

Faculty of Landscape Architecture, Horticulture and Crop Production Science

Stenungsund hazards: coastal flooding

Amin Behnamfar

Degree Project • 30 hec

Urban Landscape Dynamics

Alnarp 2014

Stenungsundhazards: coastal flooding

Strategier för att hantera stigande havsnivåer I Stenungsund

Amin Behnamfar

Supervisor: Erik Skärbäck, SLU, Department of Department of Landscape Architecture, Planning and Management

Examiner: Tim Delshammar, SLU, Department of Department of Landscape Architecture, Planning and Management

Credits: 30 hec Project Level: A2E Course title: Master Project in Landscape Planning Course code: EX0377 Programme: Urban Landscape Dynamics

Place of publication: Alnarp Year of publication: 2014 Online publication: http://stud.epsilon.slu.se

Keywords: Coastal flooding, Flood management, Flooding, rational method

SLU, Swedish University of Agricultural Sciences Faculty of Landscape Architecture, Horticulture and Crop Production Science Department of Landscape Architecture, Planning and Management

Acknowledgments

First of all, I would like to thank my spouse, Shahrzad Askaripour Jazi for all her love and encouragement and support that I have been gotten from her for proceeding not only this master thesis but also my every goals. She has always been patient and has listened to all my Ideas and arguments and has given me useful advices which help in making it fruitful. I have learned about life, research and how to handle and solve problems from her.

Furthermore, I am very grateful to my supervisor, Professor Erik Skärbäck, for his perceptive comments, consultations and his motivating comments. His technical knowledge and attention to details guide this project to the point.

I also want to thank municipality of Stenungsund, especially to Erik Olmårs how provides me with data I needed which significantly improved my work.

Finally, I would like to thank my mom who devotes all her love for my improvement, dad and my brothers for their infinitive supports.

TABLE OF		Pollution sources	23
		Geology	24
CONTENTS		Climate	26
Acknowledgments	3	Drainage network	27
Introduction	5	Stenungsund coastal flood zones	28
Aim	7	Ma area and	20
Flooding	8	My proposal	30
Hydrologic Cycle	9	Coastal Flooding zones	31
Runoff factors	10	Land uses in different coastal floodir zones	ng 32
Soil Groups	11	Coastal Flooding Zone 2	36
Runoff Travel Time	12	Coastal Flooding Zone 3	36
Landslide and Debris	14	Coastal Flooding Zone 4	36
Comments	15	Final Discussion - Prioritization of	
Application in Systems	15	Measures In Time	37
Zoning and Land Use	16	References	38
Stenungsund; Case Study	18	Appendix A	41
Location	19	Stenungsund Facts and Zoning Codes	41
History	19	Appendix B	58
Area and population	20	Stenungsund maps	58
Infrastructure and Accessibility	21		
Land cover	22		

Amin Behnamfar

INTRODUCTION

Nature is a pleasant word for us as humans. But some natural phenomena can put human lives at risks. Therefore, necessity of human awareness of natural hazard should be considered in parallel with taking advantage of nature in order to managing hazards. From happened climate changes over the world, today natural hazard have been being felt greater than before. Physical involvements of humans in nature and natural resources have been perceived as the reason of increasing frequency of natural hazard events (Organization of American States. Dept. of Regional Development and Environment. & United States. Agency for International Development. Office of U.S. Foreign Disaster Assistance., 1991, pp. 3, Ch 01).

From the effects of climate change over northern Europe and coastal zones, temperature rises more than global average is flushing; which would decrease snow and ice coverage and increase river flows, sea level rises and acidity of ocean (E. E. Agency, Füssel, & Jol, 2012, p. 27).Flood risk is one of those natural hazards which are getting more and more noticeable with accusation of climate chang- mental impacts. Property and infrastructural es (Warner, 2011, p. 01).

Flooding would occur if precipitations and continuous rainfalls exceed the soil absorptive capacity (Organization of American States. Dept. of Regional Development and Environment. & United States. Agency for International Development. Office of U.S. Foreign Disaster Assistance., 1991, pp. 2, Ch 08). Increased precipitation due to climate changes on one hand and continuously expansions of constructions and cities' developments results in reducing permeability of the soil on the other one, would lead into flooding rise dramatically (Watson & Adams, 2011, p. 49). Therefore most of the heavy rainy days would end in flood stocking daily life stream.

Sea level rises would cause coastal flooding, which would erose the coast or cause nels and drainage systems («Urban floodet al., 2012, p. 102). It also can harm fixed F. White was geographer who demonstrated structures including highways and railroads (Organization of American States. Dept. of Regional Development and Environment. & United States. Agency for International Development. Office of U.S. Foreign Disaster Assistance., 1991, pp. 7, Ch 01). In general, flooding has social, economic and environ-6

damages, agricultural lands and production loses are economic impacts of flooding. Possible social influences of flooding, especially flash flooding, can be inhabitant loss of life or their displacement (E. E. E. Agency et al., 2012, p. 118). Flooding can frighten peoples and because they expect governments to provide security, it can effect societal governability (Warner, 2011, p. 5). Untreated inundation can be a major source of pollution by collecting and distributing harmful chemicals and materials from surfaces which contains toxins, bacteria and viruses to the watercourse and treat human health («Urban flooding POSTnote 07/289,» 2007, p. 1).

The known taken approaches for managing flood by planners and engineers has been being such as collecting runoffs from the streets and roof tops and directing them to chanflat coastal regions loses (E. E. E. Agency ing POSTnote 07/289,» 2007, p. 1). Gilbert that many engineered solutions are defective against floods and they might increase flooding. He suggested nonstructural solutions as a compatible way of adaptation to flooding, flood proofing, elevation of structures, building restrictions and flood abatement zoning are some example of nonstructural solutions ment also has been assessed carefully in this

(Sylves, Kershaw, & ebrary Inc., 2004, pp. 1-2). Moreover, protecting, restoring or replicating vegetation and landscape in order to reduce soil erosion and convey water into the soil are the most effective course leading to flood reduction (Watson & Adams, 2011, pp. 78, 81-82).

Theoretical part this thesis report includes studding hydrological cycle and factors which contributing floods and identifying and comparing different flood management methods. Concentrating on coastal flooding and assessing coastal flooding affected areas on the Stenungsund as case study and suggesting some ideas for future developments is the

In summary, The mentioned flood management methods are: Nonstructural Flood Defense Method, Low Impact Development Method and Best Management Practice Method.

1- Nonstructural Flood Defense Method (NFDM):

This method is about protecting flood prone areas from floods and sea level raises hazards by creating artificial flood defense system and reservoirs. Land use managemethod in different flood prone zones.(Watson & Adams, 2011)

Low Impact Development method 2-(LID):

The hydrological analysis of this method is based on the Soil Conservation service (SCS) and TR-55 hydrologic model(United States Department of Agriculture, 1986).

The approach of this method is to match the development condition of rainfall abstraction to the pre-developed condition as much as possible by making balance through infiltration potential, evapotranspiration and surface storage. In this method increasing excess runoff travel time would lead in pace reduction of runoff concentration («Low Impact Development Hydrologic Analysis,» 1999).

Best Management Practice method 3-(BMP):

This method emphasis on promotion of pollution prevention of the sources and the methodology, tool and application used in ways of putting this concept in to practice before it cause environmental problems (U. S. E. P. Agency, 1992) for newly developed areas and developed areas.

Erosion prevention, sedimentation and discharge of other pollutants during construction; long term impacts from runoff from the completed development and associated land uses are the goals of this method.(«Stormwater Best Management Practice, New Development and Redevelopment,» 2003)

Within the broad spectrum of possible solutions in flood management I would like to focus on how to manage coastal flooding hazards and overcome threats.

As a second year master student in Urban Landscape Dynamics with constructing road and buildings background in bachelor level, I would take my master thesis as an opportunity to look into flood management solution from a multidisciplinary perspective. Investigating geographical data of flood prone areas would be my area of concern in this project.

Geographic Information System is the this thesis.

Aim

The aim of this thesis is to:

Discuss problems and planning meth-1ods related to coastal flooding.

Suggest measures to handle coastal 2flooding in the municipality of Stenungsund Sweden.

7

FLOODING

Water is one of the important elements of this world which mostly means life for habitats. This element also can take the habitats life by its absence or sometimes by its unnatural or sudden presence. Therefore, it is important for us as humans to manage this element not only for our needs but also for other habitats. It is not possible to manage something without knowing that thing; therefore, this part is briefly gives general knowledge about hydrology and water movements on the earth. It is also explain important factors which directly affect this movement on the ground and also under the ground.

Hydrologic Cycle

Lydrology, study of water movement \square on the earth and in the atmosphere which known as hydrologic cycle and contain three important phases; Evaporation and Evapotranspiration, Precipitation and runoff (Raghunath, 2006, p. 11). Therefore, it is important to understand the system as well as to be aware of its hazard in order to manage part of the system. In the beginning of this chapter basic knowledge of hydrology like precipitation and water movement after it and the hydrological calculation methods will be discus, after that different flood management methods and different storm management devices will be presented.

Any precipitation has independent characteristics of duration, depth, frequency and intensity. Duration is length of time (hours) which precipitation occurs and the amount of it called depth (millimeters). Repetition of the same precipitation is called frequency and amount of precipitation per duration of it called intensity (millimeters per hour) ("Virginia Stormwater Management Handbook VOLUME II," 1999, pp. 2, Ch 04).

