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Abstract 
 
 

Since the mid-1990’s, decline and death of European ash (Fraxinus excelsior) has been 

occurring throughout central, northern and eastern Europe. The causal agent of this 

destructive disease has been identified as Chalara fraxinea, the anamorph of the 

ascomycete Hymenoscyphus pseudoalbidus. Besides the fundamental role of airborne 

ascospores produced from apothecia on leaf petioles of previous year on the ground in 

local spread of the disease, the movement of diseased ash material is also a pathway for 

introducing the pathogen into new areas. The disease on Fraxinus spp is concerning for 

countries outside of the current zone of infestation including North America with the 

potential pathway for introduction through importation of infected plant material. 

Currently, the importation of ash plants to the United States for planting is forbidden, 

although seeds are permitted. Previously H. pseudoalbidus was isolated from different 

parts of wilting or dying European ash trees including stems, branches, shoots, roots, 

leaves and leaf petioles; however its occurrence in seeds is not known. The first 

objective of this study was to investigate the presence of H. pseudoalbidus in the seed 

collected from more resistant and susceptible clones of symptomatic F. excelsior in 

southern Sweden and to identify the fungal communities associated with F. excelsior 

seed. This was achieved by using molecular methods including tests with H. 

pseudoalbidus -specific primers and 454- sequencing. The results showed that H. 

pseudoalbidus was detected from the seeds of both more resistant and susceptible 

clones of F. excelsior at equal frequencies (30%) using H. pseudoalbidus -specific 

primer. The most frequently taxa detected from the seeds were Alternaria infectoria 

(93%), Cladosporium sp. (74%), Coniothyrium fuckeli (72%), Cryptococcus sp (93%), 

Didymella fabae (72%), Phomopsis sp (80%) and Phoma sp (72%). In addition, 

sequences obtained from larvae found in some damaged seed were identified as the ash 

shoot moth (Pseudargyrotoza conwagana). 
 

 

Windborne ascospores occurring at highest frequencies in July to mid-August are known 

to be the main source for initiating new infections on the host. Leaves and petioles are 

the first infection court for establishment of new host infections. After leaf fall in the 

autumn, the fungus produces a typical black pseudosclerotial layer on the petiole surface 

and overwinters inside. Considering the essential role of petioles for spread of the 

disease, a previous investigation has focused on studying one-year-old leaf petioles for 

elucidating the life cycle of the disease, though less investigation has been made in fresh 

petioles of F. excelsior. 

 
Hence, to gain better knowledge of the reproduction biology of the pathogen H. 

pseudoalbidus, the second objective of this study was to investigate the genetic structure 

and population dynamics of H. pseudoalbidus in fresh leaf petioles collected from a 

single symptomatic F. excelsior tree in Sweden. DNA extracted from 2 cm length 

segments of petioles were tested with 13 microsatellite markers. The results confirmed 

the existence of multiple haplotypes. In addition, the analysis of molecular variance 

(AMOVA) test and principle coordinate analysis (PCA) confirmed high genetic 

variability of H. pseudoalbidus within individual petioles and low genetic variation 

among petioles. 



1. Introduction 
 

 

The dieback of European or common ash (Fraxinus excelsior L.) is a major concern for 

countries within Europe and beyond where Fraxinus spp. are known to occur. The 

problem was first observed in the mid-1990’s in Poland and Lithuania (Przybyl, 2002, 

Kowalski, 2006). By 2002, large-scale dieback of over 30,000 ha of F. excelsior 

resulted in mortality of approximately 60% of ash stands in Lithuania (Bakys et al., 

2009b). Since then, numerous outbreaks have been reported throughout large parts of 

Europe (Timmermann, 2011). Massive dieback of ash stands has produced critical 

problems in Denmark, which has led to the concept of not planting more ash trees (Kjær 

et al., 2012). In Sweden, massive dieback and rapid loss of F. excelsior during the last 

10 years has resulted in F. excelsior now being Red-Listed with the Swedish Species 

Information centre with vulnerable status at risk for species extinction 

(http://www.slu.se/en/collaborative-centres-and-projects/artdatabanken/about- 

us/organization/). 
 

 

The causal agent of the disease is the ascomycete fungus H. pseudoalbidus (anamorph 

Chalara fraxinea) (Kowalski, 2006; Queloz et al., 2010).  Ash petioles have an essential 

role in the epidemiology of the disease. Apothecia of H. pseudoalbidus are formed on 

the pseudosclerotial layers of petioles from the previous year in the leaf litter 

(Timmermann, 2011), but also sporadically on dead shoots of 1-3 years old ash 

seedlings (Kowalski and Holdenrieder, 2009). Ascospores are wind-transmitted and 

initiate new infections on leaves and leaf petioles during the summer (Timmermann, 

2011). Due to high ecological, biodiversity and aesthetic values of F. excelsior, the 

Norwegian Food Safety Authority implemented regulations concerning the movement 

of ash seedlings, propagation material and wood for the purpose of preventing the 

dissemination of the disease (van Opstal, 2011). Furthermore, since the pathogenicity of 

H. pseudoalbidus was repeatedly confirmed on Fraxinus spp. throughout Europe, the 

fungus was added to the European and Mediterranean Plant Protection Organization 

(EPPO) Alert List in 2008 (van Opstal, 2011). 
 

 

Previous studies by Kjaer et al. (2012) and McKinney et al. (2012b) have shown that 

there is a significant genetic variability among susceptible clones of F. excelsior in 

Denmark, whereby more resistant clones show less symptoms of the disease. This was 

also supported by Stener (2012) who showed that ash dieback disease among the 

Swedish populations of F. excelsior is strongly genetically controlled and resistance is 

inheritable. Interestingly, results of all studies suggest that most ash trees are damaged 

by the disease and rarely some individuals remain relatively healthy. 
 

 

In the new global trade system, the movement of infected plant material has become a 

key factor in spreading diseases to new areas. Elmer (2001) described a correlation 

between the movement of seeds and introducing pathogens to a new environment 

(Elmer, 2001). For example, movement of Asparagus officinalis seeds led to the 

introduction the plant pathogenic fungus Fusarium proliferatum to the United States, 

Canada and Australia (Elmer, 2001). To date, H. pseudoalbidus has been detected in a 

http://www.slu.se/en/collaborative-centres-and-projects/artdatabanken/about-us/organization/
http://www.slu.se/en/collaborative-centres-and-projects/artdatabanken/about-us/organization/


variety of different tissues including leaf stalks, stems, leaves and bark of F. excelsior 

(Bakys et al., 2009a), though no investigation has been made with seeds. Thus, the first 

aim of this study was to investigate the presence of H. pseudoalbidus in seeds of F. 

excelsior to determine the potential risk for introducing the pathogen via movement of 

seeds to new areas. 

 
1.1. The geographical distribution area of the disease 

 

 

Ash dieback is present throughout the natural distribution range of F. excelsior in 

central, northern and eastern Europe. The disease was first reported in Poland and 

Lithuania in the mid-1990’s (Bakys et al., 2009b). In the years following, the disease 

spread to affect Fraxinus spp. in more than 25 countries throughout Europe 

(Timmermann, 2011). The disease in U.K and Ireland has most recently been reported. 

Despite the occurrence of the disease in all parts of Europe, the only country, which is 

still free from the disease, is Spain. Among the Scandinavian countries, the first 

observation of the disease was made in Sweden in 2001, and by 2004 the entire 

distribution of F. excelsior was affected by ash dieback disease (Timmermann, 2011). 

 
1.2. Symptoms of the disease 

 

 

The most obvious symptoms are characterized as: wilting and premature shedding of 

leaves; necrosis of leaves, buds, leaf stalks, leaflet veins and bark; top and shoot 

dieback; cankers on shoots, branches, and stems; and sapwood discoloration (Bakys et 

al., 2009b, Timmermann, 2011). The recent study by Husson et al. (2012) confirmed the 

presence of H. pseudoalbidus on ash logs leads to the discoloration of the root collar and 

lower stem. Ascospores dispersed in summer occur at higher frequencies from the end 

of July to mid- August from apothecia fruiting on petioles from the previous year in the 

leaf litter and initiate new infections on leaves and leaf petioles. Following initial 

penetration, the fungus spreads into the phloem and xylem of shoots and causes bark 

cankers and death of the distal part of shoot (Gross et al., 2011, Timmermann, 2011). 

