
Pinus sylvestris 20 -0.0063 0.1549 0.4399 

Low nutrient + Low 
water  

Betula pendula  20 -0.0048 0.1070 0.3654 
Betula + Pinus 20 -0.0037 0.0878 0.5898 
Pinus sylvestris 20 -0.0054 0.1369 0.3583 
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4 Discussion 
The understanding of how stand development is influenced by planting composi-

tion, planting density and contrasting environments has recently become a popular 

topic in forest ecology and silviculture (Condes et al., 2013).  In general it is 

known that all three factors, influence the yield of mature stands and are of key 

importance for forestry practitioners in stand management (Hyink and Zedaker, 

1987).  Of late, much consideration has been given to the potential benefits of 

mixed stands over to monospecies stands in regards to productivity, resistance to 

environmental change and benefits of species diversity.  While most studies have 

focused on mature mid-rotational stands and the effects of these three factors on 

stand productivity (e.g. Kelty (2006), Condes et al. (2013), Pretzsch et al. (2010), 

Pretzsch et al. (2012), it is expected that these will also impact the growth and 

yield of seedlings. The goal of this study was to contribute to the understanding of 

how these factors influence growth of Betula pendula and Pinus sylvestris seed-

lings. My study showed that planting composition, planting density and abiotic 

environment all have significant effects on various aspects of yield in B. pendula 

and P. sylvestris seedlings. Furthermore my study showed that these factors can 

have significant interactive effects, showing that mixed tree seedling communities 

may show higher yield than monospecific seedling communities, but only at par-
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ticular combinations of species composition, planting density and environmental 

conditions. Although the yield sometimes was greatest in mixtures, it was never 

significantly greater than both monocultures, and therefore these conclusions 

should be treated with caution. Further, this work also supports the argument that 

the impacts of planting density and environments on yield and the characteristics 

of yield may differ for different communities. 

In response to my first question I found that planting composition and planting 

density, as well as the interaction between these, had significant effects on seed-

ling yield. After 10 weeks of growth, significant differences in total seedling mass, 

mean seedling mass, A:B ratios, below ground mass and mortality were found 

among all three planting compositions. This is consistent with current knowledge 

on species specific characteristics and prediction of yield in mature stands, with 

conifers and angiosperms (here P. sylvestris and B. pendula) having differences in 

development, morphology and survival (Carnicer et al., 2013, Drobyshev et al., 

2013, Ostonen et al., 2007), and with the expectation that a higher planting density 

will result in higher yield per area (Li et al., 2013). While differences between the 

two monocultures were as expected, my results showed that P. sylvestris seedlings 

produced a higher total yield than B. pendula for 5 out of the 20 density x treat-

ment combinations, mostly at high densities.  Interestingly, the yield of mixed 

species treatments did exceed the yield of both monocultures under some condi-

tions, mostly at mid densities and in the richest environment. While never signifi-

cantly greater, this suggests that after more than 10 weeks of growth, overyielding 

may occur in specific combinations of planting density and environment.   

The greater mortality in the B. pendula monocultures is similar to the findings 

of Dalling and Hubbell (2002), who found higher mortality rates in the fastest-
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growing pioneer species. Furthermore, the differences in total mass among plant-

ing compositions are likely to be attributable the differences in below ground mass 

(indicative of root growth) of P. sylvestris and B. pendula seedlings. In accordance 

with previous studies of growth along density gradients, the significantly greater 

biomass in the higher densities is concurrent with findings of Li et al. (2013).  

They showed that greater biomass was produced from higher sowing densities; 

which supports the possibility that the effect of self-thinning was not yet great 

enough to overcome the additional mass added by individuals alone.  Likewise, 

the decrease in individual seedling mass and seedling diameter with increasing 

density supports the basis of density dependent growth and growth limitation prior 

to self-thinning caused mortality (Deng et al., 2012, Li et al., 2013).  With only 

minimal changes in characteristics of yield occurring when density was increased 

from 8 to 24 seedlings per pot it is possible that the seedlings approached a critical 

density at less than 8 seedlings per pot, or is found at a density greater than 24 

seedlings per pot.  At that density the seedlings would have been faced with a 

trade-off between growth and survival, resulting in no, or negative change in yield 

but maintained survival. Further, the low increase in mortality with increased den-

