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Abstract 

	  

Understory vegetation and fungi are regarded as important ecological drivers of processes 

like productivity and nutrient cycling in boreal forests. Whilst those processes are linked to 

soil water content, relatively little is known about the sources of soil water for these forest 

components. During early autumn in boreal forests, temperature falls and large events of rain 

are frequent which may influence soil water availability. To better understand the autumn 

plant-soil-fungi water relationships in this ecosystem, I used stable isotopes techniques in this 

study to examine the water sources for ericaceous shrubs and fungi in a Scots pine forest 

following a large, early autumn rain event. I hypothesize that ericaceous shrubs of two 

functional groups (evergreen vs. deciduous) utilize different soil water sources as a result of 

differences in their morphology. I also hypothesize sporocarps of saprotrophic and 

ectomycorrhizal fungi utilize different water sources based on previous studies that have 

shown a vertical separation of these fungi within the soil profile. My isotopic results showed 

xylem water δ18O values did not differ between evergreen and deciduous shrubs (means 

ranged between -9.25 and -9.98 ‰). Using a two source mixing model, it appeared that 

saprotrophic fungi drew 20-100 % of its water from shallow sources (organic matter -1 cm 

deep), whereas in general, ectomycorrhizal fungi used deeper water sources (4-75 cm deep). 

Moreover, rather than using water at different depths, uptake patterns and sources of water 

for understory vegetation and fungi appeared to be greatly influenced by a large rain event 

that occurred two weeks prior to sampling. This study clearly shows the importance of 

autumn large rain events for understory vegetation and highlights the need for further 

examining if the mechanisms observed are the same year to year. Therefore, more 

comprehensive studies integrating seasonality, soil water availability and the phenological 

characteristics of the plants and fungi would provide a more integrated picture of the soil 

water-plant-fungi continuum in the boreal forests. 

 
Keywords:  Ericaceous shrubs, fungi, Pinus sylvestris, rain event, soil profile, water stable 
isotopes. 
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Sammanfattning 

 

Undervegetation och svampar betraktas som viktiga, drivande ekologiska komponenter för 

processer som produktivitet och näringsomsättning i boreala skogar. Medan dessa processer 

är kopplade till markens vattenhalt, relativt lite är känt om källorna till markvatten för dessa 

skogskomponenter. Under början av hösten är fallande temperaturer och stora regnmängder 

vanliga, vilket kan påverka markvattnets tillgänglighet. För att bättre förstå höstens 

vattenrelationer mellan växt -jord-svamp i detta ekosystem, använde jag stabila isotops 

tekniker i denna studie, för att undersöka erikaceer och svampars vattenkällor i en tall skog, 

efter att ett stort regn inträffat under tidig höst. . En hypotes var att de två funktionella 

grupperna av ljungväxter (vintergröna vs lövfällande) använder olika markvattenkällor på 

grund av skillnader i deras morfologi. En annan hypotes var att fruktkroppar av saprotrofiska 

och ectomykorrhiza svampar använder olika vattenkällor, baserat på tidigare studier som har 

visat en vertikal separation av dessa svampar i markprofilen. Mina isotopiska resultat visade 

att xylem-vatten δ18O-värden inte skiljer sig mellan vintergröna och lövfällande erikaceer och 

varierade mellan -9,25 och -9,98 ‰. En två-käll-blandning modell visade att saprotrofiska 

svampar utvann 20-100% av sitt vatten från ytliga källor (organiskt material -1 cm djup), 

medan ectomykorrhiza svampar generellt använde djupare vattenkällor (4-75 cm djup). 

Istället för att använda vatten på olika djup, påverkades upptagningsmönstret och typen av 

vattenkällor för undervegetationen och svampar i hög grad av ett stort regnfall som inträffade 

två veckor före provtagningen. Denna studie visar tydligt betydelsen av stora regnfall för 

undervegetationens vattenupptag och understryker behovet av att ytterligare undersöka om de 

observerade mekanismerna är desamma år efter år. Fortsatta studier bör integrera 

säsongsvariationer, markvattnets tillgänglighet samt växters och svampars fenologiska 

egenskaper, vilket kan ge en mer samlad bild av markvatten-växt-svampar kontinuum i 

boreala skogar. 

 
Nyckelord:  Ericaceous shrubs, fungi, Pinus sylvestris, rain event, soil profile, water stable 
isotopes. 
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Introduction	  

 

The source of available water for vegetation is of ecological importance because it may 

regulate plant productivity and survival (Plamboeck et al. 1999; Allen 2011; Moyano et al. 

