Validering av ELISA för analys av equint IL-1 RA i plasma

Malin Ahlberg

Uppsala
2013
Validering av ELISA för analys av equint IL-1 RA i plasma

Validation of ELISA for analysis of equine IL-1 RA in plasma

Malin Ahlberg

Handledare: Carina Ingvast-Larsson, Institutionen för biomedicin och veterinär folkhälsa
Examinator: Stina Ekman, Institutionen för biomedicin och veterinär folkhälsa

Examensarbete inom veterinärprogrammet, Uppsala 2013
Fakulteten för veterinärmedicin och husdjurssvetenskap
Institutionen för biomedicin och veterinär folkhälsa
Kurskod: EX075 Nivå A2E, 30hp

Nyckelord: dexametason, effekt, ELISA, interleukin-1 receptor antagonista, häst
Key words: dexamethasone, effect, ELISA, interleukin-1 receptor antagonist, horse
Online publication of this work: http://epsilon.slu.se
ISSN 1652-8697
Examensarbete 2014:19
INNEHÅLL

Sammanfattning .. 1
Summary ... 2
Inledning ... 3
Syfte ... 3
Litteraturöversikt .. 4
Interleukin-1 familjen .. 4
 IL-1 agonisterna ... 4
 IL-1 antagonisten ... 4
Samspel agonist-antagonist ... 5
Glukokortikoider .. 5
 Reglering av glukokortikoider ... 6
 Hur utövar glukokortikoider sin effekt? ... 6
 Allmänna effekter av glukokortikoider .. 6
 Specifika effekter av glukokortikoider .. 7
Inflammation ... 7
Syntetiska glukokortikoider ... 8
Dexametason .. 8
Material och Metoder .. 8
 Hästar i försöket .. 8
 Förberedelser inför provtagning ... 8
 Pilotstudie ... 9
 Huvudstudie .. 10
 Provtagning .. 10
 Analys IL-1 RA ... 10
 Validering .. 10
 Plasmaprover .. 11
 Analysen .. 12
Resultat ... 14
 Validering ... 14
 Standardkurva ... 14
 Utbyte .. 14
 Precision... 15
Plasmaprover från huvudstudien.. 16
Diskussion... 16
Slutsats ... 19
Referenser .. 19
SAMMANFATTNING

Detta arbete syftade till att validera en metod för analys av interleukin-1 receptor antagonist (IL-1 RA) i plasma från häst. Med en fungerande analysmetod finns möjligheten att använda IL-1 RA som biomarkör för antiinflammatoriska effekter av läkemedel exempelvis dexametason.

En kommersiell ELISA framtagen för analys av IL-1 RA hos häst användes vid valideringen. Analysmetoden var tidigare endast validerad för analys av IL-1 RA i spädningsmedium från tillverkaren.

Vid validering av metoden framställdes standardkurvor i spädningsmedium från tillverkaren (reagent diluent=RD) samt i olika biologiska medier från häst. Beräkning av standardkurvorna utfördes med hjälp av linjär regression och innefattade intervallet 0,313 – 20 ng/mL. R^2-värden som erhölls för dessa kurvor var i RD: 0,9735 – 0,9961, i RD med dubbel mängd antikroppar jämfört med tillverkarens rekommendationer: 0,9953, i plasma: 0,98, i obehandlat serum: 0,85 och i värmeinaktivat serum: 0,01. Vid upprepade analyser av standardkurvor i hästplasma (n=6) hade fem av dessa standardkurvor ett R^2-värde i medeltal på 0,978. Häst fyra analyserades två gånger och erhöll R^2-värden 0,68 och 0,83.

Utbytet från plasma som spikades med IL-1 RA var lågt, 25 % vid 10 ng/ml och endast 2 % vid 2,5 ng/ml.

Metoden uppvisade stor variation i precision både vid analys i RD och i plasma. Repeterbarheten (%CV) beräknad på duplikat av IL-1 RA-koncentrationer från de olika standardkurvorna var i RD (n=4) 2,7 – 37,5 % (0,313 ng/ml) och 0,1 -5,4 % (20 ng/ml), i RD med dubbel mängd antikroppar (n=1) var CV 79,6 % (0,313 ng/ml) och 1,6 % (20 ng/ml), i serum (n=1) 51 % (0,313 ng/ml) och 1,5 % (20 ng/ml) och i plasma (n=6) 2 -914 % (0,313 ng/ml) och 1-13 % (20 ng/ml). I plasma från häst var CV för repeterbarheten 1-16 % vid 5 ng/ml och inte godtagbar i lägre koncentrationer. Reproducerbarheten (% CV) i RD (n=4) var 105,5 % (0,313 ng/ml) och 5,2 % (20 ng/ml) och i plasma (n=6) 1308 % (0,313 ng/ml) och 6 % (20 ng/ml). Lägsta koncentration med godtagbar reproducerbarhet (CV=14 %) i plasma från häst var 5 ng/ml.

Metoden fungerade med godtagbar precision i RD med undantag av den lägsta koncentrationen i standardkurvan där både repeterbarhet och reproducerbarhet uppvisade stora variationer. En förklaring är att linjär regression användes för att beräkna standardkurvan vilket fram för allt innebar att den lägsta koncentrationen blev osäker.

Sammanfattningsvis kan inte denna analysmetod användas för undersökning av IL-1 RA koncentrationer i serum och plasma eftersom de lägsta mätbara koncentrationerna med godtagbar precision var > 5 ng/ml. Problemet med metoden var att utbytet från plasma var lågt vilket innebär att den testade metoden blev okänslig och inte tillförlitlig för analys av IL-1 RA i hästplasma.
SUMMARY

The aim of the study was to validate a commercial method for analyzing interleukin-1 receptor antagonist (IL-1 RA) in equine plasma. A sensitive and reliable assay for IL-1 RA in serum and plasma might be used to evaluate the anti-inflammatory effect of pharmaceuticals such as dexamethasone.

