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ABSTRACT 

The Dwarf mutation in domestic rabbits is caused by a semi-lethal autosomal recessive single 

gene on chromosome 4. In the heterozygote state the mutation causes dwarfism and in the 

homozygote state the mutation gives an extreme dwarf phenotype (peanut) not compatible with 

life for more than a few days post-partum. In this study whole genome re-sequencing was used for 

mapping and identification of the causal dwarf mutation. A 12.1Kb deletion spanning between 

44,709,089 bp to 44,721,236 bp on chromosome 4, taking out three exons of the High-mobility 

group AT-hook 2 (HMGA2) gene was identified as the causal mutation. Genotyping of the 

HMGA2 deletion in more dwarf, peanut and wild-type rabbits further supported the causality of 

the deletion. We show that the dwarf phenotype arises from the inactivation of HMGA2, a member 

of the high mobility group AT-hook family which function as an architectural factor in growth 

regulation during embryonic development. Expression profile analysis of different parts of 

wild-type embryos revealed high expression levels of HMGA2 in the early developmental stages 

from day 9.5 to day 18 and a dramatic decrease from day 21. Embryos at day 15.5 displayed the 

highest expression level of HMGA2. We observed low expression levels in brain tissue and 

relative expression levels in different body parts in embryos (day 21 and 24) as well as in 

newborn rabbits could be ordered in the following way: body > head skin > skull > brain. 

 

Key words: dwarf mutation; HMGA2; domestic rabbits; embryos 
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1. INTRODUCTION 

1.1 The Dwarf phenotype   

Growth is the result of complex interactions between multiple environmental and genetic factors. 

Dwarfism is present in many species, such as human, mice, chicken and rabbit (Ruyter-Spira et al. 

1998). The pioneering work on dwarfism in rabbits can be traced to 1934 when Greene, Hu, and 

Brown reported that the dwarf phenotype in domestic rabbits shows an autosomal semi-lethal 

inheritance (Greene et al. 1934). The heterozygous carriers of the dwarf allele typically are 

approximately two-thirds the size of normal litter mates when they are born; have compact and 

rounded bodies, short noses, a disproportionate larger head when compared to rest of the body, and 

small ears (Figure 1A). Animals that are homozygous for the dwarf allele show a severely reduced 

growth rate, with approximately one-third the size of their normal litter mates and less than half 

the birth weight of their normal sibs. They always display a very characteristic body conformation 

evident at the time of birth that makes them easily to identify (Figure 1B). Homozygous mutants 

have rounded posterior calvarium, a dished-out snout, extremely small ears and an abnormal 

configurative head (Greene 1940). They are viable up to the time of birth but they die within the 

first few days. In has been reported that the secretory functions of the pituitary is completely 

inhibited which underlie the peanut phenotype (Greene 1940). 

 

There have been many studies examining the genetic architectures of mammalian dwarf 

phenotypes. For instance, studies of the 12q14 micro-deletion syndrome revealed the roles of 

HMGA2 in regulating linear growth in humans. Affected patients with the 12q14 micro-deletion 

syndrome show a short stature (Tay et al. 2009). The Crooked Neck Dwarf mutation in chickens 

is an autosomal recessive lethal mutation caused by one single gene conferring skeletal muscle 

dysgenesis including muscle dysfunction, a failure to maintain embryonic skeletal tendons and 

muscles, and eventually the degenerative loss of all skeletal muscles (Airey et al. 1993). Another 

spontaneous autosomal recessive mutation, found in White Leghorn chickens, results in reduced 

30% reduction in body weight in adults and overall decreased body size except the head 

(Ruyter-Spira et al. 1998). The small size in pygmy mice cannot be explained by aberrations in 

the growth hormone-insulin-like growth factor endocrine pathway (Zhou et al. 1995). In 1995, 

Zhou demonstrated that the mice pygmy phenotype was caused by genetic variation in 

high-mobility group protein I-C (HMGI-C) gene which has been shown to be involved in the 

regulation of cell proliferation (Zhou et al. 1995).  

 

Previous studies have confirmed that the dwarf phenotype of domestic rabbits is governed by the 

effects of a single autosomal recessive dwarf gene (d), located on chromosome 4. Previous 

linkage data revealed that the genes for agouti hair pattern and the dwarf phenotype are located on 

the same chromosome, with a reported crossover percentage of 12-15% (Castle & Sawin 1941). 

However, studies on the specific genomic region harbouring the dwarf mutation and the casual 

mutation underlying the dwarf phenotypes were unknown when this study was initiated. 
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Figure 1: A: A New Zealand rabbit and a dwarf rabbit. Left is the normal rabbit; right is the 

dwarf rabbit with compact and rounded body, small ears, short nose, rounded 

posterior calvarium and a disproportionate large head comparing with rest of the 

body. B: A homozygous peanut (dd) rabbit with extremely large head and tiny ears, 

misshapen small front legs and deformed back legs.  

