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Abstract 

Perfluoroalkyl substances (PFASs) are ubiquitous in the environment today and they have 

been detected even in remote areas such as the Arctic. PFASs can be transported by the 

atmosphere and ocean currents but the transport mechanism is not fully understood. PFASs 

may be harmful to organisms due to their persistence in the environment, bio-accumulation 

potential and toxicity. Studies have shown that PFASs can cause adverse effects on the 

metabolism as well as the endocrine- and reproduction systems in organisms. In this study, 

PFASs were investigated in glaucous gull (Larus hyperboreus) (n=5) and black guillemot 

(Cepphus grylle) (n=4) from Svalbard. In glaucous gull, the mean ∑PFAS concentrations were 

147 ng g-1 in liver and 15 ng g-1 in muscle. In black guillemot, the mean ∑PFAS concentrations 

were 36 ng g-1 in liver and 2.5 ng g-1 in muscle. Perfluorooctane sulfonate (PFOS) was the most 

abundant compound, constituting in average 72 % of the ∑PFASs.  The mean PFOS 

concentration was more than four times higher in glaucous gull than in black guillemot. This 

can be explained by the glaucous gull’s high trophic level, migration patterns to more 

industrialized areas, and omnivorous feeding patterns. The concentration levels were higher 

in liver than in muscle tissue for both species, which complies with other similar studies. This 

might be due to the fact that PFAS typically accumulate in protein-rich tissues with high blood 

content, and that the liver has a detoxifying function and takes care of the contaminants in 

the body. 

As PFASs are produced in industrial areas far away from Svalbard, the detected concentration 

levels in the studied species give reason to further investigate the fate and transport of PFASs, 

as well as their effects on wildlife in the Arctic region. 
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Sammanfattning 

Perfluouroalkylerade ämnen (PFASs) är en grupp föreningar varav många är allmänt 

förekommande i miljön idag. Dessa ämnen har upptäckts även i avlägsna områden såsom 

Arktis. Mekanismerna för transporten av PFASs till Arktis är inte helt fastställda, men troligtvis 

transporteras de via luft och havsströmmar. PFASs kan vara skadliga för organismer och för 

miljön då de är persistenta, bioackumulerande och har påvisats ha negativa effekter på 

organismer.  

I denna studie undersöktes koncentrationer av PFASs i vittrut (Larus hyperboreus) (n=5) och 

tobisgrissla (Cepphus grylle) (n=4) från Svalbard. I vittrut var de genomsnittliga ∑PFAS 

koncentrationerna 147 ng g-1 i lever och 15 ng g-1 i muskel. I tobisgrissla var de genomsnittliga 

∑PFAS koncentrationerna 36 ng g-1 och 2.5 ng g-1. PFOS var den dominerande föreningen i 

denna studie; den utgjorde i genomsnitt 72 % av ∑PFASs. Koncentrationsnivåerna av PFOS var 

mer än fyra gånger så höga i vittrut än i tobisgrissla. Detta kan förklaras av dess höga trofiska 

nivå, dess migration till mer industrialiserade områden, samt dess opportunistiska matvanor. 

De genomsnittliga koncentrationerna av PFASs var nämnvärt högre i lever- än i muskelvävnad 

i båda arterna, vilket stämmer överens med liknande studier. Detta beror troligen på att PFASs 

i huvudsak ackumuleras i proteinrika vävnader med högt blodinnehåll, samt att levern är ett 

renande organ som bland annat tar hand om gifter och främmande ämnen. 

PFASs tillverkas huvudsakligen i industriella områden långt bort från Svalbard. Ändå påvisades 

de i relativt höga halter i de undersökta fåglarna. Detta ger skäl till att fortsätta forska inom 

området och ta reda på mer om PFASs transportvägar och effekter på miljön och organismer. 

 

 

 

  



6 
 

Table of Contents 

ACKNOWLEDGEMENTS ........................................................................................................................... 3 

ABSTRACT ................................................................................................................................................ 4 

SAMMANFATTNING ................................................................................................................................ 5 

INDEX OF TABLES, FIGURES AND APPENDIX .......................................................................................... 7 

ABBREVIATIONS ....................................................................................................................................... 8 

1. INTRODUCTION ............................................................................................................................. 10 

1.1 PERFLUOROALKYL SUBSTANCES IN THE ENVIRONMENT ............................................................ 10 

1.2 PROPERTIES AND STRUCTURE ..................................................................................................... 10 

1.3 MANUFACTURE AND USAGE ....................................................................................................... 11 

1.4 LONG RANGE TRANSPORT OF PFASS TO THE ARCTIC ................................................................. 11 

1.5 BIRDS IN THE ARCTIC ................................................................................................................... 12 

1.6 EXPOSURE AND EFFECTS OF PFASS ............................................................................................. 13 

1.7 AIM .............................................................................................................................................. 13 

2. MATERIAL AND METHODS ................................................................................................................ 13 

2.1 SAMPLE COLLECTIONS ................................................................................................................. 13 

2.2 CHEMICALS .................................................................................................................................. 15 

2.3 SAMPLE EXTRACTION .................................................................................................................. 16 

2.4 INSTRUMENTAL ANALYSIS ........................................................................................................... 16 

3. RESULTS ............................................................................................................................................. 16 

3.1 QUALITY CONTROL (QC) .............................................................................................................. 16 