A commercial ELISA, previously only validated by the manufacturer in dilution medium, was tested in different biological fluids from horses and validated for inter and intra assay variations.

Standard curves were tested in dilution medium from the manufacturer (reagent diluent=RD) and in the different biological fluids from horses. The standard curve was calculated using linear regression comprising the interval 0.313 – 20 ng/ml The correlation coefficient (R²) for these curves were: 0.9735 – 0.9961 for RD, 0.9953 for RD with twice the amount of antibodies compared with the manufacturer’s recommendations, 0.98 for plasma, 0.85 for serum and 0.01 for serum heated to denature the proteins. At repeated analysis, standard curves in equine plasma (n=6) had mean R²-values of 0.978 in 5 and R²-values of 0.8 and 0.83 in one horse analyzed twice.

In plasma, spiked with IL-1 RA, the recovery of the substance was low, 25% at 10 ng/ml and only 2% at 2.5 ng/ml.

Concentrations retrieved in the tested assay showed great variation both in RD and plasma. The intra assay coefficient of variation (%CV) calculated from duplicates of concentrations for IL-1 RA from the standard curves was 2.7 – 37.5 % (0.313 ng/ml) and 0.1 -5.4 % (20 ng/ml) in RD (n=4), CV was 79.6 % (0.313 ng/ml) and 1.6 % (20 ng/ml) in RD with twice the amount of antibodies compared to the manufacturer’s recommendations (n=1), 51 % (0.313 ng/ml) and 1.5 % (20 ng/ml) in serum (n=1) and 2 - 914 % (0.313 ng/ml) and 1-13 % (20 ng/ml) in plasma (n=6). In plasma the the intra assay coefficient of variation was 1-16 % at 5 ng/ml and unacceptable (>25%) at lower concentrations. The inter assay CV was 105.5 % (0.313 ng/ml) and 5.2 % (20 ng/ml) in RD (n=4) and 1308 % (0.313 ng/ml) and 6 % (20 ng/ml) in plasma (n=6). The lowest concentration in plasma with an acceptable inter assay CV (14 %) was 5 ng/ml.

The main problem with the tested assay was the low sensitivity and repeatability rendering it impossible to measure low concentrations of IL-1 RA in plasma, hence the anti-inflammatory effect of different steroid treatments could not be evaluated with the aid of this assay.
INLEDNING

Glukokortikoider används idag till att behandla många skador på hästar, bl.a. i leder, ledkapsel, senor, ligament och andra mjukdelar. De har bland annat antiinflammatoriska effekter och verkar på så vis avsvällande och smärtlindrande. Glukokortikoider går att detektera både i plasma och i urin i extremt låga koncentrationer tack vare analysetecknoternas ökade känslighet.

Den här studien är en del av ett större projekt som avser fastsätta ett samband mellan koncentration av glukokortikoider i blod respektive urin och en antiinflammatorisk effekt. Som ett led i detta undersöks om interleukin-1 receptorantagonist (IL-1RA) är en lämplig biomarkör för antiinflammatorisk effekt. Ett samband mellan koncentration och effekt skulle kunna användas dels för att revidera de terapeutiska doser man använder inom hästsjukvården idag och dels för att bestämma den lägsta koncentration i blod/plasma som påverkar hästen. En sådan lägsta koncentration kan sedan användas för att ta fram en rapporteringsnivå i dopingsammanhang, dvs en detekterbar koncentration som inte anses ha biologisk effekt och därmed inte ska ses som doping.

Syfte

Att validera en kommersiellt framtagen ELISA-assay för analys i plasma då tillverkaren endast validerat den i buffert. Att analysera halten av den antiinflammatoriska cytokinen IL-1 RA i plasma från sex försökshästar som fått tre olika doser dexametason eller placebo för att undersöka vilken effekt dexametason har på IL-1 RA.
LITTERATURÖVERSIKT

Interleukin-1 familjen

IL-1 RA är en del av interleukin-1 (IL-1) familjen som också består av agonisterna interleukin-1β (IL-1β) och interleukin-1α (IL-1α). Det finns två former av IL-1 receptorer (IL-1 RI och IL-1 RII). IL-1RI är en biologiskt aktiv receptor som uttrycks på cellytan till flera olika celltyper medan IL-1RII fungerar som en s.k. decoy-receptor som modulerar effekterna av IL-1β (Dinarello, 1994a). IL-1RII binder IL-1 både som membranbunden receptor och som löslig receptor, vilket hindrar IL-1 från att interagera med den funktionella receptorn, IL-1RI (Colotta et al, 1994).

IL-1 agonisterna

IL-1 anses vara en potent proinflammatorisk cytokin som inducerar transkription av ett flertal proteiner vilket i sin tur leder till inflammation och en kaskad av händelser som slutar i ett flertal olika sjukdomar (Dinarello, 1996). IL-1 har associerats med inledning och patogenes till ledsjukdomar. IL-1 polypeptiderna är potenta och stimulerar till en rad fysiologiska, hematopoetiska, metabola och immunologiska reaktioner redan vid mycket låga koncentrationer (10^{-15} mol/l) genom att binda till en liten andel av de IL-1 receptorer som sitter på cellytorn. IL-1 bidrar till det pyrogena svaret vid inflammation likväl som det spelar en avgörande roll i immunförsvarset så som aktivering av T-celler, B-cellsproliferation och mognad, makrofagers antigenpresentation och induktion av IL-2, IL-2 receptor, IL-3, IL-4, IL-5 och IL-6 (Dinarello, 1994a). Vid ökad mängd IL-1 kan inflammatoriska och autoimmuna sjukdomar utvecklas i flera olika organ så som leder, lungor, mag- tarmkanal, CNS och blodkärl (Arend, 2002).

