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Abstract 

The Swedish boreal forests are limited by nitrogen (N) availability. While biological N2 

fixation by cyanobacteria hosted by pleurocarpous feather mosses are important sources of N 

input to natural boreal forest ecosystems, little is known about the patterns of N2 fixation in 

silvicultural systems. This study investigates the biological N2 fixation rates of two boreal 

feather moss species (Pleurozium schreberi and Hylocomium splendens) along a 

chronosequence from clear-cut to mature forest, as well as the vegetation characteristics along 

the chronosequence. Measurements and samples were collected from 32 forest sites that were 

classified into four age classes (clear-cut, pre-commercially thinned, thinned and mature 

forest). The sites were located near the city of Arvidsjaur in northern Sweden. Moss, dwarf 

shrub and grass biomass were determined at each forest site and gametophytes of P. schreberi 

and H. splendens were collected for acetylene reduction analysis. The results showed that the 

biomass of P. schreberi was significantly higher in pre-commercially thinned and thinned 

stands than in clear-cuts while H. splendens had a much lower biomass that did not change 

over time. The total N2 fixation rate varied between 0.1-1.4 kg N2 ha
-1

 yr
-1

 and was highest in 

pre-commercially thinned and thinned stands. The results from this study shows that naturally 

occurring biological N2 fixation vary manifold across managed forest stands. It also suggests 

that forest management can be used as a tool to modify biological N2 input to N limited 

silvicultural systems, although further studies will be needed to determine its impact on soil 

fertility and effectiveness in supporting tree growth.   

 

Keywords: Boreal forest, nitrogen fixation, feather moss, Pleurozium schreberi, Hylocomium 

splendens, cyanobacteria, acetylene reduction, Sweden 
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Sammanfattning 

De svenska boreala skogarna är kvävebegränsade. Det är känt att biologisk N2 fixering utförd 

av cyanobakterier med pleurokarpa mossor som värdar, är viktiga källor för kvävetillförsel i 

boreala skogsekosystem. Men det finns mycket lite kunskap om N2 fixering i brukade skogar.  

Denna studie undersöker kvävefixeringen hos de två boreala mossarterna Pleurozium 

schreberi (väggmossa) och Hylocomium splendens (husmossa) längs med en kronosekvens 

från kalhygge till fullvuxen skog. Utöver kvävefixeringen beskrivs även 

vegetationskarakteristiska längs kronosekvensen. Vegetationsprover samlades in från 32 

lokaler längs kronosekvensen som klassificerats i fyra åldersklasser (hygge, röjningsskog, 

gallringsskog och fullvuxen skog). Lokalerna var belägna nära Arvidsjaur i norra Sverige. 

Mängden biomassa hos mossa, bärris och gräs samlades in och bestämdes på varje lokal.  Och 

gametofyter från P. schreberi och H. splendens samlades in för acetylen reduktionsanalys. 

Resultaten visade att P. schreberi var mer vanligt förekommande i röjnings- och gallringsskog 

än på hyggen medan H. splendens hade en mycket lägre biomassa som inte förändrades längs 

med kronosekvensen. Den totala kvävefixeringen varierade mellan 0,1-1,4 kg N2 ha
-1

 yr
-1

 och 

var högst i röjnings- och gallringsskog. Resultaten från denna studie visar att naturligt 

förekommande N2 fixering varierar mångfaldigt mellan brukade skogsbestånd. De indikerar 

också att skogsskötsel kan användas som ett verktyg för att modifiera biologisk kvävetillförsel 

till kvävebegränsade och brukade skogsekosystem. Dock behövs det fortsatta studier för att 

klargöra dess påverkan på markens bördighet och förmåga att gynna trädens tillväxt.      