3.1 COMPOSITION PROFILE ............................................................................................................... 18 

3.2 CONCENTRATION LEVELS ............................................................................................................ 19 

4. DISCUSSION ....................................................................................................................................... 22 

4.1 COMPARISON OF THE COMPOSITION PROFILE ........................................................................... 22 

4.2 COMPARISON OF THE CONCENTRATION LEVELS ........................................................................ 22 

4.3 COMPARISON OF PFASS IN BIRDS FROM OTHER AREAS IN THE WORLD ................................... 23 

4.4 LONG RANGE TRANSPORT OF PFASS TO THE ARCTIC ................................................................. 23 

4. 5 OUTLOOK AND FUTURE PERSPECTIVES ...................................................................................... 24 

REFERENCES .......................................................................................................................................... 25 

 

  



7 
 

Index of tables, figures and appendix 

FIGURES ...................................................................................................................................................... 

FIGURE 1: CHEMICAL STRUCTURE OF PFOS AND PFOA .................................................................... 11 

FIGURE 2: GLOBAL ATMOSPHERIC TRANSPORT OF POPS ................................................................. 12 

FIGURE 3: MAP OF THE SAMPLE SITES .............................................................................................. 14 

FIGURE 4: COMPOSITION PROFILE OF PFASS .................................................................................... 18 

FIGURE 5: CONCENTRATIONS OF PFASS IN GLAUCOUS GULL ........................................................... 20 

FIGURE 6: CONCENTRATIONS OF PFASS IN BLACK GUILLEMOT ........................................................ 21 

FIGURE 7: CONCENTRATIONS OF PFASS IN THE DIFFERENT SPECIES AND BODY TISSUES ............... 21 

 

TABLES ........................................................................................................................................................ 

TABLE 1: SAMPLE IDS ......................................................................................................................... 14 

TABLE 2: LIST OF ALL PFASS  ..............................................................................................................  15 

TABLE 3: BLANK SAMPLES AND MDLS ............................................................................................... 17 

TABLE 4: RECOVERIES ........................................................................................................................ 18 

TABLE 5: PFAS CONCENTRATIONS IN GLAUCOUS GULL .................................................................... 19 

TABLE 6: PFAS CONCENTRATIONS IN BLACK GUILLEMOT ................................................................. 20 

 

APPENDIX  .................................................................................................................................................. 

TABLE A1: INDIVIDUAL PFAS CONCENTRATIONS ................................................................................... 

 

 

  



8 
 

Abbreviations  

ECF electrochemical fluorination 

FOSA perfluorooctanesulfonamide 

FOSAA perfluorooctanesulfonamidoacetic acid 

FOSE perfluorosulfonamide ethanol 

HPLC high performance liquid chromatography 

ISTD internal standard 

MDL method detection level 

MS mass spectrometry 

N-EtFOSA N-ethylperfluorooctanesulfonamide 

N-EtFOSAA N-ethylperfluorooctanesulfonamidoacetic acid 

N-EtFOSE N-ethylperfluorooctanesulfonamido-ethanol 

N-MeFOSA N-methylperfluorooctansulfonamide 

N-MeFOSAA N-methylperfluorooctanesulfonamidoacetic acid 

N-MeFOSE N-methylperfluorooctanesulfonamido-ethanol 

PFBA perfluorobutanoate 

PFBS perfluorobutane sulfonate 

PFCAs perfluorocarboxylates 

PFDA perfluorodecanoate 

PFDoDA perfluorododecanoate 

PFDS perfluorodecane sulfonate 

PFHxA perfluorohexanoate 

PFHxDA perfluorohexadecanoate 

PFHxS perfluorohexane sulfonate 

PFHpA perfluoroheptanoate 

PFNA perfluorononanoate 

PFOA perfluorooctanoate 

PFOcDA perfluorooctadecanoate 

POP persistent organic pollutant 



9 
 

PFOS perfluorooctane sulfonate 

PFSAs perfluorosulfonates 

PFPeA perfluoropentanoate 

PFTeDA perfluorotetradecanoate 

PFTriDA perfluorotridecanoate 

PFUnDA perfluoroundecanoate 

RSTD recovery standard 

USB ultrasonic bath 

6:2 FTS 6:2 fluorotelomer sulfonate 

 

 

  



10 
 

1. Introduction 

1.1 Perfluoroalkyl substances in the environment 
A large amount of man-made chemicals have emerged during the last fifty years (Briggs, 

2003). Many of these chemicals are prevalent in the environment today, in industrial regions 

as well as remote areas such as the Arctic (Giesy & Kannan, 2001). Perfluoroalkyl substances 

(PFASs) comprise an array of organic fluorinated compounds. They are considered as 

persistent organic pollutants (POPs) due to their persistence, bioaccumulation potential, long-

range transport and potential adverse effects in the environment (Dietz et al, 2008). However, 

PFASs are different to classical POPs. POPs normally accumulate in lipid-rich tissues in 

organisms. In contrast, PFASs bind to blood protein and accumulate in liver or other protein-

rich tissues. Additionally, the transport pathway for most PFASs is different from many 

classical POPs. POPs are generally semi-volatile and can travel long distances through the 

atmosphere (Butt et al, 2010).  PFASs can be transported directly by ocean currents as well as 

indirectly by atmospheric long range transport. It has been suggested that volatile precursors 

of PFASs undergo long range atmospheric transport and then degrade to PFASs in the Arctic 

Regions (Muir & de Wit, 2010). Many of these precursors have been produced in a large 

amount, and are primarily used for industrial processes and for the synthesis of other 

fluorochemical products (3M Company, 1999). PFASs have been manufactured and used 

globally for more than 50 years (Butt et al, 2010). Due to the extensive use of PFASs, some of 

the compounds are distributed worldwide in humans as well as in animals and water (Giesy & 

Kannan, 2001; Olsen et al, 2007; Yamashita et al 2005). 