IL-1 antagonisten

IL-1 RA produceras i flera olika vävnadstyper som svar på inflammation eller infektion och cirkulerar även i blodomloppet som akutfasprotein (Gabay et al 1997). Tre olika typer av IL-1 RA har hittats, två intracellulära (icIL-1 RAI och icIL-1 RAII) och en löslig (sIL-1 RA). Studier gjorda på knockout-möss visar ytterligare att en balans mellan IL-1 och IL-1 RA är viktig för att förhindra utvecklingen av inflammatoriska sjukdomar (Horai et al, 2000, Nicklin et al, 2000). IL-1α och IL-1β har hittats i normala leder hos mossa, men hos mossa utan gener för IL-1 RA var uttrycket av mRNA för IL-1β två till tre gånger förhöjt innan artrit utbrutit, mRNA för IL-1β, IL-6 och TNF-α var förhöjda i synnovia från mossa med artrit. Detta antyder att frånvaro av IL-1 RA bidrar till en förhöjd lokal produktion och effekt av proinflammatoriska cytokiner (Arend, 2000). Balansen mellan IL-1 och IL-1 RA ute i
vävnaden påverkar möjligheten för utveckling av inflammationssjukdomar och påföljande vävnadsskada då höga nivåer av IL-1 kan ge upphov till flertalet inflammatoriska och autoimmuna sjukdomar (Arend, 2002). Gabay och medarbetare (1997) visade att leverceller från människor producerar stora mängder IL-1 RA efter att ha stimulerats med IL-1β och IL-6 och drog då slutsatsen att levern är det organ som producerar den största andelen av sIL-1 RA i cirkulationen, likt ett akutfasprotein. IL-1 RA är förhöjt i cirkulationen hos människor med ett flertal olika inflammatoriska, infektiösa eller postkirurgiska tillstånd, något som indikerar vikten av leverns produktion av detta antiinflammatoriska protein (Arend et al, 1998).

Samspel agonist-antagonist

Balansen mellan IL-1 och IL-1 RA påverkar de fysiologiska och patofysiologiska effekterna av IL-1. Människor som experimentellt injicerats med lipopolysackarider upptäckte en ökning av IL-1β i plasma med en topp på ca 80 pg/ml efter 2 timmar medan IL-1 RA nådde en topp på ca 6400 pg/ml efter 3-6 timmar. Koncentrationen av IL-1β sjönk till basnivå inom 6-12 h medan IL-1 RA fortfarande var förhöjt efter 24 h. (Granowitz et al, 1991). Den nästan 100 gånger så höga koncentrationen IL-1 RA jämfört med IL-1 visar på leverns produktion av sIL-1 RA som akutfasprotein (Gabay et al,1997, Gabay et al, 1999, Gabay et al, 2001). Det är högst troligt att cirkulerande IL-1 RA tar sig in i vävnader och påverkar det lokala koncentrationsförhållandet mellan IL-1 och IL-1 RA. På grund av att det finns många fler IL-1RI än vad som behövs för att IL-1 ska få effekt krävs minst 100 gånger mer IL-1 RA än IL-1 för att hindra IL-1’s biologiska effekt på målceller (Arend et al, 1990).

Figur 1. IL-1 RA binder till den biologiskt aktiva IL-1 receptorn i cellmembranet och blockerar därmed IL-1 från att binda till receptorn. Detta förhindrar IL-1 från att utlösa ett inflammationssvar. IL-1 = röda trianglar, IL-1 RA = lila rektanglar. (Efter Moreland, L.W., 1999)

Glukokortikoider

stress. Glukokortikoider är även en viktig grupp läkemedel som används vid autoimmuna sjukdomar, inflammationstillständ, astma, cancer, substitutionsterapi mm.

Reglering av glukokortikoider

Hur utövar glukokortikoider sin effekt?

Allmänna effekter av glukokortikoider

Glukokortikoider har en metabol effekt, framförallt på kolhydrat- och proteinmetabolismen men även fettomsättningen påverkas. Till exempel minskar upptag och användande av glukos samtidigt som glukoneogenesen uppregleras vilket resulterar i hyperglykemi. Dessutom
minskar proteinsyntesen samtidigt som nedbrytningen av protein ökar vilket kan leda till minskning av muskelmassan. Om gluokortikoider används i hög dos under lång tid ses förändringar i kroppen som vid Cushing’s syndrom (bland annat ökad mängd bukfett och minskad muskelmassa) sk iatrogen Cushing. Gluokortikoider påverkar även kalciumupptaget i tarmen negativt samtidigt som det ökar sekretionen av kalcium via njuren vilket kan leda till osteoporos. (Biddie et al, 2012, Rang et al, 1987)

Administration av exogena syntetiska gluokortikoider, vilka är mer potenta än de endogena, leder till en nedreglering i produktion av endogena gluokortikoider till följd av negativ feedback på HPA-axeln. (Keller-Wood et al., 1988) Tillförsel av syntetiska gluokortikoider kan på sikt leda till atrofi av binjurebarken (Rang et al, 1987).