 

1.2 Whole genome re-sequencing   

Sanger capillary based sequencing was been the most commonly used DNA sequencing method 

for nearly 30 years since 1977 (Schuster 2007). However, since several new sequencing 

instruments became available in the first decade of the 21st century, the so-called ‘next generation’ 

or ‘massively parallel’ sequencing methodologies are becoming widely used and already 

improving the field (Mardis 2008). The next-generation sequencing instrumentation are capable to 

re-sequence genomes in a fraction of the time, effort and expense than was possible using 

capillary sequencers (Hillier et al. 2008).  

 

A 

B 
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Next-generation sequencing methods overcome the limitation of traditional Sanger sequencing by 

either attaching the DNA molecules on surfaces or creating micro-reactors to produce millions of 

sequencing reactions (Reis-Filho 2009). Nowadays, there are three main technologies 

commercially used. Roche (454) GS FLX sequencer was introduced in 2004 and worked on the 

concept of pyro-sequencing to produce an average read length of ~250 bp per sample with a 

combined throughput of ~100MB of sequence data per 7h run. The Illumina Genome Analyzer 

was introduced in 2006 and worked on the principle of sequencing by synthesis to produce 

~32-40 bp sequence reads from tens of millions of surface-amplified DNA fragments. Applied 

Biosystems SOLiD sequencer was released in 2007 and utilized a special sequencing process 

catalysed by DNA ligase. Each SOLiD run produces 3-4 Gb sequencing data with an average read 

length of ~25-35 bp in ~5 days (Mardis 2008). 

 

The Human Genome Sequencing Consortium generated 3Gb at the cost of approximately $3 

billion and took 13 years by traditional sequencing method. Current next-generation sequencing 

technology could obtain 10-fold coverage of the human genome (30GB DNA sequence) in a 

single run for less than $15,000 to $20,000 (Reis-Filho 2009). In 2014, the cost has already 

decreased to $2,000. Whole genome re-sequencing technology has improved rapidly and is now 

two orders of magnitude faster and more cost effective than the technologies originally used for 

the sequencing of the human genome and it is expected to reduce cost to sequence an entire 

human genome for $1,000 in the near future (Meuwissen & Goddard 2010). 

 

In recent years next-generation sequencing has demonstrated its enormous potential for functional 

genomics studies in animals (Schuster 2007). Whole genome sequencing or re-sequencing has 

been performed in many livestock species, such as pigs, chickens and cattle. It also brings new 

opportunities and enormous possibilities for identification of causative mutation for complex traits 

in domestic animals. 

 

1.3 HMGA2 

HMGA2, also known as HMGI-C, a member of the high mobility group AT-hook family of 

non-histone chromatin proteins, is an architectural transcription factor (Lee & Dutta 2007). The 

HMGA proteins contain three DNA-binding domains, termed AT hook domains, which interact 

with AT- rich stretches in the narrow minor groove of DNA and an acidic C-terminal tail (Brants 

et al. 2004). It has been proven that HMGA2 protein plays a significant role in growth regulation 

during embryonic development (Zhou et al. 1995; Lee & Dutta 2007).  

 

In humans, a chromosomal rearrangements at chr12q13-15 involving the HMGA2 gene (Alyaqoub 

et al. 2012) and the accompanying overexpression of the HMGA2 protein result in benign 

mesenchymal tumors such as uterine leiomyoma, endometrial polyps, lipoma and pulmonary 

chondroid hamartoma (Lee & Dutta 2007). Except its critical role in benign mesenchymal 
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tumorigenesis, there are a number of appealing observations with regard to HMGA2 in malignant 

epithelia tumors over the past decades (Morishita et al. 2013). Furthermore, overexpression of 

HMGA2 is tumorgenic in differentiated tissues which is correlated to the occurrence of colon 

cancer, breast cancer, lung cancer, myeloid neoplasia and oral carcinomas (Miyazawa et al. 2004; 

Morishita et al. 2013). HMGA2 can be utilized as a biomarker of melanoma progression and 

prognosis as well (Raskin et al. 2013). Regulation of HMGA2 expression during prenatal 

development might be one determining factor for human stature (Tay et al. 2009). 

 

HMGA2, as an effector of TGF-β that causes Epithelial-mesenchymal transition (EMT), is 

expressed at high level by transformed cells or tumors of mesenchymal and epithelial origin even 

though HMGA2 is expressed during embryogenesis and becomes silent in the mature tissues 

(Sgarra et al. 2004; Thuault et al. 2006). EMT appears during embryogenesis, carcinoma 

invasiveness, and metastasis and can be elicited by transforming growth factor-β (TGF-β) 

signalling via intracellular Smad transducers and can convert polarized epithelial cells to motile 

mesenchymal cells (Thuault et al. 2006).  

 

In mice, the pygmy mutation is unique among mutations leading to dwarfism because its 

phenotype cannot be explained by aberrations in the growth hormone-insulin-like growth factor 

endocrine pathway but is caused by the inactivation of HMGA2 (Zhou et al. 1995; Brants et al. 

