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Abstract 

Dopamine and octopamine, a possible analogue of noradrenaline, are among a few 

neurotransmitters which play a crucial role in several physiological processes. Dopamine 

participates in learning, memory and in reward, whereas, octopamine participates in egg 

laying, fight and flight response and also exhorts aggressive behaviour. Researchers had 

demonstrated that dopaminergic signalling can act antagonistic to octopamine in 

Caenorhabditis elegans. When C. elegans was fed, it exhibit sleep and reward emotions, due 

to the production of Dopamine. Conversely, when animals were subjected to fasting, they 

have produced octopamine, by suppressing dopamine signalling, and this lead to CREB 

activation, which eventually resulted in longevity of C. elegans (Suo et al.2009). These 

observations illustrate the need to investigate the dopamine and octopamine interactions 

and their effects on longevity in another model organism, Drosophila melanogaster. To 

carry out my investigation, two dopamine receptors (DopR1 and DopR2) in octopaminergic 

neurons (neurons where their primary transmitter is octopamine) were knocked down and 

the insect’s social behaviour as well as longevity was monitored.  Based upon my study, I 

conclude that the cessation of dopamine receptors may not result in longevity of D. 

melanogaster, instead the starvation resistance of DopR2 knockdown flies was reduced 

when compared to DopR1 knockdown flies and wild type flies. However, it was observed 

that DopR2 knockdown flies showed increased aggressive behaviour, decreased male-male 

courtship and reduced activity when compared to wild type flies. 
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1. Introduction 

Drosophila melanogaster, also called the ‘fruit fly’, has provided us with unparalleled 

insights in terms of understanding the basic fundamental structure and functions of genes 

and proteins. Due to its short life cycle, one can study a gene of interest and its functions by 

knocking it out and investigating the phenotype of the resulting mutant. Although the 

number of genes in Drosophila is lower than in humans, many of them are homologous to 

human genes (Banfi et al., 1996), thus making it possible to study complex problems like 

Alzheimer’s, Parkinson’s disease (Iijima et al., 2004). Hence Drosophila is called the “jack of 

all trades”. 

1.1 Dopamine and dopamine receptor 

Dopamine is a monoamine, synthesized from the amino acid tyrosine by aromatic L amino 

acid decarboxylase (Luca et al., 2003). Dopamine is a neurotransmitter and plays a major 

role in social and physiological relations. It is involved in reward, cognition, punishment, 

sleep, memory and pulse. (Di Chiara and Bassareo, 2007, Draper et al., 2007). Physiological 

actions of Dopamine is mediated by five closely related G-protein coupled receptors 

(Beulieu and Gainetdinov, 2011) and these G coupled receptors are classified into two 

different families; D1-like family and D2-like family. The D1-like family is further sub 

classified into D1 and D5 receptors, and D2 like family is sub divided into D2, D3, D4 

receptors, (Jackson and Westlind-Danielsson, 1994, Jaber et al., 1997)  

These receptors have the ability to modulate adenylyl cyclase(AC) and can stimulate the 

formation of  cyclic adenosine 3',5'-monophosphate (cAMP) (Jaber et al., 1997).  They are 

classified into two different families (D1 and D2) based on their ability to modulate AC as 

well as cAMP production. D1 like receptors are known to activate AC, which increases 

production of cAMP. D2 like receptors are responsible for inhibition of AC (Beaulieu and 

Gainetdinov, 2011, Jaber et al., 1997).  D1- like family receptors not only modulates AC but 

they also play a moderate role in locomotion and they are located postsynaptically of 

dopamine receptive cells (Missale et al., 1998). Unlike D1 class receptors, D2 class 

receptors inhibit AC and are also found to express both  postsynaptically and 
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presynaptically on dopamine target neurons and are involved  in much more complex roles 

than D1 class receptors as they are present  postsynaptically and presynaptically (Missale 

et al., 1998). Dopamine receptors also alter the calcium levels via stimulation of 

phosphatidylinositol hydrolysis with the help of phospholipase. They also have an active 

role in regulating sodium ions exchange (Beaulieu and Gainetdinov, 2011). 

1.2 Synthesis of dopamine 

Dopamine is synthesized from amino acid tyrosine into precursor L-DOPA by the enzyme 

tyrosine hydroxylase, the enzyme dopa decarboxylase converts L-DOPA molecule into 

dopamine (Cole et al., 2005). This enzyme is also believed to be responsible for longevity of 

Drosophila (Luca et al., 2003). Immunocytochemical studies on Drosophila nervous system 

revealed that the enzyme tyrosine hydroxylase and neuro transmitter dopamine have the 

same distribution pattern (Friggi-Grelin et al., 2003).  

