

Phenotypic effects of a fertility mutation in norwegian white sheep

Sadia Afrin Siddiqua


Examensarbete / Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics,

423

Uppsala 2013

Master's Thesis, 30 HEC

Erasmus Mundus Programme
– European Master in Animal
Breeding and Genetics

Phenotypic effects of a fertility mutation in norwegian white sheep

Sadia Afrin Siddiqua

Supervisors:

Göran Andersson, SLU, Department of Animal Breeding and Genetics Dag Inge Våge, UMB, Norway

Examiner:

Erling Strandberg, SLU, Department of Animal Breeding and Genetics

Credits: 30 HEC

Course title: Degree project in Animal Science

Course code: EX0556

Programme: Erasmus Mundus Programme - European Master in Animal Breeding and Genetics

Level: Advanced, A2E

Place of publication: Uppsala Year of publication: 2013

Name of series: Examensarbete / Swedish University of Agricultural Sciences,

Department of Animal Breeding and Genetics, 423

On-line publication: http://epsilon.slu.se

Key words: Sheep, fertility, GDF9, litter size, genetic variant

PHENOTYPIC EFFECTS OF A FERTILITY MUTATION IN NORWEGIAN WHITE SHEEP

SADIA AFRIN SIDDIQUA Registration number: 840202-P268 (SLU)/980676 (UMB)

> THESIS ANIMAL BREEDING AND GENETICS COURSE CODE: EX0556 (SLU)/M30-IHA (UMB) MAY 2013

Department of Animal and Aquacultural Sciences

SUPERVISORS

Prof. Dag Inge Våge Ph.D (UMB) Prof. Göran Andersson Ph.D (SLU)

European Master in Animal Breeding and Genetics

Acknowledgements

The thesis project was carried out with the collaboration of Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), University of Life Sciences (UMB) and The Norwegian Association of Sheep and Goat Breeders (NSG).

I would like to give my gratitude to

- My supervisor at University of Life Sciences (UMB), Professor Dag Inge Våge for giving me the opportunity to work with his research group, for his continuous support and encouragement during the whole thesis semester and for invaluable help during the writing process.
- My supervisor at Swedish University of Agricultural Sciences (SLU), Professor Göran Andersson for his suggestion during our skype meetings and for reading and commenting on my thesis..
- The Norwegian Association of Sheep and Goat Breeders (NSG) for providing the blood samples and data on two fertility traits of each experimental sheep for this study.
- Kristina Vogonyte-Hallan, technician at CIGENE for all her help with the DNA extraction and MassARRAY platform methods.
- Inger Anne Boman of The Norwegian Association of Sheep and Goat Breeders for her support during analysis the genotyping results.
- To my family especially to my daughter (Subaita Mariam Adeba) for her greatest support.
- Finally, thanks to the Consortium Committee of the Erasmus Mundus MSc Program for the European Master in Animal Breeding and Genetics (EM-ABG) and all the professors firstly for granting me the opportunity to discover the field of animal breeding and genetics and secondly for the continuous help (teaching, organization, mobility, etc.) during our studies.

Sadia Afrin Siddiqua

May, 2013

Ås, Norway

Abstract

Norwegian White Sheep (NWS) is a synthetic breed that results from crosses between local Norwegian and foreign breeds. This breed is mainly kept for the meat production, and litter size is therefore a trait of large economic value. A mutation in the ovine GDF9 gene (c.1111G>A) on chromosome 5 was recently found to be associated with increased litter size in daughters of AI rams of Norwegian White Sheep (NWS). This thesis aims at estimating the phenotypic effect of the (c.1111G>A) mutation in nearly 900 NWS-ewes'. Since litter size can only be directly observed at females, genotyping of the mother is considered to give a better phenotypic estimate of the allelic effect compared to estimates based on the EBVs of the rams. The information available for these ewes was number of lambs born at age 1 year and 2 year of age. A total of 853 NWS ewes were genotyped for the (GDF9 c.111G>A) mutation by the iPLEX Gold technology (SEQUENOM). The genotyping success rate was more than 90%. The average litter size for ewes at 1 and 2 year of age was 2.061±0.73 and 2.671±0.91, respectively, showing that the average litter size was lower at 1 year compared to those at 2 years. The phenotypic effect of being homozygous for the mutant allele at age 1 and 2 year was found to be 0.54 and 0.87 additional lamb per litter, respectively. The frequency of the c.1111A allele was 0.38 in NWS ewe population. As the experimental ewes were heavily selected for large litter size and strong association between c.1111A allele and litter size is known, it can be assumed that the selection has increased the frequency among these ewes. Handling of c.1111A allele in NWS will significantly influence the future litter size in this population. The Norwegian Association of Sheep and Goat Breeders will design how to exploit the rams carrying the c.1111A allele in Norwegian White Sheep breeding program.

T	Sable of Contents	Page No
1.	Introduction	07
	1.1 Fertility in sheep	07
	1.2 Fertility in Norwegian White Sheep (NWS)	07
	1.3 Norwegian Sheep Breeding	07
	1.4 Known genes for fertility in sheep and their functions	8
	1.4.1 <i>BMPR1B</i>	08
	1.4.2 <i>BMP15</i>	09
	1.4.3 Ovine <i>GDF9</i> gene	09
	1.4.4 Probable functions of <i>GDF9</i> gene	11
	1.5 Mutations recently found in the <i>GDF9</i> gene	12
	1.6 SNP genotyping by MassArray platform method with iPLEX assay	12
	1.7 Aim of the Study	15
2	Materials and Methods	16
	2.1 Animals	16
	2.2 SNP Genotyping by iPLEX MassARRY MALDI-TOF MS method	16
	2.2.1 DNA isolation	16
	2.2.2 DNA quantifiction	17
	2.2.3 DNA Amplification	18
	2.2.3.1 Primer design	18
	2.2.3.2 Primer dilution.	18
	2.2.3.3 Polymerase Chain Reaction (PCR)	19
	2.2.4 Dephosphorylation of dNTPs (SAP Reaction)	20
	2.2.5 iPLEX Gold Reaction/Extension Reaction	20
	2.2.6 Conditioning the iPLEX Gold Reaction products/ Desalting	21
	2.2.7 Dispensing of iPLEX Gold reaction product to spectroCHIP® Arrays	s21
	2.2.8 Defining the setup of assays and plates in the MassARRAY	22
	2.2.9 Acquisition and Analyzing of spectra using mass spectrometer	22
	2.2.10 Statistical Analysis	22
3	Results	23
	3.1 DNA quantification	23
	3.2 Genotyping	
	3.3 Animals.	
	3.4 Descriptive Statistics of the GDF9 SNP	
	3.5 Statistical Analysis.	
4	Discussion	
5	Reference List	
6	Appendix	

Abbreviations

AE buffer Adams-Evans buffer

AI Artificial insemination

BCO2 Beta-carotene oxygenase 2

BMP15 Bone morphogenic protein 15

BMPR1B Bone morphogenetic protein 1B receptor

DNA Deoxyribonucleic acid

EBV Estimated breeding value

EDTA Ethylenediaminetetraacetic acid

GDF9 Growth differentiation actor 9

GWAS Genome wide association study

LS Litter size

MALDI-TOF Matrix assisted laser desorption/ionization-time of flight

MC1R Melanocortin 1 receptor

MS Mass spectrometry

MSTN Myoststin

NWS Norwegian White Sheep

PBS Phosphate buffered saline

PCR Polymerase Chain Reaction

QTL Quantitative Trait loci

rpm Rotations per minute

SAP Shrimp Alkaline Phosphatase

SNP Single nucleotide polymorphism

NSG Norwegian Sheep and Goat Association

List of Tables	Page No.
Table 1.1 Mutation in different fertility genes in sheep and their effects	11
Table 2.1 Reagents used in DNA extraction from blood in ewes	17
Table 2.2 Primers for GDF9_c1111G>A	18
Table 2.3: Master mix for PCR to obtain ovine specific c1111G>A amplicon	19
Table 2.4: PCR cycle adjusted for the amplification of c1111G>A in ewe	19
Table 2.5: Master mix for SAP enzyme cocktail mix	20
Table 2.6: Thermal cycle for SAP program	20
Table 2.7: Master mix for iPLEX Gold Reaction cocktail	21
Table 2.8: Thermal cycle for iPLEX Gold Reaction	21
Table 3.1: Genotype and allele frequency of c.1111G>A in Norwegian White Ewes.	24
Table 3.2: Number of ewes and lambs born (LS) per genotype	24
Table 3.3: Mean and least-square means of LS per genotype	25
Table 3.4: Effect of different sources on phenotype	26
Table 3.5: Least means for LS contrasts between GDF9 c.1111 genotypes	27
Table 3.6: Adjusted <i>p</i> - values for pair wise LS-means difference of effect genotype to	For LSs27
Table 3.7: Number of lambs born per genotype with different observations	28

List of Figures Page No.

Figure 1.1 Linkage map position of GDF9 in the central portion of sheep chromosome 5	510
Figure 1.2 GDF9 mRNA	10
Figure 1.3: GDF9 amino acid sequence	11
Figure 1.4 iPLEX Assay (The scheme depicts a single assay)	14
Figure 3.1 Average litter size at 1 year of age per genotyp	25
Figure 3.2: Average litter size at 2 year of age per genotype	26

1. Introduction

1.1 Fertility in sheep

Fertility is the ability of an individual to produce live offspring and also the birth rate of a population refers to fertility (Frank, 2012; www.biology-online.org/dictionary/Fertility). In sheep the number of lambs born by a ewe or her litter size (LS) can be considered as fertility. Fertility is controlled by genetics and environmental factors (i.e. nutrition, season, herd, farm system etc.) Litter size is a complex trait with very low repeatability (Nichol et al., 2009) and the heritability is less than 10% (Notter, 2008). Number of lambs born is the ewe trait that is important in sheep breeding program (Steinheim et al., 2008). Litter size is an important economic trait in sheep production (Javanmard et al., 2011), mainly due to high economic value of meat (D'Arcy, 1990; Abdulkhaliq et al., 1989; Nitter, 1985; Well Gully, 2013). Increasing multiple births in sheep might improve meat production per ewe (Rajab et al., 1992).

1.2 Fertility in Norwegian White Sheep (NWS)

Norwegian White Sheep (NWS) is a synthetic breed resulting from cross-breeding between Norwegian and foreign breeds like Finnish Landrace (to improve fertility) and with East Friesian Dairy Sheep (to increase milking capacity) into 1970s and 1990s, respectively (Ådnøy, 1988; Larsgard and Standal, 1999). Since 2000-2001, this sheep breed has been considered as Norway's own breed and it is grouped among long-tailed breeds. This breed is now found throughout Norway and is used for meat and wool production. NWS is slightly smaller in size and the fertility is higher compared to the original Dala sheep (NORDGEN, 2013). The average number of lambs born alive (NLBA) was reported to be 2.06 in 2007 (Steinheim et al., 2008) and mean litter size (LS) of NWS at 1 year and 2 years of age was reported as be1.63 and 2.10, respectively (Eikje, 2008).