 

 

Nyckelord: Boreal skog, kvävefixering, Pleurozium schreberi, Hylocomium splendens, 

cyanobakterier, acetylen reduktion, Sverige 
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1 Introduction 

1.1 Boreal forests 

Northern Sweden is part of the northern coniferous forest or the boreal forest. Boreal forests 

are characterised by a low monthly average temperature, low annual precipitation (Townsend 

et al., 2008) and cover 33% of the world’s landmass (Sands, 2007). The plant diversity is low 

compared to most other forest biomes due to that areas occupied by boreal forests were 

covered in ice during the last ice age (Townsend et al., 2008). In Sweden the two dominating 

coniferous tree species are Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) 

(Wigrup, 2012) while the ground vegetation is commonly dominated by ericaceous dwarf 

shrubs, lichen and bryophytes (SLU, 2011). Two very common bryophyte species are the 

feather mosses Pleurozium schreberi and Hylocomium splendens which in 2005 covered 

approximately 2500 and 1400 m
2
/ha respectively, of productive Swedish forests (SLU, 2011). 

The northern boreal forest has two main types of natural disturbance; forest fire and wind 

(Sands, 2007), but the major disturbance is caused by humans in the form of silviculture.   

 

1.2 The role of nitrogen in boreal forests 

Most boreal forest ecosystems are strongly limited by nitrogen (N) and an increase of 

available N often results in increased productivity (Tamm, 1991) since N is an important 

component of proteins, amino- and nucleic acids (Campbell & Reece, 2005). It is assumed 

that this limitation is caused by slow mineralisation of soil organic N (Näsholm et al., 1998). 

The main biological input of N into the boreal ecosystem is through N2 fixation where 

atmospheric N2 is transformed by diazotrophs into forms that can be utilised by plants (Brady 

& Weil, 2008). A majority of the N2 uptake in terrestrial ecosystems occur through symbiotic 

biological N2 fixation (Brady & Weil, 2008). Symbiotic N2 fixation has mainly been 

associated with primary or early secondary successional stages (Rastetter et al., 2001) and it 

has for long been thought that boreal forests lack wide-spread N2 fixing plants (Tamm, 1991). 

However, it was recently discovered that both P. schreberi and H. splendens occupying late 

fire-successional sites host large populations of N2 fixing cyanobacteria (DeLuca et al., 2002; 

Gundale et al., 2012; Lagerström et al., 2007; Zackrisson et al., 2009).   

 

1.3 Cyanobacteria and nitrogen fixation of feather mosses 

A range of different species of epiphytic cyanobacteria have been found on P. schreberi and 

H. splendens (DeLuca et al., 2002; Gentili et al., 2005; Ininbergs et al., 2011). The identified 

species of cyanobacteria include multiple strains of Nostoc sp., Calothrix sp. and Stigonema 

sp. as well as Cylindrospermum (DeLuca et al., 2002; Gentili et al., 2005; Houle et al., 2005; 

Zackrisson et al., 2009; Ininbergs et al., 2011). It is suggested that N2 fixation rates of feather 

mosses are affected by various environmental factors such as moisture and N availability 

(Gundale et al., 2009, 2012; DeLuca et al., 2008; Jackson et al., 2010), and that changes in 

moisture availability has a larger impact on N2 fixation in old forests compared to that in 

young forests (Gundale et al. 2009). The addition of anthropogenic N reduces fixation rates 

(Ackermann et al., 2012; Sorensen et al., 2012). N2 fixation rates can also vary greatly with 

temperature and light intensity. Gentili et al. (2005) and Gundale et al. (2012) showed that 

optimal temperatures for fixation are cyanobacterial specific, implying that this could be an 
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effect of the physiological differences between different moss species and their associated 

cyanobacteria.  

 

1.4 Forest management practises and its impact on ground layer vegetation 

The Swedish forests are often managed for wood production. The conventional way of forest 

management is clear-cut followed by scarification and planting, when the forest is established 

most stands will be thinned at least a couple of times (Albrektson et al., 2012).  In 2011, 

942 000 ha out of Sweden’s 22.5 million ha of productive forest land was either clear-cut, 

thinned or pre-commercially thinned (Wigrup, 2012). These management practises have a 

significant impact on the diversity and composition of understory plant communities 

(Bergstedt & Milberg, 2001). For example; Vaccinium myrtillus, the most dominant species in 

the field layer has been reported to decrease in abundance after clear-cutting while grasses 

increase or benefit from the open environment created by clear felling (Atlerim & Sjöberg, 

1996; Bergstedt & Milberg, 2001). Clear-cut stands have also been found to have a lower 

moss cover compared to unmanaged forest (Uotila & Kouki, 2005).  

