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Abstract 

Sub-lethal doses of neonicotinoids have been shown to negatively impact the health of honeybees. 

However, most studies to date have exposed bees only artificially to these pesticides under 

laboratory conditions. There have been just a few well designed and replicated studies of the 

impacts of realistic neonicotinoid exposure on honeybees foraging under field conditions. In order to 

close this knowledge gap, and to test the influence of the neonicotinoid clothianidin on honeybees, 

we used a study system of 16 paired, spatially separated (>4 km) spring oilseed rape fields in the 

south of Sweden. The fields were paired according to land use, the surrounding landscape and 

geographical proximity, using GIS. Eight of the fields were randomly assigned to be sown with 

clothianidin dressed Brassica napus (oilseed rape) seeds and their corresponding pairs with 

undressed B. napus seeds, as controls. Six equally sized Apis mellifera colonies, with known queen 

origin, were placed at each field resulting in a total of 96 colonies. Samples of bees, pollen and 

nectar taken from the colonies showed that the honeybee colonies at the treated fields were 

exposed to several orders of magnitude higher clothianidin concentrations than the colonies at the 

control sites. To determine the effect of this neonicotinoid on pathogen and parasite prevalence and 

quantities in honeybee colonies samples of adult bees were taken from each colony both before and 

after the flowering period in the paired fields. The parasites studied included the ectoparasitic mite 

Varroa destructor and the microsporidian gut parasite Nosema. The pathogens studied included 

eight different honeybee viruses (BQCV, SBV, DWV, KBV, SBPV, CBPV, ABPV, and IAPV). Both the 

prevalence (proportion of positive colonies) and the amount of parasites/pathogens in each colony 

(infestation rate/titres) were analysed. The infestation with V. destructor was relatively low and the 

exposure to clothianidin had no significant impact on the V. destructor prevalence and infestation 

rate of the colonies. A seasonal effect was found where more mites were detected and more 

colonies were infested after the experiment than before. The exposure to clothianidin had no 

significant influence on the Nosema spp. prevalence or the amount of Nosema spores in infested 

colonies. However, the Nosema spp. infestation rate was significantly higher before than after the 

rape flowering season. Furthermore the proportion of the two Nosema species changed over time. 

Before the experiment, 33 % of the samples were not infested with Nosema spp., 6 % were infested 

with pure N. apis, 25 % with pure N. ceranae and 36 % with mixed infestation. In the mixed 

infestations, on average, one third of the DNA originated from N. apis and the rest from N. ceranae. 

After the experiment only N. ceranae was present in the colonies.  Three out of the eight viruses 

studied were detected: DWV, SBV and BQCV. Both BQCV and SBV were detected in practically all 

colonies, both before and after the experiment, with consequently no difference in prevalence due 

to clothianidin exposure or season. There was also no difference in BQCV and SBV titres due to 
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clothianidin exposure, although for BQCV there was a significant reduction in titre as the season 

went along. SBV titres remained constant throughout the season. The DWV prevalence was 

relatively low; 4% and 36% of colonies infected, before and after the experiment respectively, 

resulting in a significant seasonal difference in DWV prevalence in contrast to the DWV titres in 

positive samples which showed no seasonal effect. The clothianidin exposure had no effect on the 

DWV prevalence or on the titres in DWV positive samples. The higher prevalence of DWV in the 

control group compared to the treated group can be explained by the different initial conditions. It 

can be concluded that in this experiment, clothianidin exposure had no effect on the prevalence or 

the amount of the studied pathogens and parasites in honeybee colonies. 

 

Svensk sammanfattning 

Subletala doser av neonikotinoider har visat sig ha en negativ inverkan på honungsbinas hälsa i 

laboratorieförsök. De flesta studier som hittills genomförts har emellertid exponerat bin på ett 

artificiellt sätt för dessa bekämpningsmedel, genom direkt fodring av preparaten. Det finns få, eller 

inga, väl utformade och replikerade studier med realistiska nivåer av neonikotinoid exponering av 

honungsbin under fältmässiga förhållanden. För att råda bot på denna kunskapsbrist, och för att 

testa effekten av neonikotinoiden clothianidin på honungsbin, använde vi i en studie 16, rumsligt 

separerade (> 4 km), vårrapsfält i södra Sverige. Fälten parades med avseende på markanvändning, 

läge och geografisk närhet till varandra, med hjälp av GIS. Hälften av fälten slumpades för sådd med 

clothianidin-betade Brassica napus (raps) frön och det andra fältet i paret fungerade som kontroll 

och såddes med obehandlade frön. Bredvid varje fält placerades sex jämnstarka Apis mellifera 

samhällen, varje par med syster-drottningar, med totalt 96 samhällen i experimentet. Prover av bin, 

pollen och nektar från dessa samhällen visade att bisamhällen vid de clothianidin-behandlade fälten 

exponerades med flera tiopotenser högre mängder av clothianidin än samhällen vid kontrollfälten. 

Prover av vuxna bin togs från varje samhälle både före och efter blomningsperioden, för att 

bestämma effekten av exponering till neonikotinoiden på förekomst och mängder av patogener och 

parasiter i bisamhällen. De parasiter som undersöktes inkluderade det ektoparasitiska kvalstret 

Varroa destructor och de intracellulära tarmparasiterna Nosema apis och Nosema ceranae. De 

patogener som undersöktes inkluderade också åtta olika honungsbivirus (BQCV, SBV, DWV, KBV, 

SBPV, CBPV, ABPV och IAPV). Både prevalensen (andelen positiva samhällen) och mängden av 

parasiter/patogener i varje samhälle analyserades. Angreppen av V. destructor var relativt låg under 

hela experimentet och det fanns ingen signifikant effekt av exponering av clothianidin på vare sig 

förekomsten eller angreppsnivån av V. destructor i samhällen En säsongseffekt påvisades, där fler 

kvalster påvisades när experimentet avslutades än när det påbörjades. Prevalensen av Nosema spp. 
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skilde sig inte signifikant mellan behandlingarna, men visade en säsongseffekt: angreppen var högre 

före än efter rapsblomningen. När experimentet påbörjades var 33% av proverna inte infekterade av 

Nosema spp.,  Sex % var infekterade med N. apis, 25% var infekterade med  N. ceranae och 36 % var 

infekterade med blandinfektioner. I angrepp med båda parasiterna kom i genomsnitt en tredjedel 

DNA kom från N. apis och resten från N. ceranae. När experimentet avslutades kunde endast N. 

ceranae påvisas i angripna samhällen. Tre av de åtta virus som undersöktes för kunde påvisas: DWV, 

SBV och BQCV. Både BQCV och SBV påvisades i praktiskt taget alla samhällen, både före och efter 

försöket. Således kunde ingen skillnad i prevalens påvisas mot bakgrund av clothianidin exponering 

eller av säsong. Det fanns inte heller någon skillnad i BQCV- och SBV-titer på grund clothianidin 

exponering För BQCV fanns en signifikant säsongseffekt med en minskning av titer senare på 

säsongen. Titern av SBV förblev konstant under hela säsongen. Prevalensen av DWV var relativt låg; 

4 % och 36 % av samhällen smittade, före respektive efter experimentet, vilket innebär i en 

betydande säsongsskillnad i DWV prevalens. Det fanns dock ingen signifikant skillnad i DWV-

prevalens på grund clothianidin exponering, eller inte.  Det kunde inte heller påvisas någon 

signifikant interaktion mellan säsong och clothianidin exponering på DWV-prevalens. Samhällen 

infekterade med DWV visade ingen signifikant skillnad i DWV-titer på grund av clothianidin 

exponering. Man kan därför dra slutsatsen att i det genomförda experimentet, hade clothianidin 

exponeringen ingen påvisbar effekt på förekomsten eller mängden av studerade patogener och 

parasiter i friflygande bisamhällen. 

 

Zusammenfassung 

Unter Laborbedingungen wurde nachgewiesen, dass sub-letale Dosen von Neonikotinoiden sich 

negativ auf die Gesundheit von Honigbienen auswirken können. Feldstudien mit genügend 

Wiederholungen fehlen allerdings. Aus diesem Grund wurde im Süden von Schweden eine Studie 

durchgeführt, um den Einfluss des Pestizids Clothianidin auf die Prävalenz und die Quantität von 

Krankheitserregern und Parasiten zu untersuchen. Auf 16 räumlich voneinander getrennten (> 4km) 

Sommerraps Feldern wurden jeweils 6 gleich große Honigbienenvölker (Apis mellifera) platziert, 

wobei 8 Felder mit Clothianidin gebeizt wurden und 8 Felder als Kontrolle nicht mit Neonikotinoiden 

behandelt wurden. Die Bienenvölker neben den behandelten Feldern waren nachweislich höheren 

Konzentrationen von Clothianidin ausgesetzt als neben den Kontrollfeldern. Es wurden Proben von 

100 adulten Bienen aus jeder Kolonie vor und nach der Rapsblüte genommen und anschließend  der 

Befall von der Milbe Varroa destructor, dem Pilz Nosema und acht Viren (BQCV, SBV, DWV, KBV, 

SBPV, CBPV, ABPV, und IAPV) im Labor untersucht. Die Befallsrate und die Prävalenz von V. 
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destructor war durchweg sehr gering. Allerdings wurden nach der Rapsblüte signifikant mehr Milben 

gefunden als zuvor. Es konnte kein signifikanter Einfluss von Clothianidin auf die Befallsraten oder 

die Prävalenz von V. destructor nachgewiesen werden. Das Vorkommen und die Infektionsraten von 

Nosema spp. wurde durch Clothianidin nicht signifikant beeinflusst. Im Sommer wurde eine 

niedrigere Prävalenz nachgewiesen als im Frühjahr, wobei die Infektionsrate keinen saisonalen 

Unterschied aufwies. Die dominierende Nosema Art in beiden Proben war N. ceranae wobei im 

Sommer kein N. apis nachgewiesen wurde. Zu Beginn des Experiments waren 25% der Proben rein 

mit N. ceranae infiziert, 6% rein mit N. apis, 36% hatten eine gemischte Infektion. Der Rest, 33 % war 

nicht infiziert. Es wurden drei von 8 Viren in den Kolonien nachgewiesen: DWV, SBV und BQCV. 

BQCV und SBV wurden in nahezu allen Kolonien gefunden, sowohl vor als auch nach der Rapsblüte 

und folglich wurde auch kein Unterschied in der Prävalenz für diese beiden Viren im Hinblick auf 

Clothianidin Behandlung oder Zeit gefunden. Aber im Gegensatz zu SBV zeigt BQCV eine signifikante 

Reduktion der Befallsrate vom Frühling zum Sommer. Clothianidin hatte keinen Effekt auf die 

Infektionsrate von SBV und BQCV. Das Vorkommen von DWV war relativ niedrig; 4% und 36% der 

Kolonien waren infiziert, vor und nach dem Experiment jeweils, was zu einem signifikanten 

Unterschied in der saisonalen Verbreitung führt. Jedoch hatte Clothianidin keinen Einfluss auf die 

Prävalenz von DWV. Kolonien, die mit DWV infiziert waren, unterschieden sich nicht im zeitlichen 

Verlauf und auch Clothianidin hatte keinen Effekt auf die Infektionsrate. Daraus kann geschlossen 

werden, dass das Neonikotinoid, Clothianidin, keine Auswirkungen auf das Vorkommen und die 

Befallsraten der untersuchten Pathogene und Parasiten in dieser Studie hatte. 
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1. Introduction 

The European or western honeybee Apis mellifera, commonly known as honeybee, belongs to the 

family Apidae and is one of seven species within the Genus Apis. Its original distribution extended 

from Asia throughout Europe and Africa, and the honeybee can now be found worldwide due to 

their use by humans for producing honey and for pollinating crops (Winston 1987; Seeley 1985). As 

for many other bee species, the European honeybee is a colony forming insect and it can be divided 

into three types of colony members: a single fertile queen, female workers and drones. These castes 

all develop through four stages: egg, larva, pupa, and adult. The size of a colony depends on the time 

of the year. With a peak in the summer and a decline in the winter, a colony can consist of between 

15000 and 50000 female workers. During spring and summer, additionally, a few hundred male 

drones are normally present, in order to mate with the virgin queens.  