As shown in figure 1, in the beginning of precipitation, surface vegetation causes high

http://wwwbritannica.com/EBchecked/topic/278858/hydrologic-cycle 2013-03-17 Figure 1: this diagram illustrate the water cycle interception, water loss and it would graduand transpiration from plant leaves occurs. p. 60). in that case, irrigated or cropped land also can cause evapotranspiration. Parts of water

absorbs by the surface of the ground which ally decreases in duration of precipitation. called infiltration and ground water moves During precipitation, water evaporation from one basin to another (Raghunath, 2006,

Runoff factors

Storm characteristics, Meteorological Characteristics, Basin characteristics and Storage characteristics are important factors which can affect runoff.

Type or nature of storm and the season when it occurs, intensity, duration and frequency of precipitation, precipitation extent, preceding precipitation and direction of storm movement are the different element which can be categorized as storm characteristic. Temperature, humidity, wind velocity and pressure variation are Meteorological characteristics which can effect evaporation and transpiration. Basin characteristics such as size, shape, slope, altitude (elevation), topography, geology (type of soil), land use / vegetation, orientation and adjacency to ocean and mountain ranges are the factors which effect runoff (Raghunath, 2006, p. 105).

Runoff occurs when rainfall rate is greater than infiltration rate or any other occurrences which described above. The stream of runoff on the ground surface follows the topography of the ground («Virginia Stormwater Management Handbook VOLUME II,» 1999, pp. 13, Ch 04). And when precipitation 10 Amin Behnamfar

Figure 2: Land cover and runoff (Amin Behnamfar 2012)

intensity exceeds the catchment capacity of upstream, surface stream level would unusually increase and cause flooding («Designing for Flood Risk,» p. 4).

Soil Groups

There are different methods for calcu-L lating hydrological flows and surface runoffs. Rational Method, Modified Rational Method and SCS Method are from those methods which are used most. What are really important in calculating runoffs are infiltration rate and runoff travel time. Depends on different soil infiltration capacity, hydrological soils are phenomena that are categorized here in different groups of A,B,C and D. Group A has high infiltration rate with low runoff potentials; sand, loamy sand or sandy loam are in this category. Group B, silt loam or loam is in this category because of their moderate infiltration rate which causes low runoff. Group C, infiltration possibility is low and therefore the runoff potential is moderately high; sandy clay loam is in this category. Soils which has very low infiltration rate and high runoff potential are in group D such as clay loam, silty clay loam, sandy clay, silty clay or clay («Virginia Stormwater Management Handbook VOLUME II,» 1999, pp. 30-31, Ch 04).

Figure 3: Soil type in the Stenungsund area (Amin Behnamfar 2012)

Runoff Travel Time

D unoff travel time, which is known as **N**the time of concentration is another important factor in runoff calculation. It is the time which takes from runoff to travel from upper hand of the watershed to the outlet («Urban Hydrology for Small Watersheds TR-55,» June 1986, pp. 1, Ch 03). Increasing or changing the travel time can affect the runoff volume. By increasing this time, the possibility of infiltration can increase and therefore the volume of runoff would decrease. The factors which can affect the concentration time are surface roughness, channel shape and flow patterns and the slope of the watershed («Urban Hydrology for Small Watersheds TR-55,» June 1986, pp. 1, Ch 03).

Bellows comes the formulas which use to define the travel time are («Urban Hydrology for Small Watersheds TR-55,» June 1986):

 $T_{t} = L/(3600 V)$

T_t: travel time (hr) L: flow length (m) V: average velocity (m/s) According to this formula, by increasing the flow length or decreasing the velocity of the flow the travel time would increase.

$$T_{t} = (0,007(nL)^{0,8})/((P_{2})^{0,5} S^{0,4}))$$

Tt: travel time (hr) n: manning's roughness coefficient L: flow length P2: 2-year, 24-year rainfall (cm) S: slope of hydraulic grade line (land slope, m/m)

Moreover, from this formula we can get into this pint that by increasing the roughness coefficient which can obtain by changing the surface cover type, increasing the flow length and decreasing the slope, the travel time would increase.

Average velocity of runoff flow also obtains from below formula:

 $V = (1, 49r^{2/3} S^{1/2})/n$

V: average velocity (m/s) r: hydroloc radious (a/pw)

```
a: cross sectional flow area (m2)
pw: wetted perimeter (m)
```

s: slope of hydraulic grade line (land slope, m/m)

n: manning's roughness coefficient for open channel flow

therefore, it can be resulted that, by decreasing the slope, increasing open channel roughness and increasing wetted perimeter, the average velocity of flow would decrease.

12

Surface description		n ¹			
Smooth surfaces (concrete, asphalt, gravel, or bare soil)		0.011			
Fallow (no residue)		0.05			
Cultivated soils					
	Residue cover ≤%20	0.06			
	Residue cover ≥%20	0.17			
Short grass prairie		0.15			
Dense grasses ²		0.24			
Bermudagrass		0.41			
Range (natural)		0.13			
Woods ³					
	Light underbrush	0.40			
	0.80				
1. The n values are a composite of information compiled by Engman (1986).					
2. Dense grasses Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass					
mixtures.					
3. When selecting n , consider co	over to a height of about 0.1 ft. This is the only part of the plant cov	ver that will obstruct			
sheet flow.					

Table 1: Roughness cofficients (Manning 's n) for sheet flow («Urban Hydrology for Small Watersheds TR-55,»)

Landslide and Debris

andslides are rapid or slow movement of Learth to downhill and can cause gradual damages. Debris flow or mudslide flow are kind of fast moving landslides where consist mud, rock and large items like trees. and heavy rainfall, erosion, poor construction practices, freezing and thawing, earthquake shaking, and volcanic eruptions are the factors which would result in these two mentioned phenomena. Landslides are mostly happens during heavy rain fall or snowmelts which can worsen the effect of flooding. Existing old landslides, bases of steep slopes and drainage channels and developed hillsides with leach field septic system usage are areas which are prone to landslide and debris (Talking About Disaster: Guide for Standard Messages, 2007, pp. 83, 84).

Figure 4: Landslide and Debris flow (http://web.viu.ca/geoscape/landslide!.htm 06-04-2013

Comments

A s explained before, water movement on the earth and the fac-tors which can effect this movement needs to be studied. It is important to know that how small changes in different areas can change this movement on the earth or in the atmosphere. Changes like soil roughness or slope of the watershed can dramatically alter the surface runoff and velocity of the flows. The soil coverage or permeability of the soil is another important factor which is known as hydrological soil groups. It shows that, the infiltration rate is depends on the porosity of the soil. Therefore, infiltration rate of noncompacted soils or soils with more porosity is more than compacted soils or soils with less porosity. Moreover, there are other hazards which can worsen the effect of flooding like landslides and debris which happens during heavy rainfalls and snowmelts. Therefore, it is really important to be aware of these kinds of hazards and selecting suitable flood control system in order to not only manage floods, but also manage other hazards which can happen by heavy rainfalls, runoffs and snowmelts.

Application in Systems

Each flood management method is based on different flooding systems, weather structural or nun-structural. Each one has its own advantages and limitations depend where and how it is applied. Zoning and land use system is one method of managing floods which is base system of this thesis.

Zoning and Land Use

Tlood barriers are standard responses to Γ the flooding. Lack of coordination between flood barriers and landscape can cause poor neighborhoods linkage which can result in poor public and private space quality and in some cases lack of identity and sense of neighborhood («Designing for Flood Risk,» p. 3).

This system identifies land uses on different flood zones (as shown in figure 5). Flood zones are based on the probability of river or coastal flooding. In this system, land divides to 4 flooding zones; each zone is an interval between two levels depends on topographical level of the land. Zone 4 is between normal water level and 100 year river flooding or 200 year sea flooding which has high vulnerability of flooding. Zone 3 is between 100 year river flooding or 200 year sea flooding and 200 year river flooding or 500 year sea flooding which has moderate high possibility of flooding. Zone 2 is between 200 year river flooding or 500 year sea flooding and safe zone which has moderate low possibility of flooding. Zone 1 which has low flood risk («Designing for Flood Risk,» pp. 11, 12).

Figure 5: Flood risk zones (Amin Behnamfar 2013)

assessing the flood risk by identifying the probability of flooding considering the factors of historical storm events and future climate change, flood heights and flood design height and flood design volume. Secondly, importance of uses and vulnerability of buildings, infrastructures and setting land use strategy for each flooding zone should be

Designing sequence of this system is first identified. Reducing flood risk by using other flood defense systems in order to controlling the flood is the next step of this system that is to be done. Then, minimizing flood consequences by setting safety strategy for inhabitants, structures and infrastructures. And finally, by estimating and re-estimating of flood impacts on inhabitant safety, neighborhoods, environment and climate change

Advantage of this system is land use planning. By mixing different uses, land would use efficiently at places with flooding risk. Land use will be match with natural topography of the site («Designing for Flood Risk,» pp. 12, 17).

Table 2 shows different land uses category and the possibility of implementation of them in different flood zones with or without flood mitigation systems.