Since no apothecia are formed on the shoot and stem, or only very rarely as reported by 

Kowalski and Holdenrieder (2009), it is conceived that shoot and stem infections are 

dead end for the fungus (Pautasso et al., 2013). Dieback of trees occurs in all age 

classes, regardless of the site index and the host habitat (forest stands, landscapes, 

nurseries, urban areas and road sides) (van Opstal, 2011, Bakys et al., 2009a, 

Schumacher et al., 2010). The occurrence of the disease in young stands may lead to 

stand mortality in just a few years, whereas in older stands the disease becomes a 

chronic problem and the vigor of trees will be reduced (Timmermann, 2011). 

 
1.3. The causal agent and life cycle of the disease 

 
 
Isolations from different symptomatic tissues of F. excelsior confirmed that an 

ascomycete fungus, Chalara fraxinea T. Kowalski (Kowalski, 2006) was the causal 

agent of the disease. Three years later, the study by Kowalski and Holdenrieder (2009) 

which was based on the culturing of ascospores, morphological comparison and nuclear 

ribosomal internal transcribed spacer (ITS) sequencing, identified the teleomorph as 

Hymenoscyphus albidus, a saprotroph on ash petioles in the forest litter, known since 



1851 in Europe (Kowalski and Holdenrieder, 2009). Subsequently, the study by Queloz 

et al. (2011) described the causal agent of the disease as a new pathogen based on the 

DNA sequence of the ITS region, calmodulin gene and translation elongation factor 1-α 

and also ISSR markers. Apothecia and ascospores of H.  pseudoalbidus play an 

important role in the life cycle of the pathogen and dispersal of the disease 

(Timmermann, 2011). The recent study by Bengtsson et al. (2012) confirmed that the 

life cycle of H. pseudoalbidus is heterothallic, suggesting recombination of the fungus 

before producing asci and ascospores, and the existence of high gene flow among H. 

pseudoalbidus isolates from Sweden, Austria, Lithuania, Denmark, Hungary, Germany, 

Poland, Finland, Czech Republic and Norway (Bengtsson et al., 2012)  . So far, the life 

cycle of the disease was only partly known, but the recent study by Gross et al. (2012) 

described it as follows: Ascospores dispersed from apothecia fruiting on petioles from 

the previous year in the leaf litter are windborne and initiate new infections on green 

leaves in summer. Following the leaf penetration of the fungus, an appressoria will be 

formed and lead to tissue colonization and growth of the fungus into the petiole. After 

leaf fall, conidia are produced on petioles in the autumn at low temperature. The fungus 

forms a dark pseudosclerotial layer on the petiole and overwinters inside the petiole. 

The fertilization of the fungus is accomplished hypothetically by means of conidia 

acting as spermatia. In the next growing season, new apothecia are formed and initiate 

new infections on leaves and petioles (Gross et al., 2012) (Fig. 1). 
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Fig. 1. Hypothetical life cycle of H. pseudoalbidus 
 

 

Due to the vital role of petioles for establishment of new infections on trees another aim 

of this study was to better understand the mating system, life cycle and genetic structure 

of H. pseudoalbidus within petioles. 

 
1.4. The comparison between H. albidus and H. pseudoalbidus 



Although H. albidus and H. pseudoalbidus are very similar ecologically and 

morphologically (Bengtsson et al., 2012), the study by Queloz et al. (2011) confirmed 

that H. albidus is non-pathogenic and H. pseudoalbidus is the pathogenic species 

responsible for causing dieback on ash since apothecia of H. albidus were only 

collected from diseased-free areas, whereas apothecia of H. pseudoalbidus were 

collected only within diseased stands . The recent study by Gross et al. (2012) 

confirmed the homothallic life cycle of the H. albidus. The heterothallic life cycle of H. 

pseudoalbidus will lead to the production of new genotypes and bolster the pathogen’s 

potential to be more virulent (Bengtsson et al., 2012). 

1.5. Objectives 
 
To gain a better understanding of some aspects of the infection biology of the fungus, the 

thesis was comprised of two studies: 

 
I) Microflora associated with F. excelsior seeds 

II) Population dynamics of the H. pseudoalbidus in ash petioles 
 

 

In study I, the primary objectives were to: 
 
 

1)  Determine the presence of H. pseudoalbidus in seeds of F. excelsior 

2)  Detect the fauna and fungal community associated with seed of F. excelsior trees 

affected by ash decline 

3)  Determine if there is any variation among the fungal communities associated with 

seeds having morphologically different levels of damage 

4)  Determine if there are any differences in fungal communities among different 

genotypes (clones) of F. excelsior having different levels of susceptibility to H. 

pseudoalbidus. 
 

 

The first objective was achieved by testing seed with H. pseudoalbidus-specific primers 

(Johansson et al., 2010), previously developed in the lab at the Department of Forest 

Mycology and Plant Pathology of Swedish University of Agricultural Sciences in Uppsala 

which permits a reliable detection of the pathogen directly from infected plant tissue. The 

latter objectives were achieved using molecular methods based on DNA extraction, PCR and 

454 sequencing. 
 
 
 
In study II, the main objectives were to: 

 

 

1)  Determine the population dynamics and genetic structure of the fungus in ash 

petioles 

2)  Determine if there is any genetic variation among developed lesions on petioles. 

This was achieved by applying molecular methods, DNA extraction, PCR reactions 

and microsatellite markers obtained from (Bengtsson et al., 2012, Gross et al., 

2012). 



2.0. Materials and methods 
 

 

2.1. Study I: Detection of H. pseudoalbidus and fungal community analysis 

using 454-sequencing 

 
2.1.1. Sample collection and preparation 

 
 
Seeds from 12 different genotypes (clones) of F. excelsior having different levels of 

susceptibility to ash dieback based on previous field surveys (Stener 2007) were collected 

from two ash orchards in southern Sweden. Of the selected clones to be used in this study, six 

were identified as being more resistant to H. pseudoalbidus  (e.g. Fig 2) and six were 

susceptible (e.g. Fig 2). While all clones are affected to some degree by H. pseudoalbidus, 

more resistant clones typically show less symptoms of dieback in the crown and fewer bark 

cankers than susceptible clones. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 

 
 

Fig. 2. Example of a (a) more resistant ash clone and (b) susceptible ash clone at the Trolleholm 

seed orchard in southern Sweden (Photo by Michelle Cleary) 
 
 
 
In the laboratory, seeds were removed from their respective samaras. Based on morphological 

observations, seed samples were categorized into three groups: damaged, undamaged and 

suspect. Damaged seeds had an exit hole, which represented evidence of an insect infestation. 

Undamaged seeds appeared to have a normal brown seed coat. Suspect seeds appeared to 

have some discoloration on the surface suggesting possible fungal associations (Fig. 3) 



 
 
 

(a) (b) (c) 
 

 

Fig. 3. Category of seeds from more resistant and susceptible clones of F. excelsior based on 

their respective morphology (a) Damaged, (b) Undamaged, (c) Suspect 

 
2.1.2. Preparation of samples for DNA extraction 

 
Three replicate samples containing two seeds belonging to each damage category (Damaged, 

Undamaged and Suspect) were prepared in individual Eppendorf tubes for each of the 12 

clones (i.e. 18 seeds per clone, 216 seeds in total). 

Each Eppendorf tube contained two seeds, one screw and two nuts (Fig. 4). The tubes 

containing seeds were kept in a freezer at -20
0 

C and then the samples were freeze-dried for 

24 hours. 
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   Damaged   
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Fig.4. Illustration showing preparation of Eppendorf tubes of an individual seed clone of F. 

excelsior for the three categories (Damaged, Undamaged and Suspect) for the purpose of DNA 

extraction. 
 