 

1.2 Properties and structure  
PFASs are amphipathic; they consist of both hydrophobic and hydrophilic groups. 

Furthermore, they have very high surface activity and thermal stability (Yamashita et al, 2005). 

This makes them suitable for a large variety of applications. The chemical structure of PFASs 

renders their unique properties. PFASs consist of a carbon chain where all carbon-hydrogen 

(C–H) bonds have been replaced by carbon-fluorine (C–F) bonds. The carbon-fluorine bond is 

one of the strongest bonds known in organic chemistry, due to its high electronegativity. This 

strong bond also implies that PFASs are persistent compounds (Lau et al, 2007). Consequently, 

they have a low biodegradation capacity, and are not likely to undergo metabolism in biota 

(Butt et al, 2010; Yamashita et al, 2005). For example, the average half-life in humans is 5.4 

years for perfluorooctane sulfonate (PFOS) and 3.8 years for perfluorooctanoate (PFOA) 

(Olsen et al, 2007). PFASs consist of a wide variety of different groups, classified by the 

functional group. Some examples are perfluorocarboxylates (PFCAs), perfluorosulfonates 

(PFSAs), perfluorosulfonamides (FOSAs), perfluorosulfonamide ethanols (FOSEs), 

fluorotelomer sulfonates (FTSAs) and perfluorosulfonamidoacetates (FOSAAs). PFOS and 

PFOA are the most investigated compounds of the PFASs (Butt et al, 2010; Houde et al, 2011) 

and their chemical structures are presented in Figure 1.  
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Figure 1.  Chemical structure of A) PFOS and B) PFOA. Figure from Borg & Håkansson (2012). 

 

1.3 Manufacture and usage 

Some PFASs can occur naturally in the environment. However this is very rare and PFASs are 

primarily seen as anthropogenic chemicals (Lau et al, 2007). There are two main techniques 

for manufacturing of PFASs; telomerisation and electrochemical fluorination (ECF). ECF has 

been going on since the 1950’s and telomerisation since the 1970’s (Butt et al, 2010). PFOS is 

exclusively manufactured via ECF (Buck et al, 2011). However, the major manufacturers of 

PFOS voluntarily started to phase out the production in 2001 (OECD, 2002). Since then, the 

PFOS production has shifted to China and more short-chained PFASs have been produced to 

a larger extent as substitutes (Möller et al, 2010). 

PFASs are suitable for a wide range of products due to their lipophobic and hydrophobic 

properties (Buck et al, 2011). For instance, PFASs are being used as surface coatings for paper, 

furniture and textiles. Furthermore, they are used in fire-fighting foams, paints, pesticides, 

waxes, shampoos, and photographic film. (Yamashita et al, 2005; Butt et al, 2010; Renner, 

2001; Jensen & Leffers, 2008). In biota, PFOS is the most abundant compound of the PFASs. It 

is generally found in the highest concentration levels in biota and has been detected in many 

types of wildlife (Butt et al, 2010). In 2009, PFOS was added to the Stockholm Convention list 

of banned POPs. However, some exceptions are allowed. For instance, PFOS is still being used 

and produced for fire-fighting foams (Muir & De Wit, 2010) 

 

1.4 Long range transport of PFASs to the Arctic 

PFASs have been detected globally, even in the Arctic environment. Since there are few local 

point sources in the Arctic, PFASs are believed to originate from lower latitudes (Burkow & 

Kallenborn, 2000). There is limited knowledge about the transport of PFASs to these regions. 

However, studies have shown that there are two probable transport pathways: direct 

transport via ocean currents and indirect transport via precursors that undergo atmospheric 

long range transport. For instance, fluorotelomer alcohols (FTOHs) are common precursors 

that degrade to PFCAs. FTOHs have been produced in a large amount, especially in North 

America, and are mainly used as additives in industrial processes (Ellis et al, 2004). In addition, 

perfluorooctyl sulfonyl is a likely precursor of PFOS. It has been used as industrial raw material 

and as an intermediate in the production of other chemicals (3M Company, 1999). 

A) B) 
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Atmospheric transport is considered as the main transport pathway of POPs (and accordingly, 

PFASs) to the Arctic environment. They evaporate in the warmer regions, travel in the 

atmosphere and deposit in the northern regions. This phenomenon is called global 

fractionation or global distillation and is demonstrated in Figure 2 (Wania & Mackay, 1996).  

 

 

Figure 2. Global atmospheric transport of POPs. Picture from Wania & Mackay (1996).  

 

1.5 Birds in the Arctic 

The terrestrial animal life on Svalbard is very limited due to the harsh climate. However, the 

birdlife is rich, especially during the summer (Kavli institute for systems neuroscience, 2014). 

Black guillemots are sedentary and can be found on Svalbard all year round (Borgå et al, 2007). 

