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Summary 

Stump treatment today requires large quantities of clean water mixed with the 

protective product Rotstop, to fully cover the stump surface. In order to reduce the 

water consumption without reducing the coverage of the stump surface, the pressure 

in the stump treatment device can be increased. Therefore, the Phlebiopsis gigantea 

(Fr.) Jül. suspension used as a biological control agent to prevent Heterobasidion 

annosum (Fr.) Bref. infection was pressure-tested. The pressurized suspensions were 

compared with the control suspensions and the survival was monitored by measuring 

oidia germination on agar medium. Pressures up to 150 bars (15 000 kPa) were tested 

and showed no negative effects on the survival of the P. gigantea spores.  

 

Three Phlebiopsis gigantea suspensions, with the same quantity of P. gigantea 

spores but with different water amounts (the recommended water amount 1 l/m2 

stump surface, a reduced amount of 0.5 l/m2 and an even more reduced amount of 

0.25 l/m2), were compared with each other. This was done to investigate if it is 

possible to reduce the water consumption for stump treatment and thereby reduce 

stump treatment costs. The experiment was conducted on stem pieces (billets) of 

Norway spruce (Picea abies (L.) Karst.) in a laboratory, and the amount of 

Heterobasidion infection was screened. Results showed no difference between using 

1, 0.5 or 0.25 l/m2. 
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Sammanfattning 

Vid stubbehandling går det åt en stor mängd vatten. Om trycket i apparaturen ökas 

kan vattenförbrukningen minskas utan att täckningsgraden av stubbenytan försämras. 

I denna studie trycktestades Phlebiopsis gigantea (Fr.) som används vid biologisk 

stubbehandling för att förhindra angrepp av rotrötesvampen Heterobasidion annosum 

(Fr.) Bref. De trycksatta P. gigantea sporerna jämfördes mot en kontroll utan tryck. 

Groningsförsök på agar-plattor visade att tryck upp till 150 bar (15 000 kPa) inte 

påverkade sporerna. 

   

Tre olika behandlingar jämfördes med varandra för att undersöka om det var möjligt 

att reducera vattenåtgången vid stubbehandling. En vanlig behandling med 1 l/m2 

stubbyta, en behandling med 0.5 l/m2 och en behandling med 0.25 l/m2 jämfördes med 

varandra. Mängden P. gigantea sporer var exakt den samma för de olika 

behandlingarna. Experimentet utfördes på stambitar av Gran (Picea abies (L.) Karst.) i 

ett laboratorium och mängden Heterobasidion-infektion mättes. Resultatet visade 

ingen skillnad mellan att använda 1, 0.5 eller 0.25 l/m2.  

 

 

 

 

 

 

 

 

 

 

 

 

Nyckelord: 

Stubbehandling, Heterobasidion annosum, Heterobasidion Parviporum, Phlebiopsis 

gigantea, Picea abies, Rotstop, tryckstress, vattenkonsumtion. 
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1 Introduction 

1.1 Costs due to widespread infection of Heterobasidion annosum. 

The amount of trees infected by root rot in final felling has doubled since the 1970s 

in the south of Sweden. Today, roughly one of five trees is subjected to root rot 

(Olsson, 2010). It is estimated that wood degradation caused by Heterobasidion 

annosum (Fr.) Bref. costs 120 million €/year (Witzell et al. 2009, Olsson, 2010). 

Annual loss for Europe is estimated to 790 million €/year. This makes H. annosum 

the most economically damaging fungus in the Northern Hemisphere (Hodges, 1969, 

Woodward et al. 1998).  

 

The problem caused by H. annosum has not always been as severe as today. 

Traditionally trees were only harvested during the cold winter months in the Nordic 

countries. Harvesting while the temperature is below zero has been shown to 

considerably reduce the risk of spore infection by H. annosum (Kallio, 1970, 

Solheim, 1994, Möykkynen et al. 1988, Thor el al. 2005). Today the forest industry 

demands a continuous flow of raw material. Therefore, harvesting occurs nowadays 

all year around (Bendz‐Hellgren et al. 1998), and has hence resulted in the higher 

infection levels.  

1.2 The pathogenic fungus Heterobasidion annosum 

The fungus has through the history been described with many scientific names e.g. 

Polyporus annosus Fr., Trametes radicipera (Hartig)., Formes annosus (Fr) Karst., 

but it was Brefeld (1888) that named the fungus Heterobasidion annosum s.l. (Fr.) 

Bref. (Niemelä & Korhonen, 1998). In Europe there are three different species of 

Heterobasidion annosum s.l.:  

 

- Heterobasidion abietinum s.s. Niemelä & Korhonen, previous known as the F-

group. 

- Heterobasidion parviporum Niemelä & Korhonen, previous known as the S-group.  