sity suggests the actual self-thinning line was not reached. This is in agreement 

with previous studies on size and growth allometry showing decreased growth 

with increased density only once a critical density has been reached and density 

dependent effects become a more important parameter for growth while mortality 

occurs once this threshold line is surpassed (Niklas et al., 2003, Kelty, 2006).  In 

addition, my study showed that after 10 weeks of growth seedlings in the mixed 

species planting composition were no less susceptible to the effects of increased 

density on yield than seedlings in monocultures. However, the characteristics of 
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the mass may vary between monocultures and mixture with increasing density, as 

revealed by the significant interactive effect of planting composition and density 

on A:B ratio, below ground mass and stem diameter.  The increases in total yield 

with increasing density for all planting compositions are also supported by the 

inconclusive and debated findings on the suitability of the -3/2 slope of the densi-

ty-yield relationship as was proposed by Yoda et al. (1963). The mean seedling 

mass- density relationship was negative for all my planting communities, and the 

coefficient ranged between -0.0016 and -0.0065 (Table 2). If self-thinning did 

occur during this artificial period it would support the argument that the self-

thinning line varies among different planting compositions and that the coefficient 

-3/2 is not a constant among tree species (Charru et al., 2012).  

In response to my second question I found that planting density impacts on final 

yield, but that it also differs under contrasting abiotic conditions. This finding is 

consistent with previous literature on seedlings and mature stands (Li et al., 2013, 

Deng et al., 2012, Condes et al., 2013, He and Duncan, 2000).  My results show 

that the effect of planting density on seedling yield is also dependent on the abiotic 

environment regardless of whether the stand is composed of monocultures or spe-

cies mixtures. Conversely, the interaction of planting density effects and abiotic 

environment effects had fewer statistically significant effects than each factor in 

isolation, and was only significant for the A:B ratio. This is concurrent with the 

suggestion of optimal partitioning models in that plants should adjust partitioning 

to minimize imbalance of resources (McConnaughay and Coleman, 1999). Such 

adaptations in partitioning could therefore result in changes in A:B ratio, yet pos-

sibly not total mass or individual mass.  For experimental units where the envi-

ronment did have an effect, the difference between high and low water conditions 
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was relatively low, implying that the water conditions in this study had a lower 

importance than nutrient conditions for the growth and development of seedlings. 

The greater importance of nutrient conditions is compatible with the current 

knowledge on growth limitation in boreal forests. Plant reactions to change in 

nutrient well as the root response to adverse conditions can result in the changes 

seen in A:B ratio (Tamm, 1991, Ostonen et al., 2007). Contrary to the belief that 

increased nutrient would allow increased growth at higher densities, my results 

rather suggest that nutrients have limited impact on seedling yield, and yield char-

acteristics at high density.  This is concurrent with the findings of Walker and 

Chapin (1986) who found competition and facilitation to have a greater influence 

on the development of seedlings than abiotic conditions alone, and that facilitative 

processes may enable plants to overcome resource limitation.  

In response to my third question I found that the total yield and characteristics 

of the yield (e.g. A:B ratio and diameter) were influenced by both composition and 

environmental conditions. Again, this is in line with current knowledge on mor-

phological and physiological differences between mature B. pendula and P. syl-

vestris, with B. pendula showing greater growth in higher nutrient conditions 

while P. sylvestris is able to support higher growth under poorer conditions, nota-

bly drier situations. Specifically I found that P. sylvestris outperformed both the B. 

pendula monoculture and the mixed species planting composition in conditions of 

high nutrient + low water and conditions of low nutrient + low water. This was 

especially observed when data was presented as log mean seedling mass- log den-

sity relationships. Furthermore, the observation of mixed species planting compo-

sition outperforming both B. pendula and P. sylvestris monocultures only in high 

nutrient + high water conditions is consistent with previous findings on yield in 
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mixed stands and findings that the outcome of overyielding or underyielding var-

ies with site conditions (Pretzsch et al., 2012, Hynynen et al., 2011). Similar to my 

results, Hynynen et al. (2011) also found that favorable conditions increased the 

performance of the mixed stands. In resource rich environments it appears that 

seedling mixtures are better able to use the available resources with complemen-

tary niches, as B. pendula and P. sylvestris  do not have directly overlapping needs 

(Pretzsch et al., 2012). This was noted in particular by a difference in root growth 

when plants were harvested. B. pendula roots remained fine and within the upper 

half of the growing medium, while the roots of P. sylvestris seedlings became 

associated with mychorizae and extended throughout the entire growing medium. 