Hence, the levels of PFASs in black guillemots will reflect local exposure at Svalbard. In 

contrast, glaucous gulls migrate during the winter, for example to Iceland and the northern 

parts of Norway (unpublished data in Gabrielsen et al, 1995). The glaucous gull is an omnivore. 

Its diet includes fish and crabs, but also eggs and chicks of other bird species. Moreover, they 

occasionally scavenge on carcasses and may even eat garbage (Sagerup et al, 2002). The black 

guillemot mostly feed on benthic prey such as crustaceans and benthic fish species (Martin et 

al, 2004). Both species are seabirds and part of the Arctic marine food web (Borgå et al, 2007). 
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1.6 Exposure and effects of PFASs 

Several studies have shown that PFASs typically bio-magnify in the marine food chain due to 

their persistence and low biodegradation (Haukås et al, 2007; Tomy et al, 2004). For sea birds, 

the main exposure of PFASs is via their food intake. In sea birds, the detoxifying rates are 

relatively low, and consequently they have a high accumulation potential (Gabrielsen et al, 

1995). 

PFASs are potentially hazardous to organisms. Studies have shown that some of these 

compounds can cause peroxisome proliferation, which is a formation of cancer (Berthiaume 

& Wallace, 2002; Hu et al, 2002). Other studies have shown adverse effects on the lipid 

metabolism and reproduction of some organisms, for instance a study on rats conducted by 

Lau et al (2003). Furthermore, some PFASs are suspected to be endocrine disruptors (Jensen 

& Leffers, 2008).   

In general, the toxicity of PFASs increases with the chain-length (Jensen & Leffers, 2008). 

However, the knowledge about the effects of PFASs on organisms and the environment is 

limited. In many cases, the studies include laboratory experiments with high, short-term 

exposure of the pollutants (Lau et al, 2007). Nevertheless, this does not simulate realistic 

conditions for the exposure of organisms (Fisk et al, 2005).  

 

1.7 Aim 

This study was a collaboration between the Department of Aquatic Sciences and Assessment, 

Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden, and the University Center 

of Svalbard (UNIS), Longyearbyen, Svalbard. 

The aim of this study is to compare the concentration levels and composition profile of PFASs 

in the two bird species glaucous gull (Larus hyperboreus) and black guillemot (Cepphus grylle) 

from Svalbard.  

 

 

2. Material and methods 

2.1 Sample collections 

Four individuals of each species (i.e. glaucous gulls and black guillemots) were collected in 

June 2007. The black guillemots were shot nearby Diabas in Isfjorden and the glaucous gulls 

were shot at a dumpsite in Adventfjorden, Longyearbyen. In addition, one glaucous gull was 

collected nearby Hopen in May 2008/2009 (see Figure 3).  



14 
 

 

   

 

 

 

 

 

  Coordinates for the sampling sites  

Location Latitude Longitude 

Longyearbyen 78°13′20″ 15°37′53″ 

Diabas 78°22'74" 16°9'43" 

Hopen 76°35'25" 25°15'07" 
 

Figure 3. Map of Svalbard. The red dots represent the sampling sites (Source: Google Maps 
2014, Google©). 

The birds were dissected immediately after the sampling and have been stored in the freezer 

afterwards. Liver and muscle samples were collected from all bird samples for the analysis of 

PFASs. The stomach content of glaucous gulls contained remains of plastic bags and other non-

biodegradable units. Unfortunately there was no information available about the age or sex 

of the individuals. All samples are presented in Table 1. 

Table 1. The samples are listed according to species, body 
tissue, location and time of sampling.  

Sample ID Tissue Location Time 

Glaucous gull   
G1 Liver Longyearbyen June-07 
G2 Liver Longyearbyen June-07 
G3 Liver Longyearbyen June-07 
G4 Liver Longyearbyen June-07 
G5 Liver Hopen May-08/09 
G6 Muscle Longyearbyen June-07 
G7 Muscle Longyearbyen June-07 
G8 Muscle Longyearbyen June-07 
G9 Muscle Longyearbyen June-07 
G10 Muscle Hopen May-08/09 
Black guillemot   
B1 Liver Diabas June-07 
B2 Liver Diabas June-07 
B3 Liver Diabas June-07 
B4 Liver Diabas June-07 
B5 Muscle Diabas June-07 
B6 Muscle Diabas June-07 
B7 Muscle Diabas June-07 
B8 Muscle Diabas June-07 
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2.2 Chemicals 

In this study, 26 PFASs were investigated. The PFASs include C4–C14, C16, C18 PFCAs (i.e. PFBA, 

PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTriDA, PFTeDA, PFHxDA, 

PFOcDA), C4, C6, C8, C10 PFSAs (i.e. PFBS, PFHxS, PFOS, PFDS,) FOSAs (i.e. FOSA, N-MeFOSA, N-

EtFOSA), FOSEs (i.e. N-MeFOSE, N-EtFOSE) and FOSAAs (i.e. FOSAA, N-MeFOSAA, N-EtFOSAA) 

and 6:2 FTSA (see Table 2).  

All PFASs used for the analytical method were purchased from Wellington laboratories 

(Guelph, Ontario, Canada) with a purity of >98 %. In addition, four ISTDs were used (i.e. 13C4 

PFBA, 13C4 PFOA, 13C5 PFNA, and 13C2 PFDoDA, c=0.1 ng μL-1) with a purity of >98 % purchased 

from Sigma-Aldrich (Norway AS) or Wellington Laboratories Inc. (Guelph, Ontario, Canada). 