- Heterobasidion annosum s.s (Fr.) Bref., previous known as the P-group.  
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These older group names (F, S and P) come from the species main host, namely: Fir 

(Abies spp.), Spruce (Picea spp.) and Pine (Pinus spp.) (Korhonen, 1978, Capretti et 

al. 1990). These three fungi species have similar morphological characteristics, but 

they differ in distribution. Heterobasidion abietinum is present in central and south 

east Europe while both H. parviporum and H. annosum sensu stricto occurs basically 

all over Europe, though H. parviporum stretches further north and H. annosum further 

south (Fig. 1). In Sweden, the last two species occur. Heterobasidion parviporum is 

the more common of the two and occurs in the whole country, whereas H. annosum 

mostly occurs in the southern part (Stenlid, 1987, Thor, 2005). Heterobasidion 

parviporum is mainly infecting Norway spruce (Picea abies (L.) Karst.) trees whereas 

H. annosum is considered to be more aggressive since it attacks several hosts e.g. 

spruce, pine and several broadleaved species (Korhonen, 1978, Stenlid et al. 1995, 

Korhonen & Stenlid, 1998).  

Figure 1. Distribution of Heterobasidion abietinum, Heterobasidion parviporum and 

Heterobasidion annosum in Europe (map kindly provided by Kari Korhonen, 2012). 
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1.2.1 Biology of Heterobasidion spp. 

Heterobasidion spp. forms perennial sporocarps or “fruiting bodies” on infected 

stumps and roots. Spores are produced and spread from these sporocarps when the 

average daily temperature exceeds +5 °C (Yde-Andersen, 1962, Kallio, 1970, 

Brandtberg et al. 1996). The normal route of infection is via basidiospores that land 

on freshly cut stumps or other open wood tissues. Mycelium grows and the fungus 

consumes wood tissues, in spruce the result appears as decaying or discolored wood 

in the center of the tree. The fungus can grow at a rate of 50 cm per year in dead 

stumps and it can spread to neighboring trees via root-to-root contacts (Rishbeth, 

1951, 1957, Swedjemark & Stenlid, 1993, Swedjemark & Karlsson, 2004 Redfern & 

Stenlid, 1998).  

 

In Scots pine trees the fungus attacks the cambium zone, causing growth losses and 

mortality (Stenlid & Redfern, 1998, Wang et al, 2012). In Norway spruce the fungus 

causes decay from the heartwood and out towards the sapwood, which leads to 

growth losses and reduced timber value. Severe decay can also increase the 

probabilities of stem breakage and uprooting (Bendz-Hellgren & Stenlid, 1995, 1997, 

Oliva et al 2008).  

1.3 Control of Heterobasidion spp. 

There are several ways to fight the disease. It can be done through silvicultural, 

chemical or biological control. Reducing the number of thinnings, winter logging and 

favoring of mixed forests are all silvicultural actions that reduce opportunities for 

Heterobasidion to enter and spread within the stand (Brandtberg et al. 1996). Stump 

removal is reducing already existing Heterobasidion in the stand.  

 

Big efforts have been made to find chemical controls for stump-treatment. One 

problem has been to find an effective substance that is non-harmful to the 

environment. Many substances have been tested but only urea and borates provide 

enough protection to prevent infection (Brandtberg, 1996). There were other 

problems in addition to the environmental problems, e.g. urea is corrosive and 

therefore less suitable for the machinery than biocontrol preparations based on water 

(Pratt and Thor, 2001). Also, if urea and borates were applied in big amounts, then 

they could be damaging to the environment (Westlund and Nohrstedt, 2000).  
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Biological control has therefore received a greater attention. A biological control 

substance needs to work under a wide range of conditions, it must have minimal 

negative environmental effects, and it needs to be cheap, easy to produce and use 

(Pratt, 1999, Pratt & Thor, 2001).  

1.3.1 Phlebiopsis gigantea as an antagonist against Heterobasidion spp. 

In 1952, Rishbeth discovered the potential of Phlebiopsis gigantea (Fr.) Jülich as a 

biological control substance (Rishbeth, 1952). Phlebiopsis gigantea is a natural 

species found in the boreal forest. It is a common saprophytic fungus which grows on 

dead and decaying coniferous trees (Vainio, 2008). It causes white-rot just like H. 

annosum, though H. annosum is a pathogenic fungus which attacks both dead and 

living trees. Phlebiopsis gigantea has proven to be a strong competitor to H. 

annosum (Rishbeth, 1952, Korhonen et al. 1994, 1998).  

 

In Finland, a heterokaryotic strain of P. gigantea was isolated from Norway spruce 

commercially referred as Rotstop (Korhonen et al. 1994). Phlebiopsis gigantea is 

grown and dried into powder. The powder is dissolved in water and sprayed onto 

stumps. The asexual oidia spore of P. gigantea germinates on the stump, the 

mycelium grows over and into the stump and outcompetes H. annosum. The 

substance made from the Finnish strain is commercially named Rotstop® and it has 

been tested in Finland, Sweden and Norway with good results on both Picea abies 

and Pinus sylvestris stumps (Korhonen et al. 1994, Oliva et al, 2010). Two products 

have also been made from a Swedish strain of P. gigantea; Rotstop S and Rotstop S 

Gel, where Rotstop S is a dry powder while Rotstop S Gel is a liquid, both contains 

living spores of P. gigantea and both are mixed with water to create the treatment 

suspension. None of the products are known to be harmful to the environment. 