As the honeybee is an eusocial insect, the labour within a colony is divided. The queen lays 

practically all the eggs, since this behaviour in female workers is restricted by pheromones produced 

by the queen. Adult drones and workers live up to 6 weeks during the summer, while workers in a 

winter cluster are able to survive up to 8 month. During their adult life, workers perform different 

colony tasks in relation to their age. The first tasks of an adult worker are building combs, cleaning 

and tending brood. After two or three weeks these bees start to forage outside the hive for pollen 

and nectar. The nutritional requirements of adults and brood are provided by these two plant 

produced substances and their converted form for young brood, which are collected within a 4 km 

range.  

In order to ensure reproduction at colony level, during the swarm season, some young larvae within 

a colony are fed exclusively with royal jelly and this allows them to develop into new queens. During 

swarming, a majority of the workers leaves the hive together with the old queen and they settle at a 

suitable new place, while the remaining workers stay inside the old hive with the newly hatched 

queen. This queen starts laying eggs after mating with drones and forms a new colony (Winston 

1987). 
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1.1 The importance of bees 

The honeybee is an important, valuable and useful social insect for human beings. In addition to the 

production of honey and wax, honeybees are one of the main pollinators for the agricultural food 

production (Gullan & Cranston 2005). Around 35 % of all food is dependent on pollination by insects 

and honeybees account for 90 % of this pollination (Klein et al. 2007). This service has been 

estimated at € 22 billion per year in Europe and € 153 billion per year globally (Gallai et al. 2009). 

Furthermore honeybees, as key generalist pollinators, are important for biodiversity and for the 

ecosystem at large, as honeybees contribute greatly to the gene flow within and between plant 

communities (Jaffé et al. 2010). The general decline of pollinators, which are key elements for global 

biodiversity (Potts et al. 2010), could cause a reduced success in plant reproduction (Thomann et al. 

2013). Among environmental scientists there is consensus that the protection of biodiversity should 

be a matter of great concern (Ehrlich 2002). Nature in all its levels such as species, population and 

communities, should be preserved for its own sake but also the wellbeing of humans (Ehrlich 2002). 

A loss of biodiversity influences the dynamics and functioning of ecosystems and their services for 

humans in many ways (Cardinale et al. 2012). Ecosystem services are defined as the benefits from 

for instance food, fresh water, regulation of the climate or cultural aspects provided by ecosystems 

(Millennium Ecosystem Assessment 2005). A target for the European Union is to stop the loss of 

biodiversity and the degradation of ecosystem services by 2020 and honeybees play a key role in 

that. The Member States of the European Union are also parties of the UN Convention on Biological 

Diversity which made the conservation and sustainable use of pollinators a priority (European 

Commission 2010). To sum up, a decline in the European honeybee population would be a threat to 

the conservation of biodiversity and human wellbeing as well as lead to an economic loss for 

beekeeping and agricultural production systems and should therefore be halted. 
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1.2 Colony losses 

Even though the number of managed honeybee colonies has increased around 45 % during the last 

50 years (Aizen et al. 2008), some regions experienced a decline (VanEngelsdorp & Meixner 2010; 

Aizen & Harder 2009a). The FAO (2009) estimated a decrease of honeybee colony of 14 % within 

Europe, for which economic reasons should also be considered as well as biological reasons (Aizen & 

Harder 2009a). Controversially to globally growing colony numbers the demand for pollination in a 

growing agricultural production industry has not been met (Aizen & Harder 2009b).  

In the last few years, abnormally high colony losses have been reported, primarily in the United 

States, but also in Europe (VanEngelsdorp & Meixner 2010). During the winter of 2006/2007 

beekeepers in the United States faced hives without adult bees, while brood and food was left 

behind (VanEngelsdorp & Meixner 2010; VanEngelsdorp et al. 2008). The term Colony Collapse 

Disorder (CCD) was introduced to name a phenomenon with an unclear and unknown cause 

(vanEngelsdorp et al. 2009). However, a literature study revealed that mass colony losses, often with 

symptoms similar to CCD, have occurred periodically since the late 19th century, in different parts of 

the world (Underwood & VanEngelsdorp 2007; Oldroyd 2007).  

Winter mortality of honeybee colonies is well known to beekeepers. A rate of 5 to 10 % loss over the 

winter is seen as acceptable (Le Conte et al. 2010). However, during the winter 2007 – 2008 an 

estimation of 36 % of the colonies were lost in the United states (VanEngelsdorp et al. 2008). Normal 

winter mortality can be caused by many different reasons: lack of adequate food reserves, poor 

foraging conditions, queen losses, low fall population size or diseases and parasites (Le Conte et al. 

2010). Factors such as the nutrition, the quality of the queen, pesticides and pathogens have been 

suspected to be the cause of CCD (Ratnieks & Carreck 2010). Pest and pathogens are one of the most 

important causes of honeybee losses (Ratnieks & Carreck 2010) but usually have clearly defined 

symptoms that are different from those of CCD (Oldroyd 2007). On their own pathogens and 

parasites cannot account for all the high unexpected mortality (VanEngelsdorp et al. 2008) and a 

causal connection between them and CCD has not yet been proven (Johnson et al. 2009). However, 

the reported association of parasites and pathogens with CCD could be due to a reduced bee 

immune system induced by pesticides and other environmental stresses (Di Prisco et al. 2013).  

In general, reasons for honeybee colony losses are complex. Even though there is an ongoing 

replacement of infertile female workers within a colony and losses of a few individuals can be 

compensated, the number of individuals living together is vital for the survival and the reproduction. 

For instance swarming, comb construction or rearing a new queen is dependent on the number of 

bees within a hive (Michener 1974). The health of honeybees is influenced by many different stress 
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factors which can also interact with each other, which is illustrated in Figure 1. Pesticides, pathogens 

and parasites are two of them.  

 

 

Figure 1. Honeybee health and its influences adapted from (OPERA 2013). 
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1.3 Honeybee immunity 

Within a colony, thousands of individual honeybees live in a confined space and have close contact 

(Winston 1987). This, and the fact that the honeybee hive maintains a constant temperature and 

humidity, makes a honeybee colony an ideal environment for disease transmission (Evans et al. 

2006). In order to cope with their parasites and pathogens, honeybees have several behavioural, 

physiological, morphological, and immune-based defences (Evans 2006).  

Certain behaviours of honeybees within the colony, such as nest hygiene, grooming  and minimizing 

the entry of infectious agents, can be labelled as a “social immunity”(Evans & Spivak 2010). In 

addition to these group level defence mechanisms against pathogens, honeybees also have an 

immune system at the individual level (Evans et al. 2006). For instance, the cuticle and the epithelial 

layers, and mechanical barriers avert microbial organisms from entering or adhering to the body. 

Furthermore, the insect gut is protected by physiological and chemical barriers from microbial 

invasion (Crailsheim & Riessberger-Gallé 2001).   

Insects lack an adaptive immune system of the type found in vertebrates (Hoffmann 1995). Insects 

have instead only an innate immune response (Azzami et al. 2012), involving a wide range of 

physiological, molecular and biochemical actions such as melanization, enzymatic degradation of 

pathogens, local blood clotting, phagocytosis of bacteria and the secretion of antimicrobial peptides 

(Hoffmann 1995; Hultmark 2003). However, only one third of genes involved in the immunity of 

other insects, such as Drosophila and Anopheles, have been found in the honeybee genome (Evans 

et al. 2006). This suggests that honeybees rely to a large degree on social immunity mechanisms, for 

instance the cooperation between individual group members to defend themselves from pathogens 

and parasites (Cremer et al. 2007). 
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1.4  Parasites and Pathogens 

Honeybee health is affected by parasites and pathogens such as the Varroa mite (Varroa destructor, 

Figure 2) as well as fungal, bacterial and viral diseases (VanEngelsdorp et al. 2008; Bailey 1967). A 

pathogen can be defined as a microorganism that can cause a disease, for instance morphological, 

behavioural, physiological or molecular damage, in a host (Pirofski & Casadevall 2012). In contrast, a 

parasite does not always damage its host but it is never beneficial for it. Parasites obtain their 

nutrition from another living organism. Some parasites are obligate, which means that they are 

unable to survive entirely apart from their host, while others are facultative, meaning they can also 

life independently (Drisdelle 2010). Examples of some pathogens and parasites, mentioned in the 

context of colony losses, are described below. 

 

1.4.1 Varroa destructor 

The ectoparasitic mite Varroa destructor is currently considered to be the most damaging threat to 

honeybees (Dietemann et al. 2013; Rosenkranz et al. 2010; Boecking & Genersch 2008). V. 

destructor evolved from V. jacobsoni, whose occurrence was restricted to Asia and to its original 

host Apis cerana (Anderson & Trueman 2000). After a host shift to Apis mellifera, probably in mixed 

A. mellifera/A. cerana apiaries in Asia during the first part of the 20th century (Oldroyd 1999; Jong et 

al. 1982) the mite was first found on A. mellifera in Eastern USSR in the 1950´s, Western USSR by the 

1960`s, in Europe and South America by the 1970`s (Ruttner & Ritter 1980; Jong et al. 1982) and in 

North America by the late 1980`s (Rosenkranz et al. 2010). 

Figure 2. Varroa mite on the thorax of a honeybee (left, from Rosenkranz et al. 2010) and its lifecycle in its host Apis 
mellifera (right, from Boecking & Genersch 2008). 
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The Varroa mite reproduces in the brood cells and feeds on the bee haemolymph of both adults and 

larvae (Rosenkranz et al. 2010; see Figure 2). An uncontrolled infestation can, within a few years, 

lead to colony death (Buechler 1994), reducing the production and reproductive capacity of the 

colony throughout this decline (Rosenkranz et al. 2010). This gradual decline results mainly from the 

fact that V. destructor is a biological vector for several of honeybee viruses (described under 1.4.3). 

This has been shown for Deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), Kashmir bee 

virus (KBV) and Acute bee paralysis virus (ABPV) (Boecking & Genersch 2008).  

 

1.4.2 Nosema 

Nosema apis and Nosema ceranae are related, but distinct obligate intracellular microsporidian 

parasites, which disperse between hosts as spores (Fries et al. 2006), causing infections in the 

ventriculus (Bailey 1955). Only N. apis was known to infect the European honeybee, until in 1996 N. 

ceranae was identified in Apis cerana, the Asian hive bee, and both Nosema species were found to 

be capable of cross-infecting each other’s original hosts (Fries et al. 1996). Infection with N. apis 

leads to a reduced lifespan of the workers and heavily infected colonies are weakened (Fries et al. 

1984). Although N. ceranae was thought to be restricted to A. ceranae and Eastern Asia (Fries 1997), 

it has been detected as natural infections in A. mellifera colonies around the world (Huang et al. 

2007; Fries et al. 2006). N. ceranae is thought to play a major role in colony losses (Higes et al. 2009; 

Cox-Foster et al. 2007; Oldroyd 2007; Martín-Hernández et al. 2007) and has currently a nearly 

world-wide distribution (Fries et al. 2006; Genersch et al. 2010).  

 

1.4.3 Viruses 

Viruses are intracellular, molecular life forms that are entirely dependent on the host for 

reproduction. Although many viruses are pathogenic, many others can be entirely asymptomatic (de 

Miranda et al. 2012). Currently over 18 different viruses infecting honeybees are known, such as 

deformed wing virus (DWV), black queen cell virus (BQCV) and Sacbrood virus (SBV) (Chen & Siede 

2007; see Figure 3). Most honeybee viruses have a single-stranded RNA genome and several can be 

grouped into complexes of closely related viruses (de Miranda & Genersch 2010; de Miranda et al. 