2004). HMGA2 gene is encoded by the pygmy locus on mouse chromosome 10 and its expression 

is high during early development from 10.5 d.p.c to 14.5 d.p.c but barely detectable in adult 

tissues (Zhou et al. 1996). Previous studies demonstrated that most tissues in pygmy mouse were 

40% to 50% smaller than in wild-type mouse tissues except for the brain which stays the normal 

size (Benson & Chada 1994). The insulin-like growth factor mRNA-binding proteins (IMP) has 

an important role for regulating growth, and is composed of three family members IMP1, IMP2 

and IMP3. Only IMP2 is down-regulated in pygmy mutant embryos lacking HMGA2 expression. 

The HMGA2-IMP2 axis has been shown to play a key role in regulating satellite cell activation 

and therefore skeletal muscle development (Li et al. 2012). Disturbing the axis may results in a 

skeletal muscle dysgenesis involving muscle dysfunction and a failure to maintain embryonic 

skeletal tendons and muscles. 

 

1.4 Aims of the study 

 To identify the genomic region harbouring the dwarf mutation and to identify the causal 

mutation underlying the dwarf and peanut phenotypes by whole genome re-sequencing of 

normal and dwarf rabbits 

 Genotyping of a large number of samples representing the different dwarf phenotypes (dwarfs 

and peanuts) and normal rabbits to confirm the causal dwarf mutation 

 Determination of the expression profiles of HMGA2 gene in wild-type rabbit embryos at 

different developmental stages and different body sites 
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Table 1: Selected papers studying mutations in HMGA2 in mammals 

Time  References  Event and breakpoint about dwarf mutation or HMGA2  

1934 Greene et al. First described an incomplete lethal recessive mutation and designated it dwarf in domestic rabbits 

1940 Harry et al. Extensive investigation of the lethal dwarf mutation on physical appearance and histological analysis in Polish rabbits 

1941 W. E. Castle et al. Described a linkage system involving agouti (A) gene and dwarf (d) gene; the crossover percentage between agouti and dwarf 

was around 12%-15% in rabbits 

1995 Zhou et al. Absence of HMGA2 expression in mice resulted in the pygmy phenotype; high expression of HMGA2 between 10.5 d.p.c to 

14.5 d.p.c in wide type; most tissues in pygmy mice were 40%-50% smaller than wild-type tissues except for brain tissue; 

1996 Zhou et al. Described HMGA2 genomic structure in mice; RNA-seq was used to analysis temporal and tissue-specific expression of 

HMGA2 during murine development 

2002 Chieffi et al.  Disruption of HMGA2 gene resulted in a block of spermatogenesis and a pygmy phenotype with a drastic reduction in fat tissue 

and was associated with a longer cell cycle of embryonic fibroblasts 

2004 Jan R. Brants et 

al. 

Only IMP2, not its family member IMP1 and IMP3 was down-regulated in mutant E12.5 

2007 Y. Lee et al. HMGA2 was depressed upon inhibition of let-7 in cells with high levels of the miRNA; described the genomic structure and 

location of HMGA2 in human 

2007 C. Mayr et al. Let-7 miRNA acted as a tumor-suppressor gene; indicated that a major mechanism of oncogenic HMGA2 translocations 

associated with various human tumors was the loss of let-7 repression 

2012 Z. Li et al. HMGA2-IMP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development 

2013 Morishita A et al. HMGA2 is an architectural transcription factor predominantly expressed in the mesenchyme before its differentiation and a 

regulator of mesenchymal proliferation and differentiation; the HMGA2 null reveals a pygmy phenotype due to the decreased 

number of mesenchymal cells in mice 
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2. MATERIALS AND METHODS 

2.1 Animals  

Rabbits that are homozygous for the wild-type allele at the dwarf locus have the genotype DD. 

Rabbits that are heterozygous Dd show the dwarf phenotype while dd homozygotes are called 

“Peanut”.  

 

In this study, DNA that had been extracted from blood samples was collected from 10 dwarf 

rabbits (Dd) and 10 peanut rabbits (dd). These DNA samples were separately mixed as two DNA 

pools and submitted for whole genome re-sequencing to identify candidate mutations for the 

dwarf phenotype. Following the detection of the candidate causal HMGA2 deletion another 20 

Netherland dwarf rabbits (14 females and 6 males), 14 peanut samples (8 females and 6 males), 

and 20 wild type rabbits were further genotyped to confirm the causality of mutation. The wild 

type rabbits were comprised of 3 wild rabbits from Porto Santo island, 3 domestic Champagne 

rabbits, 3 wild Toledo rabbits, 3 French wild Caumont rabbits, 4 French wild Villemolaque rabbits 

and 4 Calzada rabbits (Appendix Table 3). 

 

11 embryos from wild type rabbits at different developmental stages were collected for expression 

profile analysis, including 3 embryos at day 9.5, two embryos at day 12 and one embryo at day 

15.5, 16, 18, 21, 24 and new born respectively.  

 

2.2 Mapping and identification of the causal mutation by Whole Genome 

Re-sequencing 

The two DNA pools described above were sequenced as paired-end libraries to 30X coverage 

using a HiSeq2 instrument (Illumina). All reads were aligned to the rabbit reference genome 

assembly (OryCun2) using the software BWA-mem (Li & Durbin 2009). Bioinformatic analysis 

was used to identify all sequence variants, such as structural changes, insertion/deletions and 

SNPs, which were unique to the dwarf haplotype (d) and not found in any wild-type rabbits (DD). 