1.3.2 Practical use of the biological control agent Rotstop S Gel 

In Sweden stumps are mechanically treated with the biological agent Rotstop S Gel 

during both thinning and final felling. Every year, 35 000 ha of thinning is treated 

(Thor, 2003). The biological control agent requires caution when handled. According 

to the Swedish retailer Interagro Skog AB, Rotstop S Gel must be stored cold when it 

is not used. It can be stored in a refrigerator, below +5 °C, for 6 months. Unopened it 

can be stored in a freezer for 12 months. At room temperature the durability is only 1 
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week. Prepared suspension should be used within 36 hours and Rotstop S Gel should 

never be exposed to temperatures above 40 °C.  

 

During mechanized stump treatment there are several problems that can occur 

concerning the above restrictions. The water tank and the mechanical devise that 

mixes the suspension with water can both be heated up by the sun or by the engine of 

the machine. The suspension is also heated up during pumping through the hoses 

from the tank to the harvester head. It is especially risky if the hoses are adjacent to 

hot hydraulic hoses.  

1.3.3 Mechanical stump treatment 

The stump treatment device (e.g. Droppen Dos mixing-system) is mounted on a 

single grip harvester. The system draws clean water from a large tank (100-200 l) 

and mixes it with Rotstop suspension from a smaller tank on the Droppen Dos 

system (Fig. 2) (Bo Axelsson, personal communication, October 25, 2012). The 

normal concentration is 1 l of water mixed with 1 ml of Rotstop S Gel i.e. the same 

as 1 g of dry Rotstop powder. Droppen Dos system situated in a locker that is 

normally placed in front of the cab, and the Rotstop suspension is pumped through 

hoses from the locker via the crane (either inside or outside the crane boom) to the 

harvester head. The total length of hoses can be up to 15 m, which corresponds to a 

liquid volume of 0.5 l (Thor et al. 1997). The spraying device is a through-the-bar 

system, where the suspension is sprayed through a number of small holes in the 

sword and onto the stump surface at the time of felling the trees (Pratt et al. 1998). 

The P. gigantea spores do suffer high pressure and impact-damage when they are 

sprayed through the holes in the sword and onto the stump surface (Bo Axelsson, 

personal communication, September 18, 2012). The study of Thor (1997) shows that 

P. gigantea do withstand the normal pressure (approximately 22 bars) of the spraying 

device, but in order to reduce the water amount for stump treatment and still achieve 

a full cover the stump surface, the spraying device must use a significantly higher 

pressure than today. This will be tested in this study. 
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Figure 2. Droppen Dos mixing-system (picture kindly provided by Bo Axelsson, 2012). 

1.3.4 Costs concerning stump treatment.  

One bottle of 200 ml Rotstop S Gel is sufficient for 200 l of water. Today’s stump 

treatment uses approximately 1 l of suspension to 1 m2 of stump area. Stump 

treatment cost 11-14 SEK/m3 for thinning and 3-6 SEK/m3 for final felling (Bo 

Axelsson, personal communication, September 18, 2012). From Thor et al, 2006, the 

cost for stump treatment was approximately 10 SEK/m3 in the first thinning, 8 

SEK/m3 at second thinning, 6 SEK/m3 at third thinning and 3 SEK/m3 at final felling. 

 

Transporting, filling and handling water is one of the main costs, another one is the 

Roststop suspension. At third thinning and final felling larger water amounts is 

required, in some cases the harvester needs to pause its logging in order to refill the 

water tank. Production stops are very costly and also annoying for the harvester 

drivers.  

 

A goal is to reduce the water consumption from 1 l/m2 to at least 0.5 l/m2. With this 

reduction the harvester would only need to refill water once a day, at the same time 

as fuel. This would reduce the costs and the operations of transporting and handling 

water.  

 

In order to achieve this goal of reducing the water consumption, the system must use 

higher pressure in order to achieve a full coverage of the stump surface. The holes in 
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the sword must be smaller in order to reduce spill and create higher pressure. A 

higher pressure stress could be problematic for the P. gigantea spores, they might 

lose vitality and this must therefore be tested first before testing stump treatment with 

lower water amounts.  

1.3.5 Aim of study. 

The aim of this study is to first test whether or not the P. gigantea spores could 

survive a higher pressure stress (up to 150 bars pressure).  

 

The second part of the study aims at comparing a normal treatment using the 

recommended water amount of 1 l/m2, with treatments using 0.5 and 0.25 l/m2, and 

find out if there is any difference in efficacy of protection against H. parviporum 

infection.  

1.3.6 Hypothesis.  

1.) Phlebiopsis gigantea spores that have been subjected to high pressure stress (150 

bars) do germinate equally well as spores which have not been subjected to any 

pressure stress. It is therefore possible to use the P. gigantea suspension in a renewed 

stump treatment devise which uses higher pressure in order to reduce the water 

consumption. 

 

2.) There is no significant difference in infection rate of H. parviporum between a 

normal treatment using the recommended water amount (1 l/m2) and treatments using 

a lower water amount (0.5 respective 0.25 l/m2). 
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2 Material and methods 

2.1 Pressure test 

2.1.1 Pressure test method 

The inoculum for the pressure test was delivered from Interagro Skog AB. The 

Rotstop S Gel plastic bottles contained 50 ml of aqueous suspension with 

approximately 2-10 million living spores/g. Ten bottles were used for the 

experiment, where eight bottles were pressurized, two for each pressure level, and 

two bottles were untreated functioning as a control.  