The recovery standard (RSTD) was 13C8 PFOA with a purity of >98 % purchased from Wellington 

Laboratories Inc. (Guelph, Ontario, Canada). For the clean-up, Superclean ENVI-carb 120/400 

(Supelco 57210-U) (Supelco, PN, USA or Bellefonte, USA) was used together with glacial acetic 

acid from Merck, Germany. 

Table 2. All PFASs investigated in this study, organised by subgroups.  

Per- and polyfluoroalkyl substances 

PFBS perfluorobutane sulfonate 

PFHxS perfluorohexane sulfonate 

PFOS perfluorooctane sulfonate 

PFDS perfluorodecane sulfonate 

PFBA perfluorobutanoate 

PFPeA perfluoropentanoate 

PFHxA perfluorohexanoate 

PFHpA perfluoroheptanoate 

PFOA perfluorooctanoate 

PFNA perfluorononanoate 

PFDA perfluorodecanoate 

PFUnDA perfluoroundecanoate 

PFDoDA perfluorododecanoate 

PFTriDA perfluorotridecanoate 

PFTeDA perfluorotetradecanoate 

PFHxDA perfluorohexadecanoate 

PFOcDA perfluorooctadecanoate 

FOSA perfluorooctanesulfonamide 

N-MeFOSA N-methylperfluorooctansulfonamide 

N-EtFOSA N-ethylperfluorooctanesulfonamide 

N-MeFOSE N-methylperfluorooctanesulfonamido-ethanol 

N-EtFOSE N-ethylperfluorooctanesulfonamido-ethanol 

FOSAA perfluorooctanesulfonamidoacetic acid 

N-MeFOSAA N-methylperfluorooctanesulfonamidoacetic acid 

N-EtFOSAA N-ethylperfluorooctanesulfonamidoacetic acid 

6:2 FTSA 6:2 fluorotelomer sulfonate 
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2.3 Sample extraction 

The sample extraction was conducted at UNIS. For the sample extraction, the Powley method 

was used with a few modifications (Powley et al, 2005). Briefly, initially, the biota sample was 

homogenised. Then, 1 g of the sample was weighed and put into a 45 mL polypropylene tube 

and spiked with 20 μL ISTD (c=0.1 ng μL-1) . 8 mL of methanol was added, and the tube was 

capped and mixed by using vortex. The tube was put into an ultrasonic bath three times for 

10 minutes, and mixed with vortex in between the baths. Then the tube was centrifuged for 5 

minutes at 2000 rpm for sedimentation. The supernatant was transferred to Turbovap and 

evaporated until approximately 1 mL of the solution remained. In the following, a 1.7 mL 

Eppendorf centrifuge tube was prepared with 25 mg ENVI-Carb and 50 μL glacial acetic acid. 

Then the supernatant extract from the Turbovap was transferred to the Eppendorf centrifuge 

tube. It was capped and mixed thoroughly with vortex. The Eppendorf tube was centrifuged 

for 10 minutes at 10000 rpm. The supernatant solution was transferred into a vial and stored 

in the freezer until the transport to Sweden. 

All biota samples were extracted in duplicates. In general, four replicates were prepared at 

the same time. Three lab blanks were also prepared. The lab blank extraction was carried out 

as the natural samples but with no biota in the sample. After the transport to Sweden, the 

volume of the samples were adjusted to exactly 1 mL and 10 μL of the RSTD was added (c=0.2 

ng μL-1). Then the vials were centrifuged for 6 minutes at 5000 rpm. 

 

2.4 Instrumental analysis 

The instrumental analysis was conducted in the POPs-lab at the Department of Aquatic 

Sciences and Assessment at SLU. All PFASs extracts were analysed using high-performance 

liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) according to a 

method described by Ahrens et al (2009a). 

 

3. Results 

3.1 Quality control (QC) 

The method detection limit (MDL) was calculated by multiplying 3 x standard deviation of the 

blank with the mean blank concentration. For the blanks with no detected PFASs the MDL was 

set to the lowest calibration standard level (i.e. 0.05 ng mL-1). Contamination of the samples 

can occur during sampling, sample preparation or instrumental analysis. Three of the 26 

compounds (i.e. PFOS, FOSA and EtFOSA) were found in one or more of the blank samples 

with low concentrations ranging from 0.008 to 0.02 ng g-1 (see Table 3). The MDL ranged 

between 0.06 and 0.11 ng g-1. 

All samples were extracted in duplicates. The PFAS concentrations of each replicate are listed 

in Table A1 in the Appendix. In average, the mean percentage standard deviation was ~24 %. 
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The standard deviation was higher for the compounds detected in lower levels, for example 

PFHxS (~60 %) and MeFOSAA (~46 %). 