Samtools was used to generate a pileup file and then the PoPoolation package was utilized to 

calculate the frequency of candidate mutations for the dwarf phenotype in rabbits (Kofler et al. 

2011). 

 

2.3 Determination of breakpoint of deletion 

Primers 1 and 5 were designed using Primer 3.0 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/ ) for 

amplifying a fragment across the deleted region in the dwarf homozygotes to precisely define the 

deletion breakpoints (Primer design is indicated in Figure 2). PCR mix 1 (total reaction volume of 

20μl) contained approximately 40ng DNA, 0.8μl primer mix (0.2μM and 0.4μl each), 2μl 

10*Buffer, 1.6μl Mg2+ (2.0mM), 0.2μl dNTP (0.2mM), 0.25μl Taq polymerase and 14.15μl water. 

PCR amplification was carried out under the following thermo cycling profile: an initial 

http://bioinfo.ut.ee/primer3-0.4.0/primer3/
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denaturation at 95oC for 9 min; 45 cycles of 94oC for 30s, 60oC for 1 min; final extension at 60oC 

for 10 min. 

 

2.4 Genotyping 

2.4.1 PCR amplification 

PCR assays were used to genotype individual rabbit based on presence/absence of the HMGA2 

deletion breakpoints to confirm a complete concordance between the presence of this mutation 

and the dwarf and peanut phenotypes. Two pairs of primers were designed for genotyping based 

on the rabbit reference genome assembly (OryCun2) using Primer 3.0 

(http://bioinfo.ut.ee/primer3-0.4.0/primer3/ ). These two primer pairs (P1+P2 and P1+P3) were 

used to generate amplicons for sequencing across the deletion breakpoint and this amplicons was 

also used as a diagnostic test which could be used to genotype all the dwarf samples, peanuts and 

wild-type rabbits. 

 

PCR mix 2 contained 3μl DNA sample (~50ng), 0.4μl primer mix, 2μl 10*Buffer, 1.2μl Mg2+, 

0.2μl dNTP, 0.25μl Taq polymerase and 12.95μl water. PCR mix 3 contained 2μl sample from 

PCR mixes 2 products, 0.8μl primer mix, 2μl 10*Buffer, 1.2μl Mg2+, 0.2μl dNTP, 0.25μl Taq and 

13.55μl water. For the diagnostic test, the PCR mix 1 with P1+P3 was utilized to genotype 

peanuts and wild-type rabbits. Due to the low concentration of dwarf samples, nested PCR was 

used. PCR mix 2 with P1+P2 was used for the first round and PCR mix 3 with P1+P2 was used 

for the second round PCR to genotype dwarf phenotypes. The same PCR thermo cycling profile 

as used for the determination of breakpoints was also used here.  

 

Figure 2: Primer design for genotyping and breakpoint analysis. The same colour box means 

one pair of primer. P1+P5 were used for determining the breakpoint; P1+P3 were 

used for genotyping peanuts and wild-type rabbits; P1+P2 were used for genotyping 

dwarf phenotypes. 

 

2.4.2 Gel electrophoresis  

3μl PCR amplification product mixed with loading dye was used for gel electrophoresis. 100bp 

molecular ruler was utilized in the study. P1+P2 produced a 293bp amplicon; P1+P3 produced a 

http://bioinfo.ut.ee/primer3-0.4.0/primer3/
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244bp amplicon; and P1+P5 produced a 530bp amplicon. 

 

2.5 Expression profile analysis 

2.5.1 RNA extraction 

Different body parts of embryos at different developmental stages were collected for RNA 

extraction as explained in Table 2. 

 

Table 2: Embryo samples at different developmental stages used for gene expression analysis 

 New 

born 

Day 24 Day 21 Day 18 Day 

16 

Day 

15.5 

Day 12 Day 9.5 

 1 2 1 2 3 

Body tissue Dorsal 

Muscle
a 

Dorsal 

Muscle 

Dorsal 

Muscle 

Dorsal 

Muscle 

Half 

body
b 

Half 

body 

Whole 

embryo 

Whole 

embryo 

Skull tissue Skull  Skull   

Whole 

head
d 

-- -- -- -- -- 

Head skin h-skin
c 

h-skin -- -- -- -- -- 

Brain tissue Brain  Brain  -- -- -- -- -- 

 
a
: dorsal muscle tissues were cut from individuals 

 
b
: due to the limitation of body size, half of the body was used  

c
: head skin tissues were dissected from individuals 

d
: because it is difficult to dissect different parts of the head, the whole head was used 

 

RNeasy® Mini Kit for animal tissues was used for purification of demanded RNA in this study. 

Details about steps in RNA purification can be seen in RNeasy website 

(http://www.genome.duke.edu/cores/microarray/services/rna-qc/documents/RNeasy_Mini_Handb

ook.pdf ). 