2012). Viruses are common in bee populations (de Miranda et al. 2013). At low levels of infection, 

most honeybee viruses cause no symptoms (de Miranda et al. 2013), the colony seems healthy even 

if a several viruses are present. Some viruses can be identified by characteristic symptoms, such as 

BQCV, while in other cases the symptoms are less clear (de Miranda et al. 2012). Many of the 
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symptoms are behavioural changes, such as inability to fly, trembling, crawling, learning difficulties 

or disorientation (de Miranda et al. 2012). Furthermore, most virus infections reduce the lifespan of 

adult honeybees to different extents (de Miranda et al. 2013). A honeybee colony is able to 

compensate the loss of a few infected bees. However, when too many individuals are infected, the 

colony can no longer compensate it and collapses gradually (de Miranda et al. 2012). A list of some 

viruses, their symptoms and effects can be found in Table 1. 

Higher virus titres have consistently been associated with colony losses during the winter, 

particularly those of the DWV and ABPV species-complexes. In a study during the winter 2007/2008 

lower proportions of DWV were found in colonies, which survived the winter (Dainat & Neumann 

2013). Furthermore, a metagenomic survey, the Israeli acute paralysis virus (IAPV) was correlated 

with CCD colonies in the United States (Cox-Foster et al. 2007). 

 

 

Figure 3. Honeybee (in the centre) with symptoms of DWV: shortened abdomen and deformed wings (left, from Locke 
2012) and larvae infected by SBV (right, Photo: S. Camazine) 
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1.5 Neonicotinoids 

Besides pathogens, the potential role that pesticides might play in the unexpected high loss of 

colonies, is controversially discussed (Blacquière et al. 2012). Plant protection products such as 

chemical insecticides contribute significantly to ensure that the food demand for a fast growing 

human population continues to be met. One fifth of the worldwide crop yield are defended by the 

application of chemical  insecticides (Oerke & Dehne 2004). Neonicotinoids, which were introduced 

in 1991 by Bayer CropScience with the launch of imidacloprid, are the most important chemical class 

of insecticides in the world today. In 2008 seven different neonicotinoids were produced 

commercially which can be divided into two groups (Iwasa et al. 2004; see Table 2). Combined, these 

chemicals accounted for around 24 % of the total global market for modern crop protection (Jeschke 

et al. 2011). Neonicotinoids are systemic insecticides, when they are added to the soil or used as 

seeds dressing. The chemicals are absorbed by the plant (Blacquière et al. 2012) and with their 

outstanding plant systemic activity they are dispersed within the plants (Tomizawa & Casida 2005). 

For several months, plants are protected from insects (Goulson 2013). Although neonicotinoids are 

also used as foliar sprays, the most common application is as a seed dressing (Goulson 2013). 

Even though neonicotinoids have a low toxicity to fish, birds, and mammals (Tomizawa & Casida 

2005) they are extremely toxic to insects. This group of pesticides binds permanently to neonicotic 

receptors of acetylcholine (nAChr) and block the nerve system in insects (Tomizawa & Casida 2005). 

Beside pest insects, non-target organisms such as insect pollinators can also be affected through a 

translocation within the plant (Blacquière et al. 2012). Neonicotinoids are detectable in the nectar 

and pollen, the main food sources for insect pollinators, throughout the flowering period. Therefore 

bees are particularly exposed to these pesticides during this period (Reed et al. 2010).  

 

Table 2. List and features of neonicotinoids 

Feature Neonicotinoids 

Nitro group Imidacloprid, clothianidin, thiamethoxam, nitenpyram and dinotefuran 

Cyano group Acetamiprid and thiacloprid 

 

However, the toxicity of neonicotinoids is very diverse and complex. In general pesticides can affect 

honeybees in four different ways: Either lethal or sub-lethal effects from either acute or chronic 

exposure (van der Sluijs et al. 2013). Lethal effects are mostly described by the LD50 value, which is 
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defined as the dose at which 50% of the honeybees are dead within 48 hours. After a persistent 

exposure to neonicotinoids lethal effects are called chronicle. The time honeybees are exposed to 

this pesticide magnifies the poisonousness (van der Sluijs et al. 2013). In addition to lethal effects, 

low concentrations of neonicotinoids can cause sub-lethal effects, which means that the exposure 

will not directly cause collapse of the colony or the death of individuals but might make the colony 

more sensitive or even become lethal in time. As well as lethal, sub-lethal effects can be caused from 

acute or chronic exposure. While effects are called acute when honeybees are only exposed once to 

neonicotinoids, chronic effects are a synonym for  multiple exposures (van der Sluijs et al. 2013). The 

route of exposure is another important factor in the toxicity of pesticides. For instance, an oral 

intake of the pesticides is usually more toxic for honeybees than only the contact (Blacquière et al. 

2012). Not all neonicotinoids are equally poison to honeybees, the group of neonicotinoids with a 

nitro-group, including clothianidin, is more toxic than acetamiprid and thiacloprid (Iwasa et al. 2004; 

see Table 2).  

The European Food Safety Authority (EFSA) summarized several studies of the effects of three 

neonicotinoids in 2013 for a request from the European Commission to provide a better basis for 

decision making. All in all, the usage of clothianidin is a high risk for honeybees in some applications. 

Nevertheless, there are several data gaps for instance the risk from the consumption of 

contaminated pollen and nectar or from the exposure via guttation’s fluids (EFSA 2013). Hence, 

three neonicotinoids (clothianidin, imidacloprid and thiamethoxam) were restricted for seed 

treatment, soil application and foliar treatment on bee attractive plants and cereals with some 

exceptions in the European Union from the first of December 2013. However, there will be a revision 

of this status within the next two years, as soon as new information is available. Relevant scientific 

and technical developments will be taken into account for further regulations (European 

Commission 2013). The already existing studies about lethal and sub-lethal effects on honeybees will 

be described below. 
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1.5.1 Lethal effects of neonicotinoids on honeybees 

It has been proven that clothianidin is toxic for honeybees by contact or oral intake. The LD50 value 

for oral intake per bee was specified to be 3.79 ng clothianidin per bee and 44.26 ng clothianidin in 

contact per bee (European Commission 2006). The No Observed Effect Concentration (NOEC) was 

calculated in a ten-day experiments where honeybees where fed with a sugar solution containing 

clothianidin in order to test which threshold leads to chronic lethal effects. A concentration of 10 

µg/l is considered to have no observed influences (EFSA 2013). The NOEC concentration in the diet 

varies between 20 and 40 µg/l (EFSA 2013). 

In Germany 2008, colonies within several apiaries collapsed in the Rhine valley. The dead honeybees 

and bee bread contained high contents of clothianidin. This neonicotinoid was released during maize 

sowing due to a poor seed dressing bonding, the use of pneumatic seed drills and a delayed sowing 

conducted during the rape flower season (Rosenkranz & Wallner 2008).  

1.5.2 Sub-lethal effects of neonicotinoids on honeybees 

Studies have found that sub-lethal doses of the neonicotinoid thiamethoxam have a negative impact 

on honey foraging success (Henry et al. 2012) and imidacloprid on the development of brood and 

adults (Decourtye et al. 2005).  

In addition to that synergistic interactions between neonicotinoids and pathogens have been found 

to influence honeybee health.  For instance, a sub-lethal oral doses of the neonicotinoid thiacloprid 

can enhance the harmful effects of the microbial pathogens Nosema ceranae and the black queen 

cell virus, on honeybee larvae and adults (Doublet et al. 2014), although only at very high infection 

levels. It has also been shown that the interaction between imidacloprid and a mixture of N. apis and 

N. ceranae infestations weakened honeybees (Alaux et al. 2010). Furthermore neonicotinoids were 

found to affect the loads of pathogens and parasites. Honeybees exposed to clothianidin had a 

decreased immune defence under laboratory conditions, which stimulated the replication of 

deformed wing virus (Di Prisco et al. 2013). Imidacloprid was found to increase level of the gut 

pathogen Nosema spp. (Pettis et al. 2012). 

Although there have been numerous laboratory studies on the effects of neonicotinoids on 

honeybees, the influences and exposures under field conditions are poorly known. Laboratory 

experiments are important to analyse the possible toxicity of pesticides on the individual honeybee, 

which might be hard to determine under field conditions. Nevertheless, honeybees, as social insects, 

might buffer the loss of individuals as a “super organism”. Therefore it is important to conduct field 

studies. One field study has been conducted already in Canada where no influence of the exposure 
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to clothianidin seed-treatment  of canola on worker longevity, brood development, honeybee 

mortality, honey yield or colony weight was found (Cutler & Scott-Dupree 2007). However, the 

methodology of this study can be questioned in many ways. Honeybee colonies were placed at 1 ha 

clothianidin treated and control canola (oilseed rape) fields (Cutler & Scott-Dupree 2007) and the 

size of the fields is seven times smaller than the average of spring oilseed rape fields in Skåne 

(Rundlöf et al. 2013). Furthermore the distance between control and treated fields was kept as a 

minimum of 295m (Cutler & Scott-Dupree 2007). The foraging range of honeybees can be much 

larger (Winston 1987) and consequently honeybees forage at the other field as well. Most 

importantly, the influence of clothianidin on the prevalence and infestation rate of pathogens and 

parasites was not included in this field experiment. Therefore a field study should be designed 

consisting of sufficient large fields’, representative for the south of Sweden, where control and 

treated sites are separated far enough from each other and with a sufficient number of replicates.  

 

1.6 Aim 

The aim of this study is to investigate the impact of clothianidin in flowering oilseed rape (Brassica 

napus), as required systemically through seed dressing, on pathogen and parasite prevalence and 

infestation or infection rate in free-foraging honeybees under field conditions in Sweden. It will 

contribute to the ongoing search of reasons for the unexplained high rate of honeybee colony losses 

noticed in some parts of the world. Field experiments give a better view on real conditions in the 

nature and this study can contribute to a decision for further legislations in the European Union. 

 

1.7 Hypothesis

 
Within this thesis, the hypothesis to be tested is whether the occurrence and levels of infection of 

different pathogens and infestation of parasites in free-foraging honeybees (Apis mellifera) are 

affected by the exposure to the neonicotinoid clothianidin during the oilseed rape (B. napus) 

flowering period, as delivered systemically through seed coat dressing. The null-hypothesis is that 

there is no effect of clothianidin exposure on the prevalence and loads of parasites and pathogens in 

free-foraging honeybees. 
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2. Methods 

2.1 General structure of the study 

The study consisted of 16 spring oilseed rape (Brassica napus) fields located in Skåne (Figure 4), in 

the south of Sweden, which has a temperate humid climate. The fields were paired according to land 

use in the surrounding landscape and geographical proximity, using GIS (Rundlöf et al. 2013). Eight of 

the fields were randomly assigned to be sown with Brassica napus (oilseed rape) seeds dressed with 

Elado, in which clothianidin is the active neonicotinoid, and their corresponding pairs with undressed 

B. napus seeds (controls). Within each pair, the fields were as close to each other as possible, but at 

least 4 km apart in order to minimize the chance of honeybees foraging in both fields. The average 

size of the fields was 8.2 ha, ranging from 4 to 12 ha, which is representative for spring oilseed rape 

fields in Skåne (7.0 ha). Only one field consisted of 27 ha. Sowings were carried out between the 6th 

of April 2013 and the 18th of May 2013 (Rundlöf et al. 2013). 

 

Figure 4. The study area Skåne in the south of Sweden. 
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Figure 5. Study design: distribution of the 16 spring oilseed rape fields in the south of Sweden where blue dots mark 
treatment A and yellow dots treatment B (left) (adapted from Rundlöf et al. 2013) and study design on field level with 
six honeybee colonies per field (right). 

 

The seed dressing dose was 25 ml Elado per kg seeds (Rundlöf et al. 2013). Elado contains 400g 

clothianidin and 80 g beta-cyflutrin per litre (Bayer CropScience 2013). In order to have 

approximately 150 spring rape plants per square meter, 7.5 kg/ha untreated seeds and 7.7 kg/ha 

Elado-dressed seeds were sown on the fields. The seeds were delivered to the farmers from 

Lantmännen (Rundlöf et al. 2013). 