 

1.5 Current knowledge 

It was known for decades that N2-fixing cyanobacteria are associated with mosses in subarctic 

wetland and polar ecosystems (Granhall & Selander, 1973; Christie, 1987; Chapin et al., 

1991). However, in 2002 DeLuca et al. reported on a previously unknown association 

between the boreal feather moss Pleurozium schreberi and the epiphytic cyanobacteria Nostoc 

sp. Since then a number of studies have explored this association as well as made new 

findings of several other feather moss species associated with cyanobacteria. However, all 

these studies were conducted in forests uninfluenced by modern forest management (DeLuca 

et al., 2002, 2007; Gentili et al., 2005; Zackrisson et al., 2004, 2008; Gundale et al., 2009, 

2010, 2012; Ackermann, 2012). In Sweden, about 20 million ha of productive forest land is 

managed (Wigrup, 2012) and little is known of how conventional forest management affect 

N2 fixation of boreal feather mosses.       

 

1.6 Goal & aim 

The goal of this thesis was to examine the longer-term (0-42 years) effects of clear-cutting on 

the occurrence and N2 fixation rates of feather mosses, and in this way determine whether N 

input to boreal forests through feather mosses changes with time following traditional forestry 

operations. For this work, a gradient of 24 production forest sites representing a 42 year old 

chronosequence generated by increasing time since clear-felling, and another eight sites 

consisting of 100-year old forests was used. The following two specific questions were asked: 

1) How do the occurrence and N2 fixation rates of Pleurozium schreberi and 

Hylocomium splendens change with time after clear-cutting?   

2) What is the relative contribution of each moss species to overall N input since clear-

felling? 

In addition, the intention was to characterize the tree and understory vegetation along this 

chronosequence because these factors may have a role in controlling feather moss abundance 

and N2 fixation rates.  
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The ultimate aim of this work is to provide fundamental knowledge that should enhance our 

understanding about how production forests impact on N2 fixation rates of boreal feather 

mosses, and yield new insights as to how forest management practises can lead to N input of 

boreal forests.  

 

2 Material & Methods 

2.1 Study area 

The study was conducted in the northern boreal forest zone, near the city of Arvidsjaur 

(65°35′N; 19°10′E) in northern Sweden (Figure 1). This area is part of the Baltic shield and 

dominated by acid intrusive rocks such as granite or 

acid volcanic rock such as rhyolite (SGU). Its’ 

climate is classified as Dfc (cold, without dry 

season, cold summer) according to the Köppen-

Geiger climate classification (Peel et al., 2007) with 

an annual (1961-2011) average temperature of 0.2C 

and annual precipitation of 644mm (of which 40% 

falls as snow) (SMHI, 2013-04-11). Logging on a 

commercial scale around Arvidsjaur begun in the 

middle of the 19
th

 century but it was mostly 

dimension cutting where the largest trees would be 

removed first, followed by repeated logging of trees 

in decreasing sizes (Holmgren, 1959). Today, the 

dominating forest management is clear-cutting 

followed by soil scarification, regeneration, pre-

commercial thinning and thinning (Albrektson et al., 

2012). 

 

2.2 Site selection 

Within this area 32 forest sites were selected, and of 

which 24 sites were clear-cuts and 8 sites consisted of mature forests. All sites were located 

on land owned by Sveaskog, situated between 380 and 530 meters above sea level on the 

same sandy silt glacial soil type and were classified as bilberry (Vaccinium myrtillus) 

vegetation type sites (Hägglund & Lundmark, 2004). The sites were classified into four 

different age classes, depending on the time since clear felling; sites that were recently clear-

cut (0-6 years ago), sites that were cut 12-19 years ago (pre-commercial thinning stands), 

those that were cut 26-42 years ago (thinning stands) and those that have not been cut over the 

last 100 years (mature forest) (Figure 2). All sites represent typical stages of production 

forests found in Sweden. There were eight sites within each age group where each site 

represented an independent replicate. The tree layer in the mature forest (>100 yrs) consisted 

of a mixture of Pinus sylvestris and Picea abies while all of the other sites were planted with 

P. sylvestris. 

 

 

Figure 1 Map over Sweden, with 

the rectangle indicating the 

approximate study area.  
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2.3 Recording of vegetation variables 