 

2.5.2 Reverse transcription and Quantitative PCR 

Reverse transcription solution (total reaction volume of 20μl) contained Oligo(T)18 primers 

(0.25μl), 10 mM dNTP (1μl), 5xRT buffer (4μl), M-MLV enzyme (1μl, InvitrogenTM), template 

RNA (1μg) and nuclease-free water. Reverse transcription used the following thermo cycling 

profile: 25oC for 10 min, 50oC for 30 min and 85oC for 5 min.  

 

Template cDNA obtained from the Reverse transcription was utilized for quantitative PCR 

(qPCR). GAPDH was used as endogenous control. New HMGA2 reverse and forward primers and 

HYB oligo TaqMan probe were designed for qPCR (Figure 3). Primer 3.0 was used for designing 

probe and one pair of HMGA2 primers. Primers HMGA2 Ex-F and HMGA2 Ex-R were designed 

for crossing the region from exon 4 to exon 6 of HMGA2. A TaqMan Probe targeting exon 5 of 

HMGA2 gene was designed. Details about primers and probe sequences are given in Appendix 

Table 3. 

 

http://www.genome.duke.edu/cores/microarray/services/rna-qc/documents/RNeasy_Mini_Handbook.pdf
http://www.genome.duke.edu/cores/microarray/services/rna-qc/documents/RNeasy_Mini_Handbook.pdf
http://www.genome.duke.edu/cores/microarray/services/rna-qc/documents/RNeasy_Mini_Handbook.pdf
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The PCR mix contained 5μl Taq universal PCR master mix (2X), 0.2μl reverse primer, 0.2μl 

forward primer, 0.01μl TaqMan probe, 3.59μl nuclease-free water and1μl cDNA sample. Applied 

Biosystems 7900HT real-time PCR system was used in this study. 

 

 

Figure 3: Primer design and probe design for expression profile analysis. Arrows means primer 

and black line means probe. Different colours of rectangles mean exons of HMGA2 

gene. Red line means the candidate dwarf mutation in this study. 

 

 

3. RESULTS 

3.1 Mapping and identification of candidate causal mutations for rabbit dwarf 

phenotype 

We used whole genome re-sequencing to identify the causal region responsible for the dwarf 

phenotype. BWA-mem was used to map the reads onto the rabbit reference genome, then, a pileup 

file was generated by samtools to calculate the Fst values between peanuts and dwarfs for the 

entire genome by PoPoolation package (Li & Durbin 2009; Kofler et al. 2011). A previous study 

suggested that the Dwarf locus is linked to Agouti on chromosome 4 (Castle & Sawin 1941), and 

the initial efforts were therefore directed to scans of this chromosome. After a series of 

bioinformatics analysis mentioned above, the causal region of dwarf mutation was revealed as a 

deletion in chromosome 4 in rabbits (Figure 4). 
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Figure 4: IGV (Thorvaldsdóttir et al. 2013) view of comparisons among New Zealand rabbit 

(WT/WT), Dutch rabbit (WT/WT), Netherland Dwarf (WT/Del) and Peanut (Del/Del). 

An obvious homozygous deletion was found in the peanut sample for the region from 

44,709kb to 44,721kb on chromosome 4; Netherland Dwarf rabbits showed half 

expression level compared with wild type rabbit in the same region. 

 

When analysing depth of read coverage for the two sequenced pools a deletion overlapping parts 

of the coding sequence of the High Motility Group Antigen 2 (HMGA2) gene was identified 

(Figure 4). Approximately 12 kb of the wild type sequence had no high confidence mapped reads 

in the Peanut pool homozygous for the deletion (Del/Del). The Dwarf pool had about half the 

expected read depth of coverage over this region, consistent with their known heterozygous 

genotypes expected for a causal mutation (Del/WT). Meanwhile, homozygous wild type rabbits of 

New Zealand and Dutch rabbits (WT/WT) revealed normal depth of coverage, approximately 

twice the depth of mapped reads compared with Netherland Dwarf rabbits in the same region. The 

deletion region is visible round 44,709 kb to 44,721 kb (Figure 4). The identified deletion 

overlaps the first three exons of the HMGA2 gene making it very likely that this deletion is 

responsible for the two phenotypes associated with the rabbit dwarf locus in domestic rabbits. 

Further bioinformatics analysis determined that the deletion spanned between bases 44,709,089 

bp to 44,721,236 bp on chromosome 4.  

 

3.2 Validation of breakpoints by PCR and sequencing 

All the dwarf samples and Peanuts were amplified by standard PCR with primers P1+P5 to 

determine the breakpoint.  
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       Figure 5: Sequencing result of selected samples. All three sequencing results showed the same 

sequence at the deletion breakpoint (red colour letters) at 44,709,089bp and 

44,721,236bp (middle). The bottom figure shows a schematic illustration indicating 

that the deletion removes exon 1-3 of HMGA2 gene; dark blue rectangles mean 

exons. 

 

PCR products from Peanut 13, Peanut 14 and Dwarf 50 (details in Table 3 in Appendix) were used 

for sequencing (Figure 5). The upper nucleotide sequence shows the consensus breakpoint derived 

from sequencing three samples and the middle schematic figure displays the sequence including 

the deletion part. The red nucleotides show the breakpoint of the deletion region as we determined 

in the bioinformatics analysis. The deletion starts at 6.1 kb of upstream of exon 1 and ends at 

1.1kb downstream of exon 3 (Figure 5).  