 

The pressure levels tested were 25, 50, 100 and 150 bars. First the caps were 

tightened hard before the pressure procedure started. Two bottles at the time were 

placed inside a hydraulic piston that was sealed and connected to a hydraulic engine. 

Hydraulic oil was pumped into the piston until the decided pressures were reached. 

In this way both bottles received exactly the same pressure. The bottles were 

compressed for one minute. Then each bottle were taken out of the piston and wiped 

clean with a tissue. None of the bottles were damaged or broken during the pressure 

procedure, though visible marks from the compression could be seen. The control 

bottles were bathed in hydraulic oil for one minute in order to receive as similar 

treatment as possible to the pressurized bottles. The bottles were kept in a 

refrigerator before and after the experiment. 

2.1.2 Most Probable Number method 

The Most Probable Number (MPN) method (Oblinger & Koburger, 1975), was used 

to determine the vitality of the pressurized Phlebiopsis gigantea spores. With the 

MPN-method it was possible to estimate the number of Colony Forming Units 

(CFU)/ml i.e. number of living spores/ml which can germinate. The method is 

especially applicable to fungi, e.g. Phlebiopsis gigantea, which form vague colonies 

which are difficult to count. 
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Samples from the Rotstop S Gel bottles were mixed with water and series of 

dilutions were prepared (the dilutions were expressed as g/ml: e.g. dilution 10-3 

means 0.001 grams of Rotstop suspension in 1 ml of water). The following dilutions 

were made: 10-4, (10-4)/2, (10-4)/4, (10-4)/8, (10-4)/16, (10-4)/32, (10-4)/64 and (10-

4)/128. A sample from each dilution was pipetted onto petri-dishes containing Potato 

Dextrose Agar (PDA).  

 

Figure 3. One PDA-plate with 12 drops of 10 µl  Phlebiopsis gigantea dilution. 

Two PDA-plates were made for each dilution and each dish was pipetted with 12 

drops from the dilution (Fig. 3). This procedure was repeated for each pressure level 

(25, 50, 100 and 150 bars) tested in the experiment. The plates were incubated until 

visible growth could be observed on the spots (Fig. 4). The viability of the P. 

gigantea suspension for each pressure level were calculated on the basis of the 

number of positive and negative spots on each petri-dish. The higher the dilution the 

less spots were colonized.  

 

Figure 4. Petri-dish showing 3 positive spots out of 12 (picture kindly provided by Pekka 

Seiskari, 2012). 
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2.2 Stump treatment using different amounts of water 

2.2.1 Preparing billets and testing moisture content 

Five spruce trees, with a diameter ranging from 20-25 cm at stump level, were felled 

in Trolleholm close to Eslöv (55°92’N 13°27’E). The trees were all about 25 years 

old and growing on abandoned agricultural land. The trees were cut down within 50 

meters from each other and chosen due to its similarities in size and shape. For each 

tree, the first 1.5 m of the bottom log was cut and left in the forest. A 3 m log was 

then cut and divided into 1.5 m long pieces in order to facilitate transportation from 

the forest. The ends of the logs were sealed with duct tape and plastic bags. The logs 

were stored in a room at 4°C temperature for a month prior to setting up the 

experiment where the reduced water consumption for stump treatment was tested. 

 

A disc from each log were analyzed to ensure that each tree was free from infection 

by Heterobasidion spp. Before the discs were cut, the bark was removed from the 

base of the log and the stem was sprayed with ethanol. First a disc was cut and 

wasted, then a second disc of 3 cm was cut and put in a plastic bag. The discs were 

stored for 11 days in room temperature before examination was done under a 

dissecting microscope. No conidiophores of Heterobasidion spp were found, so all 

logs were infection free and could therefore be used in the experiment. 

 

Nine stem pieces (billets) were cut from 3 of the trees (Fig. 5). In total 27 billets were 

cut for the experiment, each billet was 30 cm. The bark and the saw blade are 

sprayed with 70% ethanol before each cut. 

 

The billets were produced six days before setting up the experiment. Each billet was 

marked and sealed with a plastic bag and stored for 5 days in 4°C temperature in 

order to prevent mold or other fungal growth while experimental preparations were 

done. The billets were taken out one day in advance so they would become 

acclimatized to room temperature before starting the experiment. 

 

The moisture content was measured in order to make sure that no big differences 

between the trees would affect the results. Of the five trees cut down only three of 

them were used in the experiment. A total of 36 wood samples were taken from these 
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trees, six samples from the upper-part and six from the lower-part of each log (three 

samples from the sap-wood and three from the heart-wood). All samples were 

weighed and dried for one week in an oven at 45 °C. The moisture content was 

calculated by taking “weight of water” divided by “fresh weight”.  

 

 

Figure 5: Number of billets made from each separate tree. 