 

Figure 1. Dopamine and octopamine synthesis: Synthesis of both dopamine and octopamine starts from the 

amino acid tyrosine. In Octopamine synthesis tyrosine is decarboxylased to tyramine with tyrosine 

decarboxylase and then converted to octopamine with hydroxylase. In Dopamine pathway, tyrosine is converted 

to DOPA by tyrosine hydroxylase and then to dopamine by dopa carboxylase. Modified from (Cole et al., 2005). 
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1.3 Octopamine 

Octopamine (OA), a possible analogue of noradrenaline, is one of the biogenic amines 

which play a crucial role in several physiological processes. OA, a neurotransmitter derived 

from tyrosine plays crucial role in regulating sensory functions in Drosophila as well as in 

egg laying, sterility in females, flight, fights and aggression (Simon et al., 2009). Octopamine 

is involved in modulation of the skeletal muscles functions, visceral muscles functions 

(Orchard, I, 1987) peripheral target organs including fat body, oviduct, heart, and sensory 

organs, and gregarization in insects.  

 OA is present in high concentrations in the central and peripheral nervous systems of most 

invertebrate species, including insects, where it plays a multifunctional role. OA is a 

sympathomimetic amine and known as a false neurotransmitter because it can be stored in 

vesicles replacing endogenous classical amines such as norepinephrine, dopamine, and 

serotonin (Farooqui, 2012).  

1.4 Synthesis of octopamine  

Octopamine is a monoamine similar to mammalian nor-adrenaline, which is synthesized 

from the amino acid tyrosine. By decarboxylation, tyrosine is converted to tyramine by the 

enzyme tyrosine decarboxylase and the hydroxylation to octopamine with the help of 

tyramine beta hydroxylase (Figure 1). At least two different types of receptors are present 

in octopaminergic neurons OA1 and OA2 and the OA1 receptor upon activation increases 

intracellular level of calcium ions and OA 2 type receptor upon activation stimulates 

adenylyl cyclase and hence thereby increasing the amount of  cyclic adenosine 3',5'-

monophosphate (cAMP) (Balfanz et al., 2005). 

1.5 Dopamine suppressing octopamine signalling 

Dopamine is released when the animals are fed, and in Caenorhabditis elegans, dopamine 

signalling is activated just by tactile perception of food as the dopaminergic neurons in C. 

elegans are mechano-sensory (Sulston et al., 1975). In C. elegans, it was also observed that 

the activation of dopamine signalling due to feeding had led to a decrease of octopamine 

signalling. Conversely, when animals were fasted they increased octopamine signalling and 

this activated CREB (cAMP response element binding protein) (Suo et al., 2006) and 
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ultimately would play role in C. elegans life span. CREB is a signal activated transcription 

factor that, after phosphorylation, activates expression of genes from promoter region 

containing cAMP response element enhancer, and takes part in cell survival (Mayr and 

Montminy, 2001). In C. elegans,  researchers in order to study the interaction between 

dopamine and octopamine have constructed dopamine synthesis mutant animals and these 

dopamine signalling mutants have spontaneously activated CREB (Suo et al., 2006). 

1.6 UAS/GAL4 RNAi system 

GAL4 encodes a protein of 881 amino acids in yeast, Saccharomyces cerevisiae, as a 

regulator of genes (Duffy 2002). GAL4 regulates transcription of genes by binding to four 

related 17 base pair sites and these sites define an upstream activator sequence (UAS), 

which is analogous to an enhancer. This ability of GAL4 and UAS expression lead scientists 

to study various gene expressions in Drosophila (Fischer et al., 1988). The discovery that 

expression of the S. cerevisiae GAL4 gene in D. melanogaster does not result in deleterious 

effects helped Brand and Perrimon to develop the GAL4/UAS system for targeted gene 

expression in this organism (Brand and Perrimon, 1993). In this system, expression of 

target gene (also called responder) is controlled by the UAS element, because transcription 

of the responder needs the presence of GAL4 and without the GAL4, the responder will be 

in silent state (Brand and Perrimon, 1993). To activate the transcription of the gene of 

interest, the responder lines are mated with GAL4 lines, and these GAL4 lines are also called 

driver lines (Duffy, 2002). Improved GAL4/UAS technology has later revealed better 

understanding on how to handle the driver lines or GAL4 lines. GAL4 lines are temperature 

dependent and in Drosophila fly the activity of GAL4 expression is minimal at 16°C while 

29°C provides maximal effects on fertility and maximal GAL4 activity (Duffy, 2002). Hence 

just by altering the temperature the expression levels of gene of interest can be increased 

or decreased (Duffy 2002). This GAL4/UAS system was initially used to investigate the 

function of genes and their effects on phenotypes with altered gene expression, but 

recently the same technology has also been used in RNAi technology. Using this RNAi 

technology, researchers are able to silence or knockout a specific gene of interest. This is 

done by connecting an inverted sequence of the gene of interest to the UAS element and 

crossing the resulting lines to GAL4 (driver lines) flies (Figure 3). This crossing will result 
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in formation of double stranded RNA (dsRNA) molecules (Giordano et al., 2002). Fly’s 

immune system recognizes these dsRNA molecules as virus genetic material and will 

disintegrate them, thus achieving gene knockdown. 