Table 3. Mean concentration levels of the blank samples and method detection limits (MDL) 
for each compound.a 
Compounds Blanks (ng g-1) MDL (ng g-1) 

PFBS nd 0.05 
PFHxS nd 0.05 
PFOS  0.02 0.16 
PFDS nd 0.05 

PFBA nd 0.05 
PFPeA nd 0.05 
PFHxA nd 0.05 

PFHpA nd 0.05 

PFOA nd 0.05 
PFNA nd 0.05 

PFDA nd 0.05 

PFUnDA nd 0.05 

PFDoDA nd 0.05 

PFTriDA nd 0.05 

PFTeDA nd 0.05 

PFHxDA nd 0.05 

PFHxDA nd 0.05 

PFOcDA nd 0.05 

FOSA 0.008 0.06 

MeFOSA nd 0.05 

EtFOSA 0.02 0.11 

MeFOSE nd 0.05 

EtFOSE nd 0.05 

FOSAA nd 0.05 

MeFOSAA nd 0.05 

EtFOSAA nd 0.05 

6:2 FTS nd 0.05 
a nd = not detectable 

Quantification of PFASs in the samples was enabled by using internal calibration method. The 

recovery was calculated for each sample by dividing the area of the RSTD with the mean 

calibration area (from the calibration curves), and multiplying by 100. Since the analysed 

PFASs have different chain length, four different ISTDs were monitored. The recoveries of the 

ISTD in the samples were in average 96 ± 34% for 13C4 PFBA, 70 ± 18% for 13C4 PFOA, 86 ± 37% 

for 13C5 PFNA, and 80 ± 53% for 13C2 PFDoDA (see Table 4).  
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Table 4. Recoveries of the ISTDs in the biota samples (n=9) presented as percentage. 

(%) 13C4 PFBA 13C4 PFOA  13C5 PFNA 13C2 PFDoDA 

mean 96 70 86 80 
SD 34 18 37 53 

 

3.1 Composition profile 

The relative distribution of the different PFASs is presented in Figure 4. The most abundant 

compound in this study was PFOS. It constituted in average ~72 % of the ∑PFASs; ~75 % in 

glaucous gull and ~69 % in black guillemot. Regarding tissue distribution, PFOS constituted in 

average ~86 % and ~57 % in liver and muscle respectively.  

After PFOS, PFUnDA was the next abundant compound. It constituted in average 16 % of 

the∑PFASs. With regard to the subgroups, the PFSAs were dominating. In average, the PFSAs 

comprised ~72 % of the ∑PFASs (mainly PFOS, constituting 99,6% of the ΣPFSAs). The ∑PFCAs 

and the ∑FOSAAs comprised ~28 % and ~0.5 % respectively.   

 

 

Figure 4. PFAS distribution in the different birds and tissues (%). The values are based on the 
median concentrations levels.  
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3.2 Concentration levels 
Of the 26 PFASs that were analysed in liver and muscle samples from the two species, 11 

compounds were detected. The PFASs that were not detected were PFBS, PFBA, PFPeA, 

PFHpA, PFTeDA, PFHxDA, PFOcDA, FOSA, MeFOSA, EtFOSA, MeFOSE, EtFOSE, FOSAA and 6:2 

FTS, and will not be presented in the following. PFOS, PFNA, PFDA, PFUnDA, PFDoDA and 

PFTriDA were found in all biota samples.  Some compounds were only detected in glaucous 

gull but not in black guillemot (i.e. PFDS, PFOA and PFNA and MeFOSAA). The PFAS 

concentrations in the two species are compiled in Table 5 and Table 6. In addition, the PFAS 

concentration levels in the different species and body tissues are presented in Figure 5 and 

Figure 6. In glaucous gull, the ΣPFAS concentrations in the individual samples ranged from 87.4 

to 187 ng g-1 wet weight (ww) in liver (in average 147 ng g-1 ww) and from 7.2 to 30.1 ng g-1 

ww in muscle (in average 15.5 ng g-1 ww). In black guillemot, ΣPFASs concentrations ranged 

from 8.07 to 75.5 ng g-1 ww in liver (in average 36.2 ng g-1 ww) and 1.61 to 3.82 ng g-1 in muscle 

(in average 2.45 ng g-1 ww). 

PFOS was detected in the highest levels. In glaucous gull, the mean PFOS concentration was 

~126 ng g-1 ww in liver and ~10 ng g-1 ww in muscle. In black guillemot, the mean PFOS 

concentration was ~31 ng g-1 ww in liver and ~1 ng g-1 ww in muscle.  

 
Table 5. Concentrations (ng g-1 ww) for the detected PFASs in in glaucous gull (n=5). The 
results are denoted as mean, standard deviation (SD), minimum and maximum values.a 

 Liver tissue  

Compound Mean SD Min Max 

PFHxS 0.59 0.60 0.14 1.62 

PFOS  126 33.4 72.4 163 

PFDS 0.36 0.16 0.13 0.50 

PFOA 0.02 0.05 nd 0.12 

PFNA 2.40 0.47 1.93 3.15 

PFDA 3.16 0.51 2.61 3.78 

PFUnDA 10.2 2.64 7.78 13.7 

PFDoDA 1.59 0.57 0.84 2.33 

PFTriDA 1.78 0.60 1.29 2.49 

MeFOSAA 0.10 0.10 nd 0.24 

EtFOSAA 0.53 0.73 nd 1.81 

ΣPFASs 147 36.72 87.4 187 
 

Muscle tissue    

Compound Mean SD Min Max 

PFHxS 0.04 0.07 nd 0.15 

PFOS  10.1 6.04 4.50 20.1 

PFDS 0.02 0.03 nd 0.08 

PFOA nd nd nd nd 

PFNA 0.17 0.12 0.03 0.35 

PFDA 0.56 0.26 0.39 1.02 

PFUnDA 2.94 1.55 1.33 5.43 

PFDoDA 0.56 0.32 0.29 1.06 

PFTriDA 0.96 0.56 0.47 1.77 

MeFOSAA 0.03 0.04 nd 0.09 

EtFOSAA 0.16 0.27 nd 0.65 

ΣPFASs 15.5 8.67 7.22 30.1 
 

a nd = not detectable 
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Table 6. Concentrations (ng g-1 ww) for the detected PFASs in black guillemot (n=4). The 
results are denoted as mean, standard deviation (SD), minimum and maximum values.a 