Land use category	Low risk	Medium risk	High risk	Very high risk	
Agriculture and fisheries					
Forestry					
Utilities and infrastructure - renewable energy production and distribution				•	
Recreation and leisure - outdoor amenity and open spaces					
Defence					
Transport - car parks, vehicle storage, goods and freight handling					
Minerals (extraction)					
Utilities and infrastructure - refuse disposal					
Industry and business - storage and wholesale distribution					
Industry and business - manufacturing					
Industry and business - offices					
Recreation and leisure - indoor					
Retail					
Transport - tracks, ways, terminals and interchanges					
Residential - hotels, boarding and guesthouses					
Residential - dwellings					
Utilities and infrastructure - energy production and distribution,					
water storage and treatment					
Residential - residential institutions					
Community services - medical, healthcare, education, and					
community (emergency) services					
Suitable use 😑 Requires mitigation 🔴 Requires mitigation and defence 🔴 Avoid use					

Table 2: Land use category on different flood zones

(Designing for Flood Risk. Retrieved from http://www.architecture. com/FindOutAbout/Sustainabilityandclimatechange/Flooding/ DesignGuide.aspx) Stenungsund; Case Study

Location

Stenungsund is an industrial city of Sweden which locates in western part of the country in Västra Götaland region at latitude of 58°04> N and a longitude of 11° 49>E in north direction of Göteborg along the Bohuslän coast.

Figure 6: Stenungsund location (Google map 2012)

The municipality of Stenungsund was formed in 1952 by combining the small municipalities of Norum, Spekeröd, Ucklum and Ödsmål with approximate size of 252 km² surrounded by sea forest and rocks. In 1971 the Stenungsund had 4700 inhabitants but, today Stenungsund municipality has more than 24000 inhabitants. (Stenungsunds-kommun-2013-04-11)

History

For thousands of years fisherman and hunters was residents of this area. After herring disappearance from the sea, in 18th century agriculture became the main industry. The commerce of the region maintained merely farming, gardening and trading along with small scale industries until 1950's. (Stenungsunds-kommun-2013-04-11) Because of excellent water, road, rail and aerial connections of the area in the early1960s, Stenungsund has been identified as an ideal location for large industries such as petrochemical production center and many other small and medium sized businesses. (ChlorVinyls)

Figure 7: Historic photo of the Stenungsund (Stenungsunds-kommun-2013-04-11. (2013-04-11). Facts about Stenungsund 2013-04-11 Retrieved 2013-04-11, from http://stenungsund. se/webbsidor/huvudmeny/kommunpolitik.4.33232ad813188aec56b8000413.html)

Area and population

In 1971 the Stenungsund had 4700 inhabitants but, in 2013 Stenungsund municipality is an expanding costal municipality about 252 Km² and has more than 24000 inhabitants. In 2011 adults (age range of 20 to 64) had 55% of the population in the area and from those 83% were employed in the municipal area. Possibility of accommodation by the sea and outdoor recreations and activities are advantages which provide constant growth of the municipality. (Stenungsunds-kommun-2013-04-11)

Figure 8: Stenungsund Center; Community services (Stenungsunds-kommun-2013-04-11. (2013-04-11))

Amin Behnamfar 2013

Amin Behnamfar 2013

Amin Behnamfar 2013

Amin Behnamfar 2013

Amin Behnamfar 2013

Amin Behnamfar 2013

Amin Behnamfar 2013

Amin Behnamfar 2013

Amin Behnamfar 2013

Infrastructure and Accessibility

C tenungsund is an industrial city which of 252 km². About 14 km² of the area appor-Olocates about 45 kilometer in north tioned to residential areas, 5.5 km² to indusdirection of Göteborg in Västra Götaland trial areas, 3 km² to road and rail network, province. The city is situated by the sea; it 2 km² to constructed areas and the rest are is accessible through road E-6 and railway. green areas, forest, wetlands and water bod-Green express busses and Västra Götaland ies. local trains are public transportation systems for commuting between Göteborg, second largest city of Sweden, and Stenungsund.

As discussed above, Stenungsund has area

Amin Behnamfar 2013

Amin Behnamfar 2013

Amin Behnamfar 2013

Amin Behnamfar 2013 min Behnamfar 2013 Legend Residential areas Industrial or commercial units Constructed areas Green areas Forest Water bodies

Figure 9: Existing Land Useage in the Stenungsund (Amin Behnamfar 2013)

21

Land cover

A s discussed in first chapter, land cover is one of the runoff factors. Gathering data about land cover type, their location and extend are important factors which can effect further expansion of the city and its direction.

Stenungsund region has variety of land cover types. Apportion of land cover types in the region are about 9 km² Green urban areas, 1 km² Sport facilities, 1,5 km² Golf courses, 0,5 km² Camping fields, 52 km² Arable lands, 24 km² Pastures, 49 km² Broadleaved forest, 154 km² Coniferous forest, 34 km² mixed forest, 31 km² Shrubs, 3,8 km² Clear cut areas and 2 km² Sparsely vegetated areas.

Figure 10: Existing Land Cover in the Stenungsund (Amin Behnamfar 2013)

Pollution sources

Fueling areas, Maintenance Bays and Docks, vehicle washing areas, Outdoor Material Storage areas, Outdoor Work areas and Outdoor Processing areas are the source of pollutions in the area.

Location of all this pollution sources on flood prone zone can pollute water and harm the nature and ecology of the Stenungsund. This kind of pollution might affect aquatic organism lives and also fishing industry.

Figure 11: Existing Pollution sources in the Stenungsund (Amin Behnamfar 2013)

Geology

Presented geological maps of this area shows soil and bedrock texture of the area which is Granit, Granodiorite and monzonite are generally composed the bedrock while topsoil are mostly clay, sand and bedrock (Granit, Granodiorite and monzonite). Texture of the topsoil shows that hydrological soil group of the area are A, C and in some parts D. Because of low infiltration capacity of the topsoil, runoff would take place for short time after precipitation starts.

Slope map of the area, which produced from elevation data with help of Arcmap software, is another basin factors which can affect runoff. It shows spots which have high stream velocity, places which are prone to erosions and locations which can face with landslide and debris.

Figure 12: Existing Bedrock in the Stenungsund (SGU, Sveriges geologiska undersökning, Geological Survey of Sweden 2013-0415 http://www.sgu.se/sgu/sv/produktertjanster/kartvisare/index.html)

Figure 13: Existing Topsoil in the Stenungsund

(SGU, Sveriges geologiska undersökning, Geological Survey of Sweden 2013-0415 http://www.sgu.se/sgu/sv/produktertjanster/kartvisare/index. html)

Figure 14: Existing Surface Slope in the Stenungsund (Amin Behnamfar 2013)

Climate

A ccording to the precipitation data, average precipitation of the area was between 50-100 mm in January from 1961-1990. But according to the climate forecasts, precipitation rate would change to 100-150 mm in January from 2011-2100. This means the precipitation would have continues growth of 30-40 mm from 2011-2040 to 40-50 mm from 2040-2100.

750

700

650

600

550

500

450

400

350

300

250

200

150

100

50

0

Figure 15: Precipitation summary 1961_1990_jan (SMHI 2013-04-15 http://www.smhi.se/kli-matdata/klimatscenarier/klimatanalyser)

Figure 17: Precipitation summary 2041_2070_jan (SMHI 2013-04-15 http://www.smhi.se/kli-matdata/klimatscenarier/klimatanalyser)

800

750

700

650

600

550

500

450

400

350

Figure 16: Precipitation summary 2011_2040_jan (SMHI 2013-04-15 http://www.smhi.se/kli-matdata/klimatscenarier/klimatanalyser)

Figure 18: Precipitation summary 2071_2100_jan (SMHI 2013-04-15 http://www.smhi.se/kli-matdata/klimatscenarier/klimatanalyser)

26

Drainage network

I dentifying precipitation flow direction, runoff streams and drainage network of the area are important not only for controlling runoff but also for preventing distribution of pollutant by water from the polluted areas to another.

Figure 19: Existing Water Flow Lines in the Stenungsund (Amin Behnamfar 2013)

Stenungsund coastal flood zones

Future water level (m)						RH2000 (masl)	
Location	100 year flood	Wave effect	Calculated water level	Mean water level	Sea level rise	Uplift	Future water level
Stenungsund	1,70	0,075	1,875	0,00	1,00	0,31	2,6

Table 3: Hundred Years Sea Level Flooding (Faktablad – planeringsnivåer Version 1.0 - Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag. (2012)

Table above shows that 100 years sea level flooding would rise to 1.7 meter in the future. Moreover, The rate of sea-level rise has accelerated and it would rise about 0.9 m (3 ft) above modern high tide in a 100 year. («Faktablad – planeringsnivåer Version 1.0 - Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag,» 2012)

Security Level 1	RH2000 (masl)		
Location	Future water level	Extra margin of safety	Security Level 1
Stenungsund	2,6 (m)	0,5 (m)	3,1 (m)

Table 4: Interval Between coastal Flood Zone 4 and Zone 3

(Faktablad – planeringsnivåer Version 1.0 - Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag. (2012)

Table above shows the interval between zone 4 (moderate high coastal flood zone) and zone 3 (high coastal flood zone). («Faktablad – planeringsnivåer Version 1.0 - Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag,» 2012)

Security Level 2	RH2000 (masl)		
Location	Future water level	Extra margin of safety	Security Level 2
Stenungsund	2,6 (m)	1,0 (m)	3,6 (m)

Table 5: Interval Between coastal Flood Zone 3 and Zone 2

(Faktablad – planeringsnivåer Version 1.0 - Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag. (2012)

Table above shows the interval between zone 3 (high coastal flood zone) and zone 2 (moderate low coastal flood zone). («Faktablad – planeringsnivåer Version 1.0 - Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag,» 2012)

As a result of analyzing data above different zoning heights in the area are as below:

Zone				7 1	
(RH2000 masl)	2 On 4 = below Future	Zon 3 = interval between the Security Level 1	Zon 2 = interval between the Security Level 2	Lon 1 = over the Security Level 2	
Location	water iever	Security Level 1	Security Level 2	the Security Level 2	
Stenungsund	2,6 (m)	3,1 (m)	3,6 (m)	3,6 (m)	

Table 6: coastal Flood Zones Hights

(Faktablad – planeringsnivåer Version 1.0 - Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag. (2012)

My proposal

E forts of this chapter are to achieve criteria of this project. Proposed plan in this chapter is built upon analysis and investigations based on data and information in pervious sections.