 

Figure 2. The driver fly has a transgene containing the yeast transcriptional factor GAL4. The responder fly has 

an inverted repeat of the target gene tagged to the UAS element. Crossing of these flies will result in F1 

generation containing dsRNA of the target gene, which will be disintegrated by fly’s immune system, thus 

achieving successful gene knockdown (Taniguchi. N, 2008) (Image obtained from ‘Experimental glycoscience 

Glycobiology book with permission from Springer Japan publications).           
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2. Aim 

In C. elegans, it was shown that when the organisms were fed they produce dopamine 

signalling and would reduce the octopamine signalling. Conversely, when starved, 

octopamine signalling was increased and dopamine signalling was reduced, this lead to the 

CREB activation and ultimately affecting longevity in C. elegans. My experiment was carried 

out to investigate whether the dopamine signalling would regulate the octopamine 

signalling and affect Drosophila melanogaster’s   longevity and social behaviour. To study 

the dopamine role in octopamine signalling, I have used  UAS-GAL4 RNAi system (Duffy, 

2002)  to knockdown dopamine receptors, DopR1 and DopR2 specifically at Tdc2 

expression site , which is responsible for octopamine synthesis. The knockdown effect of 

DopR1 and DopR2 on octopamine was predicted by analysing behavioural phenotype. 
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3. Materials and Methods 

3.1 Fly stocks 

For this experiment I have used wild type flies, CSORC flies which were created by crossing 

the two available wild type flies Canton-s and Oregon- R. Tdc2 (w*;p{PUAS-Tdc2.c}) flies 

were crossed with Elav-GAL4 flies to achieve  driver flies. These driver flies were crossed 

with yw and w1118 to get control flies. Knockdown flies; Uas DopR1RNAi and Uas DopR2RNAi. See 

table 1 for all the strains and Drosophila species used in this experiment.  All these flies 

were ordered from Bloomington stock centre Indiana USA.  

3.2 Crosses 

The wild type flies were created by crossing the two wild type flies available- the Canton-s 

and Oregon- R (CSORC). The other line was yw (yellow body and white eye) and was used 

as a genetic marker. The experimental flies were DopR1RNAi (yw;UAS-DopR1RNAi ) and 

DopR2RNAi (yw;UAS-DopR2RNAi ). To make driver flies, the Tdc2 flies were crossed with 

GAL4 flies (w; p{tdc2-GAL4}). To get flies with knockdown Dopamine receptor 1, driver 

flies; Tdc2-GAL4 flies were crossed with UAS-DopR1RNAi (resulting in Tdc2-GAL4;UAS-

DopR1RNAI ) and to make flies with dopamine receptor 2 knockdown, the Tdc2-GAL4 flies 

were crossed with  UAS-DopR2RNAi (resulting in Tdc2-GAL4;UAS-DopR2RNAi ). To make 

control flies for starvation studies, Tdc2-GAL4 flies were crossed with yw (Tdc2-GAL4;yw). 

Then another control flies were made for the aggression studies, to make these flies, Tdc2-

GAL4 flies (w*;p{PUAS-Tdc2.c})  were crossed with w1118 (Tdc2-GAL4;w1118) flies. yw, w1118 

,GAL4 flies, UAS-DopR2RNAi  ,UAS-DopR1RNAi  flies were all stored at 29°C in larval stage.  

3.3 Starvation 

In this experiment starvation was performed on flies to understand how the cessation of 

dopamine receptors will affect the fly’s starvation resistance, and how it differs from the 

wild type flies. In order to achieve better understanding about the dopamine receptors, 

twenty virgin dopamine receptor 1 knockdown flies (DopR1) and twenty virgin dopamine 

receptor 2 knockdown flies (DopR2) were collected. 

file:///C:/Users/sowmya%20puli/Downloads/PUAS-Tdc2.c%7d
file:///C:/Users/sowmya%20puli/Downloads/PUAS-Tdc2.c%7d
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Virgin flies can be easily distinguished from adult flies as they have a dark spot on their 

abdomen. For collecting the virgin flies, the flies were first anesthetized with carbon 

dioxide gas. When the flies were asleep, flies with a dark spot on their abdomen were 

carefully isolated and transferred to a new chamber. After collecting the virgins, all twenty 

virgin flies of DopR1 and DopR2 were stored in two separate chambers.  These flies were 

now aged up to 5-7 days. While ageing all the experimental flies and control flies were fed 

with standard fly food till the experiment was conducted on them.   