In Norwegian Sheep Breeding Scheme, litter size has been considered as one of the major traits with high economic value (about 12% of the National Sheep Breeding goal) (NGS, 2013). Selective breeding for this trait has been successful, and the number of lambs born or litter size (LS) in NWS has been increasing over the years.

1.3 Norwegian Sheep Breeding

For the genetic improvement of Norwegian sheep, the Norwegian Sheep and Goat Breeder's Association established the Norwegian Sheep Breeding Scheme in the 1960s. In early 1990s Norwegian sheep breeding had developed and merged into a single NWS breeding group. The Norwegian Sheep and Goat Breeder's Association (NSG) is taking care of the NWS recording

system and breeding program. The breeding stocks are kept in several small "ram-circles", (breeding co-operative groups of 10-30 farmers) where the young rams are selected and progeny-tested. During the mating season, the tested rams are moved among different flocks. The ram lambs are selected based on their pedigree information and own performance; the ewes are selected following the selection index (for litter size, fleece weight, maternal effect on weaning weight, carcass weight and so on). By selection indices rams can also be selected elite rams for mating and some of the most promising (based on first year results) rams can be selected for artificial insemination (AI), to increase the genetic gain (Eikje et al., 2008). The semen is collected for long time storage from two AI-stations in Norway (Valdez-Nava, 2011).

1.4 Known genes for fertility in sheep and their functions

A large body of evidence supported that the oocyte plays a central role in regulating of ovarian follicle growth and development (Matzuk et al., 2002; Gilchrist et al., 2008; Su et al., 2009; Otsuka et al., 2011). In particular, the proteins secreted from oocytes play a vital role in ovulation rate with the follicular growth regulation (Juengel and McNatty, 2005; Moore et al., 2003). Booroola was the first gene to be identified as a major gene for prolificacy in sheep (Piper et al., 1985).

Litter size in sheep was recorded among different breeds and within breeds (Montgomery et al., 1992). Most of the domestic sheep breeds have one or two lambs per lambing, whereas only few breeds like the Booroola, Merino, Cambridge, D'Man, Finnish Landrace, and Romanov were proved more prolific (three or more lambs per ewe lambing) (Montgomery et al., 1992). From the genetic studies of prolificacy in sheep, it has been shown that litter size and ovulation rate can be influenced by segregation of a single gene (Piper and Bindon, 1982; Davis et al., 1982) and mutations in these genes have been associated with increased litter size and ovulation rate (Bindon et al., 1996).

Members of the transforming growth factor receptor beta (TGF β) super family *BMP15*, *BMPR1* and *GDF9* genes has been shown to play important roles in regulating fertility in sheep (Knight and Glister, 2001; Chang et al., 2002; Durlinger et al., 2002). *BMP15*, *BMPR1* and *GDF9* genes are described below:

1.4.1 BMPR1B

Bone morphogenetic protein 1B receptor (*BMPR-1B*) gene or the *Booroola* gene (*FecB*) is situated on sheep chromosome 6 and is expressed in oocytes and granulosa cells (Piper et al., 1985; Wilson et al., 2001; Souza et al. 2001). *BMPR1B* was identified as the first major gene associated with prolificacy in sheep in 1980 (Davis et al., 1982). Mutations in this gene are associated with increased ovulation rate and litter size and have large effect on prolificacy in

ewes. In Merino Booroola sheep the Booroola variant (FecB^B) was found in the *BMPR1B* gene (Mulsant et al., 2001; Souza et al., 2001; Wilson et al., 2001) (Table 1.1).

1.4.2 BMP15

Bone morphogenetic protein 15 (BMP-15) is a growth factor and a member of the TGF β superfamily, expressed in oocytes during follicular development (Hanrahan et al., 2004; Galloway et al., 2000). The ovine *BMP-15* gene is situated on chromosome X. BMP15 is produced as a precursor protein that consists of 393 amino acids. This consists of a short signal peptide (1-25) followed by a propeptide (26-268) and finally the mature region of the protein (269-393) (Bodensteiner et al., 1999; Galloway et al., 2000).

In sheep, BMP15 is essential for activation of primordial follicle and subsequently in all stages of normal follicular development, maturation and ovulation (Bodensteiner et al., 1999; Eppig, 2001; Juengel et al., 2004; Mandon-Pepin et al., 2003). Mutations in the *BMP-15* gene have been found associated with increased ovulation rate and fertility (Hanrahan et al., 2004). Polymorphism in the *BMP15* gene was found to be associated with increased ovulation rate in Inverdale (FecX^I) and Hanna (FecX^H) sheep (Galloway et al., 2000) (Table 1.1).

1.4.3 Ovine *GDF9* gene

The ovine *GDF9* gene was mapped to ovine chromosome number 5, between the markers BM7247 and BMS2258 on the framework map (Figure 1.1) by linkage analysis (Maddox et al., 2001).

Ovine *GDF9* gene is 2.5 kb long, consists of two exons and one intron. Exon 1 and exon 2 is 397 bp and 968 bp, respectively and encodes for amino acids1–134 and 135–456, respectively (Hanrahan et al., 2004). Figure 1.2 showing the *GDF9* mRNA below. The *GDF9* mRNA is translated into a preprotein (Figure 1.3) having a signal peptide (27 aa), a propeptide (291 aa) and a small mature chain (135 aa) (McNatty et al., 2004).

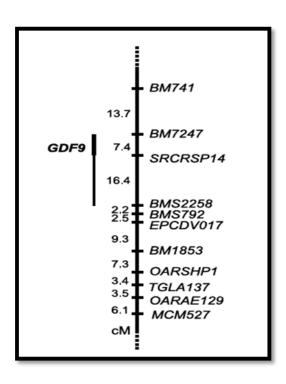


Figure 1.1 Linkage map position of GDF9 in the central portion of sheep chromosome 5 (Maddox et al., 2001).

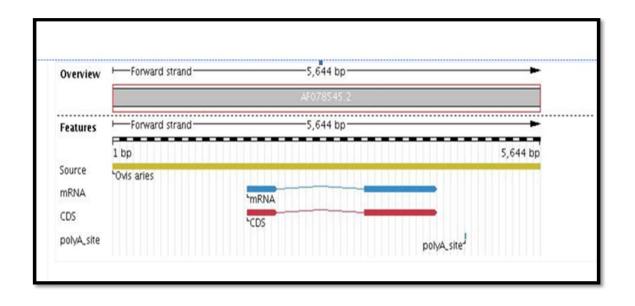


Figure 1.2: GDF9 mRNA (EMBL-EBI)

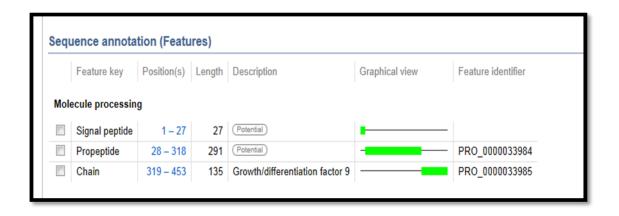


Figure 1.3: GDF9 amino acid sequence (SWISS-PROT; UNIPROT)

1.4.4 Probable functions of *GDF9* gene

GDF9 was the first gene found to be essential for follicular development in sheep (Dong et al., 1996). The protein encoded by the *GDF9* gene is involved in cumulus expansion, oocyte maturation, ovulation (Elvin et al., 1999, 2000), cumulus and granulosa cell proliferation (Hayashi et al., 1999). The changes in the concentration of *GDF9* in vivo also exhibited increased ovulation rate in sheep (Galloway et al., 2000). *GDF9* was the latest gene found to be strongly association with prolificacy in Cambridge and F700-Belclare sheep, animals heterozygous for the FecG^H mutation were fertile while homozygous animals were sterile. The same phenomenon (sterile homozygous animals) was also observed for the *BMP15* mutations (Hanrahan et al., 2004) (Table 1.1).

Table 1.1 Mutation in different fertility genes in sheep with their affect

Gene	Varian t	Breed	Base change	Coding base position	Amino acid change	Codingam ino acid position	Mature peptide position	Phenotype Heterozy g.	Homozyg	Ref.
GDF9	FecG ^H	Bel./Cam.	C>T	1184	$Ser(S) \rightarrow Phe(F)$	395	77	IOR	Sterile	1
	FecTT	Thoka	A>C	1279	$Ser(S) \rightarrow Arg(R)$	427	109	IF	Sterile	2
	FecG ^E	Santa <u>Inês</u>	T>G	1034	$\underline{Phe}((F) \rightarrow \underline{Cys}(C)$	345	27	IOR	IOR	3
BMP15	FecX ^H	Hanna	C>T	871	$Gln(Q) \rightarrow Stop$	291	23	IOR	Sterile	4
	$FecX^I$	Inverdale	T>A	896	$Val(V) \rightarrow Asp(D)$	299	31	IOR	Sterile	4
	$FecX^G$	Bel./Cam.	C>T	718	$Gln(Q) \rightarrow Stop$	239	-	IOR	Sterile	1
	$FecX^B$	Bel./Cam.	G>T	1100	$Ser(S) \rightarrow Ile(I)$	367	99	IOR	Sterile	1
	$FecX^L$	Lacaune	G>A	962	$Cys(C) \rightarrow Tyr(Y)$	321	53	IOR	Sterile	5
	FecXR	R.aragonesa	deletion	525_541		-	-	IF	Sterile	6,7
BMPR1B	FecB ^B	Booroola	A>G	746	$\underline{Gln}(Q) \rightarrow \underline{Arg}(R)$	249	-	IOR	IOR	8,9,10

IOR=Increased ovulation rate, IF=Increased fertility

- 1) Hanrahan et al., (2004) Biol. Reprod, 70(4):900-909.
- 2) Nicol et al., (2009) Reproduction, 138(6):921-933.
- 3) Silva et al., (2011) Anim. Genet, 42(1):89-92.
- 4) Galloway et al., (2000) Nat. Genet, 25(3):279-283.
- 5) Bodin et al., (2007) Endocrinology, 148(1):393-400.
- 6) Martinez-Royo et al., (2008) Anim. Genet, 39(3):294-297.
- 7) Monteagudo et al., (2009) Anim. Reprod. Sci 2009, 110(1-2):139-146.
- 8) Mulsant et al., (2001) Proc. Natl. Acad. Sci. USA 2001, 98(9):5104-5109.
- 9) Souza et al., (2001) J. Endocrinol, 169(2):R1-6.
- 10) Wilson et al., (2001) Biol. Reprod, 64(4):1225-1235

1.5 Mutations recently found in the *GDF9* gene

In the Santa Inês (SI) sheep, a *GDF9* allele (FecG^E) was recently shown to result in increased ovulation rate and prolificacy, also in ewes homozygous for this mutation. This mutation caused an amino acid substitution from phenylalanine to cysteine at position 345 (F345C) (Silva et al., 2011).

