Flavan-3-ols and endothelial dysfunction

Felicia Woll
Flavan-3-oler och endotel -dysfunktion
Flavan-3-ols and endothelial dysfunction

Felicia Woll

Handledare: Rikard Landberg, Institutionen för livsmedelsvetenskap, SLU

Examinator: Lena Dimberg, Institutionen för livsmedelsvetenskap, SLU

Omfattning: 15 hp
Nivå och fördjupning: G2E
Kurstitel: Självständigt arbete i livsmedelsvetenskap
Kurskod: EX0669
Program/utbildning: Agronom - Livsmedel

Utgivningsort: Uppsala
Utgivningsår: 2014
Omslagsbild: Felicia Woll
Serieltitel: Publikation/Sveriges lantbruksuniversitet, Institutionen för livsmedelsvetenskap nr:389
Elektronisk publicering: http://stud.epsilon.slu.se

Nyckelord: Endotel –dysfunktion, Flavan-3-oler, FMD, Camellia sinensis, Theobroma cacao

Sveriges lantbruksuniversitet
Swedish University of Agricultural Sciences

Fakulteten för naturresurser och jordbruksvetenskap
Institutionen för livsmedelsvetenskap
1 ABSTRACT

Background: Flavan-3-ols are polyphenolic phytochemicals belonging to the flavonoids. Flavan-3-ols are present in many higher plants and are particularly concentrated in e.g. *Camellia sinensis* (tea) and *Theobroma cacao* (cacao) and have got attention due to their antioxidative capacity. Many studies have been able to associate flavan-3-ol-rich foods to improved endothelial function. The aim of the present work is to review the scientific literature and evaluate the evidence for positive effects of flavan-3-ols on endothelial dysfunction in humans.

Method: Scientific articles describing intervention and observational studies about flavan-3-ols and endothelial dysfunction, were searched for on http://www.pubmed.org.

Results: Ten out of ten intervention studies show that green and black tea and cacao products affect typical biomarkers for endothelial dysfunction and improve the endothelial dependent vasodilatation and endothelial dysfunction, with acute and long term effects. Observational studies show that flavan-3-ol rich are associated with a reduced risk for type 2 diabetes and a reduced risk for CVDs such as myocardial infarction after adjustment for established confounders.

Conclusion: Flavan-3-ol rich food appears to have a positive effect on endothelial dysfunction and the effects may be attributed to the flavan-3-ols per se.

Keywords: Flavan-3-ols, Endothelial dysfunction, FMD, *Camellia sinensis, Theobroma cacao*.

2 SAMMANFATTNING

Bakgrund: Flavan-3-oler är polyfenoliska fytokemikalier tillhörandes flavonoiderna. Flavan-3-oler finns i de flesta högre växter och är särskilt koncentrerade i t.ex. *Camellia sinensis* (te) och *Theobroma cacao* (kakao) och har fått mycket uppmärksamhet p.g.a deras antioxidativa kapacitet. Ett flertal studier har pekat på ett samband mellan flava-3-olrika livsmedel och förbättrad endotelfunktion. Syftet med denna litteraturstudie är att sammanfatta vetenskapligt underlag och utvärdera bevis avseende flavan-3-olers positiva effekter på endotel-dysfunktion hos människor.

Resultat: Tio av tio interventionsstudier visar att grönt och svart te och kakaoprodukter påverkar typiska biomarkörer för endotel-dysfunktion och förbättrar den endotelberoende vasodilateringen och endotel-dysfunktion, akut och på kort och lång sikt. Observationsstudier visar att flavan-3-olrika livsmedel kan kopplas till en reducerad risk för typ 2 diabetes och för CVDs så som hjärtinfarkt.

Slutsats: Flavan-3-olrika livsmedel har en positiv effekt på endotel-dysfunktion.

Nykkelord: Flavan-3-oler, Endotel-dysfunktion, FMD, *Camellia sinensis, Theobroma cacao*.
3 INNEHÅLL

1 ABSTRACT .. 1
2 SAMMANFATTNING ... 1
4 FÖRKORTNINGAR ... 3
5 SYFTE ... 3
6 AVGRÄNSNINGAR .. 3
7 METOD ... 3
8 BAKGRUND .. 4

8.1 FLAVAN-3-OLER ... 4
 Kemisk struktur och funktion... 4
 Flavan-3-olrika livsmedel .. 5
 Flavan-3-olers bioaktivitet ... 6

8.2 ENDOTEL –DYSFUNKTION .. 7
 Oxidativ stress .. 7
 Reducerad syrenivå p.g.a. NO och NADPH-oxidaser ... 7
 Reducerad NO-nivå p.g.a. minskad produktion ... 7
 Flow-mediated dilatation, FMD ... 8
 Mätbara biomarkörer för endotel –dysfunktion ... 9
 Följdsjukdommar av endotel -dysfunktion .. 10
 Kostens påverkan på endotel -dysfunktion .. 11

9 FLAVAN-3-OLER OCH ENDOTEL-DYSFUNKTION ... 11

9.1 INTERVENTIONER ... 11
 Grönt te och endotel -dysfunktion .. 12
 Svart te och endotel -dysfunktion ... 12
 Kakao, choklad och endotel -dysfunktion .. 13
 Kemiskt renat EGKG (kosttillskott) och endotel -dysfunktion .. 14

9.2 OBSERVATIONSSTUDIER ... 14
 Flavan-3-oler och typ 2 diabetes .. 14
 Te och hjärtinfarkt .. 15
 Choklad och plötslig död i hjärtinfarkt .. 15

10 DISKUSSION ... 15

11 SLUTSATS ... 16

12 TACK! ... 16

13 REFERENSER .. 17
 Elektroniska .. 18
4 FÖRKORTNINGAR

ASI Arterial Stiffness Index
CAC Circulating Angiogenic Cell
CAD Coronary Artery Disease
CHD Coronary Heart Disease
EPC Endothelial Progenitor Cell
EK Epikatekin
EGK Epigalokatekin
EKG Epikatekingallat
EGKG Epigalokatekingallat
eNOS Endothelial Nitric Oxide Synthase
FMD Flow-Mediated Dilatation
GTN Glyceroltrinitrat
NO Nitric Oxide
sNOX2-dp Soluble NOX2 derived peptide
USDA United States Department of Agriculture

5 SYFTE

Syftet med denna litteraturstudie är att undersöka om flavan-3-oler påverkar endotelfunktion hos människa.