While virgin flies were ageing, new agarose vials were prepared. After ageing, the flies were 

again anesthetized with carbon dioxide gas and carefully transferred into the newly 

prepared agarose vials, which were then closed with paraffin tape. Now after setting up 

experimental conditions, the fly’s starvation resistance was monitored. At every 12 hour 

intervals the dead flies were counted and noted.               

3.4 Aggression behaviour 

Aggression assays were performed because biogenic amines are responsible for animal’s 

aggression (Edwards et al., 2006) and here in my experimental flies the dopamine receptor, 

which controls the biogenic amine levels, which is believed to be responsible for 

aggression, is knocked down (Zhou et al., 2008). By conducting this assay it has exposed 

how fly’s behaviour is affected when dopamine receptors were knocked down. When 

Drosophila is showing aggressive behaviour, it exhibits certain offensive characteristics like 

1) high intensity fights and 2) low intensity fights. 

High intensity fights: In high intensity fight experiment four different territorial fights were 

monitored (Johnson et al., 2009). 

           A) Wing threat: Where one fly moves its body in parallel to the other and lifts one 

wing and vibrates it 

           B) Fencing: where one fly moves his body in parallel to the other fly and both extend 

their legs to one another and then fence. 

           C) Lunging: where an aggressive fly approaches quickly towards non-aggressive fly 

and quickly pounces or gives head butts. 
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          D) Boxing: Where both the flies come into fight with their front legs lifted up, standing 

on hind legs and then they box often retreating to ground and again stand on hind legs and 

box.   

 Low intensity fights: Low intensity fights are wing flicks and pushing, where one fly orients 

towards the other and flicks its wings, pushing; where one fly moves in parallel to the other 

and pushes it away.  

In order to perform these aggression assays, a cylindrical behavioural chamber with 2 cm 

by 2.5 cm (height * diameter) was filled with 1% agarose up to 1.5 cm in height in order to 

provide appropriate humidity to flies. New knockdown virgin male flies and control virgin 

male flies were collected and incubated at 25°C for 5-7 days. Then while performing the 

assay, two flies, one knockdown fly and one control fly were anesthetized under the 

influence of carbon dioxide and then transferred to behavioural chamber. A Panasonic 

HDC-SD90 camera was used to record the fly’s activity. Each session of activity was 

recorded for 20 minutes and ten replicates were conducted.  

3.5 Male-Male courtship behaviour 

Male-male courtship behaviour studies were performed on 5 days old virgin males, flies 

were collected similar to previous experiments, stored and aged up to 5 days and then 

males which were collected to test were transferred into a vial, later a second male was 

introduced into the same vial, and their courtship was recorded using camera, to analyse 

their interactions wherein only their acceptance behaviours were considered (tapping, 

abdomen bending, circling, licking). Courtship index was calculated and it was measured by 

total time taken by the fly to mate with other fly, and latency was measured by counting the 

time taken by the fly to initiate the courtship, but here in this experiment only the 

courtship behaviour patterns like tapping, winging out, abdomen bending, circling and 

licking were considered. These courtship tests were performed on Tdc2 GAL4 controls, 

DopR1 and DopR2 knockdowns. Each ten replicates were investigated. 
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3.6 Speed and distance 

To find out the Drosophila's locomotion and distance covered, the software CTRAX 

(ctrax.sourceforge.net/install.html) was used. This software can follow the locomotion of 

multiple insects. To perform this experiment 6 adult flies were collected. These flies were 

fed with normal standard fly food and stored in 250 ml bottles at 25°C on a 12h: 12h light-

dark period, transitions between light and dark are immediate. While performing the 

experiment the flies were transferred to agar petri dishes, and their locomotion was 

recorded by using a HD camera (Panasonic HDC-SD90). 

Flies were subdued by placing them on ice first for 2 min and then transferred to a 

petridish, where they were able to move, walk or run but not to fly. A HD camera 

(Panasonic HDC-SD90) was placed above the dish to record their activity. But before the 

flies were recorded, the flies were first left to acclimatize to the experimental setup and 

then recorded for 30 min.  The recorded trajectories were analyzed by CTRAX software and 

the distances of flies’ movements were calibrated based on the diameter off the petri dish. 