More clarification can be attained through the analyzing of presented maps.

Coastal Flooding zones

A ccording to coastal flood zone tables and Stenungsund elevation data, coastal flooding areas and vulnerable land uses in this areas which made by Arcmap software are shown in figure 33.

This figure shows areas which are vulnerable to coastal flooding in 100 year sea level rises. Zone 4 which is marked as read are areas which are in very high risk coastal flooding zone. High coastal flood risk zones are marked as orange and named as coastal flooding zone 3. The medium coastal flood risk zone on the map is zone 2 which has been remarked in yellow. The rest of the zones are the ones which are threatened less by coastal flood risk.

Figure 20: Coastal Flood Zone Map (Amin Behnamfar 2013)

Land uses in different coastal flooding zones

Table 6 in previous chapter presents land use category for each coastal flooding zone. But first it is important to reveal that which land uses are in different floodplain.

Summary of land use distributions in different coastal flooding zones, which are showed in previous figures, are:

Figure 21: Existing Land Uses in Coastal Flood Zone 2 (Amin Behnamfar 2013)

Figure 22: Existing Land Uses in Coastal Flood Zone 3 (Amin Behnamfar 2013)

Figure 23: Existing Land Uses in Coastal Flood Zone 4 (Amin Behnamfar 2013)

category	Zone 4 (m ²)	Zone 3 (m ²)	Zone 2 (m ²)	Zone 1 (m ²)
Residential areas	560	91	95	13405
Industrial or commercial units	951	294	208	4011
Road and rail networks and associated land	1	0	0	2916
Constructed areas	270	7	2	1544
Green areas	2267	675	656	84848
Forest	1031	231	248	274739

Table 7: Vulnerable Land Use Areas (Amin Behnamfar 2013)

According to table above 4% of the residential area and 17.4% of the industrial or commercial units are located in zone 4. Buildings located in this zone are mostly in the center of the Stenungsund. Buildings such as Stenungsund health center, Stenungsund center (regional shopping center) with about 80 stores, banks, restaurants and etcetera, and gas stations are prone to flood.

Distribution of land uses in Zone 3, which has high flooding risk, are as table 7. According to mentioned table, about 0,5% of residential units and more than 5% of industrial or commercial units of whole Stenungsund area locates in this zone. And as well, about 0,5% of residential units and 5% of industrial or commercial units are in flooding zone 2. In total, more than 27% of industrial or commercial units and 5% of residential units are prone to flood.

Coastal Flooding Zone 2 Co

This zone has medium coastal flood risk. According to table 2, land uses like parking lots, indoor recreation and leisure, industry and business areas require strategies for mitigating flood affects. Main roads and railways, residential areas infrastructures and community services in this zone not only require mitigation plan but also needs flood defense strategy.

Coastal Flooding Zone 3

Residential institutions and community Reservices like medical, healthcare centers, educational places and emergency services should not be located in this area and if they are some of them already exist in this zone they need to relocate to zone 2 or zone 1 (zone 1 has low flood risk). For other land uses like residential areas, industrial areas and main road and railways ,flood mitigation plans in combine with flood defense methods are proposed to be applied.

Coastal Flooding Zone 4

As previously discussed 4% of residential areas (about 560 square meters) and 17.4% of commercial areas (about 950 square meters) are located in coastal flood zone 4 which needs to relocate. In order to relocating these areas, it is really important to consider developments on flooding and flooding effects on the structures. Moreover, it is important to have land cover data of the area for preserving natural resources and trees. Collecting data and information from coastal flood zone map, pollution distribution maps, slope and stream maps and analysis of all these data are not sufficient; it needs some techniques for minimising flood damage as well.

Final Discussion - Prioritization of Measures In Time

Tuture coastal flooding might affect in- mercial areas are in medium, high and very fore taking action for managing flood is nec- Γ habitant lives. Because of current location of Stenungsund health center, which is located in very high flood risk zone, if 100 years flooding occurs, this community service might lost its functionality. Therefore, inhabitants might face difficulties of accessing to health center.

Because some parts of railway and main roads, especially road which connect Stenungsön Island to the Stenungsund, are in high coastal flood risk zone, in case of flooding traffic disorders might happens in this area which might brought up inhabitants commuting problems.

Current location of the shopping center in this area is another issue; Stenungsund shopping center is now locates in very high risk coastal flood zone. 100 years sea flooding pollution sources to other areas. Pollutions would surround this area and the parking lot close to it. For this reason, functionality of this place might disturbed therefore people might face with problem of accessing to this area for providing their needs.

Businesses might also get affect by sea flood. More than 27% of industry and com-

high flood risk zones. If 100 years sea flooding occurs in this area, industrial and commercial productivity might decline and their activities might cease. Therefore, downturn might occur and business owners might facing capital loses.

If industrial and commercial areas got affect by flood, employees of those industrial or commercial units which are locate in medium, high and very high coastal flood zones might also get affect. Declining productivity, cease activities, downturns and capital loses in industrial and commercial units are reason which might raise unemployment rate dramatically.

As discussed before, coastal flooding and surface runoffs can distribute pollution from can harm water, nature and ecology of the Stenungsund. Therefore, aquatic organism life might get affected and because of that fishing industry of the area might get affect.

Last but not least, people might migrate from the city to adjacent urban areas. There-

essary.

Based on what have been discussed on previous pages, time management with the purpose of controlling sea flood in this area is so important. Although, coastal flood planning controls in zone 3 and 2 in comparison with zone 4 are less costly, but it doesn't have to forgotten that coastal flood zone 4 covered most part of Stenungsund centrum and its infrastructures. Because calculations sea level rises of this area are for a period of 100 years, one way could be dividing this time to four periods of 25 years. Locating an ideal location for displacing vulnerable areas and infrastructures based on table 2 would have done in first period, as the further constructions and expansions in vulnerable areas would have control. Next period would be constructing infrastructures and expansion of the city toward ideal locations. Third step would be relocating community services, industries and businesses and residential areas from coastal flood zone 4 also mitigating land uses which are allowed in table 2. And last step would be relocating or mitigating vulnerable land uses on coastal flood zone 3 and 2.

REFERENCES

Agency, E. E. E., Füssel, H.-M., & Jol, A. from (2012). Climate change, impacts and vulnerability in Europe 2012. [An indicator-based Flooding/DesignGuide.aspx report]. doi: 10.2800/66071

http://www.architecture.com/Find-OutAbout/Sustainabilityandclimatechange/

Agency, U. S. E. P. (1992). NPDES Stormwater Sampling Guidance Document Vol. EPA 833-B-92-001. Retrieved from http:// www.epa.gov/npdes/pubs/owm0093.pdf

California Stormwater Quality Association Stormwater Best Management Practice New Development and Redevelopment Hand book. (2003). Retrieved from http://www. cabmphandbooks.com/Development.asp

ChlorVinyls, I. Retrieved Monday 15 April 2013, from http://www.ineoschlor. com/aboutus/stenungsund.shtml

Designing for Flood Risk. Retrieved

- Stigande vatten - en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag. (2012).

. Faktablad – planeringsnivåer Version 1.0

Low Impact Development Hydrologic Analysis. (1999). Retrieved from www.epa. gov/owow/NPS/lid_hydr.pdf

Low Impact Development Stormwater Management Planning and Design Guide. (2010). Toronto and Region Conservation Authority & Credit Valley Conservation Authority.

38

Organization of American States. Dept. of ment/DevelopmentHandbook.pdf Regional Development and Environment., & United States. Agency for International Development. Office of U.S. Foreign Disaster Assistance. (1991). Primer on natural hazard management in integrated regional development planning. Washington, D.C.: Dept. of Regional Development and Environment, Executive Secretariat for Economic and Social Affairs, Organization of American States.

Raghunath, H. M. (2006). Hydrology principles, analysis and design (pp. xii, 463 p. ill. 424 cm.). Retrieved from http://site.ebrary. com/lib/calbaptist/Doc?id=10323304

Shaun Leinster, E. M., Jim Binney and Duncan Thomson. (2010). A Business Case For Best Practice Urban Stormwater Management. 1,1.