 

 

Figure 6: Genomic structure at the deletion site illustrated using the UCSC genome browser. 

Deletion  
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Red box shows that four SINEs and one LINE are detected close to the start site of 

the deletion. Deletion region was shown as the red line in the figure. 

 

Genomic structure near the deletion was analysed by manual inspection using the UCSC genome 

browser. At the start site of the deletion, four SINEs and one LINE were found (Figure 6) which 

could be one explanation why the deletion event took place at this position. 

 

3.3 Genotyping results  

All 14 peanuts samples, 20 dwarf samples and 20 wild type samples were genotyped. When all 

the samples were subjected to PCR with primers P1+P2 and P1+P3 separately, the results were as 

follows: all peanuts samples showed only the 293bp amplicon; all dwarf samples showed both the 

293bp and the 244bp amplicons; all wild type samples showed only the 244bp amplicon. 

 

 

 

Figure 7: Genotyping results. Sample 1-3: PNT9, PNT10, PNT 11(peanut); Sample 4-6: 

NDA39, NDA41, NDA50 (dwarf); Sample 7-9: PST7, PST10, PST16 (wild type). A) 

PCR amplicons of Peanuts and dwarfs with P1+P2 were 293bp; no amplicons of 

wild type rabbits; B) PCR amplicons of dwarfs and wild type rabbits with P1+P3 

were 244bp; no amplicons of Peanuts. 

 

Only three samples which were selected from each phenotype group were utilized to show the 

genotyping results here in Figure 7. Based on the results we could conclude that all Peanuts were 

homozygous for deletion, dwarfs were heterozygous for deletion and wild-type rabbits were 

homozygous without deletion. All 14 peanuts samples, 20 dwarf samples and 20 wild type 

samples were perfectly consistent with the phenotypes. Thus, our results are regards the presence 

of the 12.1 kb deletion on chromosome 4 is consistent with our hypothesis that it is the causal 

mutation for the dwarf and peanut phenotypes in domestic rabbits. 

 

A 
293bp 

B 

244bp 
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3.4 Expression profile analysis 

3.4.1 Confirmation of RNA quality 

RNA was extracted from different body parts of 11 wild-type embryos as mentioned above (Table 

2). All the extracted RNAs were run on gel to check the quality before expression profile analysis. 

Two apparent bands corresponding to 28s and 18s rRNA could be observed which demonstrated 

that extracted RNA was of good quality for all the samples (Figure 8).  

 

 

Figure 8: Gel electrophoresis results of RNA of body tissues in new born, 24, 21 and 18 

days. There were two bands shown 28s and 18s rRNA. 

 

Only 2μl RNA from each sample was used for gel electrophoresis, which might be the explanation 

for the inconspicuous fluorescence in one lane in Figure 8. However, the obvious two bands in all 

the samples demonstrate that all the extracted RNAs were of good quality.  

 

3.4.2 Expression profile analysis of body tissues 

In order to check where we could observe the highest expression level of HMGA2 gene in 

domestic rabbits, body tissues were collected from different embryonic stages to do expression 

profile analysis. High expression levels of HMGA2 could be observed during early development 

from day 9.5 to day 18. Embryos at day 15.5 displayed the highest expression level with a 

standard variance less than 0.2, which indicates that the result was reliable. The HMGA2 

expression level dramatically decreased from day 21 (Figure 9), which is consistent with previous 

studies in mice where HMGA2 is barely detectable in adult tissues. 
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Figure 9: Expression profile analysis of body tissues in different embryo days. HMGA2 gene 

has the highest expression level at day 15.5. Its expression level dramatically 

decreases from day 21. 

 

3.4.3 Expression profile analysis of different body parts 

Earlier studies have demonstrated that most tissues in pygmy mouse were 40% to 50% smaller 

than wild-type mouse tissues except for the brain tissue which maintain its normal size (Zhou et al. 

1995). We decided to explore whether the HMGA2 expression pattern in rabbit brain during 

development differed from that in other for tissues. Skull tissue, head skin and brain tissue of 

embryos at day 24 and new born were collected for this purpose. In consideration of the small 

head size of embryos at day 21, half the head was collected to generate a comparison of HMGA2 

expression level among different brain tissues at various days. 

 

 

Figure 10: Expression profile of brain tissues at different developmental stages. 

HMGA2 gene has low expression level in brain tissues. A is with day 18 

embryo as a positive control while B is without day 18 embryo. The 

expression level of HMGA2 in the different parts of brains at day 21, 24 and 

new born (NB) embryos: body > head skin > skull > brain. 
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Based on the results shown in Figure 10A, body tissue at day 18 was chosen as a positive control 

to reveal that HMGA2 expression in both body tissue and brain tissues were dramatically 

decreased on day 21. To compare the expression level among body tissue and different brain 

tissues, body tissue at day 18 was extracted to impel the difference between diversified tissues 

becoming obvious. In figure 10B, the order of the expression level of HMGA2 in different parts of 

embryos at day 21, 24 and new embryos is: body > head skin > skull > brain. Because of a 

pipetting error for body tissue at day 21, the expression level of HMGA2 in head was higher than 

those in body. Repeated real-time PCR was done which illustrated that body tissue at day 21 had a 

higher expression level than head tissue with lower standard variation.  