6 AVGRÄNSNINGAR

Studien avgränsas till att behandla interventions- och observationsstudier på människa och, effekt respektive samband mellan flavan-3-oler/flavan-3-olrika livsmedel och endotel-dysfunktion behandlas. Antalet biomarkörer som studeras i interventionsstudierna begränsas till, FMD, ICAM-1, EPC, sNOX2-dp, CAC, IL, isoprostaner och ASI.

7 METOD

Material i form av vetenskapliga artiklar söktes på sökmotorn http//www.pubmed.org, med sökorden; endothelial dysfunction and flavan-3-ols, -and catechins, -and FMD, -and flow mediated dilatation, -and green tea, -and black tea, -and *Camellia sinensis*, -and *Theobroma cacao* and meta-analysis.
8 BAKGRUND

8.1 FLAVAN-3-OLER
Flavan-3-oler är polyfenoler tillhörandes klassen flavanoider, en relativt heterogen grupp med stor spridning i frukt och grönt (Ho, 2008). De flavanoida klasserna innefattar även flavoner, flavanoner, flavonoler, isoflavanoider och anthocyanidiner (Ho, 2008). Flavan-3-olerna består av katekinerna, katekin (K), gallokatekin (GK), epikatekin (EK), epigallokatekin (EGK), epikatekin-3-gallate (EKG), epigallokatekin-3-gallate (EGKG) samt polymerer av flavan-3-oler, s.k. proanthocyanidiner (USDA, 2011). Flavan-3-oler är inte något näringsämne men har en positiv påverkan på hälsa (t.ex. som antioxidanter) och kommer från växtriket, därav benämningen fytokemikalier, ibland även fytonäringsämne (USDA, 2005). United Statets Department of Agriculture, USDA har i databasen över flavanoidhalter i valda livsmedel valt att även placera procyanidiner (d.v.s. theaflaviner och thearubiginer) under flavan-3-oler, främst för deras rika förekomst i te (USDA, 2013). Procyanidiner bildas utifrån monomera flavan-3-oler, under enzymatisk oxidering (fermentering) (Ho, 2008). Mängden flavan-3-oler i växter och livsmedel varierar mellan olika sorters växter och mellan samma sorts växter i och med växtens ålder, agrara förutsättningar, eventuell lagring, transport och processning av växt (Ho 2008).

Kemisk struktur och funktion
Alla flavan-3-oler består så som alla flavonoider av ett och samma grundskellett, beståendes av två aromatiska ringar med en enkelbindning till en tredje aromatisk ring Figur 1. Samtliga ringar är hydroxylerade till olika grad, beroende av enskild flavan-3-ol förening.

Flavan-3-olrika livsmedel

Flavan-3-oler är sk. kostantioxidanter vilka endast kan tillföras via kosten (Middleton et al., 2000). Tabell I visar ett urval av livsmedel och deras flavan-3-olinnehåll. Kakao är ett relativt flavan-3-olrikt livsmedel (epikatekin: 196 mg/100g) i jämförelse med t.ex. päron, äpplen och pecan nöt, även om flavan-3-olhalterna i kakao inte kommer upp i de höga koncentrationer som finns i te (USDA, 2011), se Tabell II. I äpplen finns K och EK koncentrerade i dess skal jämfört med koncentrationen (USDA 2011). Generellt är mängden flavan-3-oler högre i färska frukter än i torka eller tillagad (Aron & Kennedy 2008). Processning och lagring av livsmedel leder ofta till epimerisering, degradering och de-polimerisering till de oligomera- och polymera formerna av flavan-3-oler (Aron & Kennedy 2008). Då Knaze et al., (2011) estimerade intaget av flavan-3-oler i Europa delades populationen upp i grupper, varav ”hälsomedvetna män” (453,5 mg/dag) och ”kvinnor generellt” (377,6 mg/dag) i Storbritannien stod för det högsta intaget av flavan-3-oler i Europa, medan det lägsta intaget fanns i grupperna ”män” (106,5 mg/dag) och ”kvinnor” (124,8 milligram/dag) i Grekland. Den största källan till flavan-3-oler bland grupperna i Europa är enligt Knaze et al., (2011) frukter som äpplen och päron (ej-citrusfrukter) medan det i Storbritannien enskilt är te. En studie från Malmö, Sverige visade att medelintaget där, i grupperna ”män” och ”kvinnor” var 242,3 mg/dag respektive 235,3 mg/dag (Knaze et al., 2011).

Tabell I. Flavan-3-olmängden i valda livsmedel.

<table>
<thead>
<tr>
<th>Flavonoid</th>
<th>Förening*</th>
<th>Cacao powder dry Theobroma cacao mg/100g</th>
<th>Choklad dryck med mjölk mg/100g</th>
<th>Päron Pyrus communis mg/100g</th>
<th>Äppel- skull mg/100g</th>
<th>Äpple Granny Smith. mg/100g</th>
<th>Nöt Pecan Carya illinoensis mg/100g</th>
<th>Rött bordsvin Cabernet Sauvignon mg/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavan-3-oler 1</td>
<td>K</td>
<td>64.82 1</td>
<td>0.82 1</td>
<td>0.27 1</td>
<td>7.40 1</td>
<td>1.87 1</td>
<td>7.24 1</td>
<td>7.70 1</td>
</tr>
<tr>
<td></td>
<td>GK</td>
<td>0.00 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EK</td>
<td>196.43 1</td>
<td>0.26 1</td>
<td>3.76 1</td>
<td>28.3 1</td>
<td>7.11 1</td>
<td>0.82 1</td>
<td>10.66 1</td>
</tr>
<tr>
<td></td>
<td>EGK</td>
<td>0.59 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKG</td>
<td>0.02 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGKG</td>
<td>0.17 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*K =Katekin, GK =Gallokatekin, EK =Epikatekin, EGK =Epigallokatekin, EKG =Epicatekingallat, EGKG =Epigallokatekingallat.