 Liver tissue  

Compound Mean SD Min Max 

PFHxS 0.04 0.08 nd 0.16 

PFOS  31.2 29.8 6.36 68.1 

PFDS nd nd nd nd 

PFOA nd nd nd nd 

PFNA 0.22 0.21 nd 0.48 

PFDA 0.75 0.46 0.31 1.22 

PFUnDA 2.62 1.39 1.06 4.13 

PFDoDA 0.28 0.12 0.12 0.41 

PFTriDA 0.63 0.33 0.23 1.04 

MeFOSAA nd nd nd nd 

EtFOSAA 0.01 0.03 nd 0.06 

ΣPFASs 36.2 31.4 8.07 75.5 
 

Muscle tissue    

Compound Mean SD Min Max 

PFHxS nd nd nd nd 

PFOS  1.21 0.37 0.80 1.63 

PFDS nd nd nd nd 

PFOA nd nd nd nd 

PFNA nd nd nd nd 

PFDA 0.14 0.07 0.08 0.23 

PFUnDA 0.73 0.42 0.36 1.29 

PFDoDA 0.12 0.06 0.07 0.20 

PFTriDA 0.25 0.16 0.12 0.47 

MeFOSAA nd nd nd nd 

EtFOSAA nd nd nd nd 

ΣPFASs 2.45 1.05 1.61 3.82 
 

a nd = not detectable 

 

 

 
 

 

Figure 5.  Concentration levels in glaucous gull in ng g-1 ww in A) PFOS and B) other PFASs. 
The levels for each compound are presented as mean (columns) and standard deviation 
(error bars). 
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Figure 6.  Concentration levels in black guillemot in ng g-1 ww in A) PFOS and B) other PFASs. 
The levels for each compound are presented as mean (columns) and standard deviation 
values (error bars). 
 

In Figure 7, the concentration levels of PFASs in the different bird species and body tissues 

are presented. The liver samples had higher levels of PFASs in both glaucous gull and black 

guillemot. The glaucous gull had higher levels than black guillemot in both muscle and liver 

tissue. PFOS was found in the highest concentrations in all samples.  

 

 

Figure 7. Concentration levels of PFASs in ng g-1 ww in both species and body tissues.  
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4. Discussion 

4.1 Comparison of the composition profile  
In this study, 11 of the 26 analysed PFASs were detected in liver and muscle samples from 

glaucous gull and black guillemot. The ΣPFSAs comprised ~72 % of the ∑PFASs, while the 

∑PFCAs and the ∑FOSAAs comprised ~28 % and ~0.5 % respectively. PFOS was the 

predominant compound in both bird species and both body tissues. In average, it constituted 

~72 % of the ΣPFAS concentration levels (99,6 % of the ∑PFSAs). This is consistent with other 

studies on biota, as PFOS generally constitutes the largest proportion of PFASs (Butt et al, 

2010). In addition, a recent study on seabirds in the Barents Sea, east of Svalbard, showed that 

PFOS was the major component in both glaucous gull and black guillemot (Haukås et al, 2007). 

This is in accordance with the present study. 

As stated by Butt et al (2010), seabirds generally have high proportions of long-chained PFCAs 

(C11–C15).  In the present study, PFUnDA (C11), PFDoDA (C12) and PFTriDA (C13) were detected 

in quite high proportions, in average covering 23 % of ∑PFASs altogether. This may be due to 

their high accumulation potential (Martin et al, 2003). The detected PFOA concentrations 

were relatively low, which is in line with other studies on PFASs in birds (Bossi et al, 2005; 

Kannan et al, 2002). In general, PFOA concentrations are relatively low in biota in the Arctic 

(Butt et al, 2010). 

The composition profile differed between liver and muscle tissue. In liver, PFOS comprised 86 

% of the ∑PFASs compared to 57 % in muscle. This can be explained by the tissue depending 

bioaccumulation of the different PFASs in biota (Ahrens et al, 2009b).  

 

4.2 Comparison of the concentration levels 

In the present study, the mean ΣPFASs in glaucous gull were 147 ng g-1 ww in liver and 15.5 ng 

g-1 ww in muscle. The mean ∑PFASs in black guillemot were 36.2 ng g-1 ww in liver and 2.45 ng 

g-1 ww in muscle. These results are in accordance with the results from a similar study on 

PFASs in glaucous gulls and black guillemots from the Arctic. Haukås et al (2007) reported 

mean ∑PFAS concentrations in liver ranging from 9.6-240 ng g-1 ww in glaucous gull and 0.3-

46 ng g-1 ww in black guillemot. Along with the present study, the levels in glaucous gull were 

much higher than in black guillemot.  