Then tracked data was transferred to MATLAB, which was used to calculate the activity of 

the flies by the distance they travelled per frame. Based on the image analysis, a standard 

threshold was established below which flies were moving but not walking and above which 

flies are walking, and the threshold which shows walking was given score of 1 and below 

threshold was awarded a score of  0.                                                      

3.7. Statistical Analysis 

Mean and standard deviation from all replicates of each experiment was evaluated using 

Excel (Microsoft). Survival curves were analyzed using the log-rank test. One-way analysis 

of variance (ANOVA) was performed with appropriate post hoc test for multiple 

comparisons. A p-value of less than 0.05 was considered as statistically significant. 
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4. Results 

To study behavioural changes in fruit flies, dopamine receptors (DopR1 and DopR2) were 

knocked down using UAS-GAL4 system. To achieve desired knock outs following crosses 

were made. 

i) Tdc2-GAL4xUAS-DopR1RNAi (to knockdown DopR1) 

ii) Tdc2-GAL4xUAS-DopR2RNAi (to knockdown DopR2) 

iii) CSORC (wild type) 

IV) Control Tdc2-GAL4xw1118  

4.1 Effect of starvation 

Twenty virgin males, control flies (Tdc2_yw) and experimental flies (Dopamine 

knockdowns-DopR1RNAi and DopR2RNAi) were aged for 5-7 days and then transferred to agar 

vials and the flies were starved to death. The resulting dead flies were counted at every 12 

hour interval. Flies which have Dopamine receptor 1 (DopR1) knocked down were seen to 

have similar survival rate compared to control flies. But unlike DopR1, the DopR2 has 

shown its effect on flies, these flies started to die from 24 hour and almost all flies were 

dead by 48 hours (Figure 3). The resistance was analysed by log rank test analysis software 

(http://bioinf.wehi.edu.au/software/russell/logrank/). The surviving time of DopR1 flies 

was similar to control flies (p=0.871), but the surviving time of DopR2 knockdown flies was 

reduced by 24 hours when compared to control flies (p=0.00129) and DopR1 knockdown 

flies (0.00165). 

                                                                   

http://bioinf.wehi.edu.au/software/russell/logrank/
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Figure 3. Effect OF DopR1 and DopR2 on starvation: Twenty flies of control and experimental flies were aged to 7 

days and starved to death. The numbers of dead flies at 12 hours interval was noted and plotted against 

starvation time. Here a graph for DopR1 knockdown in Tdc2 neurons is shown with square shapes DopR2 

knockdown in Tdc2 neurons as green colour and control blue colour is shown.  

4.2 Aggression studies 

A. High Intensity Fight 

Aggression is natural among animals which helps in survival fitness. Behaviour studies 

were conducted on DopR1 and DopR2 knockdown flies respectively and compared with 

control flies. The aggression in the DopR1 flies was higher when compared to controls but 

not significant; whereas in the DopR2 knockdown flies the activity was significantly higher. 

In the total high intensity behaviour graph (Figure 4 (A)), DopR2 knockdown flies showed 

high intensity aggression (p=0.0015) when compared to DopR1 knockdown flies, control 

flies and wild type flies. But in the individual behaviours like wing threat (p=0.66) or 

fencing (p=0.50) no significant differences between control and wild types flies were 

observed Figure 4 (B). However there was significant difference in lunging (p=0.05), and 

chasing (p=0.03) and difference was higher compared to control flies, DopR1 and wild type 

flies. 
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Figure 4 (A) 

                      

 

Figure 4 (B) 

                  

Figure 4 (A) & 4 (B). Increased octopamine signalling by inhibiting dopamine receptors affected Drosophila’s high 

intensity fights. The aggression assay was conducted in behavioural chamber on isolated male virgin flies and 

aged them for 5 to 7. Different fly behaviours were observed and percentage behaviours were plotted against 

strains with mean and SEM.) 4(A): percentage high intensive fight. 4(B) different behaviours of high intensity 

fights wing threat (p=0.66), fencing (0.50), lunging (0.05) and chasing (0.03). Graphs represent results of DopR1 

and DopR2 knockdown in Tdc2 expressing neurons. 



 
 

20 
 

B. Low Intensity Fight 

Similar to high intensity fights low intensity aggression behaviour assay was also 

conducted. Virgin males were collected, aged for 5-7 days and transferred to behavioural 

chambers and the activity was recorded with a Panasonic HDC-SD90 camera. In low 

intensity fights only wing flick and pushing were considered. The score was given by 

counting the number of times fly flicks its wing on other fly and number of times the fly 

pushes the other fly. Using the score obtained from wing flick and pushing, a graph of wing 

flick and pushing against total percentage was made. The obtained graphs are shown in Fig 

(Figure 5 (A)) for total low intensity fight and (Figure 5 (B)) for individual low intensity 

behaviour. In low intensity assay graph, there was decreased wing flick activity 

(p=<0.0001) in DopR2 flies when compared to control and wild type flies. But when total 

percentage of low intensity activity is considered there seems to be no difference between 

control flies, wild type flies, DopR1 and DopR2 flies. 

Figure 5 (A) 
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Figure 5 (B) 

                     

Fig 5(A) and 5(B). Increased octopamine signalling by inhibiting dopamine receptors did not increase 

Drosophila’s low intensity fights compared to controls. Wing flick and pushing behaviours in low intensity fight 

was studied in controls (wild type, TDC2_control) and dopamine knockdown (TDC2; DopR1, TDC2; DopR2) flies, 

in both the assays, ten replicates were conducted, containing two 5-7 days old male virgin flies for each session 

of recording. 