In NWS, a Genome-Wide Association study for fertility was performed by using the Illumina 50K SNP array. AI rams progeny tested for the phenotypic trait "number of lambs born" were genotyped. SNPs located close to the growth and differentiation factor-9 (*GDF9*) gene at chromosome 5 showed strong association to this trait. Sequencing of the *GDF9* gene revealed a *GDF9* c.1111G>A mutation (Våge et al., 2013).

The c.1111G>A polymorphism caused an amino acid change in the mature region (the bioactive part) of the GDF9 protein. In this case, the nonpolar amino acid (Valine) is substituted by another nonpolar amino acid (Methionine), which is considered to be a conservative change in biochemical terms. Valine was also found in the same position in GDF9 protein in 6 totally different mammalian species (sheep, cattle, pig, cat, human and mouse).

1.6 SNP genotyping by MassArray platform method with iPLEX assay

iPLEX assay involves a locus-specific PCR reaction, followed by single base primer extension reaction with mass-modified dideoxynucleotide terminators of an oligonucleotide primer which anneals immediately upstream of the polymorphic site of interest. Based on matrix assisted laser desorption/ ionization-time of flight (MALDI-TOF) mass spectrometry (MS), the distinct mass of the extended primer identifies the SNP allele for multiplexed genotyping (ACRF Facility, 2013; Gabriel et al., 2009; Boman, 2009; Oeth et al., 2006).

According to the iPLEX[®] Gold Application Guide (SEQUENOME[®], www.sequenome.com) SNP genotyping by MassARRAY include the following steps: *i*. DNA isolation and quantification *ii*. DNA amplification iii. Preparation of iPLEX Gold reaction products *iv*. Transfer of iPLEX Gold reaction products to SpectroCHIP[®] Arrays *v*. Defining the setup of assays and plates in the MassARRAY database *vi*. Acquisition of spectra using mass spectrometer *vii*. Analysis of spectral data. Different steps (Figure 1.4) in MassARRAY platform are shortly described below.

To detect single nucleotide polymorphism (SNP) the isolated DNA should be of high purity. Genomic DNA is used to amplify the surrounding areas of the genetic variation (s) of interest. The genomic DNA should be amplified using PCR method. The PCR conditions for the iPLEX assay have been optimized for amplification of multiplexed reactions (upto 40 plexes). The SAP (Shrimp alkaline phosphatase) enzyme treatment is applied to neutralize unincorporated dNTPs in the PCR amplicons and convert them into dNDPs by cleaving. The conditioning or cleaning of extension products with Clean Resin is very important to optimize the mass spectrometry analysis of the iPLEX Gold Reaction products (Oeth et al., 2006). By using MALDI-TOF mass spectrometry the mass of the extended primer in the spectrum acquired thereby identifying the sequence and alleles at the polymorphic site of interest.

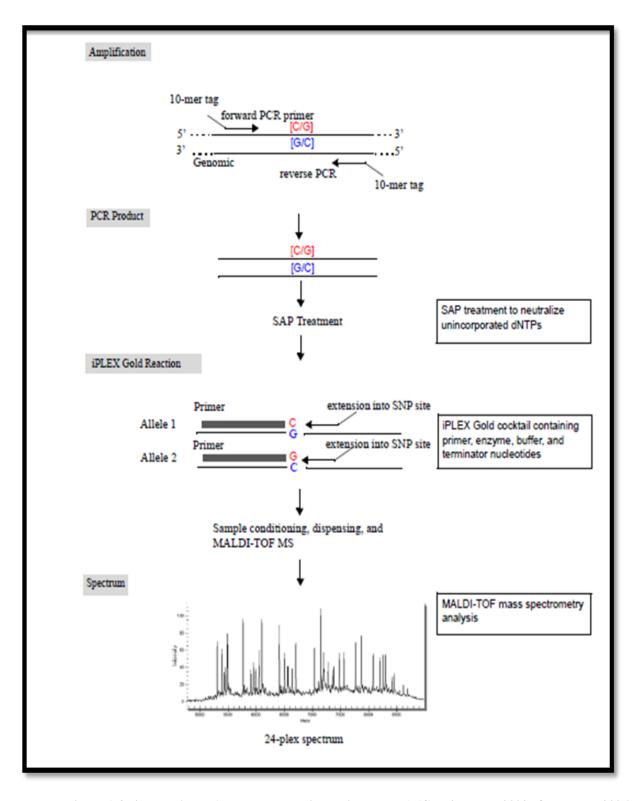


Figure 1.4: iPLEX Assay (The scheme depicts a single assay) (Gabriel et al., 2009; Oeth et al., 2006)

1.7 Aim of the Study

The EBVs for number of lambs born were estimated for the AI rams based on their daughters' performance. According to the EBVs, daughters of AI rams being homozygous for c.1111A gave birth to 0.46 - 0.57 additional lambs compared to daughters of c.1111G homozygous wild rams. When the frequency of the c.1111G>A allele in the ewe population is low, only the rams will contribute this allele, while the phenotypic effect will be "shared" by the dams when calculating EBVs, and the allele effect will therefore be underestimated. Since only females are showing this trait, it was decided to genotype a larger number of ewes to observe the direct allelic effect of c.1111G>A on the numbers of lambs born. Moreover, we wanted to verify that homozygous ewes are fertile as indicated in the report of Hanrahan et al., 2004, investigating Cambridge and Belclare sheep.

The aim of this thesis is to estimate the phenotypic effect of the (c.1111G>A) mutation in nearly 900 NWS-ewes. The information available for these ewes is number of lambs born at age 1 year, and for a subset of this population, also the number of lambs born at age 2 year is available.

2 Materials and Methods

This chapter describes the materials and methods used in this thesis. An introduction to different steps of method; composition of master mix, reagents used and the settings for specific PCR reactions are given bellow:

2.1 Animals

Only flocks (farms) participating in a NWS ram circle were considered for inclusion in this study (1036 flocks). The flocks were ranked according to flock-mean breeding values (best linear unbiased prediction (BLUP-solutions)) for litter size at age 1 and age 2 year (two separate rankings). The flocks were also ranked according to flock average phenotypic litter size at age 1 and age 2 year (two separate rankings). The flocks that ranked in the best third (345) for all four traits were invited to participate. After a second ranking among those that were willing to participate, 15 different farms contributed in total 884 individual blood samples to this study. The ewes were born in 2010 and 2011. The blood samples were collected by local veterinarians. About 5 ml blood were collected from the jugular vein of each experimental ewe in vacutainers containing EDTA as anticoagulant.

2.2 SNP Genotyping by iPLEX MassARRY MALDI-TOF MS method

2.2.1 DNA isolation

Genomic DNA was extracted from 884 blood samples using DNeasy®96 Blood and Tissue kit (QIAGEN, Hilden, Germany) according to the manufacturer's instruction. 100 µl blood sample was transferred into each microtube of 96-well plate from the EDTA mixed vacutainer. 96-Well-Register was used to maintain the identification of each sample. In each 96-well plate one well was filled with dionized water as "negative control", while other 95 wells were filled with blood. 20 μl enzyme (proteinase K) and 100 μl of phosphate buffered saline (PBS) were added to each collection microtube. Then, 200 µl of cell lysis solution (Buffer AL) (without ethanol) was added to each microtube in the plate and the microtubes were sealed with caps; each plate was covered with clear cover, shacked vigorously up and down for 15 seconds and centrifuged at 3000 rpm for 1-2 minute in the SIGMA 4-15 C Centrifuge machine (LABEX, France). The plate was then incubated at 56° C for 10 minutes in Termaks incubator (Termaks, Norway). The caps and cover were remove carefully and 200 µl of ethanol (96-100%) was added to each blood samples, microtubes were sealed with caps and covered with a clear cover, shacked up and down vigorously for 15 seconds and centrifuged again for about 1-2 minutes at 3000 rpm. Each DNeasy 96 plate was placed on top of an S-Block. The caps and cover were removed and the total lysis mixture (around 620 µl) from each microtube of a 96-well plate was carefully transferred to well of each DNeasy 96 plate. Each DNeasy 96 plate was sealed with a AirPore Tape Sheet and centrifuged at 6000 rpm for 4 minutes. Plates were centrifuged several times at same speed until the lytate mixture completely passed through the membrane in each well of the DNeasy 96 plates. 500 µl of first washing buffer (AW1) was added to each well and was ensured that ethanol was added according to the manufacturer's instruction; each DNeasy 96 plate was sealed with AirPore Tape Sheet and centrifuged at 6000 rpm for 2 minutes. 500 µl of second washing buffer (AW2) was added to each sample and centrifuged for 15 minutes at 6000 rpm without sealing the DNeasy 96 plate. In elution step the DNeasy 96 plate was placed to a new rack of elution Microtubes RS. Total of 100 µl elution buffer (AE) was added to each sample by adding of 50 µl AE buffer, kept in room temperature for 1 minute and centrifuge at 6000 rpm for 4 min (twice). During each step of transfer of sample, buffer and so on multichannel pipettes were used. The final isolated DNA samples were stored in refrigerator at (-20) °C until the next step starts. Reagents used for DNA extraction from blood samples are given in Table 2.1.

Table 2.1 Reagents used in DNA extraction from blood in ewe

Reagents	Volume (µl) per well
Proteinase K enzyme (lytate)	20
PBS buffer	100
AL buffer (without ethanol)	200
Ethanol (96-100%)	200
AW1 buffer (washing buffer)	500
AW1 buffer (washing buffer)	500
AE buffer (elution buffer)	100
Blood sample	100

2.2.2 DNA quantification

The concentration and purity of isolated DNA was measured using NanoDrop 8000 Spectrophotometer (Thermo Scientific, Waltham, Massachusetts, USA) by Absorbance method. About 1.5 μ l isolated DNA was used for measuring the concentration and purity in each spectrophotometer well. The absorbance reading was recorded at 260 (A₂₆₀) and 280 (A₂₈₀) nm. Then the DNA concentration (ng/ μ l) and DNA purity (A_{260/280}) was calculated. Good quality DNA should have A_{260/280} ratio of 1.8-2.2.

2.2.3 DNA amplification

2.2.3.1 Primer design

For genotyping the GDF9 c.1111G>A SNP the Sequenom MassARRAY Workstation 4.0 was used. The MassARRAY®Design software (www.sequenome.com) was used for designing both PCR primers and Mass EXTEND® primers for the multiplexed assay. Mass EXTEND® is a primer extension process designed to detect sequence differences at the single nucleotide level. A10-mer tag (5'-ACGTTGGATG-3') was added on the 5'- end of each PCR primer for allowing greater flexibility in their masses. Table 2.2 shows the sequences of forward, reverse and extension primer pairs for c1111G>A SNP in ovine GDF9 gene in ewes at chromosome 5. In addition, 5 SNPs routinely tested in NWS AI rams were included in the same multiplex (multiplex 6). These are MSTN_c.120insA, MSTN_c.969delG, MSTN_c*1232G>A, BCO2_c.196C>T, MC1R_c361G>A. The primers of the above mentioned SNPs are shown in Table 2.2.