 

4. DISCUSSION 

Dwarfism is a common trait in domestic rabbits in particular among pet rabbits. The first studies 

on the dwarf phenotype in domestic rabbits was published already 1934 (Greene, Hu and Brown 

1934) and in 1941 (Castle & Sawin 1941). These studies showed that the dwarf phenotype is 

caused by a dwarf gene (d) which was a semi-lethal autosomal recessive single gene. However, 

the genomic region harbouring the dwarf mutation and the causal mutation underlying different 

phenotypes has been unclear until the present study. 

 

Here we report about a successful application of next-generation sequencing technology for 

identifying the causal mutation responsible for dwarf phenotype in rabbits. Whole genome 

re-sequencing and bioinformatic analysis revealed a 12.1Kb deletion between 44,709,089bp to 

44,721,236bp on chromosome 4. Following the sequencing data analysis we regarded this 12.1Kb 

deletion as a strong candidate dwarf mutation in domestic rabbits because it disrupts the coding 

sequence of HMGA2. Based on the hypothesis that the identified deletion was the single 

autosomal recessive dwarf mutation (d) mentioned above, genotyping on this deletion was done. 

We proved that our deletion genotyping was perfectly consistent with this deletion being the 

casual mutation according to expectations. Peanuts were homozygous for the deletion, dwarfs 

were heterozygous for the deletion and wild-type rabbits were homozygous without the deletion.  

 

Except for the dwarf gene (d), an alternative gene which was designed as diminutive gene (b) by 

Greene in 1940 was presented to be a co-effective gene or a modifier which might influence the 

phenotypic expression of the dwarf mutation in domestic rabbits (Greene 1940). It’s effect was 

revealed when Polish dwarf rabbits were mated with normal unrelated animals of any line except 

for lines carrying the cretinoid abnormality (Greene 1940). In this study, when the rabbits are 

homozygous for the dwarf gene (d), they are Peanuts regardless of the diminutive genotype (b). 

When the rabbits are homozygous for the wild type dwarf gene (D), they are wild-type normal 

rabbits regardless of diminutive genotype. However, when the rabbits are heterozygous for the 

dwarf gene, animals of genotype Ddbb are dwarfs while DdBb animals are normal phenotype. 

Further analyses may be conducted to test whether the diminutive gene plays a role only in the 
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mentioned cross or show a similar effect on other genetic backgrounds. 

 

The 12.1kb deletion starts 6.1 kb of upstream of exon 1 and ends at 1.1kb of downstream of exon 

3 of HMGA2 gene. This, the promoter region and the first three exons of HMGA2 gene are deleted 

by this mutation which must lead to an inactivation of HMGA2 gene. Previous studies showed 

that mutations in the HMGA2 gene are associated with in reduced body weight in adults and 

overall decreased body size except the head in pygmy mice and in White Leghorn chicken 

(Ruyter-Spira et al. 1998). The mouse study demonstrated that inactivation of the HMGA2 gene 

was responsible for the dwarf phenotype and we therefore conclude that the 12.1 deletion 

affecting the HMGA2 gene is a very likely causative mutation for the dwarf and peanut 

phenotypes in domestic rabbits. Besides, the inactivation of HMGA2 in mice resulting in a 

skeletal muscle dysfunction could provide a reliable explanation why peanuts were not viable for 

more than a few days post-partum. It is possible to speculate that peanuts might die of 

developmental retardation for muscle and skeleton by the inactivation of HMGA2 gene. 

 

In this study, we checked HMGA2 expression levels on wild-type rabbit embryos at different 

developmental stages to test our hypothesis that HMGA2 gene is responsible for dwarf phenotype 

in domestic rabbits. HMGA2 gene has high expression level during early embryo developmental 

stages from day 9.5 to day 18 while dramatically decreasing on day 21 and in the following stages. 

In pygmy mice, there existed high expression level of HMGA2 gene on early embryo 

developmental stages from day 10.5 to day 14.5 but barely detectable in adult tissues, suggesting 

that the HMGA2 protein is crucial for growth regulation during embryonic development (Zhou et 

al. 1995; Lee & Dutta 2007). Our expression profile analyses indicated that the HMGA2 gene in 

rabbits has a very similar expression profile during development. 

 

The analysis of HMGA2 expression was further extended by its localization in the wild-type 

embryos at different developmental stages. Expression profile analysis was done on different body 

parts of embryos at day 21, day 24 and new born rabbit and indicating a rough order as body > 

head skin > skull > brain. Extremely low expression levels were observed in different parts of the 

head. This expression pattern was analogous with previous studies demonstrated that most tissues 

in pygmy mouse were 40% to 50% smaller than wild-type mouse tissues except for the brain 

tissue which maintained its normal size (Zhou et al. 1995). It might be possible to explain the 

appearance of extremely large head and tiny body in peanuts. However, because of the tiny size of 

embryos before day 15.5, we cannot dissect the embryos for special parts. The entire embryos 

were used as body tissue in this study. If more technologies and instruments can be used to dissect 

different organs or tissues of embryos at early development stage, we could compare the 

expression level of HMGA2 gene in different tissues in the future.  