Stenungsunds-kommun-2013-04-11. (2013-04-11). Facts about Stenungsund Retrieved 2013-04-11, from 2013-04-11 http://www.stenungsund.se/webbsidor/topmeny/english/factsaboutstenungsund.4.41f1 947e1334a5a707b8000394.html

Stormwater Best Management Practice, New Development and Redevelopment. (2003). Retrieved from http://www.cabmphandbooks.com/documents/Develop-

Stormwater Best Management Practices Manual. (2007). Retrieved from http:// www.ncsu.edu/ehs/environ/DWQ StormwaterBMPmanual_001[1].pdf

Sylves, R., Kershaw, P. J., & ebrary Inc. (2004). Reducing future flood losses the role of human actions -- summary of a workshop, March 2, 2004, Washington, DC (pp. iv, 17 p.). Retrieved from http://site.ebrary. com/lib/calbaptist/Doc?id=10075681

Talking About Disaster: Guide for Standard Messages. (2007). American Red Cross. United States Department of Agriculture, N. R. C. S., Conservation Engineering Division. (1986). Urban Hydrology for Small Watersheds, Technical Release 55 Technical Release 55 Retrieved from http://www. cpesc.org/reference/tr55.pdf

Urban flooding POSTnote 07/289. (2007). Retrieved from http://www.parliament.uk/ documents/post/postpn289.pdf website:

Urban Hydrology for Small Watersheds TR-55. (June 1986). Retrieved from http:// www.cpesc.org/reference/tr55.pdf Warner, J. (2011). Flood Planning : The Politics of Water Security. London: London : I.B.Tauris & Co. Ltd.

Watson, D., & Adams, M. (2011). Design for flooding : architecture, landscape, and urban design for resilience to flooding and climate change. Hoboken, N.J.: John Wiley & Sons.

Virginia Stormwater Management Handbook VOLUME I. (1999). Retrieved from http://www.dcr.virginia.gov/stormwater_ management/stormwat.shtml#vswmhnbk

Virginia Stormwater Management Handbook VOLUME II. (1999). Retrieved from http://www.dcr.virginia.gov/stormwater_ management/stormwat.shtml#vswmhnbk

Pictures:

Figure 1

Encyclopædia Britannica, Inc., http://www. britannica.com/EBchecked/topic/278858/ hydrologic-cycle 2013-03-17

Figure 4

http://web.viu.ca/geoscape/landslide!.htm 2013-04-06

Figure 7, 8

Stenungsunds-kommun-2013-04-11. (2013-04-11). Facts about Stenungsund 2013-04-11 Retrieved 2013-04-11, from http://stenungsund.se/webbsidor/huvud- not listed above are created and captured by meny/kommunpolitik.4.33232ad813188aec Amin Behnamfar 56b8000413.html

Figure 12, 13

SGU, Sveriges geologiska undersökning, Geological Survey of Sweden 2013-04http://www.sgu.se/sgu/sv/produkter-15 tjanster/kartvisare/index.html

Figure 15, 16, 17, 18 SMHI 2013-04-15 http://www.smhi.se/klimatdata/klimatscenarier/klimatanalyser

Table

Table 2

Designing for Flood Risk. Retrieved http://www.architecture.com/Findfrom OutAbout/Sustainabilityandclimatechange/ Flooding/DesignGuide.aspx

Table 3, 4, 5, 6 Faktablad - planeringsnivåer Version 1.0 Amin Behnamfar 40

- Stigande vatten - en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag. (2012).

Maps, tables, charts and figures which are

APPENDIX A Stenungsund Facts and Zoning Codes

Stenungsund 2012 pal facts

Land area: 252 sq km

Inhabitants/sq km: 98

Population by age, 2011

Age	Percentage distribution					
	Munio	cipality		Swe	den	
	М	W	Tot	Μ	W	Tot
0–6	10	9	9	9	8	8
7–15	12	11	11	10	9	10
16–19	6	5	5	5	5	5
20–24	6	5	6	7	7	7
25–44	24	25	25	26	25	26
45–64	26	26	26	26	25	26
65–79	13	14	13	13	14	14
80–	3	5	4	4	7	5
Total, %	100	100	100	100	100	100
Total (thou)	12	12	25	4 727	4 756	9 483

Year (31 Dec.)	Population Number	Excess of births over	Net migrati	ion
		deaths	M	W
2001	21 175	66	218	214
2002	21 755	74	219	290
2003	22 291	101	226	207
2004	22 742	125	104	218
2005	22 947	120	63	20
2006	23 190	116	70	52
2007	23 389	148	9	41
2008	23 657	115	64	89
2009	23 983	156	12	158
2010	24 292	108	116	86
2011	24 601	54	168	85

Migrations, 2011

Sweden

Number of births/person	
2,0	In-migration within the county from another county
1,5	Of which, ages 18–24
1,0 Municipality Women	Out-migration within the county
0,5 Sweden Women	to another county to another country Of which, ages 18–24
0,0 2001 2003 2005 2007 2009 2011 Total fertility rate	Net migration

Births and deaths, 2011

Live births per woman/man

2,5

2,0

1,5

1,0

0,5

0,0 2001

Number	Men	Women
Births	144	131
Deaths	121	100

outingration		000	001
within the county		426	491
to another county		98	119
to another country		45	44
Of which, ages 18–24		162	243
Net migration		168	85
Foreign born, 2011			
Prop. (%) of all inhabitants	М	W	Tot
Municipality	8	9	9

15

Men

737

545

102

90

133

569

15

SCB 2012

Women

739

548

107

84

158

654

15

Stenungsund

Seats in the Municipal Council

Political party	Number of seats after the election								
	2006		2010						
	Men	Women	Men	Women					
Moderate Party	7	3	6	6					
Centre Party	2	2	1	2					
Liberal Party	3	2	3	2					
Christian Democratic Party	1	2	0	2					
Green Party	1	1	2	1					
Social Democratic Party	7	7	7	6					
Left Party	1	1	1	1					
Sweden Democrats	0	0	1	0					
Other parties	0	1	0	0					
Samtliga partier	22	19	21	20					

Completed/converted dwellings

Number of dwellings

The net change in converted multi-dwelling buildings

Population by level of education, 31 December 2011

Level of education	Percer	ntage disti	ribution							
	Municipality		County	у		Swed	Sweden			
	М	W	Tot		М	W	Tot	М	W	Tot
Compulsory schooling	14	10	12		16	12	14	15	12	14
Upper secondary	55	49	52		49	45	47	49	45	47
Post-secondary education	29	40	35		33	42	37	33	42	37
Unknown	1	1	1		2	1	2	2	2	2
Total, %	100	100	100		100	100	100	100	100	100
Total (1 000)	7	7	14		475	460	935	2 802	2 719	5 522

Refers to age group 20-64

Employed by age group, 2010

	Prop. (%) of all within ages								
	Men	Women	Total						
Municipality									
20–24	70	66	68						
25–44	89	85	87						
45–64	85	79	82						
20–64	85	80	83						
County									
20–24	58	57	58						
25–44	81	78	79						
45–64	79	76	77						
20–64	77	75	76						
Sweden									
20–24	57	56	56						
25–44	81	78	79						
45–64	79	76	78						
20-64	77	75	76						

Refers to the night population

Night population:

residing in the municipality, regardless of workplace

Day population (jobs):

working in the municipality, regardless of residence

Employment by sector, 2010

	Night popu	ulation	Day popula	ation
	Men	Women	Men	Women
Municipality	6 212	5 791	6 776	5 080
Business sector	5 669	3 279	6 342	2 990
Public sector	543	2 512	434	2 090
County (1 000)	387	358	392	362
Business sector	335	192	340	194
Public sector	52	166	52	168
Sweden (1 000)	2 286	2 117	2 279	2 114
Business sector	1 962	1 182	1 956	1 179
Public sector	323	935	322	935
Number of persons age	a 16 and over			

Number of persons ages 16 and over

Commuting, 2010

	Men	women
Commuting in	3 699	2 076
within the county	3 516	2 021
from another county	183	55
Commuting out	3 135	2 787
within the county	2 930	2 680
to another county	205	107
Net commuting	564	-711
Number of persons ages 16 and over		

SCB 2012

Stenungsund

Employment by industry, 2010

Employed in the municipality, regardless of residence (day population)

Self-employed, 2010

Sickness/activity compensation, 2011

Number of	Men		Women		Prop. (%) of all within ages			S
employed	Self-empl.	Self-	Self-empl.	Self-		Men	Women	Total
	in lim.comp.	employed	in lim.comp.	employed	Municipality			
					55–59	8	13	10
1	106	307	16	203	60–64	11	25	18
2–4	121	55	35	25	20–64	4	8	6
5–9	68	13	24	3	Sweden			
10–	77	0	14	0	55–59	12	18	15
					60–64	18	27	22
Total	372	375	89	231	20–64	6	9	7
Number of persons area 16 and ever . Defers to the device period				nonulation	Boplaco bopofito	for dischility	noncion and cickr	

Number of persons ages 16 and over Refers to the day population

Replace benefits for disability pension and sickness

Job seekers

	Propo	rtion (%) o	of all within	n age grou	р				
	Munic	ipality		Cour	ity		Sweden	l	
	М	W	Tot	М	W	Tot	М	W	Tot
March, 2011									
Ages 20–64	4	3	4	7	6	6	7	6	7
Unemployed	2	2	2	3	3	3	4	3	4
Labour market progr.	1	1	1	3	3	3	3	3	3
Of which, ages 20–24	7	5	6	11	9	10	12	9	11
Number, ages 20–64	261	226	487	31 481	27 401	58 882	191 868	169 917	361 785
March, 2012									
Ages 20–64	4	3	4	7	6	7	7	6	7
Unemployed	3	2	2	4	3	4	4	3	4
Labour market progr.	1	1	1	3	3	3	3	3	3
Of which, ages 20-24	9	7	8	12	9	10	13	10	11
Number, ages 20-64	275	241	516	33 626	27 489	61 115	197 576	172 173	369 749