 

2.2.2 Heterobasidion parviporum suspension and the conidiospore density 

A known individual of H. parviporum was used in the experiment, RB 175 

(Swedjemark and Stenlid, 1997). The fungus was stored in the department of 

southern Swedish Forest Research Centre, in several sealed petri-dishes which were 

4 years old. The fitness of the old RB 175 was tested by taking pieces of the fungus 

and growing them on petri-dishes with malt agar. Each petri-dish contained 12 ml of 

malt agar (5 g Glucose, 0.5 g NH4NO3, 0.5 g KH2PO4, 0.5 g MgSO4 * 7 aq, 5 g malt 

extract, 20 g agar and 1000 ml H2O). The RB 175 fungus was growing and could 

therefore be used in the experiment. After 13 days of growth several pieces of fungi 

was taken from the petri-dishes and distributed to 27 new dishes. The RB 175 was 

growing for a month before the H. parviporum suspension could be made.  

 

The conidiospore density per dish was estimated by taking one of the 27 dishes with 

growing H. parviporum, adding 10 ml of tap water and using a sterile spatula to 

gently brush the surface of the fungi. The 10 ml water (now containing spores of H. 

parviporum) was poured into a sterile bottle. This procedure was repeated three times 

so 30 ml of H. parviporum suspension was obtained. From the suspension a sample 

was taken and dilution series was made similar to the MPN-method. A sample from 

each dilution was spread on petri-dishes that were kept in room temperature until 
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visible growth could be observed on the dishes. The number of living spores in the 

original H. parviporum suspensions was calculated on the basis of the number of 

colonies found for each dilution. It was assumed that each of the 27 petri-dishes 

contained a similar amount of spores as the tested dish since the cultivation time was 

the same. Calculation showed that 25 dishes of H. parviporum would be needed to 

make one liter of H. parviporum suspension with a concentration of 50 spores/ml (a 

guideline value is to have 25 spores ⁄cm2 on the billet surface, and that would be 

obtained by spraying a 0.5 ml thick layer of the 50 spores/ml H. parviporum 

suspension over the billet surface).  

 

To make one liter of H. parviporum suspension the above procedure was used, were 

10 ml of tap water was added three times to each plate, a sterile spatula was used to 

gently brush on the surface and the liquid was poured into a sterile glass bottle. This 

procedure was repeated on 25 of the petri-dishes, which equals 0.75 l suspension. 

Then 0.25 l of tap water was added to make it one liter of suspension with the 

concentration of 50 spores/ml. 

 

To double check that the spore amount in the H. parviporum suspension was right, a 

sample was taken from the suspension and another dilution series was made and the 

spore amount calculated.  

2.2.3 Amount of Heterobasidion parviporum suspension sprayed onto each billet 

The volume applied was adjusted to the diameter of each billet, i.e. 0.5 l/m2 of H. 

parviporum suspension and it was applied using a spray bottle head and a measuring 

glass. The amount 0.5 l/m2 is equal to a 0.5 mm thick layer of suspension on the 

billet surface (Table 1). 
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Table 1. Amount of liquid applied on the billet surface (the amount of treatment was rounded 

off to the closest 0.1 ml). 

 Amount of liquid applied on the billet surface 

Radius of 

billets (cm) 

Treatment 1 

1 l/m2 

(ml) 

Treatment 2 

0.5 l/m2 

(ml) 

Treatment 3 

0.25 l/m2 

(ml) 

H. Parviporum 

Suspension  

0.5 l/m2 (ml) 

7 7.70 3.85 1.92 3.85 

7.5 8.84 4.42 2.21 4.42 

8 10.05 5.03 2.51 5.03 

8.5 11.35 5.67 2.84 5.67 

9 12.72 6.36 3.18 6.36 

9.5 14.18 7.09 3.54 7.09 

10 15.71 7.85 3.93 7.85 

 

2.2.4 Experimental setup in the laboratory 

In this experiment three Phlebiopsis gigantea suspensions using different water 

amounts were compared with each other.  

 

The 27 billets were divided into six boxes of four and five each, two boxes for each 

treatment. Treatment 1 used the recommended water amount 1 l/m2, treatment 2 and 

treatment 3 used 0.5 l/m2 respective 0.25 l/m2 of water. The amount of Rotstop was 

the same for each treatment, only the amount of water varied i.e. the concentration of 

Rotstop in treatment 2 was twice as high as in treatment 1, and four times as high in 

treatment 3 compared to treatment 1.  

 

The upper surface of each billet was divided in two symmetrical halves with a line 

(Fig. 6). One half was covered while the other half was sprayed with Rotstop 

suspension using a measuring glass with the right amount of suspension and a hand 

sprayer head. The “non-treated” half was functioning as a control. By having 

treatment and control on the same billet the effect of different moisture content and 

density between billets was eliminated. After waiting 20-30 minutes for the Rotstop 

suspension to dry, both halves of the surface were sprayed with H. parviporum 

suspension.  
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Figure 6: Treatment setup with number of billets per treatment and stump surface subdivision. 

 
The boxes were kept in half shade for six weeks in a laboratory in the Hortucum 

building in Alnarp. Some wet sand covered the bottom of the boxes in order to keep 

the billets from drying out. The sand was kept moist by pouring water on the sand 

when needed (Fig. 7). 