2012). The water used by forest understory and canopy trees may be taken up from different 

depths in the soil profile following patterns that are largely regulated by inherent physical 

characteristics of the soil as well as morphological traits of the plants (Gat 1998). Vegetation 

research in boreal forests has identified the understory as an important driver of above and 

belowground processes ultimately affecting plant communities and ecosystem properties 

(Nilsson and Wardle 2005). Wardle et al. (2003) had shown that the understory of a boreal 

forest could have a net primary production similar to that of the overstory. Further, 

understory vegetation has been reported to account for a significant proportion (15-50 %) of 

total forest evapotranspiration, which is an important component in the land-atmosphere 

interface of the hydrological cycle (Black and Kelliher 1989; Grelle et al. 1997; Gat 1998 in 

Griffiths 1998; Iida et al. 2009). Whereas most nutrients used by plants are found in the soil 

solution, which in turn is linked to the water content of the soil (Fisher and Binkley 2000), 

relatively little is known about the distribution of water sources used by understory 

vegetation in boreal forests.  

Boreal forests are often present on Podzol soils characterized by slow rates of organic 

matter decomposition and scarcity of accessible nutrients, mainly nitrogen (N), for plant 

growth (Makkonen and Helmisaari 1998; Rosling et al. 2003). The main vascular plants 

growing upon these soils, the ericaceous dwarf shrubs, is the dominant component of the 

understory in boreal forests of northern Sweden. Among them, lingonberry (Vaccinium vitis 

idaea L.) and bilberry (Vaccinium myrtillus L.) are the most common species. The proportion 

at which these species occur is suggested to be constrained by abiotic and biotic factors 

regulated by the forests successional stage (Nilsson and Wardle 2005). Other studies have 

highlighted the importance of light conditions and/or moisture availability (Mäkipää 1999); 

anthropogenic activities or windthrows (Kuuluvainen 1994; Engelmark et al. 2000) and the 

time elapsed since last fire disturbance (Niklasson and Granström 2000) to explain the 

relative abundance and distribution of understory species. According to Read et al. (2004), 

the traits displayed by the shrubs and their corresponding mycorrhizal symbionts have 

coevolved to the point of being a major feature of boreal forest ecosystems. 
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The main mechanisms by which water is accessible	  to plants are the growth of roots into 

moist soil areas creating water potential gradients and the capillary movement of the soil 

water towards the root surfaces (Brady and Weil 2008). Studies have shown that in boreal 

forests, a significant proportion of the fine roots of ericaceous shrubs, such as Calluna 

vulgaris, are confined to the humus layer and the uppermost mineral soil (Kalela 1949; 

Persson 1978 and 1983). Further, as shown by Valenzuela-Estrada et al. (2008), root systems 

of the genus Vaccinium are highly branched and constituted particularly by fine roots. 

Differences between aboveground traits exhibit by some ericaceous dwarf shrubs (i.e. 

Empetrum hermaphroditum and Vaccinium myrtillus) can be posed as extreme ends of a 

gradient. Whereas E. hermaphroditum develops small, slow growing evergreen leaves, 

loaded with defensive substances, V. myrtillus develops relatively fast growing deciduous 

leaves, which contain low levels of defensive substances. The traits of Vaccinium vitis idaea 

can then be situated at the middle of this gradient (Nilsson and Wardle, 2005). Based on the 

differences between shrubs morphology, it is interesting to evaluate if they also use different 

water sources within the soil profile.  

A large number of studies have shown that in the interface between plants dominating this 

biome and these recalcitrant and poorly decomposed soils, ectomycorrhizal (EM) and 

saprotrophic fungi play key roles in the cycling of carbon and nitrogen (Högberg et al. 2003, 

Rosling et al. 2003; Read et al. 2004; Lindahl et al. 2007). However, much less is known 

about the patterns of uptake and sources of water for both functional groups. There is 

evidence that EM fungi can transport water over significant distances (Duddridge et al. 1980; 

Brownlee et al. 1983) and mobilize readily usable nitrogen, providing their hosts with an 

otherwise limiting nutrient (Read 1991; Read et al. 2004) in exchange for carbon from their 

hosts (Högberg et al. 2001). Saprotrophic fungi are described as main degraders of forest 

litter and wood obtaining their energy by decomposing dead organic matter (Rayner and 

Boddy 1988). Further, Lindahl et al. (2007) have shown that saprotrophic and EM fungal 

communities display a spatial separation within the soil profile (i.e. the EM normally located 

in the older, more decomposed litter and humus layer, whereas saprotrophic fungi are found 

near the soil surface). Moreover, in podzols of the boreal forest, there is a significant 

variation in the composition of EM species between horizons (Rosling et al. 2003). One way 

to examine if the water relations of both saprotrophic and EM fungi differ is studying their 

epigeous sporocarps, which in northern Sweden mainly emerge during autumn.  
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Plant and fungi water sources partitioning has been the subject of previous studies 

(Dawson and Ehleringer 1991, 1996; Dawson 1996, Dawson et al. 2002; Thorburn and 

Ehleringer 1995; Brunel et al. 1997; Plamboeck et al. 1999; Lilleskov et al. 2009). In the 

northern Swedish boreal context, these studies have mainly focused on trees during the peak 

of the growing season (Bishop and Dambrine 1995; Plamboeck et al. 1999). Conversely, little 

attention has been given to the patterns of water uptake by understory vegetation and fungi in 

general and moreover few studies have examined water sources during the fall months. In the 

early autumn, falling temperatures and large rain events are frequent (SMHI 2012) which 

may influence soil water availability and uptake patterns of the forest understory vegetation.  