 

2.1.3. DNA extraction 
 
 

The freeze-dried samples were homogenized with a fast prep machine.  DNA was extracted 

using the CTAB method (Velegraki et al., 1999). 1mL CTAB buffer (3% 

Cetyltrimetylammoniumbromide, 2mM EDTA, 2.6 M NACL, 0.15 M TRIS-HCL; pH 8.0) 

added to each tube, then homogenized and incubated at 65
0 

C for 1 h. During the incubation at 

65
0 

C, the content of tubes was vortexed every 15 min. The tubes were then centrifuged at 

10,000 rpm for 5 min. Subsequently the supernatant was removed to a newly marked 

centrifuge tube. Chloroform (500 µL) was added for cleaning the DNA and the mixture was 

centrifuged at 10,000 rpm for 7 min. After centrifuging, 500 µL of the supernatant was 

removed to a newly marked centrifuge tube. For the purpose of precipitating the DNA to a 

pellet, 2-propanol (1.5 V) was added to the supernatant, centrifuged at 13,000 rpm for 10 min 

and then the supernatant was poured off in the sink. Subsequently, the pellet was washed with 

70% ethanol (500µL), centrifuged at 13,000 rpm for 5 min and the ethanol was then 

discarded. Next, the pellet was allowed to dry on the bench and then was dissolved in 50-µl 

milliQ H2O. Afterwards the DNA-concentration of each sample was measured using a 

Nanodrop spectrophotometer. Samples were diluted to the concentration 0.5 ng/µl of DNA. 



2.1.4. Amplifying DNA using the PCR reaction with ITS primer 
 
 

PCR was performed using the primers ITS1-F (CTTGGTCATTTAGAGGAAGTAA) and 

ITS4 (TCCTCCGCTTATTGATATGC) (White et al., 1990). Total volume of 10 µL PCR 

reactions consisted of PCR buffer, 0.2 mM dNTPs, 2.75 mM MgCl2, 0.025 U Dream Tag 

Polymerase, 0.2 µM of each primers and 0.25 ng/µl template DNA. 

The reaction was initialized with a denaturation step at 95
0 

C for 5 min followed by 35 

amplification cycles of denaturation at 94
0 

C for 30 s, annealing at 57
0 

C for 30 s and 

extension at 72
0 

C for 30 s. The PCR reaction was accomplished by a final extension step at 

72
0 

C for 7 min (Fig.5). 

PCR products were separated by gel electrophoresis on 1% agarose gel (agarose D1) in SB 

buffer. The gel was loaded with 5µl of each sample and 3µl of a DNA marker and run at 300 

V for 20 min. Finally the gel products were visualized under UV light. 
 
 

(35 cycles) 
 

95:00 94 57.0 72.0 72:00 
 

5:00 min 00:30 s 0:30 s 0:30s 7:00 15 
 

∞ 
 

Fig.5. ITS program of PCR reaction used for ITS1 and ITS4 primers 
 

 
 
 
 
 

2.1.5. Amplifying DNA using H. pseudoalbidus -specific primer 
 

 

The PCR run was accomplished by applying H. pseudoalbidus specific primers: forward (5ꞌ- 

AGCTGGGGAAACCTGACTG-3ꞌ) and reverse (5ꞌ-ACACCGCAAGGACCCTATC-3ꞌ) 

(Johansson et al., 2010) and PCR reactions with 10 µL volume containing PCR buffer, 0.2 

mM dNTPs, 2.75 mM MgCl2, 0.025 U Dream Tag Polymerase, 0.2 µM of each primers and 

0.25 ng/µl template DNA. The reaction started with an initial denaturation step at 95
0 

C for 5 

min followed by 35 amplification cycles of denaturation at 94
0
C for 30 s, annealing at 62

0 
C 

for 1 min and extension at 72
0 

C for 30 s. The reaction was finished by an extension step at 

72
0 

C for 7 min (Fig.6). 

To confirm that the PCR reaction based on the H. pseudoalbidus -specific primer was valid, 

one sample containing the mycelium of H. pseudoalbidus was used as a positive control in the 

PCR run. 
 

 

(35 cycles) 
 

95:00 94 62.0 72.0 72:00  

5:00 min 00:30 s 00: 30s 1min 7:00  
 
 
 

15 



Fig.6. ITS program of PCR reaction used 

for H. pseudoalbidus -specific primers 

The mycelium of a known isolate of H. pseudoalbidus collected in Sweden was grown on 

malt extract agar (20g malt extract, 15g agar per one l dH2O) (Fig. 7). The cultures were kept 

for 1 month in a dark room at 20
0 

C. Mycelia from fresh cultures of H. pseudoalbidus were 

placed in two centrifuge tubes and homogenized with fast prep machine. 1mL of CTAB (3% 

Cetyltrimethylammoniumbromide, 2mM EDTA, 2.6 M NACL, 0.15 M TRIS-HCL; pH 8.0) 

was added to remove membrane lipids and incubated at 65
0
C for 1 hour. Chloroform (500µl) 

and 2-propanol were added and the dry pellet was dissolved in 50 µl milliQ H2O. The DNA 

concentration was measured using NanoDrop spectrophotometer. DNA Samples were diluted 

to the concentration 0.5 ng/µl. 
 

 

The applied method of PCR performance was in accordance with Johansson et al. (2010). The 

PCR was run with total volume of 10µl containing PCR buffer, 0.2 mM dNTPs, 2.75 mM 

MgCl2, 0.025 U Dream Tag Polymerase, 0.2 µM of each primers (forward and reverse H. 

pseudoalbidus primers) and 0.25 ng/µl of H. pseudoalbidus DNA. The PCR reaction was 

carried out following the protocol described in Fig. 6. 
 

 
 
 

 
Fig.7. 1-month-old culture of Hymenoscyphus pseudoalbidus, isolate nf4 tube 55:7:14  Photo: H. 

Hayatgheibi 
 

 
 
 

2.1.6. Identification of the insect damage on ash seeds 
 
 

Morphological examination of damaged seeds by Entomologist Dr. Åke Lindelöw, 

(Department of Ecology, Swedish University of Agricultural Sciences in Uppsala) suggested 

the most probable cause of damage was the ash shoot moth, Pseudargyrotoza conwagana. 



To confirm this, DNA of larvae associated with damaged seeds was extracted according to the 

previously described methods. DNA amplification was performed using the Lepidoptera 

specific primer (http://www.ncbi.nlm.nih.gov/nuccore/331255858): Forward (5ꞌ- 

TAAACTTCTGGATGTCCAAAAAATCA-3ꞌ) and Reverse 

(5ꞌATTCAACCATCATAAAGATATTGG-3ꞌ). PCR was run with total volume of 50µl 

containing PCR buffer, 0.2 mM dNTPs, 2.75 mM MgCl2, 0.05 U Dream Tag Polymerase, 

0.04 µM of each primers (forward and reverse primers) and 0.25 ng/µl of DNA template. The 

PCR reaction was performed as follows: initial denaturation step at 94C for 5 min, 35 

amplification cycles of denaturation at 94
0 

C for 30 s, annealing at 60
0 

C for 30 s and 

extension at 72
0 

C for 30 s and a final extension step at 72
0 

C for 7 min. 

The Gene JET kit was used for purification of PCR products and then was sent to Macrogen 

(Seoul, Korea) sequencing in both the forward and reverse directions. 

Sequences were aligned and edited manually using SeqMan program (DNASTAR) and 

compared with the sequences available in the GeneBank database (NCBI) using Blast. 

H. pseudoalbidus -specific primer was also tested on the DNA of insect larvae to determine 

existence of the fungus H. pseudoalbidus  in the larvae. The PCR reaction with a total volume 

of 10µl was performed following the same method as that on seed (Fig.6). 
 