All sampling took place August 27
th

 – 31
st
 2012. For each forest site, average tree height and 

number of stems per hectare was quantified by recording the height of all trees and the 

number of tree stems in each of  three random circular plots (r=5.64) covering an area of 

100m
2
 per site. At each site, another 20 plots (each 50x50cm) over an area of approximately 

2500m
2
 were randomly established. In each of these plots, the cover of each of the ericaceous 

dwarf shrubs (Vaccinium myrtillus, Vaccinium vitis-idea, Empetrum hermaphroditum), 

grasses (Deschampsia flexuosa) and feather moss species were recorded with the Braun-

Blanquet visual estimation method (Poore, 1955) (Figure 3). From these values, mean cover 

for each species per site was calculated. For ten of these plots, a 25x25cm sub-plot was 

established in the plot center and the biomass of shrubs and grasses was recorded by 

collecting all alive, above ground plant tissue. The samples were sorted by species, dried for 

48 hours at 70C and weighed, and later used for calculating mean biomass per species and 

forest site. In addition, for each of these ten plots, the moss biomass was also recorded by 

gathering all mosses within a circular sample plot with a radius of 5.1 cm at the plot centre 

(Figure 3). The mosses were sorted by species, dried for 48 hours at 70C and weighed. The 

weights were then used to calculate biomass per species per m
2
.  

 

Figure 2 Pictures of study sites showing: A) a clear-cut, B) a pre-commercial thinning, 

C) a thinning and D) a mature forest site. 

A B 

C D 
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2.4 N2 fixation analysis 

Sampling of feather mosses for acetylene reduction analysis was conducted in each of the ten 

sub-plots (see section 2.3) across the chronosequence to assess N2 fixation rates. In each sub-

plot, five gametophytes of H. splendens and ten of P. schreberi were randomly collected from 

as close to the sample plot centre as possible. Only the upper 2.5cm of the moss shoot was 

collected since most of the fixation occurs there (DeLuca et al., 2002). The gametophytes 

were placed in glass vials, with one vial for each plot and species (Figure 3). The samples 

were then transported to the laboratory and stored in moist conditions in a climate chamber at 

20-13 °C (day:night), and 20 h of light and 4 h of darkness for 5-7 weeks until analysis. Prior 

to analysis each vial was sealed, 2ml of air was removed and 2ml of acetylene gas was 

injected into the vials 13h and 15min before they were run through the gas chromatograph. 

After the run, the samples were dried for 48h at 70C and then weighed to determine the 

amount of mg N2 fixed kg
-1

 moss d
-1

 for each moss species (Lagerström, 2007). In order to 

estimate N2 fixation rates on a landscape basis, these values were upscaled to kg N2 fixed ha
-1

 

Figure 3 Photograph of a plot used to calculate understory vegetation cover and biomass 

on a clear-cut site. The outer blue square depict the 50x50cm plot for measuring coverage 

(n per site=20), the inner red square the 25x25cm sub-plot for collecting shrub and grass 

biomass (n=10), and the  yellow circle (r=5.1cm) the sub-plot for collecting moss biomass 

(n=10). The blue Styrofoam holds glass vials with feather mosses collected from the plot 

centre (n= 10) used for acetylene reduction analysis. 

 



9 

 

yr
-1 

by using the moss biomass present at each stand and a growth period of 200 days 

following Lagerström (2007).  

 

2.5 Statistics 

In order to test for how chronosequence stages differed in the presence of different dwarf 

shrubs, grasses and feather mosses, and N2 fixation rates a number of statistical tests were 

performed. First, to test the difference between the total biomass of mosses, dwarf shrubs and 

grasses a Kruskal-Wallis test together with Scheffe’s post-hoc tests was used. Secondly, moss 

biomass data collected from each site was tested with two-way ANOVA and Tukey post-hoc, 

using age class and species as main factors. Third, to test for the variation within each species 

across the chronosequence, a one-way ANOVA and Tukey post-hoc test was performed to 

identify the significant differences. Biomass values of the mosses were square root +1 

transformed, while shrub and grass biomass values were transformed by LOG10 to meet the 

requirements of normality. Finally, to test for the effect of chronosequence on rates of N2 

fixation per unit moss weight and per unit land area, non-parametric Kruskal-Wallis test with 

a Scheffe’s post-hoc test was used for both P. schreberi and H. splendens, because the N2 

fixation data was not normal distributed and could not be transformed to meet the normal 

distribution requirements. ANOVA tests and the Tukey post-hoc test for ground vegetation 

biomass were done in Minitab 16. The Kruskal-Wallis tests and the Scheffe’s post-hoc tests 

were done in IBM SPSS Statistics 19. For all analyses, individual forest sites served as the 

unit of replication, with a sample size of 8 for each of the four age classes. 
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3 Results 