Employment and employed, 2010 - Total

Industry	Day population				Night popu			
	Municipality	C	ounty	Sweden	Municipality County		ounty	Sweden
	Number	%	%	%	Number	%	%	%
Agriculture, forestry, fishing	66	1	1	2	73	1	1	2
Manufacturing, mining and quarrying	3 259	27	16	14	2 393	20	16	14
Energy and environment	175	1	1	1	165	1	1	1
Construction	1 229	10	7	7	1 109	9	7	7
Trade	1 191	10	13	12	1 543	13	13	12
Transport	500	4	5	5	716	6	6	5
Hotels and restaurants	358	3	3	3	322	3	3	3
Information and communication	355	3	3	4	361	3	3	4
Credit institutes and insurance companies	69	1	1	2	114	1	1	2
Real estate services	179	2	2	2	169	1	2	2
Business services	1 494	13	10	11	1 320	11	10	11
Civilian authorities and national defence	174	1	5	6	465	4	5	6
Education	1 136	10	10	11	1 080	9	10	10
Healthcare and nursing	1 191	10	17	16	1 673	14	16	16
Personal and cultural services	382	3	4	4	396	3	4	4
Unknown sector	98	1	1	1	104	1	1	1
Total	11 856	100	100	100	12 003	100	100	100

Refers to ages 16 and over

Employment and employed, 2010 - Men

Industry	Day popula	tion			Night population			
	Municipality	С	ounty	Sweden	Municipality	С	ounty	Sweden
	Number	%	%	%	Number	%	%	%
Agriculture, forestry, fishing	51	1	2	3	53	1	2	3
Manufacturing, mining and quarrying	2 557	38	24	20	1 764	28	23	20
Energy and environment	149	2	1	2	133	2	1	2
Construction	1 145	17	12	12	1 012	16	12	12
Trade	566	8	14	13	822	13	14	13
Transport	410	6	8	8	485	8	8	8
Hotels and restaurants	127	2	3	3	134	2	3	3
Information and communication	196	3	4	5	225	4	4	5
Credit institutes and insurance companies	21	0	1	2	41	1	1	2
Real estate services	122	2	2	2	98	2	2	2
Business services	884	13	12	12	711	11	12	12
Civilian authorities and national defence	69	1	4	5	177	3	4	5
Education	218	3	5	5	216	3	5	5
Healthcare and nursing	94	1	5	5	151	2	5	5
Personal and cultural services	120	2	3	4	143	2	3	4
Unknown sector	47	1	1	1	47	1	1	1
Total	6 776	100	100	100	6 212	100	100	100

Refers to ages 16 and over

Employment and employed, 2010 - Women

Industry	Day popula	tion			Night popu			
	Municipality	C	ounty	Sweden	Municipality	С	ounty	Sweden
	Number	%	%	%	Number	%	%	%
Agriculture, forestry, fishing	15	0	1	1	20	0	1	1
Manufacturing, mining and quarrying	702	14	9	7	629	11	8	7
Energy and environment	26	1	0	0	32	1	0	0
Construction	84	2	1	1	97	2	1	1
Trade	625	12	13	12	721	12	13	12
Transport	90	2	3	2	231	4	3	2
Hotels and restaurants	231	5	4	4	188	3	4	4
Information and communication	159	3	2	2	136	2	2	2
Credit institutes and insurance companies	48	1	2	2	73	1	2	2
Real estate services	57	1	1	1	71	1	1	1
Business services	610	12	9	10	609	11	9	10
Civilian authorities and national defence	105	2	6	7	288	5	6	7
Education	918	18	16	16	864	15	16	16
Healthcare and nursing	1 097	22	29	28	1 522	26	29	28
Personal and cultural services	262	5	5	5	253	4	5	5
Unknown sector	51	1	1	1	57	1	1	1
Total	5 080	100	100	100	5 791	100	100	100
Refers to ages 16 and over								

SCB 2012

Stenungsund

The 20 most common occupations in the municipality, 2010

Day population of employees	Number		Perc.	distr.		Sex distr. (%)		
	Men	Women	М	W	Tot	М	W	
Personal care and related workers	61	981	1	21	10	6	94	
Chemical-processing-plant operators	694	99	11	2	7	88	12	
Physical & engineering science techn.	510) 133	8	3	6	79	21	
Shop & stall salespersons & demonstr.	168	377	3	8	5	31	69	
Building finishers & rel. trades workers	456	31	7	1	4	94	6	
Architects, engineers and related prof.	292	2 121	5	3	4	71	29	
Building frame and related trades workers	342	2 6	6	0	3	98	2	
Motor-vehicle drivers	310) 24	5	1	3	93	7	
Finance and sales associate professionals	178	3 148	3	3	3	55	45	
Primary education teaching professionals	55	5 216	1	5	2	20	80	
Pre-primary educ. teaching associate prof.	15	5 220	0	5	2	6	94	
Production and operations managers	149	80	2	2	2	65	35	
Other specialist managers	163	64	3	1	2	72	28	
Machinery mechanics and fitters	202	2 7	3	0	2	97	3	
Metal mould., welders, sheet-metal work., & rel. wor	187	2	3	0	2	99	1	
Helpers and cleaners	25	5 162	0	3	2	13	87	
Electrical & electron. equipm. mechan. & fitters	178	6	3	0	2	97	3	
Managers of small enterprises	127	54	2	1	2	70	30	
Other office clerks	42	2 137	1	3	2	23	77	
Agricultural & other mobile-plant operators	166	6 9	3	0	2	95	5	
Total 20 occupations	4 320	2 877	69	61	66	60	40	
All occupations	6 217	4 733	100	100	100	57	43	

The 20 most common occupations in the country, 2010

SCB 2012

Preschool activities and care of school-age children 2011

Enrollment	Municipality	Sweden	
	Number	%	%
Pre-school, 1–5	1 348	82	83
Leisure time centre,			
6–12	1 376	62	56
Pedagogical child care),		
1–5	84	5	3
6–12	6	0	0
Proportion (%) of all within	n age group		

Elder care - Refers to ages 80 and over

	Prop. (%) of all within group					
	Muni	lity	Sw	Sweden		
	M W			Μ	1	W
Home-help services 1)	1	2	23		19	26
Special housing 1)		8	14		10	17
Transport service 2010	3	1	50		26	40

Recipient households Municipality

Number

35

41

172

12

125

69

454

Sweden

%

5

12

40

25

16

100

3

%

8

9

38

3

28

15

100

1) 1 October 2011.

Cohabiting without children

Single men

Type of household

with children

with children

with children

Total

Single women without children

without children

Social assistance, 2010

Total income, 2010

SEK thousand						
	Men		Total			
Average income						
Municipality		344	244	294		
County	2	294	225	260		
Sweden	299		229	265		
Median income						
Municipality		331	244	281		
County	2	291	230	257		
Sweden	2	290	231	257		

Income from employm. and business, age gr. 20-64

Expenditures SEK, per inhabitant, 2010

Local taxes, 2012

Municipality Total local tax rate of wich to municipality Tax base, SEK/inhab. Tax base, index	32,52 21,64 185 279 105
County average Total local tax rate of wich to municipality Tax base, SEK/inhab. Tax base, index	32,05 21,17 172 692 98
National average Total local tax rate of wich to municipality Tax base, SEK/inhab. Tax base, index	31,60 20,59 176 054 100
Index. Sweden = 100	

Statistiska centralbyrån

Statistics Sweden

Information and sales: Elisabeth Blom tfn +46 19-17 63 88, fax +46 19-17 70 88 Harriet Löfqvist tfn +46 19-17 60 48, fax +46 19-17 70 88 <u>E-mail: regionalt@scb.se</u> Web site: www.scb.se/kommunfakta Address to the municipality: Stenungsunds kommun

444 82 STENUNGSUND 0303-730000

Municipal facts 2012

Definitions, Commentary, Sources

DWELLINGS

Source: Housing Construction, Statistics Sweden <u>www.scb.se/BO0101</u> Reconditioned dwellings are now reported under the heading converted dwellings. Conversion refers to more extensive measures where the disposition of dwellings is changed.

Municipal facts 2009 will only be presenting the net change in the number of dwellings in renovated multi-dwelling buildings, as opposed to previous years when the presentation referred to the total number of dwellings after renovation.

EDUCATION

Source: Education Register, Statistics Sweden <u>www.scb.se/UF0506</u> The register contains information on completed education in the main educational system. The classification of levels follows the Swedish education nomenclature, SUN.

ELECTION RESULTS, GENERAL ELECTIONS

Source: Citizen influence, Statistics Sweden <u>www.scb.se/ME0104</u> The table "Seats in the municipal council" presents the parties that are represented in parliament.

INCOME

Source: Total Income Statistics, Statistics Sweden <u>www.scb.se/HE0110</u> This information is from the taxation records supplied to Statistics Sweden by the Tax Board.