 

2.1.7. PCR dilution and cycle validations tests for 454 sequencing 
 
 

In order to achieve optimal PCR performance, one representative DNA extract from each of 

three categories (Damaged, Undamaged and Suspect) was chosen as a validation test sample. 

From each category six replicates were used. A master mix consisting of 10 µM PCR buffer, 

2000 µM dNTPs, 25000 µM MgCl2, 5U/ µM Dream Tag Polymerase, 10 µM of the primer 

ITS-7R and 3 µM of ITS-4 Tag was prepared for 24 DNA samples, including one negative 

control and five extra samples. The PCR reaction with total a volume of 50 µL (25 µl of 

master mix and 25 µL of DNA template) was initiated with a denaturation step at 95
0 

C for 5 

min, then 33 cycles of denaturation at 95
0 

C for 30 sec, annealing at 56
0 

C for 30 sec and 

extension at 72
0 

C for 30 sec, followed by a final extension step at 72
0 

C for 7 min. 

The PCR performance was such that for each category of samples (Damaged, Undamaged 

and Suspect) different cycle numbers (23, 25, 27, 29, 31 and 33) were assigned. 

From the results of the cycle test, the following cycle numbers were selected for each 

category: damaged (31), undamaged (30) and suspect (30). 
 

 

2.1.8. PCR final products for 454 sequencing 
 

 

A master mix with the same reagents (excluding ITS-4 Tag) was prepared and the PCR 

reaction was performed following the same protocol as mentioned above. Each PCR tube 

contained 20 µL of master mix, 25 µL of DNA template and 5 µL of ITS-4 Tag primer. 

Different Tag primers were assigned to each sample, i.e. one applied Tag primer was 

dedicated only for one sample. 

 
PCR products were separated by gel electrophoresis on 1% agarose gel and visualized under 

UV light. The PCR products were purified using AMPure (Agencourt) to eliminate salts and 

other undesirable reagents like dNTPs and primers prior to sequencing. The purified DNA 

was stored at -20
0 

C before being sent to LGC (Germany) for 454 sequencing. The sequences 

were analyzed using the SCATA pyrosequencing pipeline (http://scata.mykopat.slu.se). 

http://www.ncbi.nlm.nih.gov/nuccore/331255858
http://scata.mykopat.slu.se/


Quality filtering of sequences included removing those sequences that were too short (i.e. 

<200 bp) and with low read quality.  About 83,000 sequences passed the quality control 

thresholds and were clustered into operational taxonomic units (OTUs). Singletons and 

doubletons were excluded from the dataset. OTUs were identified in the SCATA program by 

comparing them with known reference sequences at the Department of Forest Mycology and 

Plant Pathology, Swedish University of Agricultural Sciences and GenBank (NCBI) by 

BLASTN manually. The ITS homology for delimiting taxa was set to 98-100% for presumed 

fungal species and 94-97% for determination at the genus level. 

 

2.2. Study II: Population dynamics of H. pseudoalbidus in ash 

petioles 

2.2.1. Sample preparation 
 
 

The samples used in this study were fresh petioles collected from a single symptomatic F. 

excelsior tree in Uppsala, Sweden during autumn 2011. Nine petioles were selected for further 

study, eight of which showed the presence of necrotic lesions and one without any symptoms. 

Lesion length was measured for each petiole and then the petiole was cut into 2 cm sections 

(in total 82 sections from 9 petioles). Each section was surface sterilized in 70% ethanol for 

50 s, washed in ddH2O and then put in an Eppendorf tube containing one screw and two nuts. 

The tubes were freeze-dried overnight. 
 

 

Fig. 8. shows the schematic illustration of the nine petioles selected for this study. For each 

petiole the distribution of lesions were shown. Necrotic lesions were those lesions with 

greater than 0.5 cm length on the petiole surface, while distinct lesions were considered 

separately from necrotic lesions as having a distinct zone of necrosis that was 0.5 cm or less. 
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Petiole 4 

26 cm 
 
 

 

26 27 28 29 30 31 32 33 34 35 36 37 38 
 

 
 
 

Petiole 5 

16cm 
 
 
 

39 40 41 42 43 44 45 46 
 
 

Petiole 6 

12cm 
 

 
 

47 48 49 50 51 52 
 
 
 

Petiole 7 

16cm 
 
 
 

 

53 54 55 56 57 58 59 60 
 

 
 
 

Petiole 8 

22cm 
 
 
 

61 62 63 64 65 66 67 68 69 70 71 
 
 
 
 

Petiole 9 

22cm 
 
 
 
 

72 73 74 75 76 77 78 79 80 81 82 



Fig.8. Illustration of the nine petioles selected for this study. On each petiole, the length of lesions 

is shown. Each petiole was cut into 2-cm length sections and consecutively numbered from the 

proximal to the distal part of the petiole. Petiole 6 had no lesions and was considered healthy. 

The green rectangles represent 2-cm sections of petiole with no necrosis. The yellow rectangles 

indicate the part of petiole with necrosis. The pink circles represent distinct lesions, which are 

defined as very small (less than 0.5 cm) necrosis lesions. 
 

DNA extraction was performed on freeze-dried samples following the previous methods 

described in this study. The microsatellite primers Chafra (Bengtsson et al., 2012) and mHp 

(Gross et al. 2011) were used (Table 1). The PCR reactions containing 10× PCR buffer, 0.2 

mM dNTPs, 0.75 mM MgCl2, 0.05 Dream tag polymerase and 0.2 µM of each primer were 

performed in a Veriti 96 well Thermal cycler (Applied Biosystems). The DNA concentration 

used was l ng/µl. The PCR reaction was initialized with 5 min denaturation step at 95
0 

C for 5 

min followed by 35 amplification cycles of denaturation at 94
0 

C for 30s, annealing at 56
0 

C 

for 30s and elongation at 72
0 

C for 30s. The reaction ended with a final extension step at 72
0 

C 

for 7 min. The analysis of the fragment was performed by Uppsala Genome Center 

(http://www.igp.uu.se/Serviceverksamhet/Genomcenter/) 

Table 1. Microsatellite loci of H. pseudoalbidus with their characteristics and the corresponding 

allele of H. albidus applied in this study (Gross et al., 2011, Bengtsson et al., 2012). 

 
H. pseudoalbidus H. albidus 

(Allele size) 

Locus Primer Primer Sequences (5
ꞌ
-3

ꞌ
) Fragment size 

 

Chafra 03 F 

R 

 

GGAATTCTGGGTCAGAAAC 

CAATACGCCAGCACAATACG 

 

179-189-208 
 

179 

Chafra 04 F 
R 

TGAACCTGGCTCTTGCTTTAG 
AGCGGCAACAAAGAAAAC 

95-101-111 95 

Chafra 09 F 

R 
ATGAGGGGATACTGCGATTG 
GTCAGTAGCAGCCTCGGAAG 

130-136-145 130 

Chafra 13 F 

R 
CCCGTCAGATAACAACTTTGC 

AGCTTGAGCGCCACTTACTC 
172-175-179 172 

Chafra 14 F 

R 
TTGATGCGTGATGGTCTTGT 
CCACGAAGAATTGCCGTTAT 

143-151-160 npa
 

mHp_060142 

(A) 

F 
R 

TGGCTCTCGAGAAAGAGGAG 

TTACTCGATTGATCGTCCTT 

164-170 np 

mHp_095481 
(C) 

F 

R 
AGCTTGGTTGTAGCCCAGAG 
TATTCCAAGCAGCCGATTCT 

138_147 128 

mHp_095478 
(D) 

F 

R 
ATTTTAAACCCCTCGAATAA 
ATTTGTGAACCTGCGACTAC 

230_236 np 

mHp_067022 
(F) 

F 
R 

CGCACGAAAACGAAAGTCTA 
GCCAATGGCAATTACTCGAA 

246_250 240 

mHp_077098 

(I) 

F 
R 

TTGATGCGTGATGGTCTTGT 

GTAATCCGTCCGGCGTAAA 

170_173 135 

mHp_108810 
(K) 

F 

R 
CTCGACTGACTTGCACCTAT 
TCACCATAAGACCGACTGAC 

269_279 np 

mHp_080495 
(L) 

F 

R 
TCAAGACGAGTTGGGTCACA 
GCTTGGCGTTATGGTGAGTT 

148_154 np 

mHp_080497 

(M) 

F 

R 
CTTGTTGGACTTGCAAGAGT 

GTTGGTAGTGGTGGAGGTAA 

245_254 227 

 
 

a 
(No Product ) 

http://www.igp.uu.se/Serviceverksamhet/Genomcenter/


2.2.2. Statistics 
 

 

The Analysis of Molecular Variance (AMOVA) (Excoffier et al., 1992) was performed to 

determine genetic distances among populations and subpopulations. The analytical process 

derived from a squared-matrix compares haplotypes (genotype of a haploid organism) in pair. 