1USDA, 2011

I kakao (Theobroma cacao) är de dominerande flavan-3-olerna EK och K (USDA, 2011) och vid processning epimeriseras de (Aron & Kennedy 2008). Mörk choklad kan innehålla 0,1-2,0 mg EK/g choklad (Seis 2012). I kakao finns teobromin, en purin som likt koffein har luftrörsvidgande, vasodilatorisk, urindrivande och muskelavslappnande effekter (NE 2012). Te (Camellia sinensis) är det livsmedel som har setts innehålla den högsta koncentrationen av flavan-3-oler och då speciellt katekiner och av dem finns mest EGKG (en mycket potent...
antioxidant) då de förekommer i följande mängdordning i te EGKG > EKG > EK > EGK > K (Ho 2008). Grönt te processas nästan inte alls, då det inte fermenteras utan endast värms upp under en väldigt kort stund i syfte att avöda mikrober och avstanna enzymatiska reaktioner och därför innehåller grönt te störst mängd monomera katekiner, vilka är de som har högst antioxidativt potential (Cheng 2005). EGKG är tio gånger högre i grönt - än i svart te (Nagaya et al. 2004). Mineraler och vitaminer i grönt te kan vidare öka dess antioxidativa förmåga (Cabrera & Artacho & Giménez 2006), t.ex. kan grönt te innehålla små mängder (3.0 mg/dl) askorbinsyra (Nagaya et al., 2004). Svart te genomgår en längre s.k. full fermentering och har endast kvar en mindre mängd av de potenta antioxidanterna, de monomera katekinerna, medan svart te är större mängd procyanidiner om theaflaviner och thearubiginer (Ho 2008). Proanthocyanidiner bidrar mycket till den svarta färgen på teet (Ho 2008). I Tabell II ses fördelningen av katekiner och procyanidiner i grönt- och svart te. En kopp svart te kan enligt Ho (2008) innehålla upp till 70 mg EGKG medan en kopp grönt te kan innehålla ca. 30-130 mg EGKG. Köffinhalten i te är generellt sett lägre i grönt te än i svart te (Khokhar & Magnusdottir 2002).

Flavan-3-olers bioaktivitet
I magtarmkanalen spjälkas flavan-3-oler i form av glykosider till respektive agkykoner och socker, och agkykoner kan sedan absorberas i tunntarmen i varierande utsträckning (Middleton et al., 2011). Adsorberade flavan-3-oler transporteras till levern via portavenen och bryts ner till metaboliter som inom några timmar när kroppens olika vävnader (Aron & Kennedy 2008). I plasma förekommer flavan-3-oler sedan som sulfatkonjugat eller glukuronsyrakonjugat vilka även kan vara metylerade av enzymet katekol-O-metyltransferas (COMT), s.k. O-metylering (Middleton et al., 2011). COMT förekommer både i plasma och i endotelceller (Steffen et al. 2007) och dess aktivitet kan variera trefaldigt mellan- och inom individer och därmed varierar och beror flavan-3-olernas biotillgänglighet av COMTs aktivitet (Hodgson et al., 2005). O-metylering, sulfat- och glucuronkonjugering har setts minska flavan-3-olernas antioxidativa förmåga (Steffen et al., 2007). EK och dess plasmametaboliter har en större biotillgänglighet än K (Steffen et al., 2007).

<table>
<thead>
<tr>
<th>Aktivt ämne</th>
<th>Grönt te bryggt mg/100g</th>
<th>Svart te bryggt mg/100g</th>
<th>Teblad gröna torkade mg/100g</th>
<th>Teblad svarta torkade mg/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavan-3-oler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>4.5<sup>1</sup></td>
<td>1.5<sup>1</sup></td>
<td>57.1<sup>2</sup></td>
<td>137.8<sup>2</sup></td>
</tr>
<tr>
<td>GK</td>
<td>1.5<sup>1</sup></td>
<td>1.2<sup>1</sup></td>
<td>258.1<sup>2</sup></td>
<td>91.7<sup>2</sup></td>
</tr>
<tr>
<td>EK</td>
<td>8.3<sup>1</sup></td>
<td>2.1<sup>1</sup></td>
<td>811.7<sup>2</sup></td>
<td>255.2<sup>2</sup></td>
</tr>
<tr>
<td>EGK</td>
<td>29.2<sup>1</sup></td>
<td>7.9<sup>1</sup></td>
<td>2058.0<sup>2</sup></td>
<td>956.8<sup>2</sup></td>
</tr>
<tr>
<td>EKG</td>
<td>17.9<sup>1</sup></td>
<td>5.9<sup>1</sup></td>
<td>1491.3<sup>2</sup></td>
<td>688.3<sup>2</sup></td>
</tr>
<tr>
<td>EGKG</td>
<td>70.2<sup>1</sup></td>
<td>9.4<sup>1</sup></td>
<td>7116.0<sup>2</sup></td>
<td>1122.0<sup>2</sup></td>
</tr>
<tr>
<td>Procyanidiner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theaflavin</td>
<td>0.1<sup>1</sup></td>
<td>1.6<sup>1</sup></td>
<td>1.6<sup>2</sup></td>
<td>159.2<sup>2</sup></td>
</tr>
<tr>
<td>Theaflavin3-gallat</td>
<td>0.0<sup>1</sup></td>
<td>1.3<sup>1</sup></td>
<td>0.5<sup>2</sup></td>
<td>132.3<sup>2</sup></td>
</tr>
<tr>
<td>Theaflavin3'-gallate</td>
<td>0.0<sup>1</sup></td>
<td>1.5<sup>1</sup></td>
<td>0.4<sup>2</sup></td>
<td>155.8<sup>2</sup></td>
</tr>
<tr>
<td>Theaflavin 3,3'digallat</td>
<td>0.0<sup>1</sup></td>
<td>1.8<sup>1</sup></td>
<td>1.1<sup>2</sup></td>
<td>170.8<sup>2</sup></td>
</tr>
<tr>
<td>Thearubigin</td>
<td>1.1<sup>1</sup></td>
<td>81.3<sup>1</sup></td>
<td>131.9<sup>2</sup></td>
<td>5919.0<sup>2</sup></td>
</tr>
</tbody>
</table>

¹ USDA, 2013; ² USDA, 2007

Tabell II. Fördelning av flavan-3-oler och procyanidiner i te. Vid den längre fermenteringsprocessen som svart te genomgår, omvandlas monomera och dimera katekiner till oligomera procyanidiner.
8.2 ENDOTEL -DYSFUNKTION