 

Figure 7. The treatment setup consisted of 3 boxes of 5 billets each on the desk and 3 boxes of 4 

billets each on the floor (A). Every slice was half treated with Rotstop suspension (blue staining 

in B), the other half is functioning as control (uncoloured half in B). 
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2.2.5 Analyzing wood discs 

After six weeks of growth in room temperature, a disc was cut from each billet. First 

the bark was removed from the billet with the help of a sterile knife. The bark 

stripped area was sprayed with ethanol, an electric chainsaw (Stihl MSE 140 C-BQ) 

was used to cut the discs. First a 1 cm thin disk was cut and wasted. A second disc of 

5 cm was cut and put in a plastic bag. The discs were kept in a cold storage room for 

two weeks, and then incubated for 9 days in room temperature before the analyses 

started. All discs were striped with a marker pen and investigated on both sides (i.e. 

at 1 and 6 cm from the top of the billet) for the presence of the H. parviporum in its 

conidial stage. A dissecting microscope with a magnification ratio of 15-40x was 

used (Fig. 8). Infections of H. parviporum were recognized by the mycelia 

morphology and its conidiophores. Infected areas were marked and the number of 

colonies were counted for the treated half and the control half separately. A grid of 1 

cm2 squares on transparent film was put on the surface and the infected area (number 

of cm2) for each half was estimated.  

Figure 8: A) Examination of disk under the dissection microscope. B) Top side of disc nr 9 in the 

second treatment, blue stripes marks the area which was treated with Rotstop and red stripes 

mark the control area.  

 

2.3 Calculations and statistics 

2.3.1 Pressure test  

Microsoft Excel and the statistical software Minitab® were used to analyze the data 

from the pressure test. Due to the variability in the count data, the data was log-

transformed in order to reduce the influence of outliers and extreme values (Zar, 

1984). 

A B 
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2.3.2 Treatments using different water amounts 

Differences between control and Rotstop treatments, and differences between the 

Rotstop treatments high, medium and low water usage, were expressed by 

calculating the relative infected area (i.e. area of H. parviporum divided by the total 

disc area, times 100), the efficacy, (difference in infected area between control side 

and treatment side of the disc divided by the infected area on the control side, times 

100), the number of colonies/disc and the size of colonies/disc. 

 

The experiment had a hierarchical design since both control and treatments were 

applied in slices that belong to a set of trees. In order to consider the link between 

slices and trees, both ‘tree’ and ‘slice’ nested to ‘tree’ were included in the design. 

The third factor, treatment was regarded as crossed and included four levels: the 

three Rotstop treatments ‘high’ ‘medium’ and ‘low’ water usage (1, 0.5 and 0.25 

l/m2) as well as ‘control’ (without Rotstop). Means were compared with Tukey 

Honest Significant Difference (HSD) method for multiple comparisons. All three 

protection treatments were compared with the control with the Dunnett method. The 

analysis used a General Linear Model (GLM) procedure in Minitab® 16.1.0 

software.  
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3 Results 

3.1 Pressure test 

All the samples that were taken from the pressurized Rotstop S Gel bottles showed 

similar mycelium growth independently of the pressure they were exposed to (Table 

2).  

 

Table 2. Number of spots on the petri-dishes which showed visible growth of Phlebiopsis 

gigantea. 

Number of spots with growing Phlebiopsis gigantea
 1 

Dilutions 

Pressure 

0 25 50 100 150 

10-4 23 24 24 22 24 

(10-4)/2 14 21 20 13 12 

(10-4)/4 9 8 12 6 6 

(10-4)/8 2 7 15 0 2 

(10-4)/16 0 6 3 0 2 

(10-4)/32 0 4 0 0 0 

(10-4)/64 0 3 0 0 0 

(10-4)/128 0 0 0 0 0 
1The maximum number of spots for each dilution was 24. 

 

Analyses showed no significant difference in the number of colony forming units per 

gram (CFU/g) for the different pressures (p=0.215). The Rotstop S Gel do normally 

contain 2-10 million CFU/g. In this experiment the control, which received no 

pressure, contained roughly 2 million CFU/g, while the Rotstop which received the 

highest pressure (150 bars) contained approximately 1.2 million CFU/g (Fig. 9).  
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Figure 9. Number of colony forming units per gram (CFU/g). The error bars show the 

maximum and the minimum CFU/g of the tested pressure. 

 

3.2 Reduced water consumption for stump treatment  

There was a significant difference in sap-wood moisture content (p=0.033) between 

the three different trees used in experiment. The heart-wood moisture content was 

also significantly different (p=0.010) (Table 3). 

 

Table 3. Moisture content of the Picea abies trees used in the experiment. 

 Average moisture content  

Tree number Sap-wood (%) Heart-wood (%) 

2 69a 27b 

5 68ab 30b 

3 65b 42a 

 

In this experiment both parameters ‘tree’ and ‘slice’ (which were cut from the trees), 

were significantly different  (p=0.000) for each of the dependent variables, i.e. 

relative infected area, number of colonies and size of colonies (Table 4). 
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Table 4. Summary of the statistical analysis for relative infected area, number of colonies and 

size of colonies.  