Table 2.2 Primers for GDF9_c1111G>A

	Primer sequences			
SNP	Forward	Reverse	Extension	
MSTN_c120insA	ACGTTGGATGCGAGC	ACGTTGGATGTATGGCTTCT	CTCCACAAGCATGC	
	AGAAGGAAAATGTGG	AGTCTTGAGG	ATT	
MC1R_c361G_A	ACGTTGGATGTGGTA	ACGTTGGATGAAGCAGAGG	GCTGCAGATGAGCA	
	CAGCAGCTGGACAAT	CTGGACACCAT	CGT	
BCO2_c196C_T	ACGTTGGATGTTCTA	ACGTTGGATGATAGCCATTG	CGGTGGAAGAGACT	
	ACCACGGTGGAAGAG	AGCCACTCAG	CTG	
MSTN_c960delG	ACGTTGGATGTAAGG	ACGTTGGATGTTGCTTGGTG	CAAGATGGGTATGA	
	CCAATTACTGCTCTG	CACAAGATGG	GGATA	
MSTN_cS1232G_A	ACGTTGGATGGGTTT	ACGTTGGATGGTTAAATCAT	GTCATTGTATTCAAA	
	ACTGTCATTGTATTC	TTTGGTTTGC	TCTCAAC	
GDF9_c1111G_A	ACGTTGGATGGCTTT	ACGTTGGATGCAGTCCCCTT	TGAAGTGGGACAAC	
	AGTCAGCTGAAGTGG	TACAGTATCG	TGGATT	

2.2.3.2 Primer dilution

Both PCR primers and Extend primers were transferred from stock plates into 96-well Sarstedt plates by Beckman Extend Coulture, CA, USA) pipetting robot. The concentration for PCR primers (forward and reverse) and Extend primers (without dilution) was 50 μ M each and 500 μ M, respectively for the PCR protocols.

2.2.3.3 Polymerase Chain Reaction (PCR)

The cocktail mix for the first PCR in SEQUENOME iPLEX reaction in MassARRAY method was calculated automatically using the "HotStar" PCR-program. Reactions were performed in 384 formats by liquid handling process. PCR master mix was made in Ultraviolet Sterilizing PCR Station using the iPLEX Multiplexed PCR cocktail mix (same multiplexed assay, different DNA) kit protocol (SEQUENOME, San Diego, CA, USA) and the set up for PCR reaction in a 384-well PCR plate was by Beckman[®]FX (Beckman Coulture, CA, USA) pipetting robot. The plates were the sealed and the "HotStar" program was run in Veriti 384-Well Thermal Cycler (Applied Biosystems, Foster city, CA, USA) in a specific settings. Table 2.3 and Table 2.4 showing the composition of cocktail mix for PCR reaction and PCR cycle, respectively.

Table 2.3: Master mix for PCR to obtain ovine specific c1111G>A amplicon

Reagent	Final Conc.	Volume 1x
dH ₂ O	NA	0.750
Hotstar Taq PCR buffer (10x) Containing 15 mM MgCl ₂	1.875 mM MgCl ₂	0.625
dNTP mix (25 mM)	500 μM each	0.100
Primer mix (500 nM each)	100 nM each	1.000
MgCl ₂ (25 mM)	1.625 mM	0.325
HotStar Taq (5U/μl)	1 U/rxn	0.200
Total	3.00 µl	
Genomic DNA (5-10 ng/µl)	2.00 μl	2-10ng/rxn
Total	5.00 μl	

Table 2.4: PCR cycle adjusted for the amplification of c1111G>A in ewe

Reactions	Temperature °C	Time	Repeats
Initial denaturation	95	5 min	1 cycle
Denaturation	94	30 sec.	40 cycles
Annealing	56	30 sec.	40 cycles
Extension	72	1 min	
Final extension	72	3 min	1 cycle
Hold	4	Forever	Final step

2.2.4 Dephosphorylation of dNTPs (SAP Reaction)

SAP enzyme cocktail mix was mixed with the genomic DNA on 384-well micro pipetter following SEQUENOME SAP enzyme cocktail mix protocol by Biomek® FX (Beckman Coulture, CA, USA) robot and was set into Veriti 384-Well Thermal Cycler. No primer was added in this step. The SAP cocktail mix and the thermal cycle are given in Table 2.5 and Table 2.6 below:

Table 2.5: Master mix for SAP enzyme cocktail mix

Reagent	Volume 1x
$\mathrm{dH}_2\mathrm{0}$	1.53 μl
SAP buffer (10x)	0.17μl
Shrimp alkaline phosphatase (SAP)	0.30 μl
Total	2.00 μl

Table 2.6: Thermal cycle for SAP program

Temperature ° C	Time	Repeats
37	40 min	1 cycle
85	5 min	1 cycle
4	forever	Final step

2.2.5 iPLEX Gold Reaction /Extension Reaction

To optimize the extension primers, the masses of primers were divided into low mass group and high mass group and the master mix for iPLEX Gold Reaction cocktail was mixed with the SAP treated PCR products by Biomek[®] FX pipetting (Beckman Coulture, CA, USA) robot and set for extension PCR reaction into Veriti 384-Well Thermal Cycler. All primers in the high mass group were doubled in concentration with respect to the low mass group. Composition of iPLEX Gold Reaction cocktail (Table 2.7) and the thermal cycles (Table 2.8) are shown below.

Table 2.7: Master mix for iPLEX Gold Reaction cocktail

Reagent	Final Conc.	Volume 1x (µl)
dH20	NA	0.619
iPLEX Plus buffer (10x)	0.222x	0.20
iPLEX termination mix	1x	0.20
Primer mix (7μM, 9μM,11μM,14μM)	-	0.940
iPLEX enzyme	1x	0.041
Total		2.00 μl

Table 2.8: Thermal cycle for iPLEX Gold Reaction

Steps	Temperature° C	Time	Repe	eats
Initial denaturation	94	30 sec	1 cy	cle
Denaturation)	94	5 sec		40
Annealing	52	5 sec	5 cycles	cycles
Extension	80	5 sec		
Final extension	72	3 sec	1 cycle	
Hold	4	Forever		

2.2.6 Conditioning the iPLEX Gold Reaction products/ Desalting

6 mg of Clean Resin was added into each well of a 384 dimple plate according to manufacturer's instruction (SEQUENOM, CA, USA) and was kept for 20 min at room temperature. iPLEX Gold Reaction products in 384-microplate was diluted with 16 μ l nanopure water in each well using the robot by the "hME_4x_Wash_Water_Add" method and thereafter Resin was added , sealed with cover and was rotated at room temperature for minimum 5 min. Sealed 384-microplate was centrifuged for 5 min. at 1600 rpm. iPLEX Gold Reaction products were ready for dispensing to SpectroCHIP®Array.

2.2.7 Dispensing of iPLEX Gold reaction products to SpectroCHIP® Arrays

To dispense the iPLEX Gold reaction products to a 384-well SpectroCHIP[®] Array in SEQUONOME MassARRAYTMNanodispenser (SEQUENOME) was used. By MassARRAY

nanodispenser small amount of samples (~15 nl) were transferred onto 384 SpectroCHIP[®] array from the 384-microplates and for the calibration the calibrant was transferred from calibration well onto the calibrant patches of the 384 chip. This step was done by using SpectroPint program.

2.2.8 Defining the setup of assays and plates in the MassARRAY

After the completion of nanodispension onto the SpectroCHIP®, the assay and plates were designed in the MassARRAY database using Assay Editor 4.0 and Plate Editor 4.0 software.

2.2.9 Acquisition and Analyzing of spectra using mass spectrometer

Genotype calling and results of SpectroCHIP®Array was placed into MALDI-TOF by mass spectrometer and by MassARRAY Analyzer 4. 0 (SEQUENOME) mass correlation genotype was determined in real time. The Call Rate and Extension Rate were calculated by Caller 4.0 software in Microsoft Excel 2010 (Microsoft Corp., www.microsoft.com) and peak areas were calculated by TYPER 4.0 software. The calculated rates and peaks were then transferred to Minitab for analysis. One-way analysis of variance (ANOVA) was conducted using Minitab software (Minitab Inc., www.minitab.com).

2.2.10 Statistical Analysis

Data were sorted as required for the model used. The main issue was to measure the effect of GDF9_c.1111G>A SNP genotypes on two differently correlated fertility traits; number of lambs born at age 1 year (LS1) and age 2 years (LS2) of aged Norwegian White ewes. However, the additional 5 SNPs in the multiplex were also tested to exclude any possible effect on fertility The dataset with genotypes of 6 SNPs was converted from excel to a plain text file for analysis. Traits were adjusted for fixed effects of genotype and flock year. Best fitted bivariate analyses in the linear model in GLM (generalized linear model) procedure were used to estimate the allelic effect on the phenotypes, LS1 and LS2 by SAS (Version 9.2) program (SAS Institute Inc., Cary, NC, USA).

The following model was used for multivariate comparison in litter size among three different genotypes

$$Y_{ij} = \mu + G_i + FY_j + e_{ij},$$

where, Y_{ij} is the phenotypic value of number of lams born; μ is the population mean; G_i is the fixed effect of the *i*th genotype (GG, GA and AA); FY_j is the fixed effect of the *j*th flock year (j = 1, 2, ..., 30) and e_{ij} is the residual effect of each observation. Flock year is the combination of farm number and birth year (2010-2011) of lambs. Least-square means procedure was applied for significant difference test (Cao et al., 2010).

3 Results

This chapter represents the results obtained from the SNP genotyping and statistical analysis. SNP genotyping was conducted using MassARRAY platform method. SAS 9.2 software was used for analyzing descriptive statistics and genotypic effect of GDF9_c.1111G>A on two differently closely linked traits i.e. number of lambs born at 1 year (LS1) and 2 years (LS2) of age of in Norwegian White ewes by GLM (generalized linear model) model. Snap shorts for SAS commands and results are given in Appendix.

3.1 DNA measurement

The concentration of extracted DNA was measured as $ng/\mu l$. Ideal range of $A_{260/280}$ ratio purity of DNA is 1.8-2.2. Not all samples had sufficiently high concentration and/or purity results. The variation for the $A_{260/280}$ among the samples was high and the DNA concentration for each sample was not high. The $A_{260/280}$ was not adjusted in this study and the quality of the samples was just routinely measured. The purity and DNA concentration of the samples indicated that they were suitable for the PCR step in SNP genotyping method.

3.2 Genotyping

The success rate of genotyping was more than 90%. Some animals received "no call", which means that it is not possible to obtain a reliable genotype. The BCO2_c.196C>T SNP's genotype quality was generally bad, and was deleted from the dataset. The final dataset consisted of genotypes for the 5 SNPs remaining SNPs for all experimental ewes.