3.1 Vegetation characteristics along the chronosequence 

A general description of the vegetation characteristics of each of the forest sites along the 

chronosequence is provided in Table 1. Typically, grasses (D. flexuosa) was mainly found on 

recently cut sites (0-6yrs), V. vitis-idea and E. hermaphroditum on pre-commercially thinned 

(12-19yrs) and thinned sites (26-42yrs) and V. myrtillus on thinned and mature forest sites 

(>100yrs).  The moss cover of P. schreberi and H. splendens was lowest on clear-cut sites. 

The number of tree stems was highest on clear-cut sites with 1791 stems/ha and lowest on 

mature forest sites with 525 stems/ha. Meanwhile, the tree height was highest in the mature 

forest and lowest on newly planted clear-cuts. 

 

- 

 

Age class  

(yrs after felling) 

 

0-6 12-19 26-42 >100 

Management  

classification 

 

Clear-cut Pre-commercial thinning Thinning Mature 

Mean 

elevation (m) 

 

426 443 473 439 

P. sylvestris 

density  

(stems/ha) 

 

1791±163 1645±155 1078±97 525±57 

P. sylvestris  

tree height 

(cm) 

 

24±4 271±26 684±58 1725±37 

Moss cover 

(%) 

Pleu 28±6 40±3 39±4 36±5 

Hylo 6±2 9±2 12±3 22±5 

Shrub and 

grass 

 cover (%) 

Vm 18±2 31±2 40±5 56±2 

Vvi 20±3 27±2 28±2 22±2 

Emp 12±31 27±5 22±4 10±3 

Desch 27±3 14±3 14±2 6±1 

Pleu=Pleurozium schreberi, Hylo=Hylocomium splendens, Vm=Vaccinium myrtillus, Vvi=Vaccinium vitis-idea, 

Emp=Empetrum hermaphroditum, Desch=Deschampsia flexuosa 

 

When the vegetation characteristics of the chronosequence was described by using plant 

biomass (g m
-2

), the biomass of the three plant functional groups (mosses, dwarf shrubs and 

grasses) all differed significantly from each other (F=59.308, p=0.000) with dwarf shrubs 

having the overall highest biomass across the chronosequence (Figure 4). Total shrub biomass 

was significantly lower in the clear-cut sites compared to the older stages of the 

chronosequence (F=7.72, p=0.001). In contrast to the mosses and shrubs, which were more 

abundant on sites older than 12 years, the grass D. flexuosa had its highest biomass on the 

younger clear-cuts and it decreased significantly with increasing time since clear-felling 

(F=18.29, p=0.000) (Figure 4). Two-way ANOVA test performed on age class and moss 

species showed an interaction (Table 2) because the total moss biomass on the clear-cuts were 

Table 1 Vegetation characteristics of the study sites. Data are means ± SE.     



11 

 

lower than in the pre-commercial thinning and thinning sites, but the difference was non-

significant compared to the mature forest sites (F=4.99, p=0.007) (Figure 4). 

 

 
 

 

 

 

 

 

 

P. schreberi was significantly more abundant than H. splendens throughout the 

chronosequence (Figure 5, Table 3), and was significantly lower in the clear-cut stand 

compared to the other stands except for the mature forest. The amount of P. schreberi 

biomass in thinned sites was 155% higher compared to clear-cut sites. For H. splendens there 

was no change in biomass over the age classes (Table 3, Figure 5).  
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Figure 4 The effect of stand age on total mean of feather moss, shrub and grass biomass (g m
-2

). 