At each study site six equally sized honeybee colonies were placed, equating to a total of 96 colonies 

in the experiment ( 

Figure 5). In order to minimize the influence of genetic differences between colonies, the queen 

origin of all colonies was known and sister queens of the same age were randomly distributed to the 

twelve colonies of each pair of fields (Rundlöf et al. 2013).  

To confirm that the bees were exposed to clothianidin, pollen pellets and honey sacs, where the 

gathered nectar is stored, were collected from foraging bees and analysed for neonicotinoid 

residues, as was the remainder of the honeybee bodies. For each of these three matrices samples 

were taken on apiary level, resulting in a total of 48 pooled samples (3*16). Clothianidin, 

acetamiprid, imidacloprid, thiacloprid and thiamethoxam were detected in these samples, although 

 

 
Rape field 

6 honeybee colonies 

per field 

 

Study design 

16 rape fields in the south of Sweden 

(8 with treatment; 8 as a control) 
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only clothianidin was detected in all three matrices (honeybee, pollen, and nectar) and in 

considerably higher concentrations than the other neonicotinoids. Most importantly, very large and 

highly significant differences were found in the levels of clothianidin in bee samples collected from 

treated fields and those from untreated fields (Figure 6). The mean concentrations of clothianidin 

from treated fields were 2.44 ng/g in the honeybees, 10.31 ng/ml in the nectar and 13.94 ng/g in the 

pollen while the concentrations in the corresponding samples from the untreated fields are 

negligible (honeybee: 0.13 ng/g; pollen: 0.11 ng/ml; nectar: 0.0 ng/g) (Rundlöf et al. 2013; Figure 6). 

According to the classification established by the European Food Safety Agency (EFSA) these levels 

are not lethal doses but theoretically harmful levels of clothianidin (EFSA 2013).  

 

 

Figure 6: Clothianidin detection in three matrices (honeybees, pollen, and nectar) comparing treated and control sites 
(Rundlöf et al. 2013). 

 

The proof that the honeybees were exposed to clothianidin under these field conditions allowed an 

investigation of the effect of clothianidin on honeybee health. Samples of around 100 adult bees 

were taken from each colony before and after the flower period of the rape fields. The first sample 

was collected before the colonies were placed at the fields (06-07.06.2013) and the second sample 

was collected before honey harvest and autumn miticide treatment (25.07.2013 and 05.08.2013). 

The samples were taken from the outer comb covered by bees. Hence, the samples consist of a 

mixture of older house bees and flight bees. Samples were stored at -20°C until the laboratory work 

was performed. Both field and laboratory work were conducted blinded regarding the treatment. 
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2.2 Laboratory work 

 

 

 

The workflow in the laboratory consisted of three steps, illustrated in Figure 7. First the Varroa 

destructor infestation rate was determined using 100 bees per colony (A). Of these, 60 bees were 

then used to prepare an extract for counting the spores of Nosema spp. under the microscope (B) 

while simultaneously an aliquot of this extract was retained for DNA and RNA extraction (C), for 

molecular Nosema and virus analyses.  

 

2.2.1 Varroa destructor 

Samples consisting of 100 worker bees (drones removed) per colony were examined for the number 

of Varroa destructor. Due to small sample sizes, fewer than 100 bees were used in some cases. 10 

bees were kept apart for another analyses and examined by eye for the presence of mites (Figure 2). 

The remaining 90 bees were washed with soapy water to remove the mites from adult bees, as 

follows: The bees were placed in a bowl of an electric household blender mixed with 1 litre of soapy 

water and blended at medium speed for approximately one minute. The content of the bowl was 

poured through a sieve with two parts and rinsed with a large amount of water. The first sieve, with 

a mesh of 3 to 4 mm, retained all the bees while the second sieve underneath (mesh < 0.5 mm) 

retained the mites (Figure 8). With the size of 1.5 mm in width and reddish-brown colour adult 

female mites are easy to distinguish as well as males and female nymph stages which are smaller 

and cream or white in colour (Dietemann et al. 2013). The number of the mites washed off from the 

90 bees was added to the number of mites counted on the sample of 10 bees for the final infestation 

rate.  

Figure 7. Workflow for the laboratory investigations on individual colony level. 
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Figure 8. Double sieve with different aperture widths including a sample of bees (left, Photo: Julia Goss) and mites 
collected in the sieve after washing (right, Photo: Julia Goss). 

 

2.2.2 Preparation of a bee/water solution 

Out of the 90 bees washed with soupy water, 60 honeybees were used to prepare a bee/water 

solution to determine Nosema spp. by counting the spores and extract DNA. The abdomen of the 

honeybees were removed and put in a polyethylene bag with an inner mesh bag. After grinding the 

abdomens with a pestle, 30 ml nuclease-free (Milli-Q) water (0.5 ml per bee) was mixed thoroughly 

with the samples to create a homogenous suspension. 1 ml of this suspension was removed 

immediately and frozen for further DNA and RNA extraction.  

 

2.2.3 Determining the Nosema spp. prevalence and infestation rate 

For counting the Nosema spp. spores using a haemocytometer it is recommended that the solution 

should contain 5 to 50 spores per haemocytometer square (Human et al. 2013). A higher number of 

spores would increase the errors while counting. Therefore, before the spores were counted 

accurately, an approximate assessment of the spore concentration was made in order to determine 

if a further dilution of the extract was necessary. This was done by examining a drop of the ground 

bee abdomen under a microscope (16 x 40). The infection rate was divided in three groups (see 

Table 3) and high infected samples were diluted appropriately. 
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Table 3. Categorical Nosema infection rate (spore count) as determined by Microscopy (adapted from Cantwell 1970) 

Infection rate Spores in one field of view Spores per bee 

Light infection Between 1 to 4  < 1 200 000 

Medium infection Between 5 to 40  1 200 000 – 12 000 000 

High infection More than 40 > 12 000 000 

 

The Nosema spores can be identified by their shape, which is similar to a grain of rice, and by their 

specific reflection of light (Figure 9). The size of a spore of N. apis is 3 x 6 µm (Zander & Böttcher 

1984) and of N. ceranae is 2.7 x 4.7 µm (Fries et al. 2006). Although there are differences between N. 

apis and N. ceranae in the size and the shape of their spores, it can be difficult to distinguish them 

using light microscopy, especially when analysing mixed infections (Fries 2010). Therefore DNA 

analyses were carried out to determine the species. 

 

 

 

  

Figure 9.  Spores of N. ceranae (A) and 
N. apis (B) under a light microscope 
(from Fries et al. 2006). 

Figure 10. Haemocytometer model Bürker with 0.1 mm depth (Photo: Julia 
Goss). 



 

Methods 

 

20 

 

As recommended by Human et al. (2013), a haemocytometer (model Bürker with 0.1 mm depth) was 

used to determine the infection rate of Nosema apis and Nosema ceranae spores. A 

haemocytometer consists of a counting chamber with a known volume. Therefore it is possible to 

count particles under the light microscope and extrapolate this number to the total sample volume 

and calculate the spores per bee. The recommendations for Nosema spore counts are to use 1 ml of 

water per bee. Since the primary bee abdomen suspensions were made with 0.5 ml water per bee, 

these were first diluted with an equal volume of water prior to analysis.                                

 



Figure 11. Counting grid of a haemocytometer illustrated in three levels (model Bürker). (A) Out of nine big squares, 
three (two out of 4 rows are marked in grey) where taken into consideration for the counting. (B) Each of the squares in 
part A are divided in 16 smaller squares, where eight where used for counting Nosema spores (marked in grey). (C) 
Spores within the square and spores touching the left and upper boundary lines were counted. The X marks the spores 
which are excluded. 

 

10 µl of this diluted suspension was applied to the counting grid of the haemocytometer, such that 

with capillary action, the area under the cover glass was filled with the suspension. Counting of the 

spores was done two minutes after applying the liquid to the haemocytometer, to allow the spores 

to settle in the counting chamber before counting (Human et al. 2013). The grid area of a 

haemocytometer is divided into 9 big squares (Figure 11A), which are delimited by triple lines. Each 

of these squares is further divided into 16 squares (Figure 11B). Eight small squares where used to 

count the Nosema spores per big square within three out of the nine big squares (Figure 11A). If one 

of the small squares was blocked and impossible to use, the one above or the one below was used. 

This means that for each sample a total of 24 small squares were investigated for Nosema spores. In 

order to correct for double counting, spores touching the bottom and right boundary line were 

excluded (Figure 11C). The spore count was extrapolated to spores per bee using Equation 1. And 

the resulting infestation rate can be divided into a three grades (Cantwell 1970; Table 3). 
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Equation 1. Calculation of Nosema spores per bee (modified from Human et al. (2013) and Cantwell (1970)) 

             
                                          

                                               
 

             
                         

              
  

        

  
                                  

 
  

  
 

 

2.2.4 Nucleic acid detection 

Nucleonic sequences such as DNA or RNA signatures can be used to determine the presence and 

abundance of an organism (Phillippy et al. 2007). Therefore DNA and RNA were extracted and then 

analysed for target sequences using (RT-)qPCR in order to determine the Nosema species and detect 

viruses, respectively. 

2.2.4.1 RNA and DNA extraction 

For each colony bee sample, 500 µl of the retained honeybee-water suspension was extracted for 

Nosema spore DNA detection, following the methodology described by Fries et al. (2013), starting 

with centrifugation for 5 min at 16 060 x g. The supernatant was discarded and the remaining pellet 

was frozen with liquid nitrogen. The pellet was crushed with a sterile sealed pipette tip in order to 

destroy the walls of the Nosema spores. This step was repeated until the pellet was pulverized. 

Subsequently, 400 µl AP-1 buffer and 4 µl RNase A was added to each sample and the mixture was 

incubated for 10 minutes at 65°C. During that time the samples were mixed by inverting the tube 

one to two times. After the incubation, 130 µl of AP-2 buffer was added and mixed and then 

incubated for 5 min on ice. Finally, the lysate was centrifuged for 5 min at 20 000 x g. The DNA was 

then extracted from 500 µl of the supernatant by a Qiacube automated extraction robot (Qiagen) 

using the DNeasy Plant Mini Kit (Qiagen) following the manufacturer’s instructions for plant tissues. 

For the RNA extraction, 100 µl of the honeybee-water suspension was mixed with 350 µl RLT buffer 

(containing 10 µL/mL β-mercaptoethanol) and the RNA was extracted by a Qiacube automated 

extraction robot (Qiagen) according to the protocol for plant tissues using RNeasy plant mini kit 

(Qiagen).  The RNA concentration was determined by NanoDrop. All RNA samples were diluted for 

further analyses to a final concentration of 20 ng/µl. 
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2.2.4.2 Real time quantitative polymerase chain reaction (qPCR) 

Polymerase chain reaction is a molecular technique to amplify DNA. The procedure consists of three 

different iterative elements. In the first step, the DNA strands are denatured by heat so that primers 

can bind to the single-stranded DNA target sequences. In this step two complementary 

oligonucleotides are used to prime DNA synthesis under certain temperature conditions. In the next 

step an extension of the primers is carried out, completing one cycle. This process is then repeated 

for 30~40 cycles, thus artificially increasing the amount of target DNA. In order to measure the 

abundance of particular DNA or RNA sequences in an original sample, real-time quantitative PCR 

(qPCR) was used. This process includes a PCR product detection step after each amplification cycle 

using fluorescence-detecting thermocyclers (Sambrook & Russell 2001). The initial amount of the 

product can be calculated very accurately by the quantification cycle (Cq) value, which is the number 

of amplification cycles required for the amplification products to reach a defined fluorescence 

detection threshold. Quantification is achieved by running qPCR on a series of 10-fold dilution of an 

external standard of known concentration, normally a plasmid clone of the target sequence, to 

establish a calibration curve which is used to estimate the amount of target DNA in the experimental 

samples. Each qPCR run included one negative H2O control and three dilution standards (10-3; 10-5; 

10-7) for each DNA or RNA target. Using the calibration curve derived from the dilution standard 

series, the starting quantity (SQ value) was calculated for each experimental essay reaction. All DNA 

assays were run in duplicate, with the mean value of these two duplicates used in further 

calculations.  