Oxidativ stress

Reducerad syrenivå p.g.a. NO och NADPH-oxidaser

Reducerad NO-nivå p.g.a. minskad produktion

Vid endotel -dysfunktion är biotillgängligheten av NO i endotelcellerna reducerad, beroende av oxidativ stress, vilket innebär en ökad metabolisering av NO (ROS, O$_2^-$ reagerar direkt med NO och peroxynitrit bildas) och dess biologiska aktivitet elimineras (Loffredo et al., 2010). NO syntetiseras från L-arginin av endotelets isoform av NO-syntas (eNOS) och den förändrade redoxpotentialen i endotelcellerna i och med metaboliseringen av NO kan leda till
en reducerad eNOS-aktivitet (Shenouda & Vita, 2007). Både eNOS och endotelt arginas använde L-arginin som substrat vid aktivitet och, vid en rådande obalans (för lite L-arginas) kan eNOS inhiberas av L-NG-mono-metyl-arginin (L-MMNA) till fördel för arginas (Schroeter et al. 2006). eNOS kan vid hög oxidativ stress genomgå en konfigurationsändring och börja producera superoxid istället för NO (Shenouda et al. 2007). Den färglösa gasen NO, motverkar aggregering av blodkroppar vid endotelcellerna samtidigt som NO är endotelcellernas mest potenta vasodilator (Loffredo et al., 2010). Minskad biotillgänglighet av NO innebär minskad endotelberoende vasodilatation (Cheng, 2005). Acetylkolin, serotonin, trombin och angiotensin 2 är exempel på molekyler som direct (inom några sekunder) kan stimulera en akut NO-produktion (Shenouda & Vita, 2007). Från endotelcellerna diffunderar NO till omgivande glatta muskelceller (som innehåller mycket cyklisk guanylylcyklas, cGMP), där NO aktiverar cGMP genom att binda till dess hemgrupp, vilket leder till vasodilatation (Hansson & Jörnvall & Lindahl 1998). En långvarig försämrad vasodilatation kan leda till att blodkärlen blir stela, vilket kan mätas med ‘arterial stiffness index’ (ASI) (Cheng, 2005). Ökad arteriell förstelning, vilket innebär en ökad risk för infektion och blodproppsbildning (Cheng, 2005). Arterial stiffness index används för att förändringar i endotelcellernas nivåer av biotillgängligt NO (Loffredo et al., 2011). Ändringar i endotelets funktion kan mätas med flow-mediated dilatation (FMD) (Loffredo et al., 2011).

Flow-mediated dilatation, FMD

Det finns ett flertal olika biomarkörer som kan användas för att studera och mäta endotel-dysfunktion, varav flow-mediated dilatation (FMD) idag är den främsta (Harris et al., 210). FMD är en konventionell och icke-invasiv metod, där mätresultatet uttrycks i procent och är direkt beroende av mängden NO som frisätts från endotelcellerna d.v.s. mängden biotillgängligt NO (Loffredo et al., 2011). I samband med en FMD-mätning är det möjligt att kombinera teknik för mätning av andra värdet, t.ex. blodets flödeshastighet, diameter respektive tjocklek på en artär (Harris et al., 2010). Resultat som uppmåts på branchialisartären (lokaliserad på överarmens framsida) korrelerar väl med resultat på hjärtats endotelceller och används ofta vid FMD-mätningar (Harris et al., 2010).

Utrustning

För att utföra en FMD-mätning krävs en ultraljudsmätare med duplex mode, vilket innebär att ett dopplerultraljud mäter blodets hastighet samtidigt som ett b-modeultraljud ger en tvådimensionell bild av artären (Harris et al., 2010). En svårighet är ofta att få till den s.k. insoneringsvinkeln, d.v.s. den vinkel som uppstår mellan dopplerstrålen och ultraljudstrålen och rekommenderas till 60\(^\circ\), vilket är näst intill omöjligt att ställa in. På grund av svårigheten utförs många mätningar vid 70\(^\circ\) och det har kommit att i litteraturen. Även ett elektrogram bör vara kopplat till utrustningen, för att mäta antalet blodcirkulationscykler.

Förberedelser

Inför mätningarna ska försökspersoner vara välinformerade och väl förberedda för att undvika det flertal faktorer som annars kan störa mätresultaten (Harris et al., 2010). Exempelvis bör försökspersonerna, 72 timmar innan studien helt ha avstått vitaminintillskott, avbrutit eventuell mediciner, avstått tobak och koffein och motion 12 timmar innan studien, kvinnor bör befinner sig i dag 1-7 i menstruationscykeln och alla bör vara utvilade och ha fastat. Vid vila mät för varje försöksperson ett basalt blodtryck, en basal blodhastighet och en basal artärdiameter för senare beräkningar av ett slutgiltigt FMD-värde. Minst 10 blodcirkulationscykler rekommenderas för att beräkna baslinjerna. För att hitta
branchialisartären krävs en frekvens på 10-14 MHz, där frekvensen är invert mot bilden. För mätning av artärdiameter gäller avståndet intima-intima.

Reaktiv hyperemi
Ett tryck minst 25-50 mm Hg över subjektets normala blodtryck, appliceras på artären under en femminutersperiod och på så sätt skapas den reaktiva hyperemi som sedan mäts och som då är övervägande endotel- och NO-beroende (Harris et al., 2010). Utrustningen med vilket trycket ges bör vara av en storlek som passar kärllet. Mätningarna av blodkärlsdiametern och av blodets hastighet bör påbörjas senast 10 sekunder före trycket på artären släpps, och därefter fortgår i minst två minuter. Maximal blodhastighet kan väntas ca 15 sekunder efter släppet och största dilateringen kan väntas ca. 45-80 sekunder efter släppet. Insamlade värden analyseras enligt rekommendation med hjälp datorprogrammet Edge Detection, med vilken t.ex. både samlad stimulering och skapad hyperemi beräknas. Kärlets maxdiameter efter släppet och baslinjen används på följande sätt för att uttrycka dilateringsskillnaden procentuellt:

\[
\text{FMD} \% = \left(\frac{\text{maxdiameter efter släpp på trycket} - \text{baslinjediametern}}{\text{baslinjediametern}} \right) \times 100
\]

FMD-värdet antas vara proportionellt mot storleken av den stimulering kärlet utsattes för, varför det rekommenderas att dividera FMD-värdet med slutgiltig stimuleringsgrad (arean under kurvan) och redovisa detta, för att få ett normaliserat värde. Alternativa sätt för normalisering av värdet kan finnas, t.ex. att räkna med den tid det tar för kärlet att nå maxdilateration efter stimuleringen (Harris et al., 2010). I jämförelse kan det också vara intressant att mäta hur den endotel-beroende vasodilateringen påverkas vid olika interventioner, varav ett sätt är att mäta FMD efter applicering av glyceroltrinitrat (GTN).