Mosses include P. schreberi and H. splendens, shrubs include Vaccinium myrtillus, Vaccinium 

vitis-idea and Empetrum hermaphroditum, and grasses include Deschampsia flexuosa. Upper case 

letters express significant differences between functional groups and lower case letters express 

significant differences between age classes within each plant functional group. Scheffe’s post-hoc 

test, p values are significant at =0.05. Error bars show +1 SE.  

 

Figure 5 The effect of stand age on total mean of moss biomass (g m
-2

) of P. schreberi and 

H. splendens. Upper case letters express significant difference between feather moss 

species and lower case letters express significant differences between age classes within 

species (Table 3) following Tukey’s post-hoc test.  p values are significant at =0.05. Error 

bars show +1 SE.  
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The biomass of dwarf shrubs differed significantly from each other (Figure 6) with V. 

myrtillus having the overall highest biomass and E. hermaphroditum the lowest. There was no 

significant difference in biomass between the chronosequence stands for V. vitis-idea (F=2.26, 

p=0.104) or E. hermaphroditum (F=3.03, p=0.046) while V. myrtillus was significantly lower 

on clear-cuts compared to all other sites (F=6.17, p=0.002) (Figure 6).  

 

 
 

 

 

 

 

 

3.2 N2 fixation   

There was no overall difference in N2 fixation rates per unit moss weight and day between the 

feather moss species although there was a significant effect of stand age of N2 fixation rates of 

both P. schreberi and H. splendens (Figure 7, Table 3). The mean N2 fixation rate was highest 

for both moss species in the pre-commercially thinned sites, where P. schreberi and H. 

splendens fixed 4.6 and 6.4 mg N2 kg
-1 

moss d
-1

 respectively. The fixation rates for both moss 

species were significantly lower at the other sites (Figure 7).  

 

 

 

 

               *Two-way ANOVA                    Time after felling dF=3, Species dF=1                          
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Moss biomass 

(g m
-2

)* 

N2 fixed 

(mg kg
-1

 moss d
-1

) 

N2 fixed 

(kg ha
-1

 yr
-1

) 

  F p F p F p 

Age class 4.8 0.005 23.957 0.000 12.010 0.007 

Species 100.66 0.000 3.552 0.059 5.010 0.025 

Age class x species 6.52 0.001 - - - - 

Figure 6 The effect of stand age on total mean shrub biomass (g m
-2

). Lower case letters express 

significant differences between age classes within species and upper case letters express significant 

difference between species (F=40.18; p=0.0000) following Tukey’s post-hoc test, p values are 

significant at =0.05. Error bars show +1 SE.  

Table 2 Results of two-way ANOVA test for moss biomass (g m
-2

) and Kruskal-Wallis tests run across 

moss species and across all age classes (time after felling) for N2 fixation per unit moss weight (mg 

kg
-1

 moss d
-1

) and per unit land area (g ha
-1

 d
-1

).  n=8 
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 Moss biomass 

(g m
-2

)* 

N2 fixed 

(mg kg
-1

 moss d
-1

) 

N2 fixed 

(kg ha
-1

 yr
-1

) 

 F p F p F p 

Pleurozium 6.08 0.003 16.689 0.001 16.621 0.001 

Hylocomium 2.78 0.059 10.188 0.017 1.229 0.746 

Total 4.99 0.007 13.684 0.003 15.126 0.002 

                           *One-way ANOVA                        Time after felling dF=3                                              

 

When the fixation rates of the two feather moss species was expressed on a stand aerial bases 

(e.g. as mean kg N2 per hectare and year), the highest total fixation was found in pre-

commercially tinned sites, although this was only significantly different from that in clear-

cuts and mature forests (Figure 8, Table 3). The same pattern emerged for P. schreberi which 

fixed significantly more N2 per ha and year in the pre-commercially thinned sites compared to 

clear-cuts and mature forest sites (Figure 8) and the rates were 27 times higher in pre-

commercially thinned sites compared to clear-cuts. The fixation rate per ha and year of H. 

splendens did not change with time since clear-felling  
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Figure 7 Mean N2 fixation capacities on a moss mass basis of P. schreberi and H. splendens (mg 

N2 kg
-1

 moss d
-1

) in response to stand age class. Lower case letters express significant differences 

between age classes within species (Table 3) and upper case letters express significant difference 

between species and. Scheffe’s post-hoc test, p values are significant at =0.05. Error bars show 

+1 SE.    