In this study, the real-time PCR detection system from BIO-RAD (CFX Connect™) and the CFX 

Manager™ Software (Version 2.1) were used.  
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2.2.4.3 DNA analysis for N. apis and N. ceranae 

The reaction mixtures for N. apis and N. ceranae detection consisted each of 18 µl PCR master mix 

and 2 µl DNA each. The PCR master mix contains 6.4 µl of RNAse free water, 0.8 µl of forward 

primer, 0.8 µl universe reverse primer and 10 µl of EvaGreen™ super mix. The primers and their 

sequences used for the Nosema species detection can be found in the appendix 1. The amplification 

of the DNA was undertaken with the following thermal conditions: one initial step at 98°C for 2 min 

to activate enzymes, followed by 40 cycles of (98°C for 5 seconds denaturation; 60°C for 10 seconds 

to annealing extension) followed by a Melting Curve analysis for product specificity, consisting of a 

gradual increase in temperature from 65°C to 95°C in steps of 0.5°C for 5 seconds per step with 

fluorescence absorbance reading after each step; and one  hold temperature of 10°C until removal 

of the samples.  

The amount of DNA, represented by the SQ mean, determined in the extraction has to be converted 

in order to get the amount of target DNA per bee, using equation 2. The extraction for DNA analysis 

should consist of approximately the same amount of DNA and therefore the estimated copies of 

Nosema DNA was normalized using the DNA concentration of the sample itself and the average DNA 

concentration within the analyses. The species composition of Nosema was calculated using the DNA 

from positive samples during the manual counting procedure. Pure infections were set at the 

threshold level of >99%. 

 

Equation 2. Transformation from SQ mean values to number of DNA copies per bee 

     

   
 

           

     
   

        

 
                 

      
       
     

 
                       

       
 

 

     

   
 

     

                
                          

 

Dilution factor = D.f. 

Estimated copies of Nosema DNA = E-DNA 

Normalised copies of Nosema DNA = N-DNA 
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2.2.4.4 RNA analysis for different viruses 

To test the impact of clothianidin exposure on the prevalence and titres of honeybee viruses, eight 

different viruses were analysed (BQCV, SBV, DWV, KBV, SBPV, CBPV, ABPV, and IAPV; for further 

description see Table 1). These viruses consist of single stranded RNA genomes (de Miranda et al. 

2012) and therefore the RNA fraction of the nucleic acids were used to detect and quantify the 

viruses. Since RNA is easily degradable, an assay for the mRNA of the internal reference gene (RP49) 

was also included, in order to correct the quantitative data for differences between the samples in 

the quantity and quality of the extracted RNA (de Miranda et al. 2013). 

The reaction mixtures consisted of 8.5 µl PCR master mix and 1.5 µl RNA each. The PCR master mix 

contains 2.975 µl RNAse free water, 0.2 µl of a 10 µM solution of each primer (one pair of primer per 

reaction), 5 µl of iTaq universal SYBR Green RT-mix and 0.125 µl of Script reverse transcriptase. A list 

of the primers and controls used in the analyses can be found in appendix 1. The Amplification of the 

RNA was undertaken with the following thermal conditions: one initial incubation at 50°C for 10 min 

to synthesis cDNA; one incubation at 95°C for 5 min to inactivate the reverse transcriptase; 40 cycles 

for PCR cycling and detection at 95°C for 10 seconds followed by 58°C for 30 seconds followed by a 

data collection; The PCR reaction was followed immediately by a Melting Curve analysis, consisting 

of 60 fluorescence measurements at gradually increasing temperatures, from 65°C to 95°C in 

increasing steps of 0.5°C, with 5 seconds per step for fluorescence reading. As with the qPCR analysis 

of the DNA samples, a series of 10-fold dilutions of external standards of known concentration was 

included for each RNA target, to establish calibration curves for the quantification of the amount of 

target in each reaction. These resulted in the SQ values for the different RNA targets in each sample.  

The amount of virus per bee was calculated starting with the SQ value and the various dilution 

factors of the experimental steps. The efficiency of producing cDNA under these conditions is 

approximately 0.1 (10%). 

 

  



 

Methods 

 

25 

 

Equation 3. Transformation from SQ mean value to number of RNA copies per bee 

     

   
 

                  

       
   

        
                     

 
                

      
       
     

 
          

       
 

 

     

   
 

         

             
                       

 

Estimated copies of target RNA = E-RNA 

Normalised copies of virus RNA = N-RNA 
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2.3 Statistical Analysis 

Before statistical analyses were performed, the distribution of the data was explored, in order to 

detect outliers, the presence of zeroes and to avoid common statistical problems (Zuur et al. 2010).  

The raw data was transformed before analyses were performed according to different research 

questions and biological patterns of the pathogens and parasites. To test the impact of clothianidin 

exposure on the prevalence of pathogens and parasites in honeybee colonies, the binominal data 

(presence-absence) was evaluated. Those viruses which were nearly present in all colonies were not 

analysed for their occurrence patterns. In a second step the raw data was transformed to test the 

impact of clothianidin on the infection or infestation rate of honeybee pathogens and parasites. All 

virus titres and the level of Nosema infestation were logarithmic transformed (Log10) using the 

formula Log10 (value + 1) in Microsoft Excel 2010, as the data was not normally distributed. 

The study was designed as a Before-After-Control-Impact (BACI) experiment, which is used to 

evaluate whether or not a stress factor disturbed or changed the environment  (Smith 2002). In our 

case, the impact of clothianidin on the health of honeybees was tested. To determine possible 

effects over time, samples of honeybees were taken before and after the clothianidin exposure of 

honeybees (before-after). However, trends seen over time do not have to be causally linked to 

human activity and therefore control sites were included (impact-control) (Smith 2002). 

Furthermore the difference between sites might be due to several factors and not necessarily from 

the environmental impact. In this design (Equation 5), particular interest lies in the differential 

change of period*treatment, which, if significant, implies an impact of clothianidin over time. The 

differential change is expressed by the interaction of spatial and temporal values (Equation 4). 

 

Equation 4. Interaction effects in a BACI model 

                                       

 

To compare both the prevalence and the quantities of pathogens and parasites between the 

treatments, a generalized linear model (GLM) was used. This model allows the combination of fixed 

factors and random effects, which control for correlations in the data arising from grouped 

observations. In the GLM three independent variables were set as fixed factors: (1) period; (2) 

treatment; (3) period*treatment (Equation 5). As explained before particular interest lies in the last 

factor. A first-order temporal autocorrelation within sites was included in the model to exclude any 
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possible effect of season or groups (treatment). The dependent variables (Y) in this analysis were the 

infestation rate and the prevalence of pathogens and parasites. The repeated measurement of the 

colonies, nested within a field and a pair, were fitted as random effects to control for the non-

independence of observations within sites and time. 

 

Equation 5. Generalized linear model used in SAS 

                                    

 

Statistical significance of the three fixed factors, period, treatment and the period*treatment 

interaction, were tested using F-statistics. We used p = 0.05 as a threshold value for significance.  

For the virus data subset, the values for 2 samples (both before and after the treatment period) 

were excluded, as the assay for the internal reference gene RP49 had failed for before-treatment 

samples, such that the data could not be normalized as described in the previous section. The 

excluded samples came from the same field-pair, with one belonging to the clothianidin exposed 

field and the other to the corresponding control fields.  

All statistical data analyses were performed in SAS 9.3 for Windows with previous conversion steps 

in Microsoft Excel 2010. Graphs were created using Microsoft Excel 2010. The code used in SAS can 

be found in the appendix 2 and the output of these tests under the appendices 3. 
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3. Results 

3.1 Varroa destructor 

The prevalence in percent and the mean infestation rate of Varroa destructor increased significantly 

over time (see Figure 12). Overall, the treatment and the control groups did not differ from each 

other, regarding the prevalence and the infestation rate of V. destructor and therefore site effects 

can be excluded. Changes in the prevalence and the infestation rate did not seem to be related to 

the exposure to clothianidin, as the interaction of treatment and period did not significantly differ 

(Figure 12; Table 4).  

 

Table 4. F values and levels of significance testing Varroa destructor prevalence and infestation rate 

 Varroa destructor prevalence Varroa destructor infestation rate 

 df F P df F P 

Period 94 11.22 0.0012 94 9.10 0.0033 

Treatment 94 0.14 0.71 94 0.34 0.56 

Period*treatment 94 1.38 0.24 94 1.57 0.22 
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Figure 12. Colonies infested with V. destructor in percentage ± standard error (A) and mean Varroa destructor 
infestation per 100 bees ± standard error (B).  
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3.2 Nosema spp. 

The percentage of colonies infested with Nosema spp. decreased significantly over time (Figure 13 A; 

Table 5). However, differences in the prevalence of Nosema spp. did not seem to be influenced by 

the treatment groups nor the interaction of treatment and time, which clarifies that the exposure to 

clothianidin had no effect on the prevalence of Nosema spp.in honeybee colonies (Figure 13A; Table 

5). 

The infestation rate of Nosema spp. showed no significance change over time or between the 

treatment and control group (Figure 13B; Table 5). The exposure of the honeybee colonies to 

clothianidin had no effect on the infestation rate in Nosema positive samples, as the interaction of 

period and treatment was not significant (Figure 13B; Table 5). 

Table 5. F values and levels of significance testing Nosema spp. prevalence 

 Nosema spp. prevalence Nosema spp. infestation rate 

 df F P df F P 

Period 94 46.27 < 0.0001 6 3.01 0.13 

Treatment 94 0.14 0.71 6 4.57 0.07 

Period*treatment 94 0.81 0.37 6 3.21 0.12 

 

  
Figure 13. Honeybee colonies infested with Nosema spp. in percentage ± standard error (A) and mean (LOG10) Nosema 
spp. Infestation in positive samples (B) before and after the experiment comparing control hives with treated hives ± 
standard error. 
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Samples positive for Nosema spp. infection were examined for the proportion of N. apis and N. 

ceranae. Prior to the experiment, Nosema spores could be detected in 67 % of the samples (Figure 

14) of which 6 % were only infested with N. apis, 25 % only with N. ceranae and 36 % of the samples 

had a mixed infestation with both Nosema species. On average, about 1/3 of the DNA in mixed 

infestation belonged to N. apis and 2/3 to N. ceranae.  

After the experiment spores could be detected only in 13 % of the colonies (Figure 15) of which 5 % 

were a pure N. ceranae infection and for the remaining 8 % no Nosema DNA was detected at all. No 

N. apis was found in any of the colonies at the end of the experiment. 

 

 

 

 

Figure 15. Nosema species proportion (percentage) in positive samples after the experiment. Control and treated sites 
are combined. 
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Figure 14. Nosema species proportion (percentage) in positive samples before the experiment. Control and treated sites 
are combined. 
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3.3 Comparison of two methods to quantify Nosema spp. 

The prevalence and the infestation rate of Nosema spp. was detected by counting spores under the 

microscope. However, the amount of Nosema in a sample can also be calculated by qPCR from the 

DNA samples through the qPCR protocols for distinguishing the two Nosema species. The two 

methods are compared in Figure 16 using the data from all 192 samples. 64 samples were negative 

by both methods (16A) and 69 samples were positive by both methods. This means that in 69 % of 

all analyses, the results were consistent between the two methods. However, for 31 % of the 

samples only one of the methods produced a positive result. For 8 samples (4.1 %) Nosema spores 

were counted even though no Nosema DNA was found (16B) and for 51 samples (26.5 %) Nosema 

DNA could be amplified even though no Nosema spores were seen under the microscope (16C). 