Måthbara biomarkörer för endotel -dysfunktion
Ett flertalet inflammatoriska ämnen frisätts till blod och urin vid endotel -dysfunktion, s.k. biomarkörer vilka gör tillståndet måtbart (Kim et al., 2006; Duffy et al., 2001; Grassi et al., 2009; Loffredo et al., 2011). Den vanligaste metoden för diagnostisering av endotel -dysfunktion är flow-mediated dilatation (FMD) (Harris et al., 2010). I Tabell III ses vanliga biomarkörer för endotel -dysfunktion.

Tabell III. Typiska biomarkörer för endotel -dysfunktion som ofta analyseras i studier tillsammans med FMD.

<table>
<thead>
<tr>
<th>Biomarkör</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASI</td>
<td>Arterial stiffness index (ASI) är ett mått på artärernas elasticitet (Grassi et al., 2009).</td>
</tr>
<tr>
<td>EPC/CAC</td>
<td>Endothelial progenitor cells (EPC) skyddar endotelceller genom att vid skada reparera denna genom att bilda nya blodkärl från gamla och har även förmågan att bilda helt nya blodkärl, neogenes (Kim et al., 2006). I ett tidigt skede kallas EPC för circulating angiogeic cell (CAC) och båda är en sorts stamceller från benmärgen (Kim et al., 2006). Vid mobilisationen av CAC från benmärgen till aktuellt område, antas eNOS ha en betydande roll (Kim et al., 2006). EPC påverkas av rökning och antalet cigaretter per dag har visat sig ha ett invert förhållande (signifikant korrelation) till antalet cirkulerande EPC (Kim et al., 2006).</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intracellular adhesion molecule 1 (ICAM-1) är en inflammatorisk</td>
</tr>
</tbody>
</table>
adhesionsmolekyl som frisätts av endotelceller vid inflammation (Grassi et al., 2009).

IL
Interleukiner (IL) är *inflammatoriska* cytokiner (idag känner vi till mer än 15 olika IL) med olika, ofta förstärkande funktioner inom immunförsvar (NE, 2013).

Isoprostaner
En grupp biomarkörer som frisätts vid *inflammation* och är mätbar i både blod- och urinprov, varav den vanligaste isoprostanen är PGF2a-III har både vasokontraherande och trombocyt aggregerande effekt (Loffredo et al., 2011; Basu & Helmersson 2009).

sNOX2-dp
Soluble NOX2 derived peptide (sNOX2-dp) är en peptid som då dess koncentration minskar leder till minskad NADPH-aktivitet (Loffredo et al., 2011).

Den totala antioxidativa kapaciteten/statusen i plasma går att mäta via exempelvis oxygen-radical absorbance capacity of plasma (ORAC), ett mått på protein-beroende antioxidant aktivitet eller via ferric-reducing ability of plasma (FRAP) som är ett kvantitativt mått på förmågan att donera elektroner i plasma (Duffy et al., 2001).

Risikofaktorer till- och eventuella mekanismer till endotel-dysfunktion.

Följdsjukdommar av endotel-dysfunktion
Endotel-dysfunktion kan i längden leda till hjärt- och kärlsjukdom, en av vår tids största folksjukdommar (Brown & Hu, 2001). Ateroskleros är en kärlsjukdom som kännetecknas av endotel-dysfunktion och graden av endotel-dysfunktion fungerar här som en markör för
Kostens påverkan på endotel-dysfunktion

Kosten är en faktor som kan ha stor påverkan på kärlhälsa och CVD (Schroeter et al., 2006). Livsmedel rika på flavan-3-oler innehåller därmed flavan-3-ola föreningar med potentiell antioxidativ effekt, anti-inflammatorisk effekt, potentiellt klerande effekt och kan minska aggregering, minska trombbildning, öka biotillgängligheten av NO och därmed öka den endotelberoende vasodilateringen (Ho, 2009). Ett livsmedel är dock mycket komplext, eftersom det består av en unik livsmedelsmatris som innehåller både makro och mikronäringssämen och övriga föreningar som har unika kombinationseffekter (Jacobs & Tapsell, 2007). Sammansättningen av livsmedel kan också variera i och med olika agrala förhållanden. När det gäller kostens betydelse för hälsan kan den därför inte enbart förklaras av enskilda näringsämnen (Jacobs & Tapsell, 2007).

9 FLAVAN-3-OLER OCH ENDOTEL-DYSFUNKTION

Av totalt tio granskade studier så visar tio interventionsstudier och tre observationsstudier effekter och samband mellan flavan-3-olrika livsmedel och endotel-dysfunktion respektive riskgrupper för endotel dysfunktion.

9.1 INTERVENTIONER

I detta stycke presenteras tio interventionsstudier och en meta-analys avseende te och kakaoprodukters effekt på valda biomarkörer för endotel-dysfunktion. Resultaten från de tio interventionsstudierna summeras i Tabell IV. Studier visar att K och EK tas upp i blodet (Heiss et al., 2010; Schroeter et al., 2006; Duffy et al., 2001) och att svart och grönt te och kakao alla förbättrar den endotelberoende vasodilateringen (Alexopoulus et al. 2007; Kim et al., 2006; Duffy et al., 2001; Grassi et al., 2009; Monahan et al., 2011; Schroeter et al., 2006; Balzer et al., 2008; Heiss et al., 2010). Grönt te visas även förhöja mängden cirkulerande EPC (Kim et al., 2006) och inte påverka CRP och IL (Alexopoulus et al., 2007), medan svart te visas sänka ASI (Grassi et al., 2009) och kakaoprodukter visas öka mängden sNOX2-dp (reducerad NADPH-aktivitet), reducera mängden isoprostaner (Loffredo et al., 2011) och öka mängden EPC (Heiss et al., 2010). EGKG i kemiskt renad form visade inte någon effekt på EPC eller ICAM-1 (Wiedlansky et al., 2007). En studie visar även att flavan-3-olernas bioaktivitet minskar NADPHs aktivitet (Loffredo et al., 2011).
Tabell IV. Flavan-3-olrika livsmedels effekt påvalda biomarkörer för endotel-dysfunktion. Ett + betyder att mängden har ökat, ett – betyder att mängden har minskat och ett X betyder ingen förändring.