3.3 Animals

Among the 884 initially genotyped ewes a total of 853 animals were found to have both a reliable genotype and phenotypic information available. Of these, 364 were born in 2010 and 489 in 2011. Number of lambs born of ewes at age 1 year (LS1) and age 2 year (LS2) were registered in the 15 different flocks included in the study during 2011 and 2012. Animals born on 2010 have data on LS1 and LS2, but animals born on 2011 only have information of LS1.

3.4 Descriptive Statistics of the GDF9 SNP

The overall allelic frequency was 0.623 for the GDF9_c.1111G allele and 0.377 for the c.1111A allele. The number of ewes in our study being homozygous (GG) for wild type allele (c.1111G), heterozygote (GA) and homozygote (AA) for mutant allele (c.1111A) were 337, 388 and 128, respectively (Table 3.1). Among the animals genotyped for the GDF9_c.1111G>A SNP , 364 ewes have LS1 data and 489 ewes have LS2 data, respectively. The number of ewes and number of lambs at 1 year and 2 years with each genotype are shown in Table 3.2.

Table 3.1: Genotype and allele frequency of c.1111G>A in Norwegian White Ewes

Genotype	Number of ewes	Frequency of Genotype
GG	337	0.40
GA	388	0.45
AA	128	0.15

Table 3.2: Number of ewes and lambs born (LS) per genotype

Phenotype	Number of	Number of Lambs	Number of La	ambs born for differ	ent genotypes
	Ewes	born	GG	GA	AA
LS1	364	743	298	332	113
LS2	489	359	146	169	44
Total			444	501	157

3.5 Statistical Analysis

The SAS package version 9.2 was used for analyzing the data. After genotyping 853 ewes for MRC1_c.361G>A, 788 ewes for MSTN_c.S1232G>A, 848 ewes for MSTN_c.960delG>A,845 ewes for MSTN_c.120insA and 853 ewes for GDF9_c.1111G>A, SNPs genotype were analyzed according to the given statistical model. As expected only the GDF9_c.1111G>A mutation showed any effect on number of lambs born alive at 1 year (LS1) and 2 years (LS2). Therefore, further statistical analysis was only conducted for the GDF9_c.1111G>A SNP.

The mean litter size at 1 year was 2.061 ± 0.73 (mean \pm sd) and at 2 years it was 2.671 ± 0.91 . The genotype showed significant effect on litter size (p<0.0001) at both 1 year and 2 year. The mean and least square means (Ismeans) for number of lambs born at 1 year and 2 years per genotypes are shown in Table 3.3. The mean litter size at 2 years is bigger than that of 1 year. The Ismeans among the genotypes for the phenotypic number of lambs born at 2 year also differed from 1 year and was higher indeed. Ewes that were homozygous for the mutant GDF variant (AA) produced the largest litter size for both years, whereas animals homozygous for the wild type had the smallest litter size and heterozygous had an intermediate litter size. Ewes homozygous for c.1111A gave birth to more lambs than their contemporaries (GG and GA). The difference in genotype mean was highest between animals with homozygous wild type and homozygous

mutant allele for both traits. Also for Ismeans ewes with mutant homozygote allele had larger litter size than other genotype groups for both phenotypes. The mean of litter size per genotypes for first and second year are shown in Figure 3.1 and Figure 3.2.

Table 3.3: Mean and least-square means of LS per genotype

Phenotype	Genotypes	Means±sd	lsmeans
	GG	1.922±0.674	1.955
LS1	GA	2.066±0.705	2.085
	AA	2.415±0.831	2.496
	Mean	2.061±0.736	
	GG	2.349±0.784	2.271
LS2	GA	2.834±0.835	2.777
	AA	3.113±1.145	3.141
	Mean	2.671±0.921	

3
2.5
2
1.5
1
0.5
0
GG GA AA

Genotypes

Figure 3.1: Average litter size at 1 year of age per genotype

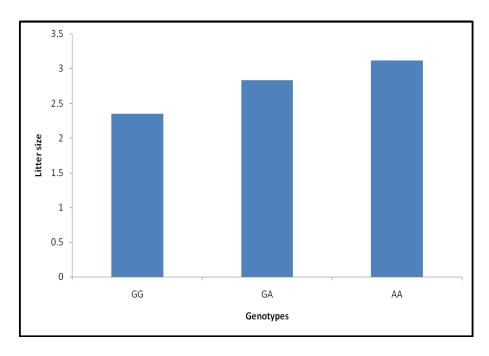


Figure 3.2: Average litter size at 2 year of age per genotype

The genotype has a significant effect on LS1 and LS2 phenotypes. The difference was largest between animals homozygous for the wild type allele and those homozygous for the mutant, both for LS1 and LS2. The effect of genotype on number of lambs born was significant (p<0.0001) for both phenotypes. Farm year only proved significance for second year (p=0.4682) but did not shown a significant effect on second year (Table 3.4).

Table 3.4: Effect of different sources on phenotype

	Effects								
Phenotype	Gene	otype	Fari	n_yr					
	F value	Pr > F	F value	Pr > F					
LS1	21.21	<0.0001	2.00	0.0015					
LS2	20.65	< 0.0001	0.98	0.4682					

Difference between least square means of three different genotypes (GG, GA and AA) is shown in Table 3.5. Ewes with the mutant allele (homozygous) showed highest difference in mean number of lamb production (0.541-0.87) compared to the wild homozygous contemporaries. For the heterozygous (GG vs GA) the difference was lowest among the three difference groups. But the GA vs AA group is different from the other two genotype groups.

Table 3.5: Least means for LS contrasts between GDF9 c.1111 genotypes

Phenotype	GG vs GA	GA vs AA	GG vs AA		
LS1	0.13	0.411	0.541		
LS2	0.506	0.364	0.87		

All three genotypes for Least-square means differed from each other. For phenotype LS1, the homozygous mutant ewes had significant difference (p<0.0001) from both the wild type homozygote ewes and from the heterozygote and these two genotype groups also differed from each other (p=0.02341). Least-square means for LS2, homozygous ewes (AA) also differed significantly from wild type ewes (p<0.0001) and heterozygous ewes (p<0.05). Wild type ewes had difference (p<0.0001) in litter size than the other two genotype groups, while heterozygote individuals showed difference from mutant homozygote (p<0.05) and wild type individuals (p<0.0001) (Table 3.6).

Table 3.6: Adjusted p- values for pair wise LS-means difference of effect genotype for LSs

LS1	GG	GA	AA
GG	-	0.0234	<0.0001
GA	0.0234	-	<0.0001
AA	<0.0001	< 0.0001	-
LS2			
GG	-	< 0.0001	<0.0001
GA	<0.0001	-	0.0175
AA	<0.0001	0.0175	-

The data on litter size at 1 year and 2 years for three different genotypes are shown in Table 3.7. Total number of lambs produced by homozygote mutant ewes was smallest among the three genotype groups for both phenotypes. More lambing data was available for 1 year than for the 2 year phenotype. Number of lambs born per genotype differed greatly from each other in this study. Wild type homozygote ewes had the highest number of lambs born at 1 year and heterozygote ewes had highest for 2 year than their contemporaries in this study. Ewes homozygote for c.1111A had the lowest number of observations for 1, 2 and 3 lambs for both

phenotypes and both year than the other two genotype groups. Homozygote (mutant) ewes at first year (10) and heterozygote ewes at second year (31) produced the highest incidence for 4 lambs among the three genotype groups. No observation found on 5 lambs at first year but all three genotype had incidence of 5 lambs at second year lambing. The only incidence (1) of 6 lambs at 1 year and 2 year of lambing was observed in wild homozygote and mutant homozygote, respectively while two other genotypes did not have any incidence of 6 lambs in any of the two year of ewe lambing.

Table 3.7: Number of lambs born per genotype with different observations

Genotypes	No. of lambs at 1yr					Total	No. of lambs at 2yr					Total		
	1	2	3	4	5	6		1	2	3	4	5	6	
GG	70	188	35	4	0	1	298	21	59	61	4	1	0	146
GA	65	187	73	7	0	0	332	7	51	77	31	3	0	169
AA	15	46	46	10	0	0	113	5	5	19	11	3	1	44
	150	421	150	21	0	1	743	33	157	157	46	7	1	359

4. Discussion

The number of live lambs born per breeding ewe is an important trait in commercial sheep breeding, since the litter size largely determines the amount of meat produced per ewe. In this study we have investigated the phenotypic effect of a mutation in the ovine *GDF9* that recently has been reported to segregate in the Norwegian White Sheep population (Våge et al., 2013). A material of 853 ewes has been genotyped for the GDF9 c.111G>A mutation. All three possible genotypes (GG, GA and AA) were well represented in the genotyped material, making it possible to perform reliable comparisons between the different genotype groups.

We found that the phenotypic effect of the mutation was smaller for ewes at 1 year of age compared to ewes at 2 years of age. Since the average number of lambs born also is lower for ewes at 1 year of age compared to those at 2 years of age, this is not very surprising. However, since this material is limited to ages of 1 and 2 year, we cannot conclude whether the effect of the mutation can be even bigger for ewes older than two years. The phenotypic effect of being homozygous for the mutant allele at age 1 year was 0.54, while the effect of being homozygous for the mutant allele at age 2 year was 0.87. This is a higher phenotypic effect than reported by Våge et al., 2013, supporting the assumption of these authors that the phenotypic effect based on the EBVs of the AI rams is slightly underestimated.

The frequency for c.1111A allele was found to be 0.38 in this NWS experimental ewe population. This is a relatively high frequency compared to the corresponding frequency among the NWS AI rams (Våge et al., 2013). However, one must keep in mind that our experimental ewe population is heavily selected for large litter size. Given the strong association between this allele and litter size, there is reason to believe that this selection has influenced the frequency among these ewes. It is therefore likely that the frequency in the general ewe population is lower than this. However, by using this highly selected ewes in the present study we succeeded in obtaining a reasonable high number of animals in all the three genotypic classes (337 GG, 388 GA, 128 AA), making it possible to get a reliable estimate of the effect of the c.1111A allele.

The reason for the increased frequency of c.1111A allele in Norwegian White Sheep AI ram population and also among the ewes (as shown in this study), may be due to the introduction of Finnish Landrace sheep in Norway for genetic improvement of NWS in 1960s and 1970s, also supported by Vage et al., (2013); Donald and Read (1967) and Ercanbrack and Knight (1985). Finnish Landrace or Finnsheep is a prolific (multiple births are very common) sheep breed and its crosses with other sheep breeds have been recognized for their higher fertility.