Specifika effekter av gluokortikoider

Produktionen av många cytokiner hämmas bl.a. IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8 och *tumor necrosis factor-α* (TNFα) genom att deras genuuttryck hämmas. Syntesen av antiinflammatoriska mediatorer så som IL-10, IL-1RII och annexin-1 ökar. Aktivering och proliferation av T-hjälpceller minskar till följd av minskad transkription av IL-2 och IL-2 receptorn. Neutrofilers migration ur blodvägg hämmas, liksom aktivering av neutrofiler och makrofager som ett resultat av minskad produktion av adhesionsfaktorer, TNF-α, IL-1 och IL-3. Koncentrationen av komplementfaktorer i plasma minskar liksom histaminfrisättningen från basofiler och produktionen av immunoglobulin G pga minskad produktion av IL-3. Fibroblasters funktion minskar liksom produktionen av kollagen och glukosaminoglykaner vilket hämmar sårläkning. Aktiviteten hos osteoblasters minskar i kombination med ökad aktivitet av osteoklaster vilket leder till osteoporos. Transkriptionen av generna för cyclooxygenase-2 (COX2) hämmas vilket bl.a leder till minskad produktion av prostaglandiner. (Rang et al, 1987)

Inflammation

Inflammation är ett viktigt skydd mot infektioner och skador, men ibland blir inflammationen så kraftig att den i sig utgör ett hot mot kroppen. Det är bland annat i sådana situationer som gluokortikoider är användbara samt vid autoimmuna sjukdomar. Det finns dock en risk med användandet av antiinflammatoriska och immunsupprimerande läkemedel och det är att man tar bort kroppens naturliga skydd mot infektion och hindrar läckning. (Rang et al, 1987)
Syntetiska glukokortikoider

Dexametason

Glukokortikoiden dexametason (9-Fluoro-11β,17,21-trihydroxi-16α-metylpregna-1,4-dien-3,20-dion) är en prednisolonanalog som är 25 gånger mer potent och har längre verkningstid än kortisol. Dexametason är även ca 5 gånger mer potent än prednisolon. (Fass, 2012) Liksom övriga glukokortikoider verkar dexametason hämmande på inflammation och har även immunosupprimerande och metabola effekter. (Rang et al, 1987) Olika beredningsformer av dexametason finns godkänt för användning till häst i Sverige. Hos bl.a. häst elimineras dexametason oförändrat via urinen tillsammans med dess huvudmetaboliter dexametasonglukuronid och 6-beta-hydroxidexametason (Fass, 2012). Cunningham och medarbetare (1996) injicerade åtta hästar med 10 mg dexametason i.v. och fann då en halveringstid på 2,63 timmar (SD 1,19). De fann även att clearance var 0,479 L/h/kg (SD 0,064) och att distributionsvolymen vid steady state var 1,73 l/kg (SD 0,48). Vid oral administrering av 10 mg dexametason till sju hästar fann de att halveringstiden var 4,36 timmar (SD 1,34) och tiden från administrering till maximal koncentration var 1,3 timmar (SD 0,5). Lägsta kvantifieringsnivå för dexametason i serum var 100 pg/ml. Samtliga hästar hade serumkoncentrationer under kvantifieringsnivån 48 h efter administration. Soma och medarbetare (2013) gav sex hästar 0,05 mg/kg dexametason i.v., i.m. eller p.o. De fann då att clearance var 0,45 l/h/kg och distributionsvolymen vid steady state var 1,6 l/kg efter i.v.-administration och halveringstiden efter p.o. och i.m. administration var 3,4 h.

MATERIAL OCH METODER

Hästar i försöket

Sex friska varmblodiga travare, tillhörande Institutionen för kliniska vetenskaper vid SLU, Uppsala, användes i försöket. Fyra av hästarna var ston (häst 3-6) och två var vallackar (häst 1-2) med en medelvikt på 511 kg (433-588 kg) och en medelålder på 14 år (6-20 år).

Hästarna hölls, under försökets första dygn, i enskilda boxar där de under begränsad tid (3h) stod uppbundna. Efter första dygnet fick hästarna vara ute i hagen tillsammans med andra hästar enligt vanliga rutiner. De utfodrades med hö och vatten ur automatiska vattenkoppar.

Försöket var granskat och godkänt av Djurförsöksnämnden i Uppsala, C232/8

Förberedelser inför provtagning

Senast en timme före provtagning rakades hästarna på båda sidor av halsen över vena jugularis och anestesimadel applicerades lokalt (Emla®, Astra Zeneca, Södertälje, Sverige,
25 mg/g lidocaine and 25 mg/g prilocaine). Området steriltvättades och permanentkanyler (2,0 x 105 mm Intraneul®, Vygon, Ecoyen, Frankrike) infördes i båda jugularvenerna. Permanetkanylerna förrankrades i huden med tre enkla isolerade suturer. Den ena kanylen användes endast till läkemedelstillförsel och togs sedan bort för att minska risken för reaktioner av kanylen. Den andra kanylen användes till provtagning. En förlängningsslang (Dicoфикс® C-3, B. Braun, Melsungen, Tyskland) med trevägskran kopplades till provtagningskanylen.

Pilotstudie

Innan huvudförsöket utfördes en pilotstudie på två av valackerna, 6 resp. 12 år vilka vägde 500 resp. 444 kg. En stötdos dexametason (Dexadreson® vet., Intervet, Sollentuna, Sverige, 2mg/ml) injicerades intravenöst varefter en tre timmar lång infusion med volymetrika infusionspumpar (Colleague, Baxter Healthcare Corporation, One Baxter Parkway, Deerfield IL 60015-4625, United States) startade. De två hästarna gavs olika doser dexametason; den ena fick låg dos (stötdos 100 ng/kg + 22,5 ng/kg h) och den andra fick hög dos (stötdos 10 000 ng/kg + 2250 ng/kg h). Blodprov togs enligt schema i tabell 1.