 

 
 

Figure 16. Comparison of two Nosema spp. detection methods 
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3.4 Viral diseases 

Out of the eight viruses tested, only three (DWV, SBV and BQCV) were detected in this experiment. 

ABPV, CBPV, IAPV, KBV and SBPV were not present in the samples from individual colonies. The most 

prevalent virus was BQCV, followed closely by the SBV. All colonies (100%) were infested with the 

BQCV for both sampling dates. SBV was detected in 100% of all samples for the first sampling period, 

prior to the experiment and in 96 % of the samples for the second sampling occasion, after the 

experiment. The proportion of colonies infected with DWV increased from 4% to 36% between the 

first and the second sampling occasion. 

3.4.1 Black queen cell virus 

For BQCV there was a significant reduction in titre due to the season. No difference was seen 

between the treatment and control group and therefore site effect can be excluded. Furthermore 

the exposure to clothianidin had no effect on BQCV titres, since the interaction between time and 

treatment was not significant (Figure 17A; Table 6).  

1.1.1 Sacbrood virus 

The titres of SBV did not differ in time or between the treatment and control group. Furthermore 

the exposure to clothianidin had no influence on the SBV infection rate since the interaction 

between time and treatment was not significant (Figure 17B; Table 6). 

 

Table 6. F values and levels of significance testing the infection rate of BQCV and SBV 

 BQCV infection rate SBV infection rate 

 df F P df F P 

Period 90 154.19 0.0001 92 0.39 0.53 

Treatment 90 0.58 0.45 92 1.65 0.20 

Period*treatment 90 0.00 0.99 92 0.10 0.76 
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Figure 17. Mean BQCV infection (LOG10) per bee ± standard error (A) and mean SBV infection (LOG10) per bee ± 
standard error (B) before and after the experiment comparing control and treated colonies. 
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1.1.2 Deformed wing virus 

The percentage of colonies infected with DWV was significantly higher for the second sampling date 

than for the first. Although a higher percentage of colonies were detected in the control group 

compared to the clothianidin exposed group, this difference between the treatment groups was not 

significant. Therefore a site effect is not significant. The exposure of the honeybee colonies to 

clothianidin seem not to influence the number of hives infected with DWV, as the interaction of 

treatment and period was not significant (Figure 18A; Table 7). 

The titres of DWV in positives samples showed no difference between the time and the treatment 

groups. The exposure to clothianidin had no effect on the amount of DWV found in DWV positive 

samples, as the interaction of period and treatment was not significant (Figure 18B; Table 17). 

 

Table 7. F values and levels of significance testing the prevalence of DWV 

 DWV prevalence DWV infection rate 

 df F P df F P 

Period 92 19.79 < 0.0001 2 0.00 0.96 

Treatment 92 3.08 0.08 2 2.68 0.24 

Period*treatment 92 0.29 0.59 2 0.40 0.59 

 
 

  

Figure 18. Colonies infected with DWV in percentage ± standard error (A) and mean (LOG10) DWV infestation rate in 
positive samples (B) ± standard error. 
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2. Discussion 

2.1 Methods used 

2.1.1 Field experimental setup 

The overall experimental design and sampling-analysis strategy conceived, including several blinded 

and double-blinded procedures to minimize potential biases and conflicts of interest. Differences 

between groups of colonies were minimized a priori through colony equalization and control of the 

queen origin, and this was reflected in the very low variation between colonies at the start of the 

experiment in almost all parameters, not just the ones recorded here. In this study spring oilseed 

rape was used, which was sown in April-May. An alternative cultivation system is winter oilseed 

rape, which is sown the year before, between August and September, and flowers the following 

spring, in May-June. Although seed dressed with neonicotinoids protect crops for several months 

(Goulson 2013), spring-sown oilseed rape represents a different neonicotinoid exposure risk for 

honeybees than winter-sown soil seed rape. The usage of spring-sown or winter-sown oilseed rape 

could explain the lower insecticides concentrations found in other studies (Blacquière et al. 2012). 

Even so, the clothianidin concentrations detected in bees, pollen and nectar in this study, were all 

below the acute and chronic toxicity levels as determined by EFSA  (Blacquière et al. 2012). 

2.1.2 Laboratory work 

Mites can be separated from bees in several ways and these are discussed and described in 

Dietemann et al. (2013). Using warm soupy water is considered to be environmental friendly and is 

relatively cheap. It is recommended to use 300 bees to estimate the infestation rate of the colony. 

Nevertheless, in this study only 100 bees were washed which could lead to errors (Dietemann et al. 

2013). For further studies it could be considered to use larger samples from the colonies. 

Samples were taken from the outer comb covered by bees for this study. However, it is 

recommended that older bees should be the target within a hive to detect Nosema ssp. infections. 

Therefore foraging bees from outside the hive should be collected (Fries et al. 2013).  

Although the principal method to detect viruses in the apiary is the detection of symptoms, this 

method was not chosen.  Though this has many advantages, limitation such as symptoms are not 

always present in all life stages or at all times and symptoms can very similar for many viruses it 

makes it hard to qualify and quantify them. Therefore a molecular method was chosen using RT-

qPCR (de Miranda et al. 2013). The loads of virus can differ and is influenced by the task of the bee 

and therefore by the age (van der Steen 2012). But by sampling always in the same way, differences 

between colonies should be minimized in this experimental setup. 
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2.2 Results 

Both pesticides and pollination by honeybees are essential if modern agriculture is to keep pace with 

the growing demand for food (Cutler & Scott-Dupree 2007). Although exposure of non-target 

organisms, in this case pollinators, to pesticides cannot be eliminated, the effects of exposure can be 

minimized by judicious use of the pesticides and integration of pollination and insect-control needs. 

Systemically delivered neonicotinoid insecticides are recommended as an environmentally friendlier 

alternative (Cutler & Scott-Dupree 2007). Even so, the honeybees in this field experiment were 

exposed significant sub-lethal doses of clothianidin as a result of their foraging activities in spring-

sown oilseed rape fields sown with clothianidin-dressed seeds. Overall, no significant effect of this 

exposure was seen in the loads and prevalence of pathogens and parasites. Changes can be only 

explained by seasonal effects. These results will be discussed in detail below. 

 

2.2.1 Varroa destructor 

In this study an increasing infestation rate was found, as the season went along, which could be due 

to biological factors. After a colony becomes infested with Varroa destrucor, the mite population can 

increase rapidly within a few years. The population growth rate is dependent on many factors, such 

as mite mortality and reproduction rate, different features of the host, the honeybee, such as the 

amount of drone brood or the level of defence behaviour. In some studies a significant relation 

between the amount of brood and the population growth of the mites were found (Rosenkranz et al. 

2010). Therefore, the infestation rate of V. destructor could increase during summer, as we saw it in 

this study. Furthermore, the increasing prevalence could be explained by an introduction of mites 

due to robbing behaviour of foraging honeybees within an apiary (Rosenkranz et al. 2010). 

Dietemann et al. (2013) summarized different thresholds to prevent damages of V. destructor such 

as honey loss or winter mortality. The average levels of mites per 100 bees in this study were under 

all damage thresholds mentioned for the month April till September according to studies from 

Canada and the United States. Compared to the damage threshold for April from a Canadian study, 8 

colonies were over the set limit of 2 mites per 100 bees. The lowest threshold level for August was 4 

mites per 100 bees, which 2 colonies in this study reached (Dietemann et al. 2013).  

In a study from 2011, a delayed development of honeybee larvae reared, was found in combes 

contaminated with a mixture of pesticides, including 5 (Wu et al. 2011). The extended period of 

larvae development could favour the condition for V. destructor mite development (van der Sluijs et 

al. 2013). A contamination with neonicotinoids could therefore increase the level of V. destructor. 
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However, in our study the exposure to clothianidin had no significant influence on the prevalence 

and infestation rates of V. destructor compared to control hives. Even though clothianidin was 

detected in pollen and honey, it does not imply that the combs were also contaminated as they were 

in the study by Wu et al. (2011). The exposure to clothianidin could have a long term effect and 

therefore the level of V. destructor infestation should be studied in the next years. However, the 

interaction of a high mite infestation and the exposure of honeybees to neonicotinoids would be 

interesting to analyse further. 

2.2.2 Nosema apis and Nosema ceranae 

The infection pattern of N. apis in temperate climates is characterized by low levels during the 

summer, when the infection is hardly detectable, followed by a small peak in the fall. While there is 

a slight increase during winter, the main infestation peak occurs in spring, as the winter bees are 

being replaced (Bailey 1955). This seasonal pattern could explain why no N. apis was detectable after 

the oilseed rape flowering period in summer at both clothianidin-treated and untreated fields. While 

the N. apis infestation rate differs depending on the season, the N. ceranae infestation does not 

follow such a strict seasonal patterns, with similar infestation rates throughout the year (Martín-

Hernández et al. 2007). Although a reduction in the number of infested colonies was seen between 

the first and the second sampling, N. ceranae was still present in 14 % of all colonies at the end of 

July, whereas no N. apis was detected at all. However, since the N. ceranae infestation also 

decreased as the season went along. This fact suggests that there not only N. apis but also N. 

ceranae has seasonal changes. However, further studies are needed to confirm this. 

It has been reported that in some areas such as Uruguay, the Balkan countries and Spain, N. apis has 

gradually been replaced with N. ceranae (Invernizzi et al. 2009; Stevanovic et al. 2011; Higes et al. 

2009). However, in a nationwide study in Sweden between the years 2007 and 2011 it was found 

that N. apis was still the dominant Microsporidian infection in positive honeybees samples. In 2007 

only one out of 319 Nosema-positive samples consisted of a pure N. ceranae infection and no trend 

was detected that N. ceranae infestation rate is increasing (Forsgren & Fries 2013). In our study, in 

the south of Sweden in 2013, the opposite was found with N. ceranae as the dominant species, 

especially towards the end of the season. Further studies are needed to verify if this is part of an 

ongoing trend of a replacement of N. apis with N. ceranae in the south of Sweden, and if this is 

representative for the rest of Sweden since the climate varies from temperate humid in the south to 

subpolar climate in the north. Since only N. ceranae was found after the experiment, there was little 

point in testing the effect of clothianidin on the Nosema species composition. 
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Overall, for both Nosema species combined, Nosema infection prevalence and rate in honeybees 

decreased during summer. However, in this experiment the exposure to clothianidin from seed 

dressing of oilseed rape seems not to affect the Nosema spp. prevalence or infestation rate. 

Although the prevalence is slightly higher in colonies sited at the control fields, this might be 

explained by a previous higher percentage of infected colonies. 

In a laboratory experiment, N. ceranae and thiacloprid increased the mortality of individual of adult 

honeybees (Doublet et al. 2014). It should be tested, if the infestation of the colonies with N. 

ceranae and the exposure to clothianidin had an effect on the colony strength. 

 

2.2.3 Different methods used for Nosema 

Even though 69 % of all samples got the same results for both methods, the microscope spore count 

and the qPCR DNA analysis, there are still the remaining 31 % where either one or the other method 

failed to detect Nosema. The less frequent discrepancy between the methods was where spores of 

Nosema spp. were counted but no DNA was found by the qPCR could have two possible 

explanations: Either spores of yeast were mistakenly counted or there was some problem with the 

DNA samples that prevented detection. The more frequent difference between the two methods 

was when no spores were seen, but Nosema DNA could be detected by qPCR. One explanation could 

be that the level of infestation was too low for spores to be detected.  

However, in an experimental design as it was used here, in which controls are included and one 

method is used throughout, it should not affect the comparison as the same errors occur in both 

groups. 