 

Our results demonstrate that the absence of HMGA2 causes growth retardation and the dwarf 
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phenotype in domestic rabbits. Although the precise molecular mechanism is not yet known, the 

function of HMGA2 protein as a transcription factor suggests that a disruption of this gene will 

have many downstream effects. In fact, the dwarf rabbit now provides a valuable model to further 

study the functional significance of the HMGA2 gene which is till poorly characterized. Based on 

previous studies in other species, we could test whether the let-7 microRNA is regulating HMGA2 

expression as observed in other species. Besides, we could use RNA-seq to investigate the 

regulation of downstream genes of HMGA2. As HMGA2 is a transcriptional factor, changes on 

HMGA2 will influence other genes and consequently cause diseases or aberrant phenotypes. 

ChiP-seq and RNA-seq can be utilized to perform molecular genetic studies to reveal the 

molecular consequences of the disruption of HMGA2 expression.  
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APPENDIX  

Table 3: Detailed information about experiment animals 

Sample ID Phenotype Breed Sex  Genotype Amplicons results 

ND A1 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A2 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A3 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A5 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A6 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A7 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A8 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A13 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A14 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A18 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A19 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A21 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A24 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A25 Dwarf Netherland Dwarf M Del/WT 293bp+244bp 

ND A26 Dwarf Netherland Dwarf M Del/WT 293bp+244bp 

ND A36 Dwarf Netherland Dwarf F Del/WT 293bp+244bp 

ND A38 Dwarf Netherland Dwarf M Del/WT 293bp+244bp 

ND A39 Dwarf Netherland Dwarf M Del/WT 293bp+244bp 

ND A41 Dwarf Netherland Dwarf M Del/WT 293bp+244bp 

ND A50 Dwarf Netherland Dwarf M Del/WT 293bp+244bp 

PNT1 Peanut  N/A M Del/Del 530bp 

PNT2 Peanut N/A M Del/Del 530bp 

PNT3 Peanut N/A F Del/Del 530bp 

PNT5 Peanut N/A F Del/Del 530bp 

PNT6 Peanut N/A M Del/Del 530bp 

PNT7 Peanut N/A F Del/Del 530bp 

PNT8 Peanut N/A F Del/Del 530bp 

PNT9 Peanut N/A M Del/Del 530bp 

PNT10 Peanut N/A F Del/Del 530bp 

PNT11 Peanut N/A F Del/Del 530bp 

PNT12 Peanut N/A M Del/Del 530bp 

PNT13 Peanut N/A M Del/Del 530bp 
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PNT14 Peanut N/A F Del/Del 530bp 

PNT15 Peanut N/A F Del/Del 530bp 

PST-7 Wild-type Porto Santo N/A WT/WT 244bp 

PST-10 Wild-type Porto Santo N/A WT/WT 244bp 

PST-16 Wild-type Porto Santo N/A WT/WT 244bp 

AC-Mu17 Wild-type Champagne N/A WT/WT 244bp 

AC-Mu12 Wild-type Champagne  N/A WT/WT 244bp 

TolJun94-74 Wild-type Toledo  N/A WT/WT 244bp 

TolJun94-103 Wild-type Toledo  N/A WT/WT 244bp 

TolJun95-8 Wild-type Toledo  N/A WT/WT 244bp 

Cau-5 Wild-type Caumont N/A WT/WT 244bp 

Cau-6 Wild-type Caumont N/A WT/WT 244bp 

Cau-7 Wild-type Caumont  N/A WT/WT 244bp 

Ville-7 Wild-type Villemolaque  N/A WT/WT 244bp 

Ville-8 Wild-type Villemolaque N/A WT/WT 244bp 

Ville-9 Wild-type Villemolaque N/A WT/WT 244bp 

Ville-10 Wild-type Villemolaque N/A WT/WT 244bp 

Calzada-7 Wild-type Calzada  N/A WT/WT 244bp 

Calzada-8 Wild-type Calzada N/A WT/WT 244bp 

Calzada-15 Wild-type Calzada N/A WT/WT 244bp 

Calzada-16 Wild-type Calzada N/A WT/WT 244bp 

 

Table 4: Primer and probe information used in the experiment 

Name  Sequence  

Primer 1 AACCACTGGTCCTGTTCCTC 

Primer 2 TAAACTCCAAGAAGGCATTCAG 

Primer 3 TGGCTTAGGTAGTTGGGTCA 

Primer 4 TTATGTGGCTTTCTCTGTAAC 

Primer 5 CCAAGATATTTCTTTGCCATCTC 

R-Primer AAAGCAGAAGCCACTGGAGA 

F-Primer  CTGTGAGGACGTCTCTTCCG 

Probe ACCTAGGAAATGGCCACAAC 
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