Tabell 1: *Provtagningsschema pilotstudien. Infusion gavs under tre timmar efter inledande stötdos*

<table>
<thead>
<tr>
<th>tid (min):</th>
<th>Infusion:</th>
<th>prov:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>startas</td>
<td>0 *</td>
</tr>
<tr>
<td>30</td>
<td>på</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>på</td>
<td>2</td>
</tr>
<tr>
<td>90</td>
<td>på</td>
<td>3</td>
</tr>
<tr>
<td>120</td>
<td>på</td>
<td>4</td>
</tr>
<tr>
<td>150</td>
<td>på</td>
<td>5</td>
</tr>
<tr>
<td>180</td>
<td>avslutas</td>
<td>6</td>
</tr>
<tr>
<td>240</td>
<td>av</td>
<td>7</td>
</tr>
<tr>
<td>300</td>
<td>av</td>
<td>8</td>
</tr>
<tr>
<td>360</td>
<td>av</td>
<td>9</td>
</tr>
<tr>
<td>420</td>
<td>av</td>
<td>10</td>
</tr>
<tr>
<td>480</td>
<td>av</td>
<td>11</td>
</tr>
<tr>
<td>540</td>
<td>av</td>
<td>12</td>
</tr>
<tr>
<td>600</td>
<td>av</td>
<td>13</td>
</tr>
<tr>
<td>660</td>
<td>av</td>
<td>14</td>
</tr>
<tr>
<td>720</td>
<td>av</td>
<td>15</td>
</tr>
<tr>
<td>780</td>
<td>av</td>
<td>16</td>
</tr>
<tr>
<td>1440</td>
<td>av</td>
<td>17</td>
</tr>
<tr>
<td>1920</td>
<td>av</td>
<td>18</td>
</tr>
</tbody>
</table>

* togs innan tillförsel av läkemedel
Huvudstudie

Sex hästar deltog vid fyra olika tillfällen, i en cross-over studie. Hästarna fick en stötdos följt av infusion med antingen placebo (fysiologisk NaCl), lågdos dexametason (stötdos 100 ng/kg + 22,5 ng/kg/h), medeldos dexametason (stötdos 1000 ng/kg + 225 ng/kg/h) eller högdos dexametason (stötdos 10 000 ng/kg + 2250 ng/kg/h) under tre timmar. Kortaste tidsperiod mellan försöken var 9 dagar, medelvärde 15 dagar (9-28d). Vid varje försökstillfälle ingick 2 hästar. Blodprov togs enligt schema i tabell 2.

Tabell 2. Provtagningsschema för försöket. Infusion gavs under tre timmar efter inledande stötdos

<table>
<thead>
<tr>
<th>Tid (h):</th>
<th>Infusion:</th>
<th>Prov:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>startar</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>på</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>på</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>avslutas</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>av</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>av</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>av</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>av</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>av</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>av</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>av</td>
<td>10</td>
</tr>
<tr>
<td>36</td>
<td>av</td>
<td>11</td>
</tr>
<tr>
<td>48</td>
<td>av</td>
<td>12</td>
</tr>
</tbody>
</table>

Provtagning

Provtagningen skedde genom att först dra ur ca 5 ml blod ur permanentkanylen med en spruta. Det första blodet kasserades, varefter 40 ml blod togs med två 20 ml-sprutor. Permanentkanylen spolades med NaCl (Natriumklorid, Fresenius Kabi, Uppsala, Sverige, 9 mg/ml) för att undvika koagel i kanylen eller förlängningsslang. Blodet överfördes försiktigt ner i 10 ml Na-Heparinrörr som var placerade i isvatten. Blodproverna förvarades i isvattnet tills de centrifugerades i 10 min, 1500 g i 4°C snarast efter provtagning. Plasman pipetterades över i provrörr och förvarades i -70°C till analysställfället.

Analys IL-1 RA

En kommersiell ELISA-analys (IL-1ra/IL-1F3, R&D Systems, Inc., Minneapolis, USA) användes för att analysera halten IL-1 RA i plasma från häst.
Validering

Standardkurva

Utbyte

Plasma och RD spikades med kända koncentrationer av IL-1 RA. De koncentrationer av IL-1 RA som användes var 10 000 pg/ml, 5000 pg/ml, 2500 pg/ml och 1250 pg/ml i duplikat. Två analys-serier utfördes, en enligt tillverkarens protokoll och en där proverna vortexades samt centrifugerades mellan varje spädning. Utbyte beräknades i procent av känd koncentration.

Precision

Standardkurvor i plasma från de individuella hästarna analyserades med avseende på repeterbarhet (inom analys) och reproducerbarhet (mellan analys). Som mått på precisionen användes variationskoefficienten uttryckt i % ($\%CV$). Samtliga beräkningar för repeterbarhet är utförda på duplikat och för reproducerbarhet användes alla sex standardkurvor (en för varje häst).

Plasmaprover

Vid analysen av plasmaproverna från huvudförsöket analyserades alla prover från en häst vid samma analystillfälle. Till standardkurva användes plasma från 0-h provet från den häst som analyserades.

Varje platta har 96 brunnar (Clear polystyrene microplate #DY990, R&D Systems, Inc., Minneapolis, USA). Standardkurvan i 0-plasma sätts i de 16 första brunnarna. Proverna från samma häst med de fyra olika infusionerna sätts i resterande 80 brunnar (fig 2). Med ledning av resultaten från pilotstudioen analyserades prover från: 0h, 3h, 4h, 5h, 6h, 9h, 12h, 18h, 24h och 48h efter infusionssstart. Alla prover har sparats för att kunna analyseras vid senare tillfälle om resultaten antyder att det behövs.
Analysen

Förberedelser

Före analyserna kunde påbörjas tillverkades phosphate buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na₂HPO₄, 1.5 mM KH₂PO₄, pH 7.2 - 7.4) och buffertlösning för att tvätta proverna (washbuffer #WA126, R&D Systems, Inc., Minneapolis, USA) genom att en tablett PBS eller washbuffer löstes upp i 1 liter milliQ-vatten. PBS filtrerades sedan genom celldningsfilter för att undvika partiklar och kontamination. Därefter löstes primär antikropp (capture antibody, part 843380) upp genom att tillsätta 1,0 ml PBS till den flaska som medfölje analyskittet. Lösningen aliquoteras till eppendorfrör som förvarades i -20°C tills