 

2.2.4 Viruses 

Black queen cell virus (BQCV) is thought to be associated with Nosema spp. infestations. The 

infestation with Nosema, which infects the midgut tissues of adult bees, makes them more 

vulnerable for the BQCV. This virus follows a seasonal pattern with a strong peak in the spring (de 

Miranda et al. 2012), similar to pattern of N. apis in temperate climates (Bailey 1955). In our study 

higher BQCV titres were detected during the first sampling than at the end of July. An interaction has 

been found between BQCV and the pesticide thiacloprid on the larval mortality which was 

noticeable at a level of 1.4 * 109 BQCV. However, in adult bees the same level of infestation had no 

effect on the honeybee mortality which might reflect the different tolerance levels of the two stages 
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(Doublet et al. 2014). In further studies it could be interesting to determine the infection rate of 

larvae as well as adult bees and synergistic effects between clothianidin and BQCV during this 

experiment on the mortality of adult bees and larvae remain to be studied.  

While Sacbrood Virus can cause colony losses of Apis ceranae, it is minor and unimportant disease 

for Apis mellifera (de Miranda et al. 2012). However, SBV is seen as the most common honeybee 

virus infection in some areas (Riebiere et al. 2007) and in these experiments it was present in nearly 

all colonies before and after the experiment. Therefore, no comparison of the effect of clothianidin 

exposure on SBV prevalence could be made. In this survey high SBV titres, up to 1012 and 1013 

genome copies per adult honeybee, were detected. Even though clothianidin exposure did not seem 

to affect the prevalence and the SBV titres, there could be an interaction between them. There was 

also no seasonal effect seen, although SBV outbreaks most commonly occurrence in spring or early 

summer (Riebiere et al. 2007). The brood development should be further analysed in relation to the 

SBV infection. 

In a study in France, 97 % of all examined apiaries were infected with the Deformed Wing Virus 

(DWV) (Tentcheva et al. 2004). Although an individual colony investigation was made in this 

experiment, the proportion of infected colonies is definitely lower than in the French survey. DWV 

has a worldwide distribution and is closely linked to the infestation by the mite Varroa destructor. 

While DWV can be detected in nearly 100% of adult bees in the colonies with a high V. destructor 

infestation rate, treatments against the mite can lower that (de Miranda et al. 2012). This relation 

and the low infestation rate of colonies with V. destructor might explain the rather low prevalence of 

DWV infection of colonies in this study. The prevalence of the DWV was significantly higher for the 

second sampling time than for the first sampling time, similar to the V. destructor prevalence and 

infestation rate. The percentage of DWV infected colonies is nearly three times higher for the 

control colonies than for the colonies exposed to clothianidin, both before and after the experiment, 

but with no significant impact of clothianidin exposure on DWV prevalence, despite the large 

differences seen at the end of the experiment. It might be that already infected colonies transmitted 

the virus to neighbouring colonies within an apiary, or that drifting bees from infected colonies were 

included in the adult samples, since there was a noticeable clustering of DWV positive colonies in 

just a few apiaries, especially for the clothianidin exposed colonies. Thus the difference could be 

explained.  

 



 

Discussion 

 

40 

 

2.3 Social immunity versus individual immunity 

Previous studies found an association, under laboratory conditions, between neonicotinoid exposure 

and a decreased immune defence which was linked to an increase in DWV titres (Di Prisco et al. 

2013). However, no difference in the prevalence or in the amount of parasites and pathogens were 

found in this experiment, conducted at field-scale. These apparently contrasting results can be 

reconciled, since the effects seen in the laboratory experiments were measured within hours of 

exposure, whereas the field experiment exposure was measured in months before samples were 

taken for analysis. Another colony-level study showed that fluvalinate, a commonly used synthetic 

acaricide, has a temporal effect on bee immunity, increasing DWV titres slightly, but then the colony 

adapts and DWV titres decrease again (Locke et al. 2012). Therefore it could be concluded, that 

clothianidin may affect the immune system of individual honeybees soon after exposure, but that at 

colony level over long periods of time such effects can no longer be detected. However, immune 

response expression responsible for the immunity of individual bees were not been tested yet and 

this conclusion cannot be drawn. It might be possible, that the social immunity, which plays a major 

role in the defence mechanism of a honeybee colony (Cremer et al. 2007) can compensate for 

alterations. 

2.4 Sustainable use of pesticides  

It has been estimated that by 2050 the word population will be around 9 billion people. The demand 

for food will increase as well as for crops for bioenergy or other purposes (FAO 2009). To secure the 

food requirements for a growing human world population, it is essential to have pollination and 

pesticides co-exist cooperatively in modern agriculture (Cutler & Scott-Dupree 2007). Non-target 

organisms, such as for instance pollinators, are exposed through many different pathways to 

insecticides and might be affected by them (Brittain & Potts 2011). While the usage of pesticides 

cannot be avoided, the risks and benefits of pesticide usage can be evaluated. Some classes of 

pesticide might be more harmful to the environment than others. The effects of pesticides on the 

environment might not be eliminated, but they can be minimized. For instance, foliar applications of 

pesticides during the flowering season expose bees to acute levels of high concentrations of 

pesticides, systemic foliar applied pesticides can also be trans located to pollen and nectar (Alix & 

Miles 2012) while seed or soil treatment with systemic insecticides is considered to be more 

ecological friendly (Cutler & Scott-Dupree 2007). Neonicotinoids offer many benefits for pest control 

because it is highly toxic for insects but not for vertebrates  (Goulson 2013).  

As described previously the demand for food has to be satisfied. Instead of increasing the yield of 

agriculture, the actually existing food should be used in a more efficient way. Within Europe 90 
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million tons of food is wasted per year. Globally, one third of all food for human consumption is not 

eaten (European Commission 2014). A more sustainable farming would provide agricultural products 

as well as ecosystem services which are both essential to human life (Tilman et al. 2002). 

As mentioned before neonicotinoids are seen as an environmental friendlier alternative to other 

pesticides. This fact can be questioned due to its systemic and persistent properties, which are 

advantages for the plant protection, but can be also seen as drawbacks (Alix & Miles 2012; European 

Commission 2006). Neonicotinoids are water soluble and can therefore leach from the soils and 

enter the water cycle  (Goulson 2013). Clothianidin is not mineralized in anaerobic conditions and 

very slowly mineralized in aerobic conditions (European Commission 2006). Estimates for the half-

life of neonicotinoids vary between studies. For instance, the half-life of clothianidin has been 

reported as being anywhere between 148 and 6931 days, and reasons for such large differences in 

estimates are not yet fully understood (Goulson 2013). However, there is a risk of accumulation of 

active neonicotinoids in the soil, as well as relocation because of their solubility properties. Effects of 

such accumulation and relocation are not yet known. One notorious example of unexpected and 

delayed impacts of a pesticide is DDT and other mid-20th pesticides. The accumulation of these in the 

food chain lead to reduced reproduction success of many birds, particular those at the top of the 

food chain (for instance bald eagles; Grier 1982). With repeated application and a possible 

accumulated concentration in the soil, more arable land is expected to contain detectable levels of 

neonicotinoids in the future. Additionally, neonicotinoids have been found in samples from streams 

and groundwater (Goulson 2013). Using the pre-cautionary principle we should be careful in dealing 

with substances that are long-lasting and might accumulate in the nature. 

In this study it is shown that honeybees are exposed to sub-lethal doses of clothianidin while 

foraging under field realistic conditions. While such exposure might have little influence on 

honeybee colonies, which can be considered relatively robust super organisms with multiple 

mechanisms for dealing with environmental stresses, it might have different effects on solitary bee 

species or bumblebees. Not all pollinators are equally sensitive to environmental disturbances, such 

as pesticides, and therefore pesticide exposure might alter the species composition (Brittain & Potts 

2011). It has been shown that imidacloprid reduced the colony growth and the queen reproduction 

of Bombus terrestris (Whitehorn et al. 2012). For stability of the ecosystem it is vital to maintain 

adequate pollination. It is important to preserve the relationships and the interaction between 

plants and pollinators, which might be affected by pesticides (Brittain & Potts 2011). Further studies 

should be carried out to determine the effect of clothianidin for wild pollinators under field 

conditions. 
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In the European Union it is already acknowledged that there is a possible risk to use the 

neonicotinoids clothianidin, imidacloprid and thiamethoxam and their application is restricted, while 

research is conducted to measure their possible effects on honeybees and other wild pollinators. 

The study reported here is one of those.  
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3. Conclusion 

The unexpected high losses of honeybee colonies are thought to be caused by multiple stress 

factors. Although neonicotinoids were found to influence the loads and prevalence of pathogens and 

parasites in honeybee colonies, a seed dressing with clothianidin of spring oilseed rape showed no 

significant effect within this field experiment. The colony as a “super organism” might buffer the 

effect on individual bees demonstrated in some of the laboratory experiments. The interactions 

between different stress agents are very complex and remain to be studied. Within this study only 

the influence of clothianidin on parasites and pathogens was studied but not the synergic 

interaction. It is still an open question as if already high present loads and prevalence of pathogens 

and parasites in combination with neonicotinoids are affecting the health of honeybees and the 

survival of the colonies.  

Pollination is indeed a vital element for the conservation of biodiversity and the main pollinator for 

food production. However, the role of other pollinating insects such as bumble bees and solitary 

bees are often under evaluated and limited information on the influence of neonicotinoids on their 

lifecycle is available. This should be considered in further analyses. Furthermore long term influences 

of neonicotinoids and their residues are still to be studied. 

As part of the analyses a possible shift from N. apis infection to N. ceranae infection was seen. It 

should be further analysed if this in an ongoing trend and which consequences this could have. N. 

ceranae was found to be invasive in other regions. 

Regarding the methodology of Nosema spp. quantification, we found disparities between molecular 

and microscopically analyses. Therefore it is should be further discussed which methods should be 

used and preferred. Although in experiment with treatment and control sites it is only important to 

be consistent during the process. 
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Appendices 

Appendix 1: Primers used for RT-qPCR 

 

Table 8: Name and sequence of primers used for the RNA analasis 

Virus Primer Sequence 5‘-3‘ 

DWV DWV-F8668 
DWV-B8757 
 

TTCATTAAAGCCACCTGGAACATC 
TTTCCTCATTAACTGTGTCGTTGA 

ABPV ABPV-F6548 
KIABPV-B6707 
 

TCATACCTGCCGATCAAG 
CTGAATAATACTGTGCGTATC 

KBV 
 

KBV-F6639 
KIABPV-B6707 
 

CCATACCTGCTGATAACC 
CTGAATAATACTGTGCGTATC 

IAPV 
 

IAPV-F6627 
KIABPV-B6707 
 

CCATGCCTGGCGATTCAC 
CTGAATAATACTGTGCGTATC 

BQCV 
 

BQCV-qF7893 
BQCV-qB8150 
 

AGTGGCGGAGATGTATGC 
GGAGGTGAAGTGGCTATATC 

SBV 
 

SBV-qF3164 
SBV-qB3461 
 

TTGGAACTACGCATTCTCTG 
GCTCTAACCTCGCATCAAC 

SBPV 
 

SPV-F3177 
SPV-B3363 
 

GCGCTTTAGTTCAATTGCC 
ATTATAGGACGTGAAAATATAC 

CBPV 
 
 

CBPV1-qF1818 
CBPV1-qB2077 

CAACCTGCCTCAACACAG 
AATCTGGCAAGGTTGACTGG 

RP49 RP49-qF 
RP49-qB 

AAGTTCATTCGTCACCAGAG 
CTTCCAGTTCCTTGACATTATG 

   
N. ceranae forward 

reverse 
TATTGTAGAGAGGTGGGAGATT 
GTCGCTATGATCGCTTGCC 

   
N. apis forward 

reverse 
 

CTAGTATATTTGAATATTGTTTACAATGG 
GTCGCTATGATCGCTTGCC 
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Appendix 2: Code for SAS 

 
 
Data cloth; 

input  

KupID Lokalpar $ LokalID $ Treatment $ Period $ Varroa Nosema Ceranae 

DWV SBV BQCV DWVbin LOGNOS NOSbin LOGSBV LOGBQCV; 

cards; 