The mean PFOS concentration was approximately four times higher in glaucous gull than in 

black guillemot. One explanation is that PFASs are known to bio-magnify in the food chain and 

glaucous gull has a high trophic level compared to black guillemot (Borgå et al, 2007). There 

are more possible explanations to the higher PFAS levels in glaucous gulls. Guillemots are 

sedentary whereas glaucous gulls migrate to more industrial areas. Furthermore, glaucous 

gulls have very opportunistic feeding habits (Sagerup et al, 2002). The glaucous gulls in this 

study were collected at a dumpsite and contained remnants of plastic bags, which may explain 

the high levels of PFOS in some of the samples.  
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As regards the different body tissues, the PFAS concentration levels in this study were 

consistently higher in liver than in muscle tissues in both glaucous gull and black guillemot. 

This can be explained by the tendency of PFASs to accumulate in protein-rich tissues. 

However, a study on glaucous gulls conducted by Verreault et al (2005) showed that PFAS 

concentrations were higher in blood than in liver. This indicates that the concentration levels 

may depend on the blood content of the analysed tissue. Another plausible explanation for 

the high accumulation of PFASs in liver could be enterohepatic recirculation. Since PFASs are 

known not to metabolise in biota, it keeps circulating in the detoxifying system of the birds 

and hence, accumulate in the liver (Jones et al, 2013).  

 

There are relatively few studies on PFASs in muscle tissue. However, a study of Belgium barn 

owls (Jasper et al, 2013) showed that the PFOS concentrations in muscle were two times lower 

than in liver tissue. This is in accordance with the present study. 

 

4.3 Comparison of PFASs in birds from other areas in the world 
In comparison with studies from other areas in the Arctic Regions, the black guillemot in this 

study had relatively high levels of PFASs, particularly PFOS (in average 31 and 1 ng g-1 ww in 

liver and muscle respectively). For instance, in a study conducted in the Canadian Arctic by 

Martin et al (2004), PFASs in black guillemots were not detected. However, the PFAS 

concentration levels in this study were in the same magnitude as in a study of black guillemots 

from Greenland (Bossi et al, 2005), with an average PFOS concentration of 10.8 ng g-1 ww. 

Furthermore, the mean ∑PFAS concentration in glaucous gull was higher in the present study 

than in a similar study from the Eastern Arctic (Tomy et al, 2004). This might be due to the 

plastic units that were found in the stomach content of the collected gulls. 

In industrialized areas, PFASs are generally detected at higher levels than in Arctic areas 

(Jaspers et al, 2013; Kannan et al, 2002). In Korea and Japan, several bird species were 

investigated for PFASs in liver tissue, including common cormorant and four different gulls 

(Kannan et al, 2002).  PFOS was the prominent compound; in Japan it was detected in 38 of 

40 samples (mean PFOS concentrations ranged from 40 ng g-1 ww in sea gull to 390 ng g-1 ww 

in common cormorant).  

 

4.4 Long range transport of PFASs to the Arctic 

There are no known point sources of PFASs in the Arctic, and long range transport is believed 

to be the main reason for the detected compounds in this study. This supports the theory that 

more volatile substances travel through the atmosphere and degrade to PFASs (Butt et al, 

2007).  In addition, oceanic transport is also a potential pathway for PFASs (Butt et al, 2010). 

However, local contamination is also a possible source of contamination. PFASs are used in a 

large variety of products, which of many are present in Longyearbyen and in adjacent areas. 

Many outdoor clothes and impregnating agents contain PFASs, as well as skiing waxes (Buck 

et al, 2011). Therefore, contamination from the sampling area cannot be excluded. A recent 



24 
 

study on PFASs in ice cores, surface snow and surface water suggested that local sources are 

a contributing factor to the current levels (Kwok, 2013). However, local contamination is not 

likely to be a large contributing factor in this study. The most probable contribution to the high 

concentration levels must be PFASs from industrial areas that undergo long range transport 

via precursors. 

 

4. 5 Outlook and future perspectives 
On the subject of PFASs, it is important to be careful when handling and storing the samples 

to avoid contamination.  In this study, several PFASs were detected in low levels in the lab 

blanks. This may be problematic because it indicates that contamination of the samples 

occurred in some steps during the extraction process. However, the concentration levels in 

the blanks were quite low and the PFAS concentrations in the samples could effectively be 

estimated. Generally, the recoveries in this study were high; on average it was 83 %. For some 

replicates (i.e. replicate 14 and 16, for 13C2PFDoDA), the recovery was over 200 %. This might 

be due to incorrect spiking volumes of the ISTD or RSTD. Thus, the analysis of PFASs in biota 

samples from remote regions such as Svalbard has to be performed under clean conditions 

and quality assurance and quality control during the sample treatment is very important. 

There was a high variation between the individuals in this study and the number of samples 

was too small to be statistically significant. Moreover, the age and sex of the birds in this study 

were unknown. These factors might have an influence on the concentration levels. The time 

schedule of this study was limited, however, for future studies a larger sample number should 

be analysed and more information about the age and sex of the investigated birds is needed.  

The samples in this study are from 2007. Since then, it is uncertain whether the concentration 

levels in the sample area have increased or decreased. However, the phase-out of PFOS in 

2001 (OECD 2002) may have contributed to lower levels of PFOS and higher proportions of 

other compounds today.  

The fact that high concentrations of PFAS were detected in birds on Svalbard gives reason for 

further research within the subject. In specific, studies of temporal trends are needed to gain 

knowledge about the fate and effects of PFASs over time. 
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