Total earned income consists of income from employment and business activities. The <u>Average income</u> is the sum of incomes for the age group 20–64 years divided by the number of persons in this group at year-end. This includes individuals without income. The <u>Median income</u> is the income representing the middle value after sorting the income of all individuals by size.

JOB SEEKERS

Source: Swedish Public Employment Service. <u>www.arbetsformedlingen.se</u> The statistics on persons seeking employment are produced from a register maintained by the Swedish Public Employment Service. The information is continuously collected from data storage of the Swedish Public Employment Service.

Programmes with activity support include the following measures: Starting up a business, Work experience, Trial opportunity, Practical competence development, Work guarantee for young people, Work and development guarantee, Occupational rehabilitation, Introduction to working life, Activities within counselling guidance and placement service, Projects with employment policy orientation, In-depth assessment and counselling guidance, Development guarantee phase 3, Labour market training and Preparatory training courses.

Quality and comparability

As of March 2008 unemployment statistics shall be reported as indicated below. The statistics produced by Statistics Sweden differ from those of the Swedish Public Employment Service regarding regional and age distribution.

Region

The Swedish Public Employment Service uses information from the register of job seekers concerning the home municipality and local employment office at the given time. In contrast Statistics Sweden presents the job seekers in the municipality where they are registered according to the Total Population Register at the turn of the year for the statistics of 31 March, and 30 September for the statistics of 31 October. Persons who moved during January-March and In October are thus presented in the area where they were previously registered. Those who moved to Sweden from abroad during the same period are not included.

The statistics from the Swedish Public Employment Service on job seekers broken down by local employment office or home municipality thus includes persons who can be registered in both the municipality in question and another municipality. In the same way, job seekers in a particular municipality in Statistics Sweden's statistics can be registered at employment offices in other municipalities and have another municipality as their home in the register of the Swedish Public Employment Service.

Age

The Swedish Public Employment Service makes a breakdown of job seekers by their age at the end of the reporting month. In Statistics Sweden's tables, the age of job seekers at the end of the year applies.

Open unemployment refers to those registered in the Swedish Public Employment Service categories 11 Unemployed 96-98 Unemployed, (temporary).

LABOUR MARKET

Source: Register-based labour market statistics, Statistics Swede <u>www.scb.se/AM0207</u> Employment is determined from the statements of earnings and taxation annually supplied by employers to the tax authorities as well as from information on company income from the taxation register.

Commuting. Commuters are persons who have their place of work in another municipality than where they live. Commuting between municipalities in the same county and commuting to/from another county are reported here.

Employment – day population includes persons working in the municipality and who live in or outside the municipality.

Gainfully employed. A person is classified as gainfully employed if they have received income from work over a period of on average at least one hour per week in the month of November.

Gainfully employed – night population includes all gainfully employed persons who live in the municipality irrespective of which municipality in which they work.

Industry. As of 2008, Labour Market Statistics use the Swedish Standard for Industrial Classification (SIC) 2007, which is coordinated by the EU industrial standard NACE vers. 2. The revision work has meant a number of changes.

Information about SIC 2007 is available on Statistics Sweden's website www.scb.se/sni2007

Sectors. The category <u>Business sector</u> includes Limited/Incorporated companies (not state-owned), Other companies (not state-owned), State-owned companies and organisations, Municipal-owned companies and organisations, Other organisations. The <u>Public sector</u> includes Central government administration, Public service companies, Primary government administrative bodies, County councils, and Other governmental institutions.

The **Self-employed** are reported broken down into those with their own incorporated company and other self-employed. The latter group includes businessmen with sole proprietorships, partner-ships, limited partnerships, etc.

Occupation

Source: The Swedish Occupational Register, Statistics Sweden Classification according to SSYK96.

MUNICIPAL BUDGET

Source: Public sector economy, Statistics Sweden www.scb.se/OE0101

Expenditures in SEK per inhabitant

Information is based on financial statement statistics that Statistics Sweden annually collects from the municipalities.

Administration expenditures for the municipality and related activities and office expenses are allocated to each activity. However, administration expenditures related to political leadership and governance of the municipality are reported under Political activities. <u>Expenditures</u> are calculated as gross expenditures minus internal revenues and sales of activities to other municipalities and county councils. Thus, the expenditure concept corresponds to the municipality's expenses for its own consumption. See also the book "Vad kostar verksamheten i Din kommun?"

Municipal taxes

The <u>tax rate</u> (tax levy) refers to the percentage of earned income subject to taxation that the taxpayer is obligated to pay as municipal income tax. Following the separation of the Swedish church from the Swedish state, the total municipal tax rate currently comprises only the tax rates for the municipality and the county council. The <u>taxation base</u> consists of taxable earned income going to municipal income tax. The tax base is reported in terms of SEK per inhabitant, also called taxpaying capacity, and in terms of the share of the national average.

POPULATION

Source: Population Statistics, Statistics Sweden <u>www.scb.se/BE0101</u>

The Population Register (TPR) is a copy of the tax authorities' register of individuals, which is renewed periodically with reports on changes in births, deaths, migration, marriages, divorces and changes in citizenship.

Foreign born. This includes persons born outside of Sweden regardless of whether the parents were born in Sweden or outside Sweden.

Population density per sq. km and land area. More detailed calculations of area have been carried out from 1 January 2012. For this reason, it is not advisable to compare data from before 2012 with data relating to after 2012. Furthermore, for the years following 2012, data for municipalities will not match the total for counties, because of enclaves, which have not been possible to divide into municipalities. Land area includes watercourses of a width of 6 metres or less, and meres and smaller pools of water up to maximum of several 10km² in size.

Total fertility rate refers to the average number of children per woman and man respectively if the fertility of the specific year for each age category is extrapolated into the future.

REGIONAL DIVISIONS

Heby was transferred to Uppsala county from Västmanland county on 1 January 2007.

SOCIAL WELFARE

Preschool activities and care of school-age children

Source: National Agency for Education <u>www.skolverket.se</u>

Child care is now referred to as preschool activities and care of school-age children and comprises preschool, pedagogical child care and leisure time centres. A preschool class is not a part of the preschool activities and care of school-age children but rather a separate form of schooling and is thus not reported here.

As of July 2009, the concept of a family daycare centre was replaced by pedagogical child care in the Education Act 1985:1100 and related legislation. Statistics about pedagogical child care exists 50 Amin Behnamfar

as of the autumn of 2009, statistics on family day care centres exists for years between 1994 and 2008. There are no comparable statistics for pedagogical child care because those statistics were first collected in October of 2009.

Pedagogical child care is a collective concept where family day care centres form one of many variant activities within pedagogical day care. Other variants can include such things as multiple family solutions.

The number of children in <u>preschool and leisure time centres</u> and the number of children in <u>peda-gogical child care</u> is reported by age groups 1–5 years and 6–12 years.

Elder care

Includes persons 80 years of age and older.

Source: National Board of Health and Welfare <u>www.sos.se</u>

<u>Home-help services</u> refers to support, service and personal care in the residence. <u>Special housing</u> is the name for service and care which municipalities are required to provide.

Source: Transport analysis www.trafa.se

<u>Transportation service permit</u> refers to a municipal decision to receive transportation from the transportation service (taxi or special vehicle).

Sickness compensation/activity compensation

Source: Swedish Social Insurance Agency <u>www.forsakringskassan.se</u> A new pension system became effective in 2003, replacing benefits for disability pension and sickness with sickness compensation/activity compensation.

If the ability to work is reduced by at least 25 percent, persons aged 19-29 are allowed activity compensation and persons aged 30-64 are allowed sickness compensation.

Social assistance

Source: National Board of Health and Welfare <u>www.sos.se</u> Social assistance is reported here by type of household.

Faktablad - VATTENDRAG

Underlag till rapporten *Stigande vatten – en handbok för fysisk planering i översvämningshotade områden*. Gäller för Västra Götalands län.

Handboken *Stigande vatten* utgår från en planeringsmodell där översvämningsrisken kartläggs i översvämningszoner. I handboken presenteras inga exakta siffror eller nivåer för zonerna. Kunskap och bedömningar kan komma att ändras i takt med att ny forskning tas fram. I detta faktablad presenteras underlag som är tillgängligt i nuläget för att ta fram planeringsnivåerna.

Översvämningszoner och planeringsnivåer

Översvämningszonerna för ett vattendrag är indelade i fyra zoner, se illustration nedan. Zonindelningen är kopplad till återkomsttider och olika riskgrad. I zon 4 (röd) är sannolikheten för att en översvämning inträffar högst och i zon 1 (grön) är den lägst.

Planeringsnivåerna för ett vattendrag utgår från ett 100-årsflöde, ett 200-årsflöde och ett högsta beräknade flöde i ett framtida klimat. En översvämningszon definieras av ett intervall mellan två nivåer med utgångspunkt i markens nivå. Det innebär att zon 4 (röd) utgörs av intervallet mellan *medelvattennivån* och 100-årsflödet, zon 3 (orange) av intervallet mellan 100-årsflödet och 200-årsflödet, och zon 2 (gul) mellan 200-årsflödet och ett högsta beräknade flöde. Zon 1 (grön) utgörs av all mark över nivån för ett högsta beräknade flöde. Dock kan andra typer av översvämningar som till exempel skyfall, inträffa i denna zon.