 Relative infected area1 Number of colonies1 Size of colonies1 

 df 2 F3 P4 df 2 F3 P4 df 2 F3 P4 

Tree 2 20.90 0.000 2 14.18 0.000 1 5.89 0.000 

Slice(tree) 24 7.65 0.000 24 6.17 0.000 2 5.30 0.000 

Treatment5 3 4.58 0.011 3 3.03 0.049 2 2.02 0.138 
1The dependent variable was square root transformed. 
2Degrees of Freedom. 
3F statistic (F-value). 
4P-value. 
5Treatment includes: control, high, medium and low water usage. 

 

The relative infected area for treatment 1, which used the recommended water 

amount 1 l/m2, was significantly different from the control (p=0.011). Treatment 2 

and 3, which used 0.5 l/m2 respective 0.25 l/m2 of water, did not differ from the 

control or treatment 1(Table 5). The infected area was highest for the control 

treatment where 6.25 % of the area was infected by H. parviporum. Treatment 1 

(using 1 l/m2) had the lowest infection level (2.56). Figure 10 and 11 show the 

original values and the square root transformed values of the relative infected area.  

 

Table 5. Relative infected area
1 

Treatment N Mean2 (%) Grouping3 

Control 27 6.25 A 

LOW (0.25 l/m2) 9 3.61 AB 

MEDIUM (0.5 l/m2) 9 4.41 AB 

HIGH (1 l/m2) 9 2.56 B 

1The relative infected area was square root transformed.  
2The mean values were squared to show the % of infected area. 
3Grouping was done by Tukey HSD method (p < 0.05). 
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Figure 10. Relative infected area 

 
 
 

 
Figure 11. Square root transformed relative infected area. Means with different letters are 
significantly different (Tukey´s HSD, p < 0.05). 
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There was no significant difference (p=0.276) in efficacy level between the different 
treatments. 
 

 
Figure 12. The efficacy (%) 

 
 
The square root transformed values showed a significant difference in the number of colonies 
(p=0.049), where the control showed the highest colony number and the high water treatment 
usage showed the lowest values. Though neither the Tukey HSD method nor the Dunnett 
multiple comparison method (which both are stricter that the normal F-test), were able to 
detect any differences in grouping. Figure 13 shows the non-transformed mean values of the 
number of colonies. 

 

 

Figure 13. Number of H. parviporum colonies  
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The square root transformed values showed no significant difference (p=0.138) in size of 
colonies between treatments and control. Figure 14 shows the non-transformed mean values of 
the size of colonies. 

 

 

Figure 14. Size of H. parviporum colonies   
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4 Discussion 

This study has shown that Rotstop bottles containing Phlebiopsis gigantea spores can 

withstand a pressure stress of 150 bars for at least one minute. This indicates that the 

P. gigantea spores can tolerate a high pressure stress long enough for it to work in a 

new stump treatment device which will use a higher pressure than today. The 

research thereby confirms the first hypothesis that P. gigantea spores do germinate 

equally well independently of the pressure stress they were subjected to.  

 

In the study of Thor (1997), it was indicated that P. gigantea can withstand a 

pressure stress of 22 bars. Higher pressure stress than 22 bars has not been tested 

until now, and the effects of how pressure is affecting the spores is still poorly 

known and poorly investigated, even after this study. Though this study has 

expanded the pressure stress range up to 150 bars, which is nearly 7 times the 

pressure that Thor used in his study. However, one could discuss if the pressure on 

the individual P. gigantea spore really came to be 150 bars. Even though the bottles 

with Rotstop S Gel were put in a hydraulic piston and were pressurized with 150 bars 

for one minute, one could still argue that the pressure received by the individual 

spore were lower than 150 bars, because; (1) the Rotstop bottles contained air 

(approximately one-sixth of the bottle volume was air). Air is compressible and if the 

air in the bottle were compressed, then one could argue how much of the pressure 

was left to compress the Rotstop suspension. (2) Compressing liquids is possible but 

might require a much higher pressure than 150 bars, so how much pressure the 

individual P. gigantea spore received is hard to say. Another effect of compressing 

liquids is that the viscosity i.e. the resistance of the fluid to flow, increases as the 

density increases. This is because the atoms are forced closer together, and as a result 

the temperature increases. Though, in this case the bottles were not warm when they 

were taken out of the piston.  

 

Bo Axelsson reasoned that if a bottle of Rotstop could make it through the pressure 

procedure without being broken, then the Rotstop suspension would have been 

enough compressed or at least received similar forces as it would in a mechanical 

stump treatment device which uses a higher pressure. Therefore it will work in a 
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stump treatment device that uses a higher pressure than today (personal 

communication, September 18, 2012).  

 

With higher pressure comes also higher temperature. The temperature was not 

measured during this study and there is a chance that the compressed Rotstop bottles 

increased in temperature during the one minute compression.  

 

From several studies it is known that decay causing fungus, e.g. P. gigantea, is 

sensitive to high temperatures (Gooding et al. 1966, Palmer & Payne 1986, Thor et 

al. 1997). These studies have shown that P. gigantea oidia do have higher spore 

germination at temperatures of 30°C compared to 20°C. Thor (1997) showed that P. 

gigantea could tolerate a temperature of 35°C, but temperatures of 40°C were deadly 

for the fungus and could only be withstood for a short period of time.  