<table>
<thead>
<tr>
<th>Biomarkörer</th>
<th>Effekt**</th>
<th>FMD (%)</th>
<th>CRP</th>
<th>IL</th>
<th>EPC/ CAC</th>
<th>sNOX2-dp</th>
<th>ICAM-1</th>
<th>Isoprostaner</th>
<th>ASI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grönt te</td>
<td>Akut 1</td>
<td>+3,7</td>
<td>X1</td>
<td>X1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korttids 2</td>
<td>+2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Långtids 3</td>
<td>+4,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korttids 4</td>
<td>+1,2-2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svart te</td>
<td>Akut 5</td>
<td>+0,8-1,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kakao, Choklad</td>
<td>Akut 6</td>
<td>+*6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Långtids 7</td>
<td>+1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Långtids 8</td>
<td>+3,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Akut 9</td>
<td>+*9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGKG</td>
<td>Akut 10</td>
<td>+1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korttids 10</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Värde anges inte i artikeln.
**Effekter: Akut= 1-24 timmar, Korttids=1-7 dagar, Långtids=1-4 veckor.

Grönt te och endotel-dysfunktion
Grönt te har i många studier visat förbättrat endotelberoende vasodilatation, i och med signifikanta förbättringar av bl.a. FMD (Alexopoulus et al., 2007; Kim et al., 2006). Grönt te innehåller många gånger även koffein som också har en muskelavslappnande och vasodilatorisk effekt (NE 2012).

Alexopoulus et al., (2007) gav 14 friska individer 6 g grön te och mätte 30 minuter senare en korttidseffekt som visade signifikant (p<0,02) förhöjt FMD i och med tebehandlingen. För att studera effekten av koffeinmängden i det specifika teet, mätte Alexopoulus et al., (2007) även korttidseffekten 30 minuter efter intag av 126 mg koffein. För koffein ensamt fanns ingen signifikant (P=NS) förändring av FMD och inte heller IL eller CRP visade någon signifikant effekt i samband med te (Alexopoulus et al., 2007).

Kim et al., (2006) gav 20 unga friska rökare 8 g grön te/ dag och mätte två veckor senare signifikant (p<0,001) förhöjt FMD. Odlade cellkulturer behandlades dagligen med 8 g grön te i två veckor och visade en signifikant (p<0,001) förhöjning av antalet EPC, vilken signifikant (p=0,013) korrelerade med förhöjningen av FMD (Kim et al., 2006).

Svart te och endotel-dysfunktion
Duffy et al. (2001) gav 50 CAD-patienter, 450 ml svart te och mätte korttidseffekten efter två timmar, varpå försökspersonerna dagligen, i fyra veckor gavs de sedan även 900 ml svart te, för att mäta en långtidseffekt. I sin studie fann Duffy et al., (2001) både en kort- och en långtidseffekt vilka både två signifikant förbättrar FMD jämfört med vatten (p=0,001). För att studera korttidseffekten den koffeinmängd som funnits i det specifika teet, utförde Duffy et al.
(2011) även mätningar två timmar efter intaget 200 mg koffein och fann då, ingen signifikant förbättring av FMD (p=0,86). Blodprover togs även vid båda mätningarna, vilka visade att det även fanns kort- och långtids effekter för plasmakoncentrationen av K, vilka vid båda tillfällen signifikant (p=0,05) förhöjdes (Duffy et al., 2011). Den antioxidativa kapaciteten i plasma visade tendens att öka (P=0,09), då den mättes som ORAC och FRAP (Duffy et al., 2001).

Grassi et al. (2009) gav dagligen 19 friska individer, 100 mg (mindre än en kopp te), 200 mg, 400 mg och 800 mg svart te, varpå effekten mättes efter en vecka, då signifikanta (100 mg: p=0,0113, 800 mg: p=0,0001) förhöjningar av FMD fanns, vilka även visades vara dosberoende, då signifikanta skillnader även fanns mellan förbättringen vid 800 mg jämfört med den vid 100 mg (p=0,0121) såväl som mellan 100 mg jämfört 200 mg (p=0,0275) (Grassi et al., 2009). Även ASI visades signifikant (P=0,0519) minska (Grassi et al.,2009).

Kakao, choklad och endotel-dysfunktion
Kakaodryck har i ett flertal studier visats förbättra den endotelberoende vasodilateringen (Monahan et al., 2011; Balzer et al., 2008; Heiss et al., 2010; Monahan et al., 2011; Schroeter et al., 2006). Men kakao innehåller som kännt även den muskelavslappnande och vasodilatoriska föreningen, theobromin (NE, 2012)

Monahan et al., (2011) gav 23 friska äldre vuxna kakaodryck innehållandes 0 g, 2 g, 5 g, 13 g och 26 g kakao, varpå korttidseffekten mättes efter 1 och efter 2 timmar. Drycker innehållandes 5 g, 13 g och 26 g kakao visades signifikant (p<0,05) förhöjt FMD och dosberoende, varav den största förbättringen sågs två timmar efter intaget dryck med 26 g kakao (Monahan et al., 2011). Blodprov visade att den totala mängden EK i plasma ökade och att ökningarna korrelerade signifikant (P<0,05) med mängden kakao i respektive dryck (Monahan et al., 2011).

Schroeter et al. (2006) mätte på 10 friska, vuxna män korttids-effekten av en lågflavanhaltig- och en högflavanhaltiga dryck, bestående av vatten och chokladpulver innehållandes 37 mg respektive 917 mg flavanoler. FMD mättes en gång i timmen under fyra timmar, varpå Schroeter et al. (2006) visade att den högflavanhaltiga drycken gav maximalt och signifikant (p<0,05) förhöjt FMD efter två timmar. Koncentrationen av EK i blodet var signifikant (P<0,01) förhöjt under den tredje timmen. Kemiskt renat EK studerades också av Schroeter et al. (2006) och 2 mg kemiskt renat EK per kilo vatten visade också signifikant (P<0,05) förhöjt FMD. På tre av försökspersonerna upprepade försöket med den högflavanhaltiga drycken, men dessa gång tillfördes även L-MMNA, varpå ett signifikant (P<0,01) reducerat FMD-värde erhölls efter de två timmarna (Schroeter et al., 2006), vilket visar att den tidigare positiva effekten beror av mängden NO och att effekten då eNOS inhibiteras av L-MMNA (Schroeter et al., 2006).