AMOVA was carried out in anEXCEL-add-inGeneALEx6.2 

(http://biology.anu.edu.au/GenAlEx/Welcome.html). The petioles were considered as a 

population and the sections of petioles were considered as a subpopulation. 
 

 

The Principal Coordinate Analysis (PCA) was calculated with GeneALEx6.2 software to find 

the genetic distances among populations (considered as petioles). The procedure of this 

technique is derived from a distance matrix with multivariate dataset (dimensional) that 

clusters data on the axes (X, Y) of a graph 

(http://biology.anu.edu.au/GenAlEx/Welcome.html) 
 

 
 
 

3.0. Results 
3.1. Study I: 

 

 

3.1.2. Incidence of damage in seeds 
 

Table 2 shows the incidence of seeds parasitized by the unidentified insect for all susceptible 

and more resistant clones. The level of parasitization ranged between 6-19% for more 

resistant clones and between 11-38% for susceptible clones. A BLAST search of the DNA 

sequence revealed that the larvae of the insect were the ash shoot moths P. conwagana. 

H. pseudoalbidus  was not associated with any larvae of P. conwagana. 
 
 

Table 2.  Level of insect damage in more resistant and susceptible clones of declining F. excelsior 
 

Clone No. Resistant (R) 

Susceptible (S) 

% Parasitized 

S21×1060104 R 12 
S21×1060114 R 10 

S21×1060118 R 6 

S21×1060122 R 18 

S21×1060115 R 19 

S21×1060121 R 13 

S21×1060108 S 15 

S21×1060110 S 38 

S21×1060101 S 11 

S21×1060106 S 15 

S21×1060124 S 20 

S21×1060125   S   11   
 
 
 
 
 

3.1.3. H. pseudoalbidus specific primer on the seeds 

http://biology.anu.edu.au/GenAlEx/Welcome.html
http://biology.anu.edu.au/GenAlEx/Welcome.html


PCR test using the H. pseudoalbidus -specific primer resulted in the amplification of a ~ 

500bp fragment from both more resistant and susceptible seed clones of F. excelsior (Fig. 

9). 
 

 
 
 
 

111 222 33 
 
 

(a) 
111188 111144 110044 

 
 

 
11 22 33 

 
 
 

(b) 

112244 110011 110066 

Fig.  9. Gel picture of amplification products visualized under UV light generated by 

applying H. pseudoalbidus -specific primer in seeds of (a) three more resistant clones (118, 

114, and 104) and, (b) three susceptible clones (124, 101 and 106). For each clone, three 

replicates from each category of (1) Undamaged, (2) Damaged and (3) Suspect are shown. 

 
The frequency of seed samples that detected H. pseudoalbidus is shown in Table 3. H. 

pseudoalbidus  was detected in three of the six more resistant clones and in four of the six 

susceptible clones. Within a clone, the fungus was also detected in seeds of all damaged 

classes. The incidence of H. pseudoalbidus in more resistant and susceptible clones by 

damaged class is shown in Table 4. 
 
 
 
 

Table 3. Number of seed samples by clone, which detected H. pseudoalbidus using the H. 

pseudoalbidus specific primer 

 
 

 

Clone No. 

 Categories  More Resistant (R) 

Susceptible (S) 

 Undamaged 

 
(n=3)   

Damaged 

 
(n=3)   

Suspect 

 
(n=3)   

 

 

S21×1060104 
 

0 
 

3 
 

0 
 

R 

S21×1060114 1 2 0 R 

S21×1060118 3 1 1 R 

S21×1060122 0 0 0 R 

S21×1060115 0 0 0 R 

S21×1060121 0 0 0 R 

S21×1060108 0 0 0 S 

S21×1060110 1 0 0 S 

S21×1060101 0 1 2 S 

S21×1060106 0 0 0 S 

S21×1060124 0 0 2 S 

   S21×1060125   0   1   0   S   



Table 4. Mean incidence of H. pseudoalbidus in seed from more resistant and susceptible F. 

excelsior by damaged class using H. pseudoalbidus-specific primer 
 

 

Damage Class Resistant Susceptible 

  (n=18)  (n=18)   
 

Undamaged 22 6 

 

Damaged 
 

33 
 

11 

 

Suspect 
 

6 
 

22 

 

 

3.1.4. Fungal community obtained from 454 sequencing analyses 
 
 

The fungal community detected from seed of susceptible and more resistant ash clones is shown 

in Table 5. Of the 108 seeds tested, 46 fungal taxa were identified. Of those, 22 were identified 

to species level, 22 to genus level and 2 remained unidentified. 
 

 

The most frequently detected fungal species were Alternaria infectoria (93%), Cryptococcus sp 

(93%), Cladosporium sp. (74%), Coniothyrium fuckeli (72%), Didymella fabae (72%), 

Phomopsis sp (80%). and Phoma sp (72%). 
 

 

Interestingly, H. pseudoalbidus was detected in both the more resistant and susceptible clones at 

equal frequency (30%). With the exception clone no. 108, all other clones had H. pseudoalbidus 

and the fungus was detected in seed from all damage categories (Table 6). 

The incidence of H. pseudoalbidus ranged between 11-56% for more resistant clones and 0-56% 

for the susceptible clones (Table 7). However, there was no clear difference in the incidence of 

H. pseudoalbidus detected among different categories of damage (Table 8). 
 

 
 

Table 5. Frequencies of fungal taxa associated with seeds of susceptible and more resistant clones 

 of F. excelsior   
 
 

Frequency of detection (%) from more resistant and susceptible genotypes 
 

Fungal taxa Resistant Susceptible 
 (n=54) (n=54) 

Ascomycete and anamorphic fungi 
 

Acremonium strictum 2 4 

Alternaria infectoria 93 87 

Alternaria sp. 35 28 

Aureobasidium sp. 30 35 

Bionectria compactiuscula 6 4 

Botryotinia fuckeliana 4 0 



 

Chalara fraxinea 30 30 

Cladosporium sp. 74 69 

Coniothyrium fuckeli 72 65 

Coniozyma leucospermi 4 2 

Cryptodiaporthe sp. 7 0 

Cyclaneusma minus 6 15 

Didymella fabae 72 65 

Diplodia sp. 6 13 

Epicoccum sp. 6 2 

Fusarium sp. 24 33 

Helotiales sp. 6 0 

Leptosphaeria sp. 2 4 

Lophodermium pinastri 6 4 

Naemacyclus minor 6 15 

Neurospora sp. 11 4 

Penicillium sp. 2 0 

Phoma sp. 72 65 

Phomopsis sp. 76 80 

Ramularia coleosporii 2 0 

Ramularia sp. 13 6 

Septoria sp. 43 11 

Sphaeropsis sapinea 6 9 

Stemphylium sp. 6 2 

Sydowia polyspora 9 11 

Taphrina sp. 
 