Increased meat production in Norway can be obtained increasing litter size by selection, both traditional phenotypes based breeding and/or by using the c.1111A allele for genotype assisted selection. However, NWS is a small size sheep and it might have some impact with really big LS

in ewes. No adverse effect on ewe has yet been reported in NWS ewes, but higher number of lambs born can cause lower birth weight and increased post-natal mortality. So, an optimum number of lambs born should be desired for Norwegian White ewes. The Norwegian Sheep and Goat Breeder's association will take the decision how the ram with c.1111A allele will be used in Norwegian White sheep breeding program.

The genotyping success rate in this study was more than 90% and it can be said that the quality of the extracted DNA was generally good. The "no calls" obtained during genotyping might be due to technical error, human error or poor DNA in some samples.

5. Reference List

- Abdulkhaliq, A.M., Harvey, W.R., and Parker, C.F., (1989). Genetic parameters for ewe productivity traits in the Columbia, Suffolk and Targhee breeds. *Journal of Animal Science*, 67: 3250.
- Ådnøy,T., (1988). Selection for prolificacy in Finnsheep and Norwegian sheep. *Journal of Agricultural Science Finland*, 60, 518–522.
- Australia Cancer Research Foundation (ACRF) Facility. http://www.garvan.org.au/facilities http://linkage.garvan.unsw.edu.au/ACRF/snp_genotyping.html. 2013 (retrieved 16-3-2013).
- Bindon,B.M., Piper,L.R., and Hillarda,M.A., (1996). *In: Prolific Sheep*. (Fahmy MH, ed), CAB International, Wallingford, UK.
- Bodensteiner, K.J., Clay, C.M., Moeller, C.L., and Sawyer, H.R., (1999). Molecular Cloning of the Ovine Growth/Differentiation Factor-9 Gene and Expression of Growth/Differentiation Factor-9 in Ovine and Bovine Ovaries. *Biology of Reproduction*, 60:381–386
- Boman, I, A., (2009). Mutations in the Myostatin (MSTN) Gene in Norwegian Sheep. Thesis, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås. ISBN 978-82-575-0888-3. p. 100.
- Cao,G.L., Chu,M.X., Fang,L., Di,R., Feng,T., and Li,N., (2010). Analysis on DNA sequence of KiSS-1 gene and its association with litter size in goats. *Molecular Biology Reports*, 37:3921–3929.
- Chang, H., Brown, C.W., and Matzuk, M.M., (2002). Genetic analysis of the mammalian transforming growth factor-superfamily. *Endocrine Reviews*, 23:787–823.
- D'Arcy, J.B., (1990). *In: Sheep Management and Wool Technology* (Williams YJ, Walker GP and Doyle PT, Eds), New South Wales University Press: Kensington, Sydney, Australia, 248.
- Davis, G.H., Montgomery, G.W., Allison, A.J., Kelly, R.W., and Bray, A.R., (1982). Segregation of a major gene influencing fecundity in progeny of Booroola sheep. *New Zealand Journal of Agricultural Research*, 25:525–529.
- Donald, H.P., and Read, J.L., (1967). Performance of Finnish Landrace Sheep in Britain. *Animal Production*, 9:471.
- Dong, J., Albertini, D.F., Nishimori, K., Kumar, T.R., Lu, N., and Matzuk, M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. *Nature*, 383:531–535.
- Durlinger, A.L.L., Visser, J.A., and Themmen, A.P.N., (2002). Regulation of ovarian function: the role of anti-Mullerian hormone. *Reproduction*, 124:601–609

- Elvin, J.A., Clark, A.T., Wang, P., Wolfman, N.M., and Matzuk, M.M., (1999). Paracrine actions of growth differentiation factor-9 in the mammalian ovary. *Molecular Endocrinology*, 13:1035–48.
- Elvin, J.A., Yan, C., and Matzuk, M.M., (2000). Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E2/EP2 receptor pathway. Proceedings of the National Academy of Sciences of the United States of America 97: 10288–93.
- Eikje,L.S., Ådnøy,T., and Klemetsdal,G., (2008). The Norwegian sheep breeding scheme: description, genetic and phenotypic change. *Animal*, 2(2):167–176.
- Eppig,J.J., (2001). Oocyte control of ovarian follicular development and function in mammals. *Reproduction*, 122:829–838.
- Frank, O., (2012). Reproductive health: The demography of fertility and infertility. Geneva Foundation for Medical Education and Research. (http://www.gfmer.ch/Books/Reproductive_health/The_demography_of_fertility_and_infertility.html). Retrieved on 22 March, 2013.
- Gabriel, S., Ziaugra, L., and Tabbaa, D., (2009). SNP genotyping using the Sequenom MassARRAY iPLEX platform. *Current Protocols in Human Genetics*, 60:2.12.1-2.12.18.// Chapter 2: Unit 2.12.
- Galloway,S.M., McNatty,K.P., Cambridge,L.M., Laitinen,M.P., Juengel,J.L., Jokiranta,T.S., McLaren,R.J., Luiro,K., Dodds,K.G., Montgomery,G.W., Beattie,A.E., Davis,G.H., and Ritvos, O., (2000). Mutations in an oocyte-derived growth factor gene (*BMP15*) cause increased ovulation rate and infertility in a dosage-sensitive manner. *Nature Genetics*, 25:279–283.
- Gilchrist, R.B., Lane, M., and Thompson, J.G., (2008). Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. *Human Reproduction Update*, 14:159–177.
- Hanrahan, J.P., Gregan, S.M., Mulsant, P., Mullen, M., Davis, G.H., Powell, R., and Galloway, S.M., (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (*Ovis aries*). *Biology of Reproduction*, 70:900–909.
- Hayashi, M., McGee, E.A., Min, G., Klein, C., Rose, U.M., van Duin, M., and Hsueh, A.J., (1999). Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. *Endocrinology*, 140:1236-44.
- Javanmard, A., Azadzadeh, N., and Esmailizadeh, A. K., (2011). Mutations in bone morphogenetic protein 15 and growth differentiation factor 9 genes are associated with increased litter size in fat-tailed sheep breeds. *Veterinary Research Community*, 35:157–167.

- Juengel, J.L., Bodensteiner, K.J., Heath, D.A., Hudson, N.L., Moeller, C.L., Smith, P., Galloway, S.M., Davis, G.H., Sawyer, H.R., and McNatty, K.P., (2004). Physiology of GDF9 and BMP15 signaling molecules. *Animal Reproduction Science*, 82–83:447–460.
- Juengel, J.L., and McNatty, K.P., (2005). The role of protein of the transformation growth factorbeta superfamily in the intraovarian regulation of follicular development. *Human Reproduction Update*, 11:144-161.
- Knight, P.G., and Glister, C., (2001). Potential local regulatory functions of inhibins, activins and follistatin in the ovary. *Reproduction*, 121:503–512.
- Larsgard, A.G., and Standal, N., (1999). Introduction of East Friesian dairy sheep into the Norwegian sheep population. *Small Ruminant Research*, 33, 87–98.
- Maddox,J.F., Davies,K.P., Crawford,A.M., Hulme,D.J., Vaiman,D., Cribiu,E.P., Bradley,A., Freking,B.A., Ken,J., Beh,K.J., Cockett,N.E., Kang,N., Riffkin,C.D., Drinkwater,R., Moore,S.S., Dodds,K.G., Joanne,M., Lumsden,J.M., Van-Stijn,T.C., Phua,S.H., Adelson,D.L., Burkin,H.R., Broom,J.E., Buitkamp,J., Cambridge,L., Cushwa,W.T., Gerard,E., Galloway,S.M., Harrison,B., Hawken,R.J., Hiendleder,S., Henry,H.M., Medrano,J.F., Paterson,K.A., Schibler,L., Stone,R.T., and van-Hest,B., (2001). An Enhanced Linkage Map of the Sheep Genome Comprising More 1000 loci. *Genome Research*, 11: 1275-1289.
- Mandon-Pepin,B., Oustry-Vaiman,A., Vigier,B., Piumi,F., Cribiu,E., Cotinot,C., (2003). Expression profiles and chromosomal localization of genes controlling meiosis and follicular development in the sheepovary. *Biology of Reproduction*, 68:985–995
- Martinez-Royo, A., Jurado, J.J., Smulders, J.P., Marti, J.I., Alabart, J.L., Roche, A., Fantova, E., Bodin, L., Mulsant, P., Serrano, M., Folch, J., and Calvo, J.H., (2008). A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep. *Animal Genetics*, 39:294–297.
- Matzuk, M.M., Burns, K.H., Viveiros, M.M., and Eppig, J.J., (2002). Intercellular communication in the mammalian ovary: Oocytes carry the conversation. *Science*, 296:2178–2180.
- McNatty, K.P., Moore, L.G., Hudson, N.L., Quirke, L.D., Lawrence, S.B., Reader, K., Hanrahan, J.P., Smith, P., Groome, N.P., Laitinen, M., Ritvos, O., and Juengel, J.L., (2004). The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology. *Reproduction*, 128(4):379-86.
- Monteagudo, L.V., Ponz, R., Tejedor, M.T., Lavina, A., and Sierra, I., (2009). A 17 bp deletion in the bone morphogenetic protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed. *Animal Reproduction Science*, 110, 139–146.
- Montgomery, G.W., McNatty, K.P., and Davis, G.H., (1992). Physiology and molecular genetics of mutations that increase ovulation rate in sheep. *Endocrine Reviews*, 13:309–328.

- Moore, R.K., Otsuka, F., and Shimasaki, S., (2003). Molecular basis of bone morphogenetic protein-15 signaling in granulose cells. *Journal of Biological Chemistry*, 278: 304-310.
- Mulsant,P., Lecerf,F., Fabre,S., Schibler,L., Monget,P., Lanneluc,I., Pisselet,C., Riquet,J., Monniaux,D., Callebaut,I., Cribiu,E., Thimonier,J., Teyssier,J., Bodin,L., Cognie,Y., Chitour,N., and Elsen,J.M., (2001). Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. *Proceeding of the National Academy of Sciences of the United States of America*, 98:5104–5109.
- Nicol, L., Bishop,S.C., Pong-Wong, R., Bendixen,C., Holm,L-E., Rhind, S.M., and McNeilly, A.S., (2009). Homozygosity for a single base-pair mutation in the oocyte specific GDF9 gene results in sterility in Thoka sheep. *Reproduction*, 138:921–933.
- Nitter, G., (1985). Economic response to increase the genetic potential for reproductive performance. *In: New Techniques in Sheep Production* (Faize I, Maraim M and Owen JP, Eds), Butterworths, London, UK, 271-280.
- NORDGEN, (2013). (Nordic Genetic Resource Center) Norwegian White Sheep. Retrieved 25-2-2013.
- Notter, D.R., (2008). Genetic aspects of reproduction in sheep. *Reproduction of Domestic Animal*, 43(2):122-128.
- NSG, (2013). National sheep recording system (Norwegian Sheep and Goat Association). Retrieved on 12-3-2013.
- Oeth,P., Beaulieu,M., Park,C., Kosman,D., del Mistro,G., van den Boom,D., and Jurinke,C., (2006). iPLEXTM Assay: Increased Plexing Efficiency and Flexibility for MassARRAY[®] System Through Single Base Primer Extension with Mass-Modified Terminators. SEQUENOME[®] Application Note. www.sequenome.com.
- Otsuka, F., McTavish, K.J., and Shimasaki, S., (2011). Integral Role of GDF-9 and BMP-15 in Ovarian Function. *Molecular Reproduction and Development*, 78:9–21.
- Piper, L.R., and Bindon, B.M., (1982). The Booroola Merino and the performance of medium non-peppin crosses at Armidale. In: Piper, L. R., Bindon, B. M., and Nethery, R. D. (Eds.), The Booroola Merino. Proceedings of a Workshop, Armidale, 24-25 August 1980, CSIRO, pp. 9–19.
- Piper, L.R., Bindon, B.M., and Davis, G.H., (1985). The single gene inheritance of the high litter size of the Booroola Merino. *In: Genetics of Reproduction in Sheep*, (Land RB and Robinson DW, Eds.), Butterworths, London, UK, 115–125.
- Rajab, M.H., Cartwright, T.C., Dahm, P.F., and Figueiredo, E.A., (1992). Performance of three tropical hair sheep breeds. *Journal of Animal Science*, 70:3351–3359.