4.3 Male-Male Courtship behaviour 

Male-male courtship behaviour study was conducted on DopR1, DopR2 knockdown flies, 

Tdc2 control flies and wild type flies. Regarding individual courtship behaviour (Figure 6 

(B)) shows  that in DopR2 knockdown flies, abdomen bend and circling was completely 

absent and activity was only seen in “one wing out”, but still significantly less than wild 

type and control flies. Even in DopR1 knockdown flies the male-male courtship behaviour 

like abdomen bend and circling were absent compared to wild type and control flies. There 

was no significant difference between wild type flies and DopR1 and DopR2 flies, especially 

in licking and tapping. But according to (Figure 6 (A)), male-male courtship interests were 

clearly reduced in both knockdowns, DopR2 and DopR2, when compared to wildtype flies 

and Tdc2 control flies. This reduction in male-male courtship could be due to the increase 

in octopamine, and this increase could be due to the knockdown of Dopamine receptors 

(DopR1 and DopR2). In a study on Drosophila males (Certel et al., 2010) it has been shown 

that with the decrease of octopamine levels, the male-male courtship was increased. 
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Therefore it can be said that the octopamine levels in brain play a huge role in male-male 

courtship behaviour in Drosophila. The total male-male courtship behaviour in DopR2 

(p=0.0001) was much lower than wild type flies, Tdc2 control flies and DopR1 knockdown 

flies. According to Male-male courtship assay, DopR2 seems to play a bigger role in 

deciding male-male courtship behaviours.                                                       

Figure 6 (A) 

 

Figure 6 (A). Increased octopamine signalling had affected male-male courtship behaviour. The Mating assay was 

conducted between 5 to 7 days old isolated male with virgin female fly. Different mating behaviours were 

observed and percentage behaviours were plotted against strains with mean and SEM. DopR1 and DopR2 

knockdown in Tdc2 neuron.            
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Figure 6 (B) 

         

Figure 6 (B). Increased octopamine signalling effected fly’s individual courtship behaviour. Male-Male courtship 

behaviour study was carried out by investigating the actions of one wing out, circling, abdomen bend, tapping 

from back, licking abdomen in control and dopamine knockdown flies and the observed values were plotted. One 

wing out (p=0.0010), circling (p=0.0008), abdomen bend (p=0.33), tapping from back (p=1.00), licking abdomen 

(p=1.000). Anova and posthoc test was performed for multiple comparisions. 

4.4 Activity of flies 

Activity and aggression are basic requirements for animal’s survival, thus the total activity 

was measured. In order to measure total activity, Drosophila’s movements like walking 

were recorded for a minimum of 30 minutes. Activity was determined at the percentage of 

time male spent activity walking over the period of 30 minutes. Cleaning, self grooming and 

licking itself was not considered. Figure 7 shows that activity of the dopamine receptor 

knockdown flies of both genotypes were less than controls and wild types. This may be 

because DopR1 and DopR2 control the flies’ locomotion (Andersen et al., 1990) and thus 

knockdown of these receptors  may be the reason for reduced activity among knockdown 

flies. 
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Figure 7. Increased octopamine had not increased activity of Drosophila. The graph 6.4 shows the total activity 

study on wild type flies, controls (TDC2_control) and dopamine knockdown (TDC2; DopR1, TDC2; DopR2) flies 

conducted by recording flies movements by camera. The overall activity percentage was not higher in DopR2 

(p=0.28) and DopR1 flies when compared to control.  

4.5 Speed and distance study 

The rate of change in speed and distance was investigated and the observed values of 

respective flies were calculated and plotted. There was no significant change in speed 

among all DopR1 (p=0.09) flies when compared to control flies (Figure 8). But there was a 

change in speed among DopR2 (p=0.08) flies compared to control flies, but the obtained p 

value did not suggest any significant difference. There was no change in distance or top 

speed in DopR1 when compared to control flies, but in DopR2 (p=0.02) mutant flies, 

change was observed in speed when compared to DopR1 and control flies (Figure 8). 
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Figure 8.  Influence of increased octopamine levels on speed and distance.  CTRAX AND MATLAB were used to 

measure both speed and distance of walking of 5-7 days old male for each genotype. Males were put in 

behavioural assay chamber and observed for 30 mintutes. Control flies (Tdc2-GAL4) and dopamine knockdown 

(TDC2; DopR1 (p=0.09)) , TDC2; DopR2(p=0.08)) flies DopR2(p=0.02) compared to DopR1 and control. ANOVA 

and posthoc test was performed for comparisons). 