*/ V. destructor analyses for infestation rate per 100 bees/* 

proc means data=cloth; 

class treatment period; 

var Varroa; 

run; 

proc means stderr data=cloth; 

class treatment period; 

var Varroa; 

run; 

proc glimmix data=cloth; 

class treatment period KupID LokalID Lokalpar; 

model Varroa= treatment period treatment*period / dist=poisson; 

random Lokalpar LokalID*Lokalpar KupID*LokalID*Lokalpar; 

run; 

*/ Percentage of colonies infested with V. destructor/* 

proc means data=cloth; 

class treatment period; 

var varrbin; 

run; 

 

proc means stderr data=cloth; 

class treatment period; 

var varrbin; 

run; 

 

proc glimmix data=cloth; 

class treatment period KupID LokalID Lokalpar; 

model varrbin= treatment period treatment*period / dist=binary; 

random Lokalpar LokalID*Lokalpar KupID*LokalID*Lokalpar; 

run; 

*/ Nosema spp. prevalence analyses /* 

proc means data=cloth; 

class treatment period; 

var NOSbin; 

run; 

 

proc means stderr data=cloth; 

class treatment period; 

var NOSbin; 

run; 
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proc glimmix data=cloth; 

class treatment period KupID LokalID Lokalpar; 

model NOSbin= treatment period treatment*period / dist=binary; 

random Lokalpar LokalID*Lokalpar KupID*LokalID*Lokalpar; 

run; 

*/ Nosema spp. infestation rate analyses /* 

data Nosema; 

Input KupID $ Lokalpar $ LokalID $ Treatment $ Period $ Nosema LOGNOS; 

Cards; 

 

proc means data=Nosema; 

class treatment period; 

var LOGNOS; 

run; 

proc means stderr data=Nosema; 

class treatment period; 

var LOGNOS; 

run; 

proc mixed data=Nosema; 

class treatment period KupID LokalID Lokalpar; 

model LOGNOS= treatment period treatment*period; 

random Lokalpar LokalID*Lokalpar KupID*LokalID*Lokalpar; 

run; 

 

*/ BQCV analyses /* 

proc means data=cloth; 

class treatment period; 

var LOGBQCV; 

run; 

 

proc means stderr data=cloth; 

class treatment period; 

var LOGBQCV; 

run; 

proc mixed data=cloth; 

class treatment period KupID LokalID Lokalpar; 

model LOGBQCV= treatment period treatment*period; 

random Lokalpar LokalID*Lokalpar KupID*LokalID*Lokalpar; 

run; 

 

*/ SBV analyses /* 

proc means data=cloth; 

class treatment period; 

var LOGSBV; 

run; 

proc means stderr data=cloth; 

class treatment period; 

var LOGSBV; 

run; 
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proc mixed data=cloth; 

class treatment period KupID LokalID Lokalpar; 

model LOGSBV= treatment period treatment*period; 

random Lokalpar LokalID*Lokalpar KupID*LokalID*Lokalpar; 

run; 

 

 

*/ DWV prevalence analyses /* 

proc means data=cloth; 

class treatment period; 

var DWVbin; 

run; 

 

proc means stderr data=cloth; 

class treatment period; 

var DWVbin; 

run;  

 

proc glimmix data=cloth; 

class treatment period KupID LokalID Lokalpar; 

model DWVbin= treatment period treatment*period / dist=binary; 

random Lokalpar LokalID*Lokalpar KupID*LokalID*Lokalpar; 

run; 

 

 

*/ DWV infection rate analyses /* 

data DWV; 

input KupID Lokalpar $ LokalID $ Treatment $ Period $ DWVLOG DWV; 

cards; 

 

proc mixed data=DWV; 

class treatment period KupID LokalID Lokalpar; 

model DWVLOG = treatment period treatment*period; 

random Lokalpar LokalID*Lokalpar KupID*LokalID*Lokalpar; 

run; 

proc means data=DWV; 

class treatment period; 

var DWVLOG; 

run; 

 

proc means stderr data=DWV; 

class treatment period; 

var DWVLOG; 

run; 

 

 

*/ DWV positive analyses /* 

 

PROC UNIVARIATE NORMAL PLOT data=cloth; 

var LOGDWV; 

HISTOGRAM LOGDWV/normal (color=red w=5); 

TITLE 'PROC UNIVARIATE LOGDWV'; 

FOOTNOTE 'Evaluate distribution of variables'; 

run; 



 

 

 

57 

 

 

proc means data=cloth; 

class treatment period; 

var LOGDWV; 

run; 

 

proc means stderr data=cloth; 

class treatment period; 

var LOGDWV; 

run; 

 

proc glimmix data=cloth; 

class treatment period KupID LokalID Lokalpar; 

model LOGDWV= treatment period treatment*period / dist=poisson; 

random Lokalpar LokalID*Lokalpar KupID*LokalID*Lokalpar; 

run;  



 

 

 

58 

 

Appendices 3: SAS output for all tests 

Appendix 3.1: Loads of Varroa destructor 

 

Analysis Variable : Varroa  

Treatment Period N Obs N Mean Std Dev Minimum Maximum 

A After 48 48 0.6666667 0.7809796 0 3.0000000 

  Before 46 46 0.2608696 0.6810052 0 4.0000000 

B After 48 48 0.6458333 1.1758127 0 6.0000000 

  Before 48 48 0.4375000 0.9203665 0 4.0000000 

 

 

 

 

 

Appendix 3.2: Prevalence of Varroa destructor 

 

 

 

 

 

 

 

Analysis Variable : Varroa  

Treatment Period N Obs Std Error 

A After 48 0.1127247 

  Before 46 0.1004087 

B After 48 0.1697139 

  Before 48 0.1328435 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Treatment 1 92 0.34 0.5591 

Period 1 92 9.10 0.0033 

Treatment*Period 1 92 1.57 0.2137 

Analysis Variable : varrbin  

Treatment Period N Obs Std Error 

A After 48 0.0729325 

  Before 48 0.0569329 

B After 48 0.0706166 

  Before 48 0.0613066 

Analysis Variable : varrbin  

Treatment Period N Obs N Mean Std Dev Minimum Maximum 

A After 48 48 0.5000000 0.5052912 0 1.0000000 

  Before 48 48 0.1875000 0.3944428 0 1.0000000 

B After 48 48 0.3750000 0.4892461 0 1.0000000 

  Before 48 48 0.2291667 0.4247444 0 1.0000000 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Treatment 1 94 0.14 0.7082 

Period 1 94 11.22 0.0012 

Treatment*Period 1 94 1.38 0.2435 



 

 

 

59 

 

Appendix 3.3: Prevalence of Nosema spp. 

 

Analysis Variable : NOSbin  

Treatment Period N Obs N Mean Std Dev Minimum Maximum 

A After 48 48 0.1875000 0.3944428 0 1.0000000 

  Before 46 45 0.6888889 0.4681794 0 1.0000000 

B After 48 48 0.0833333 0.2793102 0 1.0000000 

  Before 48 47 0.6382979 0.4856879 0 1.0000000 

 
 
 
 
 
 
 

 
 

Appendix 3.4: Infestation rate of Nosema spp. 

 

Analysis Variable : LOGNOS  

Treatment Period N Obs N Mean Std Dev Minimum Maximum 

A After 9 9 5.3300000 0.6607950 4.5000000 6.3800000 

  Before 34 34 5.3485294 0.4622549 4.3200000 6.1000000 

B After 4 4 4.8075000 0.1652019 4.6200000 4.9700000 

  Before 30 30 5.3550000 0.3575467 4.7200000 6.0900000 

 
 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Treatment 1 6 3.01 0.1332 

Period 1 6 4.57 0.0763 

Treatment*Period 1 6 3.21 0.1233 

 
  

Analysis Variable : NOSbin  

Treatment Period N Obs Std Error 

A After 48 0.0569329 

  Before 46 0.0697921 

B After 48 0.0403150 

  Before 48 0.0708449 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Treatment 1 90 2.07 0.1538 

Period 1 90 45.45 <.0001 

Treatment*Period 1 90 0.81 0.3692 

Analysis Variable : LOGNOS  

Treatment Period N Obs Std Error 

A After 9 0.2202650 

  Before 34 0.0792761 

B After 4 0.0826009 

  Before 30 0.0652788 
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Appendix 3.5: Infestation with BQCV 

Analysis Variable : LOGBQCV  

Treatment Period N Obs N Mean Std Dev Minimum Maximum 

A After 48 48 6.8252083 0.8601583 5.1900000 9.1800000 

  Before 46 45 8.3006667 0.7699244 5.8900000 9.6500000 

B After 48 48 6.6835417 0.9624580 5.3700000 9.4700000 

  Before 48 47 8.1889362 0.8470107 5.6200000 9.6600000 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Treatment 1 90 0.58 0.4469 

Period 1 90 154.19 <.0001 

Treatment*Period 1 90 0.00 0.9925 

 

 

Appendix 3.6: Infestation with SBV 

 

 

 

 

  

Analysis Variable : LOGBQCV  

Treatment Period N Obs Std Error 

A After 48 0.1241532 

  Before 46 0.1147736 

B After 48 0.1389189 

  Before 48 0.1235492 

Analysis Variable : LOGSBV  

Treatment Period N Obs Std Error 

A After 48 0.3059931 

  Before 48 0.3658084 

B After 48 0.1939077 

  Before 48 0.3816275 

Analysis Variable : LogSBV  

Treatment Period N Obs N Mean Std Dev Minimum Maximum 

A After 48 48 9.4320833 2.9099309 0 13.3700000 

  Before 48 48 9.4127083 2.0077231 0 12.7900000 

B After 48 48 9.7622917 2.0950684 0 12.7100000 

  Before 48 48 9.5622917 2.0375979 0 12.0900000 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Treatment 1 92 1.65 0.2018 

Period 1 92 0.39 0.5342 

Treatment*Period 1 92 0.10 0.7532 
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Appendix 3.7: Prevalence of DWV 

 

 

 

 

 

 

Analysis Variable : DWVLOG  

Treatment Period N Obs N Mean Std Dev Minimum Maximum 

A After 26 26 6.6500000 1.2712985 5.0000000 9.8000000 

  Before 3 3 7.3433333 1.3682958 5.8100000 8.4400000 

B After 9 9 6.1666667 0.3840573 5.4000000 6.8000000 

  Before 1 1 7.7400000 . 7.7400000 7.7400000 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Treatment 1 2 0.00 0.9558 

Period 1 2 2.68 0.2436 

Treatment*Period 1 2 0.40 0.5904 

 

Analysis Variable : DWVbin  

Treatment Period N Obs N Mean Std Dev Minimum Maximum 

A After 48 48 0.5416667 0.5035336 0 1.0000000 

  Before 48 47 0.0638298 0.2470922 0 1.0000000 

B After 48 48 0.1875000 0.3944428 0 1.0000000 

  Before 48 47 0.0212766 0.1458650 0 1.0000000 

Analysis Variable : DWVbin  

Treatment Period N Obs Std Error 

A After 48 0.0726788 

  Before 48 0.0360421 

B After 48 0.0569329 

  Before 48 0.0212766 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Treatment 1 92 3.08 0.0828 

Period 1 92 19.79 <.0001 

Treatment*Period 1 92 0.29 0.5893 

Analysis Variable : DWVLOG  

Treatment Period N Obs Std Error 

A After 26 0.2493222 

  Before 3 0.7899859 

B After 9 0.1280191 

  Before 1 . 



 

 

 

62 

 

Appendix 3.8: Distribution of LOGDWV 

 

 

 

Goodness-of-Fit Tests for Normal Distribution 

Test Statistic p Value 

Kolmogorov-Smirnov D 0.4843740 Pr > D <0.010 

Cramer-von Mises W-Sq 9.1799002 Pr > W-Sq <0.005 

Anderson-Darling A-Sq 45.0153534 Pr > A-Sq <0.005 

 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Treatment 1 92 4.77 0.0315 

Period 1 92 81.77 <.0001 

Treatment*Period 1 92 0.04 0.8395 

 