- Silva, B.D.M., Castro, E.A., Souza, C.J., Paiva, S.R., Sartori, R., Franco, M.M., Azevedo, H.C., Silva, T.A., Vieira, A.M., Neves, J.P., and Melo, E.O., (2011). A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. *Animal Genetics*, 42(1):89-92.
- Souza, C.J., MacDougall, C., MacDougall, C., Campbell, B.K., McNeilly, A.S., and Baird, D.T., (2001). The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. *Journal of Endocrinology*, 169(2):R1–R6.
- Steinheim, G., Ødegård, J., Ådnøy, T., and Klemetsdal, G., (2008). Genotype by environment interaction for lamb weaning weight in two Norwegian sheep breeds. *Journal of Animal Science*, 86:33–39.
- Su,Y.Q., Sugiura, K., and Eppig,J.J., (2009). Mouse oocyte control of granulosa cell development and function: Paracrine regulation of cumulus cell metabolism. *Seminars in Reproductive Medicine*, 27:32–42.
- Våge,D.I., Maren,H.M., Kent,M.P., Klemetsdal,G., and Boman,I.A., (2013). A missense mutation in *growth differentiation factor* 9 (GDF9) is strongly associated with litter size in sheep. BioMed Central Genetics, 14(1):1-8.
- Valdez-Nava Y., (2011). Genotype by environment interaction effect on lamb weaning weight in Norwegian White Sheep. Master's Thesis: Norwegian University of Life Sciences, Department of Animal and Aquaculture Sciences.
- Well Gully, (2013). www.wellgully.com.au. Retrieved on 20 March, 2013.
- Wilson, T., Wu, X.Y., Juengel, J.L., Ross, I.K., Lumsden, J.M., Lord, E.A., Dodds, K.G., Walling, G.A., McEwan, J.C., O'Connell, A.R., McNatty, K.P., and Montgomery, G.W., (2001). Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. *Biology of Reproduction*, 64:1225–123

Citation

Fertility: http://www.biology-online.org/dictionary/Fertility. Retrieved on 22 March, 2013.

EMBL-EBI database: http://www.ebi.ac.uk. Retrieved on 21 March, 2013.

SWISS-PROT database: http://www.ebi.ac.uk/swiss-prot. Retrieved on 25 March, 2013.

UNIPROT database: http://www.ebi.ac.uk. Retrieved on 25 March, 2013.

SEQUENOME: www.sequenome.com. Retrieved on 20 February, 2013

6. Appendix

Commands used in SAS 9.2 Editor for analysis

```
data lamb;
infile 'lamb_data.txt' delimiter='09'x;
input Sample ID Genotype Flock_vr Flock_no Birth_yr lamb1yr lamb2yr;
proc sort; by Sample ;
proc freq;
table Flock_yr;
run;
proc freq;
table Genotype;
run;
proc freq;
table Flock_no;
run;
proc freq;
table Birth_yr;
                                                                ı
run;
proc freq;
table lamb1yr;
proc freq;
table lamb2yr;
run;
proc freq;
table Flock_yr*Genotype;
run;
proc freq;
table Birth_yr*Genotype;
run;
proc freq;
table Flock_no*Genotype;
table lamblyr*Genotype;
proc freq;
table lamb2yr*Genotype;
p<mark>roc</mark>, means <mark>data=</mark>lamb;
var Genotype Flock_yr Flock_no Birth_yr lamb1yr lamb2yr;
run;
proc glm data=Lamb;
 class Genotype Flock_yr;
model lamblyr lamb2yr=Genotype Flock_yr/solution;
  means Genotype;
  Ismeans Genotype/pdiff;
```

Commands used for the model for bivariate analysis

```
proc glm data=Lamb;
  class Genotype Flock_yr;
  model lamb1yr lamb2yr=Genotype Flock_yr/solution;
  means Genotype;
  lsmeans Genotype/pdiff;
run;
```

Measurement of frequency for Flock_yr (Flock year)

		The SAS Sys	tem	11:42 Monday,
	TI	he FREQ Proc	edure	
Flock_yr	Frequency	Percent	Cumulative Frequency	Cumulative Percent
12972010	23	2.70	23	2.70
12972011	22	2.58	45	5.28
24972010	22	2.58	67	7.85
24972011	38	4.45	105	12.31
29712010	60	7.03	165	19.34
29712011	104	12.19	269	31.54
33902010	24	2.81	293	34.35
33902011	31	3.63	324	37.98
38032010	15	1.76	339	39.74
38032011	27	3.17	366	42.91
43262010	11	1.29	377	44.20
43262011	15	1.76	392	45.96
43482010	14	1.64	406	47.60
43482011	13	1.52	419	49.12
45622010	53	6.21	472	55.33
45622011	70	8.21	542	63.54
53762010	25	2.93	567	66.47
53762011	28	3.28	595	69.75
67462010	24	2.81	619	72.57
67462011	23	2.70	642	75.26
78842010	23	2.70	665	77.96
78842011	32	3.75	697	81.71
84702010	16	1.88	713	83.59
84702011	23	2.70	736	86.28
85742010	16	1.88	752	88.16
85742011	17	1.99	769	90.15
86292010	19	2.23	788	92.38
86292011	12	1.41	800	93.79
95072010	19	2.23	819	96.01
95072011	34	3.99	853	100.00

Measurement of frequency for different Genotypes (GG=1, GA=2, AA=3)

		The SAS Sys	tem	11:42 Monday, Ma
	TI	he FREQ Proc	edure	
Genotype	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1 2 3	337 388 128	39.51 45.49 15.01	337 725 853	39.51 84.99 100.00

$Measurement \ of \ frequency \ of \ Flock_no \ (Flock \ number)$

		The SAS Sys	tem	11:42 Monday,
	TI	he FREQ Proc	edure	
Flock_no	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1297	45	5.28	45	5.28
2497	60	7.03	105	12.31
2971	164	19.23	269	31.54
3390	55	6.45	324	37.98
3803	42	4.92	366	42.91
4326	26	3.05	392	45.96
4348	27	3.17	419	49.12
4562	123	14.42	542	63.54
5376	53	6.21	595	69.75
6746	47	5.51	642	75.26
7884	55	6.45	697	81.71
8470	39	4.57	736	86.28
8574	33	3.87	769	90.15
8629	31	3.63	800	93.79
9507	53	6.21	853	100.00

Measurement of frequency of Birth_yr (Birth year)

		The SAS Sys	ten	11:42 Monday,	March	25,	2013	34
The FREQ Procedure								
Birth_yr	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
2010 2011	364 489	42.67 57.33	364 853	42.67 100.00				

Measurement of frequency of lamb1yr (No. of lambs at 1 year)

		The SAS Sys	tem	11:42 Monday, I	Marc			
The FREQ Procedure								
lamb1yr	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
1	150	20.19	150	20.19				
2	421	56.66	571	76.85				
3	150	20.19	721	97.04				
4	21	2.83	742	99.87				
6	1	0.13	743	100.00				
6	1 Frequ	0.13 uency Missin		100.00				

$Measurement \ of \ frequency \ of \ lamb2yr \ (No. \ of \ lambs \ at \ 2 \ year)$

		The SAS Sys	tem	11:42 Monday,	March 25,	2013	3
	1	he FREQ Proc	edure				
lanb2yr	Frequency	Percent	Cumulative Frequency	Cumulative Percent			
1	33 115	9.19 32.03	33 148	9.19 41.23			
3	157	43.73	305	84.96			
5	46 7	12.81 1.95	351 358	97.77 99.72			
6	1	0.28	359	100.00			
	Fred	wency Missin	ıg = 494				

Frequency table of Flock_yr by Genotype (3 tables)

Flock_yr	Genoty	ре		
Frequency Percent Row Pct Col Pct	- 1	2	3	Tota
12972010	0.94 34.78 2.37	1.52 56.52 3.35	0.23 8.70 1.56	2.7
12972011	1.06 40.91 2.67	1.29 50.00 2.84	0.23 9.09 1.56	2.5
24972010	1.41 54.55 3.56	7 0.82 31.82 1.80	0.35 13.64 2.34	2.5
24972011	17 1.99 44.74 5.04	15 1.76 39.47 3.87	0.70 15.79 4.69	4.4
29712010	33 3.87 55.00 9.79	24 2.81 40.00 6.19	0.35 5.00 2.34	7.0
29712011	51 5.98 49.04 15.13	41 4.81 39.42 10.57	1.41 1.41 11.54 9.38	12.15
33902010	0.70 25.00 1.78	1.76 1.76 62.50 3.87	0.35 12.50 2.34	2.8
33902011	0.94 25.81 2.37	16 1.88 51.61 4.12	7 0.82 22.58 5.47	3.6
38032010	0.70 40.00 1.78	0.70 40.00 1.55	0.35 20.00 2.34	1.7
38032011	12 1.41 44.44 3.56	1.64 1.64 51.85 3.61	0.12 3.70 0.78	3.1
Total	337	388	128	85

Tab	le of Flo	ock_yr by	Genotype	
Flock_yr	Genoty			
Frequency Percent Row Pct Col Pct	1	2	3	Total
43262010	4 0.47 36.36 1.19	0.47 36.36 1.03	3 0.35 27.27 2.34	11 1.29
43262011	0.59 33.33 1.48	0.35 20.00 0.77	7 0.82 46.67 5.47	15 1.76
43482010	0.70 42.86 1.78	7 0.82 50.00 1.80	0.12 7.14 0.78	14 1.64
43482011	0.47 30.77 1.19	0.47 30.77 1.03	0.59 38.46 3.91	13 1.52
45622010	19 2.23 35.85 5.64	27 3.17 50.94 6.96	7 0.82 13.21 5.47	53 6.21
45622011	25 2.93 35.71 7.42	30 3.52 42.86 7.73	15 1.76 21.43 11.72	70 8.21
53762010	1.41 48.00 3.56	1.52 52.00 3.35	0.00 0.00 0.00	25 2.93
53762011	7 0.82 25.00 2.08	19 2.23 67.86 4.90	0.23 7.14 1.56	28 3.28
67462010	11 1.29 45.83 3.26	12 1.41 50.00 3.09	0.12 4.17 0.78	24 2.81
67462011	1.17 43.48 2.97	12 1.41 52.17 3.09	0.12 4.35 0.78	23 2.70
Total	337	388	128	853