 

For mechanical stump treatment procedures there are two reasons for worrying about 

the temperature: (1) the P. gigantea suspension in the tank can be heated up by the 

sun or the engine and (2) the suspension can be heated up by being pumped through 

the hoses (Thor et al. 1997). The length and the dimension of the hoses are 

influencing the temperature of the suspension and especially if there are adjacent 

hydraulic hoses in contact with the suspension transporting hoses. 

 

The second part of the study showed that there was a difference in relative infected 

area between Rotstop treatment 1, using the highest water amount (1l/ m2), and the 

control. Though, there was no difference found between Rotstop treatment using the 

high water amount (1l/ m2) and treatments using the lower water amounts (0.5 and 

0.25 l/ m2). Same result applies for the efficacy, the number of colonies and the size 

of H. parviporum colonies, no differences between the different Rotstop treatments 

(1, 0.5 and 0.25 l/ m2). Though there were a lower number of colonies for treatment 1 

(1l/ m2) compared to the control. 

 

These results indicates that the amount of water appears to have some kind of 

germination effect on the P. gigantea spores, otherwise the Rotstop treatment using 

the high water amount (1l/ m2) would not have been different to the control when the 

treatments using the lower water amounts were not different to the control. This 
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positive germination effect connected to the high water amount (1l/ m2) might be an 

obstacle that prevents the possibility of reducing the water consumption without 

losing protective effect of P. gigantea. However, this experiment may not have been 

big enough to say with certainty that the water amount is not reducible for stump 

treatment. Analysis show rather small differences between the treated side and the 

control side of the billet. A possible explanation might be that there were too few 

samples (nine per treatment) in relation to the normally large variation in this kind of 

research (Berglund & Rönnberg, 2004). Rotstop treatments normally do have 

protective effect against H. parviporum infection (Rishbeth, 1952, Korhonen et al. 

1994, 1998, Berglund & Rönnberg, 2004). Some studies show that Rotstop have a 

control efficacy of nearly 100% (Korhonen et al. 1994, 1998) while other studies 

show lower control efficacy and questions the effectiveness of P. gigantea 

(Berglund, 2005, Gunulf et al. 2012). During the experiment of reducing water 

consumption for stump treatment, no viability tests of the P. gigantea suspensions 

were done. This could explain the poor result of the P. gigantea protection against H. 

parviporum infection. Though, the P. gigantea was from a standard commercial 

batch and the prescriptions given by the manufacturer were strictly followed.  

 

Evaluation of this experiment was done by using relative infected area, efficacy, 

number of colonies and size of colonies all together. To only focus on one of these 

measurements might be misleading (Redfern 1982). This study indicates that Rotstop 

treatment using high water amount (1 l/m2) do have a higher protective effect against 

H. parviporum infection. Though there were no differences found between the 

different treatments using high, medium and low water amount. 

 

The trees used in the experiment were all about the same age and similar in size and 

shape to one another. Still the heart-wood and the sap-wood moisture content were 

significantly different between the different trees. What possible effect this could 

have for the experiment is unknown. It is debated what kind of effect the moisture 

content have on the probability of H. parviporum and P. gigantea infection. Bendz-

Hellgren & Stenlid (1998) indicated that increased moisture content in the sapwood 

can have a negative effect on the probability of infection. Redfern (1993) measured 

the moisture content of Sitka spruce (Picea sitchensis (Bong.) Carr.) stumps and 

pointed to an optimum level for colonization of 30-70% of saturation. The moisture 
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content in this experiment was therefore advantageous for infection. Though, it is not 

likely that the large variation in this study is due to the difference in moisture content 

between the trees. 

 

In this study, the aim was to inoculate each billets with 25 H. parviporum 

spores/cm2, which can be considered as a reasonable inoculation density. Though, it 

is probably higher than the natural spore densities in the natural forest (Gunulf et al, 

2012). Estimation of the conidiospore density was done two times. The first 

estimation was performed before the H. parviporum suspension was made. A 

calculation form the analyses showed that 25 petri-dishes of H. parviporum were 

needed to make one liter of H. parviporum suspension. This calculation was based on 

the expectation that all of the 25 dishes contained similar spore amounts to the 

analyzed petri-dish since the cultivation time was the same. The second estimation of 

the conidiospore density was a sample taken from the H. parviporum suspension. It 

showed that the spore amount was approximately 7.5 spores/cm2, which is lower 

than the guideline value of 25 spores ⁄cm2, but still thought to be a good enough 

inoculation density. In any case, the inoculations showed plenty of H. parviporum 

infections on the billets and it is not likely that the large variation in this study is due 

to what inoculation density were used. 

 

In conclusion, this study shows that there were no differences in using high, medium 

or low water amounts for stump treatment in order to protect against H. parviporum 

infection. Though, result also indicates that there was some positive germination 

effect connected to using the high amount of water (1 l/m2) for stump treatment since 

this treatment was the only treatment which differed from the control. This study was 

done in a laboratory environment, but it is likely that the reduced water consumption 

will also work practically in the field and that the harvester can use a higher pressure 

in the spraying device without reducing the vitality of the P. gigantea spores. Future 

studies should be conducted in the field to mechanically test the reduced water 

consumption at stump treatment and to find out more about possible germination 

effects of water on the P. gigantea spores. 
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