There was a slight change in top speed in between DopR1 and DopR2 (p=0.02) knockdown 

flies. This result may suggest that the octopamine will help the insects in flight and may 

also help in production of energy required for flight (Orchard et al., 1993), but the flies 

could not cover long distance because the high levels of octopamine would have burned the 

energy in a short period of time resulting in the flies getting exhausted quickly.  
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5. Discussion 

Octopamine may influence the survival rate in Drosophila 

It is known that hormones control social behaviour and play a considerable role in 

metabolism, sleep and addiction. Among many hormones, dopamine and octopamine have 

considerable role in social behaviour. The result obtained from starvation assay shows that 

the survival rate of DopR2 knocked down flies was decreased by 24 hours, compared to 

control and DopR1 knock down flies. In C. elegans, octopamine signalling along with 

serotonin and mianserin signalling had led to the activation of CREB. Ultimately, then the 

activation of CREB was shown to extend longevity in C. elegans (Suo et al., 2006). In 

contrast to this finding, starvation experiment indicated that an increase in octopamine 

may be responsible for early death of Drosophila. Similarly according to satoshi suo report, 

dopamine signalling suppresses octopamine signalling, In this experiment increase in 

octopamine signalling could be due to the diminished dopamine signalling (Suo et al., 

2009). One of the possible reasons for the reduced starvation resistance of DopR2 

knockout flies (Figure 3) might be due to the increased octopamine in neurons.  The D2 

class receptors are involved in inhibition of AC and the other possible reason for the 

reduced starvation resistance in DopR2 knockdown flies could be due to the increased AC. 

Knockdown of DopR1 and DopR2 had reduced male-male courtship. 

Courtship results show that DopR1 and DopR2 receptors are involved in courtship 

behaviour regulation. DopR1 and DopR2 mutant flies showed decreased male–male 

courtship, this may be due to decreased amount of receptors and thus diminished 

dopamine signalling due to the receptor knock down (Liu et al., 2008). A recent report 

suggests that altered neurotransmitter concentration in synaptic cleft could induce male–

male courtship behaviour, possibly as a result of changed sensitivity of postsynaptic 

receptors towards the neurotransmitter (Chen et al., 2012). Due to the insensitivity to 

dopamine it can be speculated that male flies display male–male courtship behaviour. 

Recently, it has been reported that Dopamine influence male-female courtship 

(Alekseyenko et al., 2010) and Octopamine is believed to decrease male-male courtship and 

increase aggression behaviour (Certel et al., 2010) 
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 It was assumed before, that Male-male courtship behaviour is due to incapability of flies in 

distinguishing female and male targets But Chen et al (Chen et al., 2012) reported that 

DopR1 mutant showed the male-male court ship behaviour and there was a huge reduction 

in male-male courtship. This could  be also due to high levels of octopamine (Certel et al., 

2010). 

Increased octopamine levels effects Drosophila melanogaster’s aggression. 

Due to the knockout of DopR2 receptor, increased aggressive behavioural changes were 

observed in high intensity fights. This increased aggression could be due to the up 

regulation of octopamine levels. Hence there was increased aggressive behaviour and also 

reduced male-male courtship behaviour. Aggressive behaviour results show that 

octopamine levels could be playing a major role in regulating aggression and social 

interactions in Drosophila (Certel et al., 2010).   

Tyramine beta hydroxylase (TBH) is the enzyme responsible for the conversion of 

tyramine to octopamine. So the octopamine synthesis corresponds to the expression level 

of TBH. The DopR2 knockdown flies showed a partial behavioural phenotypes of null 

mutants, i.e. increased in aggression, decreased in  male-male courtship behaviours 

compared to DopR1 knockdown flies (Baier et al., 2002, Zhou et al., 2008). This behavioural 

variation between DopR1 and DopR2 knockdown flies suggests that regulation of 

octopamine was different at these two receptors.  Thus DopR1 knockdown flies were little 

passive compared to DopR2 knockdown flies due to less octopamine production. (Hoyer et 

al., 2008).   

Knockdown of DopR1 and DopR2 receptors reduced Drosophila’s activity percent. 

DopR1 receptor is involved in moderate locomotion of Drosophila and DopR2 is also 

involved in much complex movements (Beaulieu and Gainetdinov, 2011), thus if these 

receptors were knocked down they will affect overall activity of the flies. This was shown in 

Figure 7, the total activity percent of the knockdown flies were reduced when compared to 

controls and wild type flies. 
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Increased levels of octopamine may influence flight and metabolism in Drosophila. 