Balzer et al. (2008) studerade på 10 medicinerade diabetiker, både akut effekt och långtidseffekt av kakaodryck. Den akuta effekten ingick i en genomförbarhetsstudie och mättes två timmar efter ett intag av kakaodryck, innehållandes 963 mg flavanoler respektive 25 mg flavanoler, kontröldrycken. I genomförbarhetsstudien hade försökspersonerna ombetts att exkludera typiska flavanolrika livsmedel ur kosten, en tid innan studien, i syfte att bl.a. kontrollera studiens säkerhet (Balzer et al., 2008). Den akuta effekten av kakaodrycken med 963 mg flavanoler gav en signifikant (P<0,001) förhöjt FMD, medan kontröldrycken inte gav någon signifikant (P=NS) förändring (Balzer et al., 2008). Långtidseffekten däremot, ingick i en effektivitetstudie där försökspersonerna ombetts att fortsätta med sin vanliga kost, inklusive typiska flavanolrika livsmedel, i syfte att mäta den totala effekten (Balzer et al., 2008). Långtidseffekten mätte Balzer et al., (2008) 30 dagar efter dagligt intag av kakaodryck
innehållandes 963 mg flavanoler, tre gånger om dagen och, efter samma mönster för kontrolldrycken med 25 mg flavanoler. Långtidseffekten gav signifikant (P<0,0001) förhöjt FMD, medan kontrollen inte gav någon signifikant förhöjning, jämfört med före interventionen (Balzer et al., 2008). Den endotel-oberoendevasodilateringen mättes efter applicering av 400µg GTN och visade ingen signifikant (P=NS) förändring av FMD, varken mellan dagarna eller mellan de olika interventionerna (75 mg:8,4%; 371 mg: 8,3%; 963 mg:8,1%) (flavanolkoncentrationerna) (Balzer et al., 2008).

Heiss et al. (2010) gav 16 CAD-patienter två gånger om dagen i 30 dagar, en högflavanolhaltig kakaodryck (hfk) med 375 mg flavanoler, varav EK 59 mg och K 6 mg (dimers 53 mg, trimers-decamers 258 mg) och en lågflavonolkakaodryck (lfk) med 9 mg flavanoler, varav EK 1 mg och K 2 mg (dimers 2 mg, trimers-decamers 3 mg) i syfte att studera dessa långtidseffekter. Både lfk och hfk visade efter 30 dagar signifikant (P<0,001) förhöjd FMD jämfört med innan interventionen, en ökning som sommanföll med en signifikant (P<0,001) ökning av antalet cirkulerande CACs (Heiss et al., 2010).

Loffredo et al. 2011 studerade 20 rökare och 20 friska icke-rökare och den akuta effekten (två timmar) av 40 gram mörk choklad (>85% kakao), respektive 40 gram mjölkchoklad (≤35% kakao). 40 g mörk choklad resulterade i en signifikant förhöjd FMD och signifikant reducerad NADPH-aktivitet (i.o.m. reducerad mängd soluble NOX2 derived peptide, sNOX2-dp) och isoprostaner hos de 20 rökarna, medan hos de friska, icke-rökarna ingen signifikant förändring kunde ses, varken vad häller, FMD, isoprostaner eller sNOX2-dp (Loffredo et al., 2011). Ingen av nämnda biomarkörer visade någon förändring av 40 g mjölkchoklad (Loffredo et al., 2011). FMD visades ha en invers korrelation med sNOX2-dp, vilket betyder att ju högre den endotelberoende vasodilateringen är ju lägre är NADPH-aktiviteten (Loffredo et al. 2011). Redan före studien hade rökarna lägre FMD, högre NADPH-aktivitet och högre utsöndring av isoprostaner (Loffredo et al., 2011).

Kemiskt renat EGKG (kosttillskott) och endotel-dysfunktion

Widlansky et al. (2007) gav 42 CAD-patienter en kapsel á 300 mg kemiskt renat EGKG, framtaget som ett kosttillskott och studerade dess akuta effekt (två timmar), varpå även korttidseffekten av två kapslar á 150 mg per dag, under två veckor studerades. Den akuta effekten innebar ett signifikant (P=0,01) förhöjt FMD, medan korttidseffekten inte gav någon signifikant (P=0,12) effekt (Widlansky et al., 2007). CRP, CAC och ICAM-1 visade inte några signifikanta förändringar varken akut eller på kort sikt (Widlansky et al., 2007).

9.2 OBSERVATIONSSSTUDIER

Observationsstudier avseende samband mellan flavan-3-oler och endotel-dysfunktion specifikt, är svårfunna, däremot finns det studier avseende samband mellan flavan-3-olrika livsmedel och riskfaktorer för endotel dysfunktion, så som diabetes och hjärt och kärlsjukdom (Jacques et al., 2013; Sesso et al., 1999; Janszky et al.,2009).

Flavan-3-oler och typ 2 diabetes

Diabetes innebär också ofta endotel-dysfunktion (Balzer et al., 2008). Jacques et al. (2013) studerade i en kohortstudie samband mellan intag av olika flavonoida klasser och risk för typ 2 diabetes (t2d). Under en uppföljningstid på i snitt 11,9 utvecklade 2915 deltagare i Farmingham Offspring kohorten t2d (Jacques et al., 2013). De var vid rekrytering mellan 1991-2008 fria från t2d (Jacques et al., 2013). Harvards semikvantitativa frågeformulär (en lista med livsmedel och deras standardserverings-portionsstörelt samt med nio frekvenskategorier beståendes av, aldrig eller <1 till ≥6 serveringar per dag) användes för att
samlas in uppgifter om deltagarnas kostvanor (Jacques et al., 2013). USDAs databas användes sedan för att räkna ut flavanoidinnehållet i kosten (Jacques et al., 2013). Efter multivariabla justeringar av data och tidsberoende analys fann Jacques et al. (2013) att flavan-3-oler kunde kopplas till en lägre risk för t2d, d.v.s. ett 2,5-faldigt högre intag av flavan-3-oler kunde (marginellt) kopplas en 11% lägre förekomst av t2d (P-trend=0,06) och ett 2,5-faldigt högre intag av flavonoler kunde kopplas till 26% lägre förekomst av t2d (P-trend=0,003), medan övriga flavanoid-klasser inte visade något samband till t2d.