This was further indicative of different resource demands of the two species. It is 

also possible that B. pendula and P. sylvestris seedlings have a facilitative rela-

tionship in which the growth one seedling enhances the growth of the other as 

suggested to occur in mixed stands of mature trees by Kelty (1992). Here the 

mixed stands presented greater total mass and larger mean seedling masses in con-

ditions of high nutrient and high water, however, this potential overyielding effect 

of the mixed species composition was not maintained  in conditions of low nutri-

ent, low water or both low nutrient and low water. Furthermore, my results support 

the argument that the self-thinning law and the -3/4 coefficient is again not con-

stant across environments and species, and may differ between young and mature 

stands.  

While significant differences occurred in the response variables as a result of 

the imposed treatments, there is great potential for other confounding factors to be 

impacting on the seedling yield and yield characteristics in this study. For example 

it was also shown from the GLM results (Table 1) that blocking treatment had a 
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significant effect.  The blocking aspect of this experimental design was primarily 

established to avoid the bias in environment setting within the greenhouse envi-

ronment.  As there was no significant effect of blocking on mortality, the effects of 

blocking in this experiment are to be considered as noise. The significant effect 

observed from blocking is probably due to unintentional differences in soil com-

paction among blocks. Despite careful placement of growing material into the pots 

I cannot rule out that the growing medium was not compacted to different levels, 

and thus had contributed to the blocking effect. Another important aspect in this 

study is time period allotted for seedling growth under the treatments. As indicated 

by the bud set by some P. sylvestris seedlings the time given under the set condi-

tions was approximately one growing season (Hurme et al., 1997, Salminen and 

Jalkanen, 2007). It is possible that changing the length of the growing season 

would also impact the yield of seedlings; exposing seedlings to the treatments 

longer and allowing more time for differentiation based on the treatment effects to 

develop. Furthermore there was a distinct change in coloration of some seedlings, 

B. pendula becoming redder and P. sylvestris which faded from a dark green to a 

pale brighter green.  The change in color observed in the B. pendula could be at-

tributed to various stressors such as wounding, UV-B radiation, high light in cold 

temperatures, transplant stress or nutrient deficiency and the resulting production 

of anthocyanins (Manetas, 2006).  The paler green colors of some P. sylvestris 

seedlings in low nutrient conditions is indicative of the soil nitrogen content being 

lower (Mandre et al., 2010) than in the high nutrient environments. This indicates 

that the soil nutrient levels differed among treatments, however further analysis is 

needed to confirm the extent of the difference in soil fertility, (i.e. N concentra-

tions).  Further, I observed that experimental units treated with low nutrients had a 

46 
 



higher abundance of bryophytes.  While this was unintentional, the finding of 

more weedy species in the low nutrient environments where growing medium had 

a greater concentration of natural soil confirms there was a difference in soil envi-

ronments. In future studies investigation into the yield of seedling in mixtures and 

monocultures should consider total mass as determined by the sum of individual 

masses within each pot wherever possible. By using the individual masses in the 

mixed species composition it would be possible to determine if one species is out-

competing the other by any potential change in the proportion of the planting 

composition.  Additionally, future studies should continue with the statistical anal-

ysis and fitting of self-thinning curves for seedlings, following the procedure as 

suggested by Weller (1987) to avoid spurious correlations and to definitively com-

pare the coefficients developed from seedlings under these treatments to the global 

-3/2 coefficient proposed by Yoda et al.   

In conclusion, this study addresses the current lack of knowledge on yield 

in seedlings under various growing conditions. I have shown that the yield 

of B. pendula and P. sylvestris seedling monocultures differ from each oth-

er, as well as from a two species mixture, and that the magnitude of the 

differences are dependent on both planting density and abiotic condition as 

well as the interactions of these parameters.  While it is not possible to con-

clude one given combination of factors that results in the best seedling per-

formance this study provides insight to the knowledge required by forest 

managers to successfully obtain the greatest seedling performance. 
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