Unidentified 

2 
 

9 

4 
 

4 

Basidiomycetes 

Cryptococcus foliicola 17 35 

Cryptococcus laurentii 4 2 

Cryptococcus sp. 91 93 

Cryptococcus victoriae 4 2 

Cryptococcus wieringae 9 22 



 

Dioszegia sp. 7 2 

Malassezia globosa 2 13 

Malassezia sp. 22 41 

Pyrofomes demidoffii 11 9 

Resinicium bicolor 0 9 

Rhodotorula sp. 20 22 

Sporobolomyces roseus 4 6 

Sporobolomyces sp. 6 7 

Unidentified 2 7 

Other species 

Fraxinus excelsior 87 80 

Juglans regia 4 0 

Pinus sp. 7 7 

Trebouxia sp. 
 

Triticum sp. 

4 
 

13 

2 
 

9 



Table 6. Number of seed samples which detected H. pseudoalbidus using 454 sequencing 

Categories 

 
Clone No. 

Undamaged 
 

(n=3) 

Damaged 
 

(n=3) 

Suspect 
Resistant(R)/Susceptible (S)

 
 

(n=3) 

 
S21×1060104 

 
0 

 
3 

 
2 

 
R 

S21×1060114 2 2 1 R 

S21×1060118 0 0 1 R 

S21×1060122 0 1 0 R 

S21×1060115 0 1 1 R 

S21×1060121 0 1 1 R 

S21×1060108 0 0 0 S 

S21×1060110 2 1 1 S 

S21×1060101 1 2 2 S 

S21×1060106 2 0 0 S 

S21×1060124 1 0 2 S 

S21×1060125 1 1 0 S 

 

 
 

Table 7. Incidence (%) of H. pseudoalbidus detected in seed from more resistant and susceptible 

clones of F. excelsior using 454 sequencing 
 

Clone No. Incidence (%) of 

H. pseudoalbidus 

Resistant (R)/ Susceptible (S) 

(n=9) 

 
 

S21×1060104 

 
 

56 

 
 

R 

S21×1060114 56 R 

S21×1060118 11 R 

S21×1060122 11 R 

S21×1060115 22 R 

S21×1060121 22 R 

S21×1060108 0 S 

S21×1060110 44 S 

S21 ×1060101 56 S 

S21× 1060106 22 S 

S21×1060124 33 S 

S21×1060125 22 S 



Table 8. Mean incidence (%) of H. pseudoalbidus in more resistant and susceptible clones of F. 

excelsior seeds by damaged class using 454 sequencing 
 

Damage Class Resistant 
(n=18) 

Susceptible 
(n=18) 

Undamaged 11 39 

 

Damaged 
 

44 
 

22 

 

Suspect 
 

33 
 

28 
 

 
 
 

Of the 46 detected fungal taxa, 40species were common to both more resistant and susceptible 

clones (Fig. 10.). Five species were uniquely detected in more resistant clones, which included 

Botryotinia fuckeliana, Cryptodiaporthe sp., Helotiales sp., Penicillium sp., and Ramularia 

coleosporii. , while one species (Resinicium bicolor) was uniquely associated with susceptible 

clones of Damaged and Undamaged seeds. 
 
 
 

 
Resistant Susceptible 

 

5 40 1 
 
 
 

 
Fig.10. Comparison of number of all taxa detected in more resistant and susceptible F. excelsior 

clones 
 
 

 
Forty- five fungal taxa were detected in the more resistant clones (Fig. 11a). Of those, 37 were 

detected on Undamaged seed, 32 on Damaged seed and 31 on Suspect seed. Twenty-one species 

were common among the three categories. Seven species were uniquely detected from the 

Undamaged category including Cryptococcus laurentii, Dioszegia sp., Helotiales sp., Malassezia 

globosa, Ramularia coleosporii, Taphrina sp. and an unknown Basidiomycete.  Two species were 

uniquely associated with the Damaged category (Penicillium sp and Stemphylium sp.), and two 

species with the Suspect category (Acremonium strictum and Leptosphaeria sp) (Fig.11a). 
 

 

In Susceptible clones (Fig. 11b), a total of 41 species were detected. Of those, 32 were detected 

from Undamaged seed, 32 from Damaged seed and 32 from Suspect seed. Dioszegia sp was 

uniquely associated with Undamaged seeds. Four species were exclusively associated with the 

Damaged category including Coniozyma leucospermi, Cryptococcus laurentii, Epicoccum sp. and 

Pyrofomes demidoffii and four with the Suspect category (Acremonium strictum, Cryptococcus 

victoriae, Lophodermium pinastri and Stemphylium sp.) 
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Fig.11. Comparison of number of species detected from seeds of Undamaged, Damaged and Suspect 

categories of (a) more resistant and (b) susceptible F. excelsior clones using 454 sequencing 
 
 

3.2. Study II 

3.2.1. Microsatellite analyses 
 
 

Petiole 1 was selected as an example to demonstrate results of microsatellite (MS) analysis showing 

the allele size of each locus amplified by MS primers (Table 9). The top row of the table represents 

the 13 MS loci used in this study. The amplified fragments (allele size of each locus) are shown by 

different numbers in each cell. The cells colored red are considered to be mixed samples having 

double alleles amplified at one locus. The cells colored yellow with -99 are given by 

default in the GeneAlEx program indicating lack of sufficient data. The fragments (allele size) 

amplified in each row of the table correspond to the haplotype identified in one sample and the 

allele frequency (pattern of fragments size) in the entire rows of the table show the number of 

haplotypes in the petiole. In the given example, petiole 1 was 14 cm in length and was cut into 

seven 2-cm length sections (samples). It had a necrotic lesion that was 5 cm long within which, 

three haplotypes (rows 1, 5 and 6) and three mix samples (rows 2, 3 and 4) were found. In this 

sample, H. pseudoalbidus was also found in green sections (i.e. seemingly healthy tissues). 

 
Table 9. The fragments amplified using 13 MS loci applied for one petiole from an infected  F. 

excelsior tree 
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A summary of the microsatellite analysis from all nine petioles is shown in Table 10. Petioles 

varied considerably with respect to lesion length and haplotype frequency. 

 
Table 10. Length and type of lesions and number of haplotype and mixed samples in petioles 

 

 

Petiole 

no. 

Length of 

petioles (cm) 

Type of lesions Total lesion 

length (cm) 

No. of 

haplotypes 

No. of 

mixed 

samples 
Necrotic Distinct

a
 

1 14 1 0 5 3 3 

2 16 1 1 1.5 2 0 

3 20 2 2 11 3 3 

4 26 1 3 2 4 0 

5 16 4 0 7 4 3 

6 12 0 0 0 0 0 

7 16 1 0 3 2 0 

8 22 3 0 6 2 6 

9 22 3 2 18 2 6 
a 
(Lesions less than 0.5 cm) 

 

 
 

Figure 12 shows the relationship between lesion length and the frequency of genotypes (number of 

haplotypes and mixed samples) on petioles. It appears that there is a positive correlation between 

lesion length and number of haplotypes; i.e. longer lesion suggests higher frequency of genotypes 

and mix samples. 
 
 

9 
 

8 
 

7 
 

6 
 

5 
 

4 
 

3 
 

2 
 

1 
 

0 

0 5 10 15 20 

Lesion Length (cm) 
 

 
 

Fig.12 Relationship between lesion length and number of haplotypes plus mixed samples on petioles. 
 

 

The molecular variance among individual petioles (i.e. among populations in the GeneAlEx 

program) was 19% while that occurring within an individual petiole, i.e. among the 2-cm length 

sections (i.e. within population) was 81% (Fig. 13). Consequently, it appears that there is a close 

genetic structure among petioles, in contrast to high genetic variations occurring within individual 

petioles. 
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Fig.13 AMOVA test of petioles 
 

 
 

The Principal Coordinate Analysis (PCA) test shows the genetic distance patterns of the petioles 

(considered as population in the GeneAlEx program) (Fig. 14). This figure shows that genetic 

distance among petioles (populations) is close. The mixed samples obtained from microsatellite 

analysis are not present in the PCA, thus only considers samples with single haplotypes. 

Petiole 6, which is free from H. pseudoalbidus, is excluded from the analysis and is not presented 

in the figure. 