Te och hjärtinfarkt
Hjärt- och kärlsjukdommar såsom hjärtinfarkt föregås ofta av endotel-dysfunktion (Brown & Hu, 2001). Sambandet mellan tedrickande och risk för hjärtinfarkt studerades av Sesso et al. (1999) i en fall-kontrollstudie, vilken utgick 340 fall (från Boston Area Health Study) vilka varit med om sin första diagnostiserade hjärtinfarkt (för varje fall användes en kontroll, fri från hjärtinfarkt och kärlkram). Frekvensformulär avseende kostintag för det senaste året och information om typiska riskfaktorer för hjärtinfarkt, t.ex. rökning och kolesterolnivå samlades in (Sesso et al., 1999). Fall och kontroller delades upp i fyra kategorier av tedrickande d.v.s, icke-tedrickare, 1-3 koppar per månad, 1-6 kuppar per vecka och ≥1 kopp per dag (Sesso et al., 1999). Det visades sig att det var äldre och de som rökte mindre som drack mest te (P<0,05 för båda) och hade bättre kolesterolvärden (P=0,059), d.v.s. högre HDL-nivåer jämfört med de som drack minst te (Sesso et al., 1999). Risken för hjärtinfarkt var signifikant (P=0,012) lägre hos tedrickare som drack >1kopp/dag (24,9% av fallen och hos 32,0% av kontrollerna) jämfört med icke-tedrickare, då jämförelsen gjordes oberoende av kända riskfaktorer för hjärtinfarkt och lipidnivåer (Sesso et al., 1999).

Choklad och plötslig död i hjärtinfarkt
Janszky et al. (2009) studerade samband mellan chokladintag och dödlighet till följd av hjärtinfarkt, i en befolkningsbaserad (Stockholm Heart Epidemiology Programme) kohortstudie där man foljde 1051 icke-diabetiker vilka under åren 1992-1994 besökt sjukhus i Stockholms län, Sverige i samband med att de överlevt sin första bekräftade hjärtinfarkt. Information om deltagare samlades in via ett standardiserat frågeformulär avseende det senaste årets kostvanor och, hälsokontroll utfördes i syfte att kartlägga specifika riskfaktorer för hjärtinfarkter (Janszky et al., 2009). Prevalensen bland deltagarna avseende -hypertonii, stillassittande livsstil och låg utbildning visades vara lägre vid högre chokladintag (Janszky et al., 2009). Ett invert, dosberoende samband mellan chokladintag och hjärtinfarkt dödlighet fanns både då data justerats avseende ålder och kön (P=0,02) och då data justerats för andra karaktäriskt variabler (P=0,96), medan det inte fanns något samband mellan andra sötsaker och risk för hjärtinfarkt (Janszky et al., 2009). I slutet av sin rapport nämner Janszky et al. (2009) i sin diskussion att sambandet mellan chokladintag och hjärtinfarkt dödlighet eventuellt skulle kunna bero av antingen de stearinsyror eller av de flavanoida antioxidanter som finns i chokladen.

10 DISKUSSION

Att göra jämförelser mellan studier avseende flavan-3-oler och endotel-dysfunktion kan upplevas spretigt och svårt i och med att det inte finns någon standardiserad metod för utförandet av dessa Studier och karaktärer av olika livsmedel, därför skiljer sig livsmedel som används vid varje enskild studie åt, bl.a. avseende agrara förhållanden, process och lagerförhållanden, därmed också på halterna av bioaktiva flavanoider. Metodiken skiljer sig
mellan studierna avseende val och av och antal av både försökspersoner och kontroller och vilken typ av och information samlas in från dessa och, bearbetningen av data med t.ex. val av olika signifikansnivåer. Effekter av samtliga ingredienser i livsmedlets matris bör vägas in och särskilt av t.ex. koffein/thein, theobromin och alkohol, vilket flertalet studier försökt göra, men även för detta saknas ett gemensamt utförande. En mer standardiserad modell för tillvägagångssätt vid mätningar av flavan-3-oler i livsmedel och val av passande metodik skulle göra jämförelser mellan studier enklare, samt skulle slutsatserna av dessa jämförelser få högre kvalitet. USDA:s databas över flavanoidhalter i valda livsmedel har bidragit till att det idag är betydligt enklare att beräkna innehållet av de olika flavanoiderna, deras subgrupper och specifika föreningar i olika livsmedel. Databasen har också bidragit med säkrare värden, då varje medelvärde baseras på flera studier. Den ökade säkerheten har lett till att Hertogs förslag (1994) om att det dagliga intaget per person på 1 gram flavanoider per dag, idag alltmer anses vara ett alldeles för högt värde. I den här studien nämns och jämförs p.g.a. nödvändiga avgränsningar endast ett antal biomarkörer för endotel-dysfunktion, men flertalet studier har även testat flera biomarkörer för endotel-dysfunktion, som t.ex. diastoliskt och systoliskt blodtryck och artärdiameter. Framtida studier kommer förhoppningsvis att kunna ge en klarare bild av hur och om personer med endotel dysfunktion, t.ex. CAD-patienter kan tänkas rekommenderas att komplettera sin medicinering med eventuella kosträdd gällande flavan-3-olrika livsmedel och även att kunna ge en klarare bild av vilka effekter flavan-3-olerna har och om det går att komma fram till något rekommenderat dagligt intag.

11 SLUTSATS

Utifrån studierna som den här rapporten baserar sig på går det att dra slutsatsen att flavan-3-olrika livsmedel verka ha en positiv effekt på endotelet och att flavan-3-oler per se kan ligga bakom reducerad endotel-dysfunktion (Alexopoulos et al., 2007; Kim et al., 2006; Duffy et al., 2001; Grassi et al., 2009; Monahan et al., 2011; Shcroeter et al., 2006; Balzer et al., 2008; Heiss et al. 2010). Vissa flavan-3-olrika livsmedel har även på ett positivt sätt visats påverka de inflammatoriska biomarkörerna EPC/CAC (Kim et al., 2006; Heiss et al., 2010), sNOX2-dp (Wiedlansky et al., 2010), isoprostaner (Loffredo et al., 2011) och ASI (Grassi et al., 2009), medan CRP, IL och ICAM visats opåverkade. Dosberoende förbättringar (för FMD) har setts vid konsumering av (procyanidinrikt d.v.s. oligomera flavan-3-oler) svart te (Grassi et al., 2009), kakaodryck (Monahan et al., 2007) Observationsstudier visar att intag av flavan-3-olrika livsmedel och beräknat intag av flavan-3-oler kunde kopplas till en lägre risk för typ 2 diabetes (Jacques et al., 2013), signifikant lägre risk för hjärtinfarkt (Sesso et al., 1999; Janszky et al., 2009).

12 TACK!

Ett stort tack till min handledare, Rikard Landberg för all hjälp under arbetets gång!

Loffredo et al. (2011) NOX2-mediated arterial dysfunction in smokers: acute effect of dark chocolate. Heart 97, 1776-1781

Elektroniska