 $Frequency\ table\ of\ Birth_yr\ by\ Genotype$

	The	SAS Syste	· m	11:42	Monday,
		Ono Oyste			nonday,
	The FF	REQ Proced	lure		
Tab	ole of Bir	rth_yr by	Genotype		
Birth_yr	Genoty	ре			
Frequency Percent Row Pct					
Col Pct	1	2	3	Total	
2010	149 17.47 40.93 44.21	169 19.81 46.43 43.56	46 5.39 12.64 35.94	364 42.67	
2011	188 22.04 38.45 55.79	219 25.67 44.79 56.44	82 9.61 16.77 64.06	489 57.33	
Total	337 39.51	388 45.49	128 15.01	853 100.00	

Frequency table of Flock_no by genotype (2 tables)

Tab	le of Flo	ck_no by (Senotype	
Flock_no	Genoty	ре		
Frequency Percent Row Pct Col Pct	- 11	2	3	Total
1297	1.99 37.78 5.04	2.81 2.81 53.33 6.19	0.47 8.89 3.13	5.28
2497	3.40 48.33 8.61	2.58 36.67 5.67	1.06 15.00 7.03	7.03
2971	9.85 51.22 24.93	7.62 39.63 16.75	1.76 1.76 9.15 11.72	164 19.23
3390	1.64 1.64 25.45 4.15	31 3.63 56.36 7.99	1.17 18.18 7.81	6.45
3803	2.11 42.86 5.34	20 2.34 47.62 5.15	0.47 9.52 3.13	4.92
4326	1.06 34.62 2.67	7 0.82 26.92 1.80	1.17 38.46 7.81	3.05
4348	1.17 37.04 2.97	1.29 40.74 2.84	0.70 22.22 4.69	3.17
4562	5.16 35.77 13.06	6.68 46.34 14.69	2.58 17.89 17.19	14.42
Total (Continued	337 39.51	388 45.49	128	100.00

	The SAS System					
	The FF	EQ Proced	lure			
Tab	le of Flo	ck_no by	Genotype			
Flock_no	Genoty	ре				
Frequency Percent Row Pct						
Col Pct	'	2	3	-		
5376	19 2.23 35.85 5.64	32 3.75 60.38 8.25	0.23 3.77 1.56	53 6.21		
6746	21 2.46 44.68 6.23	24 2.81 51.06 6.19	2 0.23 4.26 1.56	47 5.51		
7884	33 3.87 60.00 9.79	20 2.34 36.36 5.15	0.23 3.64 1.56	55 6.45		
8470	13 1.52 33.33 3.86	25 2.93 64.10 6.44	0.12 2.56 0.78	39 4.57		
8574	10 1.17 30.30 2.97	16 1.88 48.48 4.12	7 0.82 21.21 5.47	33 3.87		
8629	0.94 25.81 2.37	17 1.99 54.84 4.38	6 0.70 19.35 4.69	31 3.63		
9507	0.94 15.09 2.37	17 1.99 32.08 4.38	28 3.28 52.83 21.88	53 6.21		
Total	337 39.51	388 45.49	128 15.01	853 100.00		

Ferquency table of lamb1yr by Genotype

	The	SAS Syste	em	11:42 Monday, Marcl			
	The FREQ Procedure						
Та	ble of la	amblyr by	Genotype				
lamb1yr	Genotyp	e					
Frequency Percent Row Pct Col Pct		ا م		Total			
	1	2		-			
1	70 9.42 46.67 23.49	65 8.75 43.33 19.58	15 2.02 10.00 13.27	150 20.19			
2	188 25.30 44.66 63.09	187 25.17 44.42 56.33	46 6.19 10.93 40.71	421 56.66			
3	35 4.71 23.33 11.74	73 9.83 48.67 21.99	42 5.65 28.00 37.17	150 20.19			
4	4 0.54 19.05 1.34	7 0.94 33.33 2.11	10 1.35 47.62 8.85	21 2.83			
6	0.13 100.00 0.34	0.00 0.00 0.00	0.00 0.00 0.00	0.13			
Total	298 40.11	332 44.68	113 15.21	743 100.00			
	Frequency	Missing	= 110				

Ferquency table of lqmb2yr by Genotype

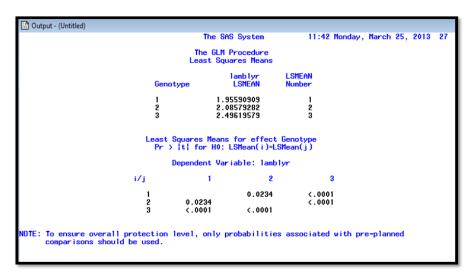
	The	SAS Syste	m	11:42
	The FR	EQ Proced	lure	
Ta	ble of la	mb2yr by	Genotype	
lamb2yr	Genotyp	e		
Frequency Percent Row Pct Col Pct	.11	21	31	Total
1.	5.85 63.64 14.38	1.95 21.21 4.14	1.39 15.15 11.36	9.19
2	59 16.43 51.30 40.41	51 14.21 44.35 30.18	1.39 4.35 11.36	32.03
3	61 16.99 38.85 41.78	77 21.45 49.04 45.56	5.29 12.10 43.18	157 43.73
4	1.11 8.70 2.74	31 8.64 67.39 18.34	3.06 23.91 25.00	46 12.81
5	0.28 14.29 0.68	0.84 42.86 1.78	0.84 42.86 6.82	1.95
6	0.00 0.00 0.00	0.00 0.00 0.00	0.28 100.00 2.27	0.28
Total	146 40.67	169 47.08	12.26	359 100.00
	Frequency	Missing	- 494	

Means of different variables used for analysis in this study

			The SAS System	11:42 Monday, March 25, 2013		
		The	MEANS Procedure			
Variable	N	Mean	Std Dev	Minimum	Maximum	
Genotype	853	1.7549824	0.6969007	1.0000000	3.0000000	
Flock_yr	853	49859630.74	23985940.11	12972010.00	95072011.00	
Flock_no	853	4985.76	2398.59	1297.00	9507.00	
Birth yr	853	2010.57	0.4948924	2010.00	2011.00	
lamb1yr	743	2.0619112	0.7316047	1.0000000	6.0000000	
lamb2yr	359	2.6713092	0.9019137	1.0000000	6.0000000	

Data level in the model

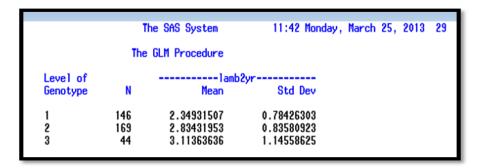
```
The SAS System
                                                                                                   11:42 Monday, March 25, 2013 45
                                                            The GLM Procedure
                                                       Class Level Information
Class
                  Levels Values
Genotype
                         3 123
                             12972010 12972011 24972010 24972011 29712010 29712011 33902010 33902011 38032010 38032011 43262010 43262011 43482010 43482011 45622010 45622011 53762010 53762011 67462010 67462011 78842010 78842011 84702010 84702011 85742010 85742011 86292010 86292011 95072010 95072011
Flock_yr
                                                   Data for Analysis of lamblyr
                                                                                                 853
743
                                           Number of Observations Read
                                           Number of Observations Used
                                                  Data for Analysis of lamb2yr
                                           Number of Observations Read
Number of Observations Used
                                                                                                 853
359
NOTE: Variables in each group are consistent with respect to the presence or absence of missing
        values.
```


ANOVA Table for litter size at 1 year

		The SAS System	11:42	! Monday, Ma	rch 25, 2013
		The GLM Procedur	те		
ndent Variable: lamblyr					
Source	DF	Sum of Squares	Mean Square	F Value	Pr → F
Mode 1	31	48.3526105	1.5597616	3.18	<.0001
Error	711	348.7994757	0.4905759		
Corrected Total	742	397.1520861			
R-Square	Coe	ff Var Root	MSE lamblyr	Mean	
0.121748	33	.96903 0.700	0411 2.06	1911	
Source	DF	Type I SS	Mean Square	F Value	Pr → F
Genotype Flock_yr	2 29	19.93375781 28.41885265	9.96687891 0.97996044	20.32 2.00	<.0001 0.0015
Source	DF	Type III SS	Mean Square	F Value	Pr → F
Genotype Flock_yr	2 29	20.91124227 28.41885265	10.45562113 0.97996044	21.31 2.00	<.0001 0.0015

Means of litter size at 1 year per Genotypes

	Т	he SAS System	11:42 Monday, Ma
	The	GLM Procedure	
Level of	N	lambi	lyr
Genotype		Mean	Std Dev
1	298	1.92281879	0.67476104
2	332	2.06626506	0.70505762
3	113	2.41592920	0.83158265


Least-square means and difference matrix for lamb1yr

ANOVA Table for lamb2yr

		The SAS System	n 11:4	2 Monday, Ma	rch 25,
		The GLM Procedu	re		
dent Variable: lamb2yr					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Mode I	16	38.4288437	2.4018027	3.25	< .0001
Error	342	252.7856409	0.7391393		
Corrected Total	358	291.2144847			
R-Squ	are Coef	f Var Root	MSE lamb2yr	Mean	
0.131	961 32.	18392 0.85	9732 2.6	71309	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
Genotype Flock_yr	2 14	28.23678825 10.19205549	14.11839412 0.72800396	19.10 0.98	<.000 0.468
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Genotype Flock_yr	2 14	30.52605079 10.19205549	15.26302540 0.72800396	20.65	<.000 0.468

Means of lamb2yr per Genotype

Ismeans and difference matrix of lamb2yr for Genotypes

```
The SAS System
                                                                                            11:42 Monday, March 25, 2013 30
                                                     The GLM Procedure
Least Squares Means
                                                                  lamb2yr
LSMEAN
                                                                                     LSMEAN
Number
                                          Genotype
                                                              2.27104624
2.77752080
3.14140388
                                       Least Squares Means for effect Genotype Pr > |t| for H0: LSMean(i)=LSMean(j)
                                                Dependent Variable: lamb2yr
                                                           1
                                   i/j
                                                                               2
                                                                                                  3
                                                                        <.0001
                                                                                            <.0001
                                                    <.0001
<.0001
                                                                                            0.0175
                                                                        0.0175
NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.
```