 Table 3 Results of Kruskal-Wallis tests run for the variable age class for each moss species 

specifically, N2 fixation per unit moss weight (mg kg
-1

 moss d
-1

) and per unit land area (g ha
-1

 d
-1

), 

and biomass (g m
-2

). One-way ANOVA test was used for biomass. Total=the added values of P. 

schreberi and H. splendens. n=8. 
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Figure 8 Effect of forest stand age on mean N2 fixation rates on a land area basis (kg N2 ha
-1

 yr
-1

) 

of P. schreberi and H. splendens and on N2 fixation rates of both P. schreberi and H. splendens 

(total). Lower case letters express significant differences between age classes within group of 

mosses (Table 3) and upper case letters express significant difference between groups and 

Scheffe’s post-hoc test, p values are significant at =0.05. Error bars show +1 SE.    
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4 Discussion 

This study is the first to provide data on biological N2 fixation of the two feather mosses P. 

schreberi and H. splendens in boreal forest sites managed for wood production, and show that 

the fixation rates are substantial in these forests. Previous studies on N2 fixation by feather 

mosses in boreal forests have only taken place in unmanaged forest stands and 

chronosequences after natural disturbances (forest fire) (DeLuca et al., 2007; Gentili et al., 

2005; Gundale et al., 2009, 2010; Lagerström et al., 2007; Markham, 2007; Zackrisson et al., 

2004, 2009). Since a vast majority of the Swedish forests are managed for wood production 

(Wigrup, 2012), it is likewise important to study the potential for N2 fixation by feather 

mosses in forests exposed to clear cutting and other methods typical for commercial forestry. 

The results emerging from this study show total N2 fixation rates between 0.1 – 1.4 kg N2 ha
-1

 

yr
-1 

, values that are  in the same range to what previously have been found in studies on 

unmanaged forests 
 
(DeLuca et al., 2002; Lagerström et al., 2007; Zackrisson et al., 2007, 

2009).  

 

Clear-cutting results in a rapid and dramatic change of the environment which might affect 

the occurrence and N2 fixation rates of P. schreberi and H. splendens. In this work, the 

occurrence (biomass) of P. schreberi was lowest in the clear-cuts but increased with time 

since felling, and was significantly higher in the pre-commercially thinned and thinned stands. 

H. splendens had a much lower occurrence than P. schreberi and the biomass did not change 

over the chronosequence. The reason for the difference between the two species is not 

studied, but P. schreberi is known to occupy a wider range of microhabitats, is more tolerant 

to stress and recovers faster from changing environmental conditions, compared to H. 

splendens (Mäkipää & Heikkinen, 2003). The N2 fixation rates on a mass basis (mg N2 kg
-1

 

moss d
-1

) did not differ significantly between the moss species, indicating that the two mosses 

are equally efficient in fixing N2. This finding contrasts with the results of Gundale et al. 

(2012) where P. schreberi fixed more than H. splendens at Time 0, and might be due to the 

fact that they kept the moss samples in a climate chamber for only one week compared to the 

present study where the moss samples were kept in the climate chamber for five to seven 

weeks prior to analysis. The longer time spent at stable environmental conditions might have 

given H. splendens a better chance to recover from the stress of changing environmental 

conditions during sampling. There was neither any significant difference in N2 fixation rates 

on an aerial basis (kg N2 ha
-1

 yr
-1

) between P. schreberi and H. splendens. This occurs despite 

the dominance of P. schreberi biomass over that of H. splendens biomass, because the two 

species had the same N2 fixation capacities on a mass basis and the difference in biomass was 

not enough to negate this. Both feather moss species had highest fixation rates in pre-

commercially thinned sites, due to the fact that these sites have the environmental conditions 

most beneficial for both the mosses and their associated cyanobacteria.    