Poor DNA quality of some samples (i.e. petiole 2) led to lack of sufficient data in the Gene Alex 

program, which affected the clustering patterns of genotypes in Fig. 14. 
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Fig.14. Principal Coordinate Analysis (PCA) of microsatellite products of F. excelsior petiole. Petiole 

number 6 is excluded from the analysis. Petioles 1-9 are shown as populations (pop) 1-9 in the Gene 

Alex program. 



4. Discussion 

4.1. Study I 
 
 

The pathogenicity of the ascomycete fungus H. pseudoalbidus, as the major causal agent of ash 

dieback disease has been frequently confirmed on Fraxinus spp. throughout Europe (van Opstal, 

2011). Leaves and petioles of F. excelsior are known to have a vital role in the life cycle and 

epidemiology of the disease (Timmermann, 2011). Besides the fundamental role of ash petioles, 

movement of propagating materials such as infected ash seeds may lead to a high potential risk for 

introducing the disease to new areas. The main objective of this study was to identify H. 

pseudoalbidus in the seeds considering the intra- and intercontinental trade purposes to non- 

infested areas such as USA, Canada and Australia. Interestingly, the results of this study confirmed 

the existence of H. pseudoalbidus in the seeds of F. excelsior for the first time, using both methods 

H. pseudoalbidus-specific primer and 454-sequencing. The fungus was detected in the seed of both 

more resistant and susceptible clones. The seeds in this study were not surface sterilized but the 

recent investigation by Cleary et al. (2012) detected H. pseudoalbidus also in surface sterilized 

seeds. There are different possibilities for infection of F. excelsior seeds by the fungus H. 

pseudoalbidus. The first scenario is that the airborne ascospores dispersed from July to August will 

reside the external tissues and the seed coat within the different phases of seed production and the 

second scenario is as follows: first penetration will be followed by systemic spread of the fungus 

into the inner tissues of branches (phloem and xylem) and will continue with movement of the 

fungus to the petioles, buds, internal contents and embryo of the seeds. In contrast to the 

expectation and the finding by McKinney et al. (2012b) that perhaps less H. pseudoalbidus would 

be detected less frequently in more resistant clones, the results actually showed the fungus to be 

detected at higher frequencies in some of the more resistant clones (e.g. clones 104 and 114). 

Accordingly, the second hypothesis describing the systematic infection of seeds is eliminated and 

this possibility will remain that such clones with higher incidence of H. pseudoalbidus were more 

exposed to the local spread of ascospores. However, this should be also taken into the 

consideration that seeds collected from the different clones were not carefully selected from 

healthy or seemingly healthy branches, since no one really recognized the importance of this. 

Further studies are needed to fully demonstrate risk for disease transmission via seeds or to prove 

the existence of the fungus inside the embryo or to show if this is a seed born pathogen. One way 

in which this could be done would be to germinate the seed and investigate the vertical 

transmission of the fungus from seed to germinating seedling or to isolate viable propagules of the 

fungus via isolation. Since the results of this study confirmed the existence of H. pseudoalbidus in 

the seeds of European ash trees regardless of their susceptibility levels to the ash dieback disease, 

this should be taken into consideration for informing strategies to preserve biodiversity and 

conservation genetics purposes. Both methods used in this study (i.e., specific primer and 454 

sequencing) successfully detected H. pseudoalbidus in all seed clones, although the different 

methods resulted in dissimilar frequency of detection. A higher percentage of the fungus was 

detected in samples (i.e., clones 106 and 110 of susceptible clones) using 454 sequencing. Though 

two molecular methods were used, it was not the intent to evaluate their relative efficiency. It is 

conceivable that 454 sequencing is more sensitive and analyses the communities more deeply with 

having a high ability to sequence 800,000-1,000,000 fragments with read lengths of 400-500 

nucleotides in one run (van der Heijden et al., 2012). For a successful PCR result, there are 

different prerequisites needed including, a proper binding process of specific primers (forward and 



reverse), good DNA concentration and also more amounts of DNA are needed to be observed in 

the gel document. 
 

 

The results confirmed that P. conwagana is the causal agent parasitizing seeds. This insect belongs 

to the family Tortricidae and is mostly reported throughout Britain. The adult insect flies during 

May to July and utilizes Fraxinus .spp seeds as their main food source 

(http://ukmoths.org.uk/show.php? bf=1011). The first morphological observation of the damaged 

seeds led to a question as to whether the insect could serve as a vector of the fungus. However, the 

DNA of the insect larvae showed no amplification when tested with the H. pseudoalbidus specific 

primer. The highest frequency of the fungus was detected in Damaged seeds of the more resistant 

clones using both methods, but this was not the case for Damaged seeds of susceptible clones, thus 

the presence of P. conwagana does not result in higher incidence of H. pseudoalbidus in the seeds. 

It is assumed that it happens by coincidence in such seeds. The higher levels of parasitism by P. 

conwagana and lower incidence of H. pseudoalbidus in the Damaged seeds of susceptible clones 

suggests that occurrence of the disease in the seeds is not correlated with the insect infestation. 

There are other factors explaining the presence of H. pseudoalbidus in seed such as ascospore 

infection. 
 

 

The most frequently detected fungi using 454 sequencing were Alternaria sp, Cladosporium sp., 

Coniothyrium fuckeli, Didymella fabae, Phomopsis sp., H. pseudoalbidus and Phoma sp. These 

species were also common among the fungi isolated from shoots of declining F. excelsior in 

Sweden (Bakys et al., 2009b). Though in the study by Bakys et al. (2009b), pathogenicity tests 

demonstrated that H. pseudoalbidus was the most pathogenic and induced similar necrotic 

symptoms on stems of F. excelsior. The present study though identified the Basidiomycete 

Cryptococcus sp., which is a yeast (Chang et al., 2013) at a high frequency in more resistant clones 

(91%) and susceptible clones (93%) that was not included in Bakys et al. (2009b). Cryptococcus 

sp., Aureobasidium sp, a black yeast-like fungus (Chi et al., 2009), Diplodia sp., Fusarium sp., 

Phomopsis sp., which are pathogen (Guerrero and Perez, 2013, Li et al., 2013, Sun et al., 2013) 

and Phoma sp., an endophyte (Zhang et al., 2013), detected in this study were common among the 

fungi detected from the seeds of F. excelsior using Sanger sequencing in the study by Cleary et. al. 

(2012) and the fungal taxa detected from wood, bark and bud samples of F. excelsior in New 

Zealand (Chen 2011). H. pseudoalbidus  and Septoria sp. detected in the seeds of present study 

were also detected in ash seeds in the study by Cleary et al. (2012). Resinicium bicolor, a common 

white rot Basidiomycete (Holmer, 1997), was uniquely detected in the Damaged and Suspect 

category of susceptible clones. It is assumed that airborne spores of the fungus caused 

contamination of the seeds, since the seeds were collected from the tree. It is likely that inoculum 

of R. bicolor was present in the surrounding forest. Acremonium strictum, belongs to the group of 

white or pink moulds (Tsutsui et al., 2013) , was the only species detected in the Suspect category 

of both more resistant and susceptible clones, which could possibly explain the existence of black 

discoloration on such seeds. Botryotinia fuckeliana, Cryptodiaporthe sp., Helotiales sp., 

Penicillium sp. and Ramularia coleosporii were uniquely identified in more resistant clones. 