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>2500</td>
<td>prov</td>
<td>0h</td>
<td>NaCl</td>
<td>prov</td>
<td>6h</td>
<td>NaCl</td>
<td>prov</td>
<td>24h</td>
<td>NaCl</td>
<td>prov</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>2500</td>
<td>prov</td>
<td>0h</td>
<td>NaCl</td>
<td>prov</td>
<td>6h</td>
<td>NaCl</td>
<td>prov</td>
<td>24h</td>
<td>NaCl</td>
<td>prov</td>
</tr>
<tr>
<td>C</td>
<td>313</td>
<td>5000</td>
<td>prov</td>
<td>3h</td>
<td>NaCl</td>
<td>prov</td>
<td>9h</td>
<td>NaCl</td>
<td>prov</td>
<td>48h</td>
<td>NaCl</td>
<td>prov</td>
</tr>
<tr>
<td>D</td>
<td>313</td>
<td>5000</td>
<td>prov</td>
<td>3h</td>
<td>NaCl</td>
<td>prov</td>
<td>9h</td>
<td>NaCl</td>
<td>prov</td>
<td>48h</td>
<td>NaCl</td>
<td>prov</td>
</tr>
<tr>
<td>E</td>
<td>625</td>
<td>10000</td>
<td>prov</td>
<td>4h</td>
<td>NaCl</td>
<td>prov</td>
<td>12h</td>
<td>NaCl</td>
<td>prov</td>
<td>0h</td>
<td>låg</td>
<td>prov</td>
</tr>
<tr>
<td>F</td>
<td>625</td>
<td>10000</td>
<td>prov</td>
<td>4h</td>
<td>NaCl</td>
<td>prov</td>
<td>12h</td>
<td>NaCl</td>
<td>prov</td>
<td>0h</td>
<td>låg</td>
<td>prov</td>
</tr>
<tr>
<td>G</td>
<td>1250</td>
<td>20000</td>
<td>prov</td>
<td>5h</td>
<td>NaCl</td>
<td>prov</td>
<td>18h</td>
<td>NaCl</td>
<td>prov</td>
<td>3h</td>
<td>låg</td>
<td>prov</td>
</tr>
<tr>
<td>H</td>
<td>1250</td>
<td>20000</td>
<td>prov</td>
<td>5h</td>
<td>NaCl</td>
<td>prov</td>
<td>18h</td>
<td>NaCl</td>
<td>prov</td>
<td>3h</td>
<td>låg</td>
<td>prov</td>
</tr>
</tbody>
</table>
användning. Spädningsmedium, RD (Reagent diluent #DY995, R&D Systems, Inc., Minneapolis, USA) spädde x10. Lösning av sekundär antikropp (detection antibody, part 843381) skedde genom att tillsätta 1,0 ml RD till den flaskan som medföljde analyskittet. Lösningen alikvoterades till eppendorfför för förvarades i -20°C tills användning. Standard (recombinant equine IL-1 RA, part 843382) löstes upp genom att tillsätta 0,5 ml spädningsmedium till den flaskan som medföljde analyskittet. Lösningen gav 144 µg/ml IL-1 RA som alikvoterades till eppendorfför för förvarades i -70°C tills användning.

Dag 1

Den primära antikroppen tinades och spädde med PBS från 144 µg/ml till 0,8µg/ml. Lösnings vortexades och 100 µl pipetterades till varje brunn i en 96-hålsplatta. Plattan täcktes med plastfilm (ELISA plate sealer #DY992, R&D Systems, Inc., Minneapolis, USA) och inkuberas sedan över natten i rumstemperatur.

Dag 2

Plasmaprover tinades på is. Under tiden tvättades plattan 3 ggr med buffert (wash buffer #WA126, R&D Systems, Inc., Minneapolis, USA) för att avlägsna överflödig primär antikropp. Därefter pipetterades 300 µl RD till varje brunn och plattan inkuberas en timme i rumstemperatur täckt med plastfilm.

Standardlösningen spädde i plasma från 0h-proven från den häst som ska analyseras. Koncentrationer var: 20000 pg/ml, 10000 pg/ml, 5000 pg/ml, 2500 pg/ml, 1250 pg/ml, 625 pg/ml, 313 pg/ml och 0 pg/ml utöver den koncentration som plasman innehöll från början. När alla plasmaprover tinat vortexades de och därefter centrifugerades de ca 10 s. När inkubationstiden var slut tvättades plattan tre gånger som tidigare. Därefter pipetterades 100 µl av standard eller prov till varje brunn, enligt schemat i figur 2, varefter plattan täcktes med plastfilm och inkuberas i två timmar i rumstemperatur. Under tiden blandades 300 µl värmeinaktiverat getserum (#DY005, R&D Systems, Inc., Minneapolis, USA) med 12 ml RD som används för att späda den sekundära antikroppen från 36 µg/ml till 200 ng/ml.

Efter inkubationen tvättades plattan fyra gånger för att säkerställa att all plasma tvättats bort. 100 µl sekundär antikropp pipetterades till varje brunn och plattan inkuberas under plastfilm i två timmar i rumstemperatur.

100 µl av lösningen pipetterades till varje brunn. Plattan inkuberas 20 minuter under plastfilm mörkt i rumstemperatur. Därefter pipetterades 50 µl svavelsyra (stop solution, #DY994, R&D Systems, Inc., Minneapolis, USA) till varje brunn och provernas absorbans
Avlästes i microplatteavläsaare (Wallac 1420 VICTOR2, software version 2.0, Åbo, Finland) vid 450 nm samt 570 nm.