In speed and distance (Figure 8) assay, distance covered by dopamine receptor knockdown 

flies and control flies were similar and no significant differences were observed. However 

there was increased speed in DopR2 knockdown flies and this could be due to an increased 

octopamine level.   Orchard et al reported that, in locusts high levels of octopamine will 

make the insects to burn high energy in first few minutes and make insects to fly rapidly 

and causes it to burn the stored fat  easily (Orchard et al., 1993). Thus even in Drosophila,  

octopamine may be causing flies to reach high speeds and making the flies to burn energy 

very rapidly.  Another effect of high levels octopamine is to affect the metabolism in flies by 

altering insulin signalling on lipid accumulation in flies and mammals. 
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6. Conclusion 

In conclusion, this study provided the insights on octopamine and dopamine role in 

Drosophila behaviour. Cessation of dopamine receptors had effect on Drosophila’s 

longevity, aggression and courtship. To study mechanisms behind receptors knockdown 

effect on longevity and social behaviour further molecular studies are needed. 
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9. Appendix 

 

        Table 1.  Drosophila strains and species used in the experiments. 

 

      Fly line        species     Genotype     Company 

       CSORC D. melanogaster      Wild type           BSC 

       Tdc2 D. melanogaster     w*;p{PUAS-Tdc2.c}           BSC 

       W1118 D. melanogaster      Wild type           BSC 

       yw D. melanogaster      Wild type           BSC 

      Elav-GAL4 D. melanogaster      P{GawB}elavc155            BSC 

     Uas-DopR1 D. melanogaster      UAS-DopR1RNAi           BSC 

     Uas-DopR2 D. melanogaster      UAS-DopR2RNAi           BSC 

                                                                                                     *BSC= Bloomington stock centre. 

  

file:///C:/Users/sowmya%20puli/Downloads/PUAS-Tdc2.c%7d
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Table 2. Mean and SEM of starvation assay. 

 

                            Mean*                             SEM 

Tdc2 Control DopR1 DopR2 Tdc2 Control DopR1 DopR2 

100 

 

100 

 

95.5 

 

66.5 

 

37 

 

8 

 

0 

 

100 

 

100 

 

98.5 

 

60 

 

38 

 

6.5 

 

0 

100 

 

100 

 

82 

 

27.5 

 

8 

 

0 

 

0 

0 

 

0 

 

1.7 

 

7.5 

 

8.8 

 

2.4 

 

0 

 

0 

 

0 

 

1.1 

 

3.9 

 

3.3 

 

2.8 

 

0 

0 

 

0 

 

3.7 

 

4.8 

 

2.6 

 

0 

 

0 

                                                                                                          *= Number of flies dead 
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 Table 3. Mean and SEM of individual High intensity fight behaviours 

 

                                                Mean *                                                                                                 SEM 

 

Strain/Beha

viour 

Wild 

type 

Tdc2_c

ontrol 

DopR

1 

DopR

2 

Wil

d 

typ

e 

Tdc2_

contr

ol 

DopR

1 

Dop

R2 

Wing threat 

 0.11 1.33 0 0.2 0.1 0.44 0 0.2 

Fencing 

 0.88 0.66 0.6 1.1 0.2 0.27 0.16 0.17 

Lunging 0.55 0.33 0.4 1.7 0.2 0.22 0.22 0.53 

Chasing 0 0.22 0 0.5 0.0 0.13 0 0.22 

                                                                                           *=Number of times. 
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Table 4. Mean and SEM of individual Low intensity fight behaviour 

 

                                             Mean*                                                                                                                              SEM 

 

Strain/Behavi

our 

Wild 

type 

Tdc2_co

ntrol 

DopR1 DopR2 Wild 

type 

Tdc2_c

ontrol 

DopR1 DopR

2 

Wing flick 9.55 14.55 2.3 3.6 1.4 1.33 0.71 0.8 

Pushing 11.11 13.55 4.8 10.5 1.6 1.55 0.64 0.12 

                                                                                                   *= Number of times. 
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Table 5. Mean and SEM of individual Courtship behaviours 

 

                                           Mean                  SEM 

 

Strain/Behavi

our 

Wild 

type 

Tdc2_co

ntrol 

DopR1 DopR2 Wild 

type 

Tdc2_c

ontrol 

DopR1 DopR

2 

One wing out 

 

9.55 14.55 2.3 3.6 1.4 1.33 0.71 0.8 

Circling 

 

11.11 13.55 4.8 10.5 1.6 1.55 0.64 0.12 

Abdomen 

bend 

 

0.55 0.33 0.4 1.7 0.2 0.22 0.22 0.53 

Tapping from 

back 

 

0 0.22 0 0.5 0.0 0.13 0 0.22 

Licking 

abdomen 0 0.11 0.1 0  0.0 0.10 0.1 

                                                                                                          *= Number of times. 
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Table 6. Mean and SEM of individual Speed and Distance behaviours 

 

                             Mean* SEM 

 Control DopR1 DopR2 Control DopR DopR2 

Speed 1 0.98 2.6 0.196131 0.08 0.79 

Top 

speed 

1 0.8 1.19 0.2 0.05 0.13 

Distance 1 0.82 1.5 0.1 0.08 0.35 

       *= The difference of the length (mm) of the fly moved from one frame to another frame 
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