Botryotinia fuckeliana, Cryptodiaporthe sp and Penicillium sp. were isolated in the study by Bakys 

et al. (2009b). Ramularia sp. and Helotiales sp. were also isolated consistently from different 

tissues of F. excelsior in the study by Bakys et al. (2009a). The Basidiomycete Dioszegia sp. 

detected in the present study has also been previously detected from the buds of F. excelsior (Chen 

2011). Detection of plant taxa, e.g. Juglans regia, Pinus sp. in the seeds may likely occur from 

pollen of neighboring trees. The findings from the present study in comparison to the results of 

http://ukmoths.org.uk/show.php
http://ukmoths.org.uk/show.php


other studies (Cleary et al. 2012, Bakys et al. 2009 a,b, Chen 2011) suggest that the most detected 

fungal species in this study, including Botryotinia fuckeliana, Cryptodiaporthe sp., Helotiales sp., 

Penicillium sp., Ramularia coleosporii, Cryptococcus sp., Alternaria sp, Cladosporium sp., 

Coniothyrium fuckeli, Didymella fabae, Phomopsis sp., H. pseudoalbidus  and Phoma sp., are 

consistently dominating F. excelsior tissues (Bakys et al. 2009 a, b). More studies are needed to 

analyze all other fungal species detected in the seeds of the present study and more investigations 

should be considered to determine their interaction with H. pseudoalbidus. For other taxa uniquely 

detected in this study i.e. Acremonium strictum, Cyclaneusma minus, Lophodermium pinastri, which 

is an endophyte specific to pine trees (Sieber, 2007), Naemacyclus minor and Rhodotorula sp. it is 

probable that infection on such species neighboring F. excelsior trees caused infection of ash 

seeds. 
 
 

4.2. Study II 
 
 

Previous population studies of H. pseudoalbidus, isolated from fresh cultures and one-year-old leaf 

petioles of F. excelsior, confirmed the outcrossing heterothallic life cycle and a high gene flow of 

the fungus (Gross et al., 2012, Bengtsson et al., 2012). The present study investigated the genetic 

structure of H. pseudoalbidus in nine fresh petioles of a single symptomatic F. excelsior tree. Eight 

of selected petioles showed the presence of necrotic lesions and one without any symptoms. The 

result of microsatellite analysis revealed that there is a positive correlation between lesion length 

and the number of haplotypes and mixed samples. There was no H. pseudoalbidus detected in the 

only asymptomatic petiole of this study (petiole 6). In both petiole 7 and petiole 2 with 3 cm and 

1.5 cm lesion lengths, respectively, two haplotypes were amplified. Petiole 4, with similar lesion 

length as petiole 7, instead had four haplotypes amplified; thought in this example, the petiole had 

three distinct lesions (lesions with less than 0.5 cm length) on its surface (Table. 9). Necrotic 

lesions approximately 0.5 cm in length were considered distinct lesions in this study. For such 

samples containing distinct lesions; it was assumed amplification of only one allele per locus. This 

assumption was proven in that none of the sections that contained a distinct lesion produced double 

alleles per loci (mixed samples). This was the case for petiole number 4 whereby the three distinct 

lesions did not produce mixed samples (genotypes). Amplification of one allele in distinct lesions 

can be described as mycelium infections in distinct lesions. The other sections of this petiole, 

which appeared healthy (e.g. green tissue), however, produced two haplotypes. This finding 

indicates existence of several genotypes in necrotic lesions and also in green tissues of 

symptomatic petioles and confirms sexual outcrossing of the fungus and ascospore infections in 

such parts. The remaining petioles investigated in this study, i.e. petioles 1, 3, 5, 8 and 9 comprised 

of longer lesion lengths and few distinct lesions tended to produce more haplotypes and mix 

samples. The results of this study did not identify any fragments of H. albidus, which may imply 

that this saprotroph did not inhabit the fresh petioles applied in this study. The other possibility for 

the absence of H. albidus is that the detection of this species has become a rare occurrence these 

days due to being displaced by the rapid expansion of the H. pseudoalbidus (McKinney et al., 

2012a) . The AMOVA test (Fig. 13) revealed a considerable genetic variation of the fungus within 

petioles (i.e. among the 2-cm length sections of individual petioles) and low genetic variation 

among petioles. Considering the recent investigation by Gross et al. (2012), multiple infections 

through dispersed ascospores of the fungus lead to the occurrence of multiple genotypes. Low 

genetic variation among petioles applied in this study despite to the small sample size agrees with 

the results of other studies indicating that H. pseudoalbidus is an invasive pathogen that has a low 

geographical genetic structure and existence of a high genetic variation among sub-populations 



(within petioles in this study) (Rytkonen et al., 2011, Gross et al., 2011, Bengtsson et al., 

2012).The PCA results (Fig. 14) showed poor allelic structure of H. pseudoalbidus  among 

populations (i.e. petioles). Poor DNA quality of some samples resulted in lack of sufficient data in 

GeneAlEx program for PCA analysis affected the clustering patterns of some genotypes. 

Consequently, amplified genotypes should show a closer genetically distance from each other, 

whereas they produced more distance. This finding will confirm the fact that H. pseudoalbidus has 

a poor allelic structure geographically. 
 

 

As observed during the recent decade, the disease spread very rapidly across Europe causing 

decline and death of F. excelsior trees. The poor allelic diversity of European populations of H. 

pseudoalbidus among populations and its rapid spread suggest that the fungus is an introduced 

pathogen (Husson et al., 2011, Bengtsson et al., 2012). Where is the origin of this invasive 

pathogen? The answer to this question could prevent additional introductions of this pathogen to 

currently non-affected areas and possibly aid in some control options (Pautasso et al., 2013). 

Furthermore, the results of study I, confirming the existence of H. pseudoalbidus in the seeds of 

ash trees should be taken into advantage to inhibit more spread of the disease. Recent evidence 

now suggests that this fungus originates from Asia (Zhao et al., in press). More studies are needed 

in the future to determine the true origin of the disease. Moreover, selection of more resistant 

populations of F. excelsior should be taken into consideration for future breeding purposes. 

There are aspects of the life cycle of the disease that are still unknown; however the recent study by 

Gross et al. (2012) aimed to clarify some of these. According to Gross et al. (2012), the disease 

starts with infections of the leaves in summer by means of dispersed ascospores produced in 

fruiting bodies of petioles from the previous year in the leaf litter. After colonization and growth of 

the fungus in the leaves, it will enter the petioles. After leaf fall in autumn, the fungus will form a 

pseudosclerotial layer on the surface of the petiole where it will overwinter. Conidia produced in 

autumn at low temperatures are responsible for fertilization of the fungus and they act as 

spermatia. In the following summer new apothecia will develop to initiate new infections. 
 

 

The sample size and investigation of only one asymptomatic petiole were the most important 

limitation factors of this study, since the samples had been collected from a single tree. For further 

researches it should be taken into consideration that samples are collected from several trees and 

from different locations. In addition, more healthy looking petioles (completely green petioles) 

should be investigated. Although there are several limitations in this study (considering the small 

number of samples), the results nonetheless show high genetic diversity of H. pseudoalbidus 

within a single tree. This finding also agrees with previous studies (Kraj et al., 2012, Rytkonen et 

al., 2011, Bengtsson et al., 2012) showing high gene flow and low geographic structure of the 

fungus. This fact is such a rare incident for an invasive pathogen which is characterized mostly by 

having low genetic structure and low gene flow (Rytkonen et al., 2011). 
 
 

5. Conclusion 
 
 

This Study confirmed the occurrence of the fungus H. pseudoalbidus in the seeds of different F. 

excelsior clones regardless of their different levels of susceptibility to ash dieback and in three 

categories of seed (Undamaged, Damaged and Suspect) using different molecular methods 

(specific primer and 454 sequencing). A large number of fungal taxa were detected in seeds of 

both more resistant and susceptible clones, but in general, more were detected in more resistant 



clones than in susceptible clones. This may impose a risk of introducing the disease to non-infested 

areas through the importation of infected seed. Import and movement of F. excelsior seeds should 

be certainly taken into consideration for phytosanitary purposes. It is recommended that further 

research be undertaken to investigate the risk of H. pseudoalbidus in seeds as a potential pathway 

for dissemination of the disease to new areas. The close genetic structure of the fungus among the 

nine petioles from one symptomatic tree applied in this study confirms the results of previous 

investigations that H. pseudoalbidus has a poor geographic structure and supports the fact that the 

fungus is an introduced pathogen. High genetic variation within petioles suggests that the fungus 

has a sexual outcrossing and sexual reproduction of the fungus could increase the virulence of the 

fungus towards the host. 
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