RESULTAT

Validering

Standardkurva

För standardkurvorna i RD erhölls ett medelvärde för R^2 på 0,98758 inom intervallet 0,9735 - 0,9961 (fig 3A). För standardkurvan i RD med dubbla mängden antikroppar erhölls R^2-värde på 0,9953, men absorbansen var lägre än för RD med normal mängd antikroppar (fig. 3B). Standardkurva i plasma gav R^2-värdet 0,98 (fig. 3C). Standardkurva i värmeinaktiverat hästserum gav R^2-värde 0,01 medan standardkurva i obehandlat hästserum gav R^2-värde på 0,85 (fig 3D).

Standardkurvorna i 0-plasman från fem hästar erhöll ett R^2-värde i medeltal på 0,978. Standardkurvan för häst fyra analyserades två gånger och erhöll R^2-värden 0,68 och 0,83.

![Standardkurvor i olika spädningsmedium. A=spädningsmedium (RD), B=RD med dubbla koncentrationen anti-kroppar rekommenderad av tillverkaren, C=plasma, D=serum.](image)

Figur 3. Standardkurvor i olika spädningsmedium. A=spädningsmedium (RD), B=RD med dubbla koncentrationen antikroppar rekommenderad av tillverkaren, C=plasma, D=serum.

Utbyte

Utbytet av IL-1 RA i spikad plasma och i RD redovisas i figur 4.

Precision

AnalySENS repeterbarhet och reproducerbarhet i RD samt olika biologiska medier redovisas i tabell 3-5. Metoden uppvisar stor variation i precision.

Tabell 3. Beräknad koncentration, repeterbarhet och reproducerbarhet för standardkurvor (n=4) i RD.

<table>
<thead>
<tr>
<th>C i standardkurvan (pg/ml)</th>
<th>C beräknad (pg/ml), median (intervall)</th>
<th>Repeterbarhet CV (%), median (intervall)</th>
<th>Reproducerbarhet CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>356 (0 - 500)</td>
<td>16.71 (2.66 - 37.47)</td>
<td>105.49</td>
</tr>
<tr>
<td>625</td>
<td>621 (355 - 744)</td>
<td>2.33 (0.04 - 6.59)</td>
<td>25.99</td>
</tr>
<tr>
<td>1250</td>
<td>1283 (527 - 1495)</td>
<td>12.45 (3.95 - 18.29)</td>
<td>36.95</td>
</tr>
<tr>
<td>2500</td>
<td>2482 (2421 - 2566)</td>
<td>2.34 (0.18 - 11.1)</td>
<td>8.41</td>
</tr>
<tr>
<td>5000</td>
<td>5442 (4976 - 5990)</td>
<td>2.61 (0.98 - 3.72)</td>
<td>8.30</td>
</tr>
<tr>
<td>10000</td>
<td>10517 (9493 - 11080)</td>
<td>3.09 (2.05 - 6.99)</td>
<td>8.29</td>
</tr>
<tr>
<td>20000</td>
<td>19539 (18912 - 20186)</td>
<td>2.70 (0.13 - 5.40)</td>
<td>5.17</td>
</tr>
</tbody>
</table>

RD= spädningsmedium; C= koncentration; CV= variationskoefficient
Tabell 4. Repeterbarhet för standardkurvor i olika spädningsmedier.

<table>
<thead>
<tr>
<th>C i standardkurvan (pg/ml)</th>
<th>Repeterbarhet CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RD- dubbel</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
</tr>
<tr>
<td>313</td>
<td>79.57</td>
</tr>
<tr>
<td>625</td>
<td>38.9</td>
</tr>
<tr>
<td>1250</td>
<td>26.54</td>
</tr>
<tr>
<td>2500</td>
<td>17.55</td>
</tr>
<tr>
<td>5000</td>
<td>2.52</td>
</tr>
<tr>
<td>10000</td>
<td>2.94</td>
</tr>
<tr>
<td>20000</td>
<td>1.59</td>
</tr>
</tbody>
</table>

C= koncentration; RD=spädningsmedium (reagent diluent);
dubbel= dubbel mängd antikroppar jämfört med tillverkarens rekommendation; CV= variationskoefficient

Tabell 5. Beräknad koncentration, repeterbarhet och reproducerbarhet för standardkurvor i 0-plasma från häst (n=6).

<table>
<thead>
<tr>
<th>C i standard-kurvan (pg/ml)</th>
<th>C beräknat (pg/ml), Median (intervall)</th>
<th>Repeterbarhet CV (%), Median (intervall)</th>
<th>Reproducerbarhet, CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>144 (0-1089)</td>
<td>116 (2 - 914)</td>
<td>1308</td>
</tr>
<tr>
<td>625</td>
<td>1521 (503 - 5391)</td>
<td>17 (1 - 132)</td>
<td>136</td>
</tr>
<tr>
<td>1250</td>
<td>1964 (1058 - 4767)</td>
<td>23 (5 - 60)</td>
<td>77</td>
</tr>
<tr>
<td>2500</td>
<td>2689 (2269 - 3199)</td>
<td>4 (1 - 192)</td>
<td>32</td>
</tr>
<tr>
<td>5000</td>
<td>5406 (3750 - 5657)</td>
<td>3 (1 - 16)</td>
<td>14</td>
</tr>
<tr>
<td>10000</td>
<td>9927 (9387 - 11614)</td>
<td>4 (1 - 10)</td>
<td>9</td>
</tr>
<tr>
<td>20000</td>
<td>19189 (16762 - 20159)</td>
<td>4 (1 - 13)</td>
<td>6</td>
</tr>
</tbody>
</table>

C= koncentration; CV= variationskoefficient

Plasmaprover från huvudstudien

Konzentrationerna av IL-1 RA var i samtliga mätpunkter under mätbara koncentrationer.