Vilka funktioner som är lämpliga att placera i de olika zonerna framgår av markanvändningsdiagrammet i handboken. För en funktion som enligt rekommendationerna anses lämplig att placera i zon 2 (gul) betyder det att funktionen (byggnaden) som <u>lägst</u> kan placeras på nivån för *200årsflödet*. Funktionskrav är alltid kopplade till funktioner som placeras i zon 2 (gul), zon 3 (orange) och zon 4 (röd).

Faktablad – planeringsnivåer. Version 1.0 (2012-01-23) Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag finns på: www.lansstyrelsen.se/vastragotaland

Information för att beräkna nivåer

Länsstyrelsen tillhandahåller inte de exakta nivåerna för specifika vattendrag. I *Klimatanalysen för Västra Götaland (SMHI Rapport Nr 2011-45)* har dock 10 vattendrag analyserats med avseende på framtida förändringar i 100-årstillrinning. Analysen omfattar vattendragen Ätran, Viskan, Mölndalsån, Säveån, Örekilsälven, Strömsån, Nossan, Upperudsälven, Tidan och Gullspångsälven.

Myndigheten för samhällsskydd och beredskap (MSB) har genomfört översiktlig översvämningskartering för flera vattendrag i Västra Götalands län. Detaljeringsgraden i dessa beräkningar kan ökas genom att resultat och vattennivåer från den hydrauliska modellen kombineras med en detaljerad höjdmodell, till exempel Lantmäteriets nya modell NNH. Det är möjligt att låna de hydrauliska modellerna kostnadsfritt från MSB för att göra egna analyser och scenarier av andra återkomsttider eller för att öka detaljeringsnivån.

Observera att kartering av vattendrag bör göras på oreglerade förhållanden. Det innebär att sjöar och reglerade magasin beskrivs som om de hade haft naturliga utlopp och inte aktivt reglerats för exempelvis vattenkraftproduktion.

Faktablad - KUSTEN

Underlag till rapporten Stigande vatten – en handbok för fysisk planering i översvämningshotade områden. Gäller för Västra Götalands län.

Handboken *Stigande vatten* utgår från en planeringsmodell där översvämningsrisken kartläggs i översvämningszoner. I handboken presenteras inga exakta siffror eller nivåer för zonerna. Kunskap och bedömningar kan komma att ändras i takt med att ny forskning tas fram, därför presenteras de aktuella planeringsnivåerna i detta faktablad och kan komma att uppdateras.

Översvämningszoner och planeringsnivåer

Översvämningszonerna för kusten är indelade i fyra zoner, se illustration på nästa sida. Zonindelningen är kopplad till riskgrad. I zon 4 (röd) är sannolikheten för att en översvämning inträffar högst och i zon 1 (grön) är den lägst.

Planeringsnivåerna för kusten utgår från ett framtida högsta högvatten i kombination med säkerhetsmarginaler. Långa tidsserier med observationer från ett antal mätstationer längs kusten utgör underlag för beräkningar av de högsta havsnivåerna som kan uppstå i dagens klimat. Till dessa nivåer läggs den prognostiserade globala havsnivåhöjningen som underlag för beräkning av de framtida högsta högvattennivåerna. För att kunna hantera dels skillnader i markanvändningens och bebyggelsens betydelse och vikt för samhället, dels osäkerheter i klimatprognoserna, har olika säkerhetsmarginaler lagts på för att räkna fram nivåerna.

En översvämningszon definieras av ett intervall mellan två nivåer med utgångspunkt i markens nivå. Det innebär att zon 4 (röd) utgörs av intervallet mellan *medelvattennivån* och nivån för *högsta högvatten*, zon 3 (orange) av intervallet mellan *högsta högvatten* och *säkerhetsnivå 1*, och zon 2 (gul) mellan *säkerhetsnivå 1* och *säkerhetsnivå 2*. Zon 1 (grön) utgörs av all mark över nivån för *säkerhetsnivå 2*. Dock kan andra typer av översvämningar som till exempel skyfall, inträffa i denna zon.

Vilka funktioner som är lämpliga att placera i de olika zonerna framgår av markanvändningsdiagrammet i handboken. För en funktion som enligt rekommendationerna anses lämplig att placera i zon 2 (gul) betyder det att funktionen (byggnaden) som <u>lägst</u> kan placeras på d*säkerhetsnivå 1*. Funktionskrav är alltid kopplade till funktioner som placeras i zon 2 (gul), zon 3 (orange) och zon 4 (röd).

Aktuella planeringsnivåer finns presenterade på nästa sida, samt kompletterande uträkningar. Nivåerna är framräknade med utgångspunkt i följande underlag: *Klimatanalys för Västra Götaland* (*SMHI, rapport Nr 2011-45*).

> Faktablad – planeringsnivåer. Version 1.0 (2012-02-03) Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag finns på: www.lansstyrelsen.se/vastragotaland

KUSTEN - zoner:

KUSTEN - zoner och planeringsnivåer:

Zon 1	Zon 1 = <u>över:</u>
(RH2000 möh)	Säkerhets-
Ort	nivå 2
Kungsvik	3,3
Smögen	3,3
Stenungsund	3,6
Göteborg	3,9
Varberg/Ringhals	3,5

Zon 2	Zon 2 = <u>intervallet mellan:</u>				
(RH2000 möh)	Säkerhets-	Säkerhets-			
Ort	nivå 1	nivå 2			
Kungsvik	2,8	3,3			
Smögen	2,8	3,3			
Stenungsund	3,1	3,6			
Göteborg	3,4	3,9			
Varberg/Ringhals	3,0	3,5			

Faktablad – planeringsnivåer. Version 1.0 (2012-02-03)

Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag finns på: www.lansstyrelsen.se/vastragotaland

Zon 3	Zon 3 = <u>intervallet mellan:</u>				
(RH2000 möh)	Framtida beräknade	Säkerhets-			
Ort	högvatten	nivå 1			
Kungsvik	2,3	2,8			
Smögen	2,3	2,8			
Stenungsund	2,6	3,1			
Göteborg	2,9	3,4			
Varberg/Ringhals	2,5	3,0			

Zon 4	Zon 4 = <u>under:</u>
(RH2000 möh)	Framtida beräknade
Ort	högvatten
Kungsvik	2,3
Smögen	2,3
Stenungsund	2,6
Göteborg	2,9
Varberg/Ringhals	2,5

KUSTEN - uträkning nivåer:

Säkerhetsnivå 2	RH2000 (möh)		
		Extra	
	Framtida	säkerhets-	Säkerhets-
Ort	beräknade högvatten	marginal	nivå 2
Kungsvik	2,3	1,0	3,3
Smögen	2,3	1,0	3,3
Stenungsund	2,6	1,0	3,6
Göteborg	2,9	1,0	3,9
Varberg/Ringhals	2,5	1,0	3,5

Säkerhetsnivå 1	RH2000 (möh)		
		Extra	
	Framtida	säkerhets-	Säkerhets-
Ort	beräknade högvatten	marginal	nivå 1
Kungsvik	2,3	0,5	2,8
Smögen	2,3	0,5	2,8
Stenungsund	2,6	0,5	3,1
Göteborg	2,9	0,5	3,4
Varberg/Ringhals	2,5	0,5	3,0

Faktablad – planeringsnivåer. Version 1.0 (2012-02-03) Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag finns på: www.lansstyrelsen.se/vastragotaland

Framtida beräknade högvatten								RH2000 (möh)	
	100-årsnivå	Vind-		Beräknat högvatten	Medel-	Havsnivå-	Land-	Netto-	Framtida
Ort	i dagens klimat	uppstuvning	Vågeffekt	i dagens klimat	vattenstånd	höjning	höjning	havshöjning	beräknade högvatten
Kungsvik	1,47	0,10	0,075	1,645	-0,03	1,00	0,33	0,67	2,3
Smögen	1,45	0,10	0,075	1,625	-0,03	1,00	0,31	0,69	2,3
Stenungsund	1,70	0,10	0,075	1,875	0,00	1,00	0,31	0,69	2,6
Göteborg	1,65	0,30	0,225	2,175	0,04	1,00	0,26	0,70	2,9
Varberg/Ringhals	1,52	0,10	0,075	1,695	0,05	1,00	0,15	0,80	2,5

Faktablad – planeringsnivåer. Version 1.0 (2012-02-03) Stigande vatten – en handbok för fysisk planering i översvämningshotande områden Faktablad för kusten, Vänern och vattendrag finns på: www.lansstyrelsen.se/vastragotaland Appendix B Stenungsund maps

Stenungsund Existing Land Use

Amin Behnamfar

Stenungsund Pollution Sources

Amin Behnamfar Spring 2013

Amin Behnamfar

Stenungsund Existing Land Uses in Flood Zone 2

Legend

Amin Behnamfar Spring 2013

Stenungsund Existing Land Uses in Flood Zone 3

Stenungsund Existing Land Uses in Flood Zone 4

Legend

Amin Behnamfar Spring 2013

Stenungsund Pollution Sources in Flood Zone 2

Amin Behnamfar Spring 2013

Amin Behnamfar

Stenungsund Pollution Sources in Flood Zone 3

Amin Behnamfar Spring 2013

Stenungsund Pollution Sources in Flood Zone 4

Amin Behnamfar Spring 2013