 

When a stand is clear-cut it goes from a mature forest to an open area in a matter of days. This 

provides a rapid and radical change in environmental conditions for the ground vegetation, 

which are especially severe for mosses since they are poikilohydric and rely on atmospheric 

precipitation for water uptake (Désamoré et al., 2012). Clear-cuts experience more extreme 
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surface temperatures, more shortwave irradiance, increased wind speeds, lower humidity and 

higher soil temperature (Geiger, 1965 see Carlson & Groot, 1997; Lee, 1978 see Carlson & 

Groot, 1997; Stoutejesdijk & Barkman, 1992 see Carlson & Groot, 1997) as well as short 

term increase in N (Jerabkova et al., 2011). It has previously been suggested that light, 

temperature and moisture availability can affect N2 fixation rates (DeLuca et al., 2008; Gentili 

et al., 2005; Gundale et al., 2009, 2012; Jackson et al., 2010) and it is likely that the change of 

these factors have a negative effect on N2 fixation rates on clear-cuts. As the clear-cuts were 

forested again, the N2 fixation rates increased greatly in only a few years from clear-cuts to 

pre-commercially thinned stands. However, the fixation rates was lower for the thinned and 

mature forest stands indicating that light limitation that increases with canopy closure (Table 

1) might have contributed to these effects. It is also known from Canadian forests that high 

litter fall that deposits on the moss surface can have detrimental effects on the moss 

performance (Startsev et al., 2008). An increase in N input reduces moss density and 

abundance (Forsum, 2008). Further, nutrient availability (especially N) via canopy through 

fall or litter fall might also have down regulated fixation rates in these stands, as it is known 

that N2 fixation is sensitive to N availability (DeLuca et al., 2008). Interestingly, these 

findings contradict those of previous studies that  showed that fixation rates of feather mosses 

increases with age in natural successions after fire (Gundale et al., 2009; Lagerström et al., 

2007; Zackrisson et al., 2004). There might be several reasons for this discrepancy. For 

example, the current study was performed on more fertile sites and previous management 

history is unknown. Also, the youngest stands studied during the post-fire successions were in 

the same age class, or older, as the thinned stands in this study (Gundale et al., 2009; 

Zackrisson et al., 2004). The youngest stands in Lagerström at al. (2007) had a mean age of 

585 years and this difference in chronosequence age could affect the results. However, these 

findings require further studies in order to precisely determine the reasons for why old 

production forests appears to differ from that of late fire successional sites. 

 

P. schreberi had a N2 fixation rate on an aerial basis that was 27 times higher in in pre-

commercially thinned sites compared to clear-cuts while H. splendens showed no significant 

change. This difference between how the N2 fixation of the mosses varies over the 

chronosequence is probably determined by their biomass. The results of the present study 

indicate that N2 fixation P. schreberi probably can adapt to changes in microclimate during 

chronosequence in a more efficient way then H. splendens and are in line with the results of 

Gundale et al. (2012). It is possible that the difficulties of H. splendens to recover its fixation 

rates on an aerial basis is due the species low resistance and resilience towards stress 

(Mäkipää & Heikkinen, 2003) and that this makes the moss less ‘attractive’ for cyanobacteria, 

which in turn gives H. splendens less N for growth. 

 

Since the moss and dwarf shrubs show the same general pattern as the total N2 fixation rate 

with a rapid increase in biomass from clear-cut to pre-commercially thinned stands it seems 

likely that this also is due to microclimate improvement. It could be that the presence of the 

dwarf shrubs helps to ameliorate moss growth and N2 fixation by providing shelter and 

retaining moisture, while the trees are still small enough that they have little or no negative 



17 

 

effect. The presence of established trees with living roots could also be a factor since Gundale 

et al. (2010) found that lack of tree roots reduced N2 fixation.   

 

 

5 Conclusions 

This investigation is the first where N2 fixation by feather mosses in boreal forests managed 

for wood production has been studied. The results show that N2 fixation occurs in 

commercially managed forests in magnitudes lower, but comparable to what have been 

previously recorded in natural forests.  However, N2 fixation rates are low during the clear-cut 

stages but N input via biological N2 fixation in pre-commercially thinned stands are 

comparable to those reported for early fire successions. These findings suggest that forest 

management can be used as a tool to modify biological N2 input to N limited silvicultural 

systems. Combined with further studies on how it impacts soil fertility and its effectiveness in 

supporting tree growth, managing for increasing biological N2 fixation could be an interesting 

aspect in times when increased forest productivity for bioenergy is in high demand. 
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