DISKUSSION

Syftet med studien var att validera den kommersiella ELISA-metoden för equint IL-1 RA i hästplasma. Med den validerade metoden skulle IL-1 RA kvantiferas i plasma från häst behandlad med olika doser av dexametason. Validering var nödvändigt eftersom metoden endast var validerad i spädningsmedium av tillverkaren. Tyvärr kunde IL-1 RA inte kvantiferas i plasmaprover från häst eftersom analysen inte fungerade tillfredsställande i plasma. Utbytet från plasma och därmed även känsligheten var alldeles för låg för att kunna kvantifera IL-1 RA.

Vid validering av metoden fann vi att linjär anpassning av standardkurvan i RD blev bra, med R²-värden på 0,99. Dock var de tre lägsta värdena i standardkurvan osäkra, med % CV på > 25% för reproducerbarheten, vilket medför att endast värden ≥ 2 500 pg/ml kan kvantiferas med linjär regression även om tillverkarnas rekommendationer och spädningsmedium
används. Tillverkarna anger dock att *four parameter logistic regression* är den bästa regressionsanalysen vilket troligtvis hade förbättrat precisionen för de lägsta koncentrationerna i standardkurvan (R&D Systems, 2012).

Figur 5. *Bindningar i sandwich-ELISA.* a= normal reaktion b=falskt positiv c=falskt negativ. (Efter Bartels & Ribel-Madsen, 2013)
Standardkurvor konstruerades i olika komplexa medium eftersom absorbansen i plasma var betydligt lägre än absorbansen i RD. Standardkurva i hästserum gav R^2-värde på 0,85 (fig. 3), men de beräknade koncentrationerna stämde ej med de faktiska. Dessutom skiljde det mycket mellan vissa duplikat, medianvärdet för % CV var 5,02 (intervall 1,46 – 51,04) vilket indikerar en dålig precision.

För att försöka eliminera osäkerheten i hur mycket cytokiner som finns i serum från början provade vi att värmeinaktivera serumet. Eftersom värmeinaktiveringens orsakade att serum blev grumligt gjordes en analys på centrifugerat serum och en på grumligt serum. Ingen av standardkurvorna blev tillfredställande. Duplikaten var så olika att ett samband inte gick att urskilja och R^2-värdet blev 0,01. Det enda medium, förutom RD, som gett tillfredställande standardkurvor är plasma från häst trots att absorbanserna var låga (fig. 4). Inga försök gjordes att inaktivera eventuella endogena cytokiner på grund av de negativa erfarenheterna från värmebehandlat serum.

I de plasmaprover vi spikat med en känd koncentration av standardlösningen har, vid analysen, bara en bräckdel av den koncentrationen uppmätts jämfört med standardkurva i RD. Utbytet var som mest 25 % i den högsta koncentrationen (10 000 pg/ml) men sjönk ner till endast 2 % vid koncentrationen 2 500 pg/mL, efter ytterligare spädningar kunde inte nivåerna kvantifieras.

En svaghet är att standardkurvan är spädd i plasma från 0-provet från samma häst som övriga prover i analysen. Den plasman innehåller en okänd mängd IL-1 RA och medför att beräknade plasmakoncentrationer inte blir korrekta utan endast kan relateras till 0-provet. I vårt försök var dock inte exakta koncentrationer nödvändiga då vi framför allt ville jämföra dexametason med placebo. De låga absorbansnivåerna är en svaghet, eftersom det minskar analysens känslighet vilket även avspeglar sig i att precisionen är oacceptabel i standardkurvans lägsta koncentrationer. Samma ELISA-analys har använts för att mäta koncentrationen IL-1 RA i serum från häst vid värdering av autologt konditionerat serum (Haraha et al. 2011). Författarna presenterade tyvärr inte någon validering av metoden i serum och deras uppmätta koncentrationer är mycket lägre än lägsta punkten i standardkurvan. Analysen modifierades genom att använda 1,5 gånger högre koncentration primär antikropp jämfört med rekommendationen från tillverkaren och 2 gånger högre koncentration sekundär antikropp. Resultaten från valideringen i det här arbetet visade att dubbla mängden primär- och sekundär antikropp inte medförde högre känslighet eftersom absorbansen var betydligt lägre än när rekommenderad mängd antikropp användes, dessutom var repeterbarheten sämre (högre % CV) än i standardkurvan med rekommenderad mängd antikropppar (figur 3B, tabell 3).

Lägsta koncentrationen i standardkurvan är gränsen för testets kvantifieringsnivå under förutsättning att precisionen är godtagbar. Då de lägsta koncentrationerna har oacceptabel precision och reproducierbarhet (tabell 5) är analysen ej applicerbar på plasmakoncentrationer < 5000 pg/ml. På försöksmoss har koncentrationen IL-1 RA i plasma uppmätts till 50-400 pg/ml under normala förhållanden och upp till 1500 pg/ml efter stimulering med endotoxiner (Copeland et al, 2005). Riond et al (1999) fann en koncentration av IL-1 RA i plasma hos kor
på ca 90 pg/ml under normala förhållanden och upp till 290 pg/ml efter infusion av EDTA. I en studie på mänskor under cancerbehandling fann Schönbohn et al (1995) koncentrationer av IL-1 RA i plasma på 0-250 pg/ml vilka stegrades vid infektion upp till 3000 pg/ml.

Slutsats

Koncentrationen av IL-1 RA kan inte säkert mätas i plasma från häst med denna metod. Eftersom metoden ej fungerade tillfredsställande är IL-1 RAs funktion som biomarkör för att bedöma effekten av glukokortikoider fortfarande oklar. En annan analysmetod bör användas för att utvärdera detta.

Tack till Stiftelsen för hästforskning som bidragit till studien.

REFERENSER