Within the frame of a projected changing climatic scenario for Northern Sweden fewer but 

more extreme events of rain can occur at the end of the growing season (SMHI 2012). A 

better understanding of the soil water sources for this relevant forest component in the 

autumn can expand our insight into the plant-soil-fungi water relationships in the boreal 

forest.  

A constrain in assessing the order of magnitude of the uptake and exchange of water 

between soil, fungi and plants has been finding adequate methods to investigate the sources 

of water in first the place (Plamboeck et al. 2007). However, recent advances using stable 

isotopes technique has proven useful in determining sources of water used by individual 

plants and fungi in diverse natural environments (Dawson and Ehleringer 1991; Dawson and 

Ehleringer 1993; Dawson 1996, Dawson	  et	  al.	  2002; Thorburn and Ehleringer 1995; Brunel 

et al. 1997; Plamboeck et al. 1999; Lilleskov et al. 2009; Plamboeck et al. 2007; Hasselquist 

et al. 2010). The central idea behind this technique is that the oxygen isotopic signature (18O) 

of plant xylem water reflects the 18O signature of soil water sources utilized by plants (Brunel 

et al. 1997). The 18O signature of soil water near the surface is largely influenced by 

precipitation events that in turn are affected by evaporative enrichment, thereby leading to 

high 18O values. In contrast, the 18O signature of soil water found at deeper depths typically 

consists of deep water inputs and/or storage (in boreal forests mainly constituted by 

snowmelt) and is characterized by low 18O values. Using these differences in the 18O 

signature found throughout the soil profile, it is possible to determine whether or not plants 

are using shallow or deep water sources (Gat 1996; Dawson and Ehleringer 1998).   
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The plant-soil isotope technique relies upon two pivotal assumptions: 1) there is no 

fractionation of water during water uptake by roots and 2) there is no change in the isotopic 

signature of xylem water within the woody plant tissue. This implies that the isotopic 

signature of xylem water within woody plant tissue reflects the isotopic signature of areas in 

the soil from where plants extracted water (Brunel et al 1997; Dawson and Ehleringer 1991). 

Moreover, fungal sporocarps can be used to assess sources of water exploited by fungi as 

demonstrated by Lilleskov et al. (2009).  
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Aim	  and	  hypotheses	  

	  

The aim of this study was to determine the water sources for ericaceous shrubs and fungi in a 

Pinus sylvestris forest following large, early autumn rain events in northern Sweden. I will 

therefore use stable isotope techniques to obtain and evaluate the isotopic signature of soil, 

plant and fungal material relevant for this study. I hypothesize that:  

1) Ericaceous shrubs utilize different soil water sources 

 as a result of differences in their morphology. More specifically, because Calluna vulgaris 

(L) Hull, Vaccinium vitis idaea (L) and Empetrum hermaphroditum (Hagerup) are evergreen 

shrubs with small, waxy leaves adapted to prevent water loss, whereas Vaccinium myrtillus 

(L) is a deciduous shrub with larger leaves, I hypothesize that V. myrtillus utilizes deeper, 

more reliable water sources, compared to C. vulgaris, V. vitis idaea, and E. hermaphroditum. 

2) Sporocarps of saprotrophic and EM fungi utilize different soil water sources within the soil 

profile. More specifically, because of the vertical separation of saprotrophic and EM fungi 

within the soil profile, I hypothesize that saprotrophic fungi utilize water in the upper layers 

of the soil profile, whereas EM fungi use deeper water sources (Fig. 1).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphic representation of the hypotheses examined in this study.  
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Materials and Methods 

Study	  site	  

The study was conducted at the Rosinedalsheden experimental forest, 3 km southeast of 

Vindeln, Northern Sweden (64°2' N, 19°7' E; Fig. 2). The study site is characterized by a 70 

year old, even-aged stand of Scots pine (Pinus sylvestris L.). The understory vegetation is 

dominated by ericaceous dwarf shrubs including lingonberry (Vaccinium vitis idaea L.) and 

bilberry (Vaccinium myrtillus L.), heather (Calluna vulgaris L. Hull) and to a lesser extent 

crowberry (Empetrum hermaphroditum Hagerup.). The bottom layer is dominated by stair-

step mosses (Hylocomium splendens); feather mosses (Pleurozium schreberi) and reindeer 

lichens (Cladonia sp.) with the last ones less regularly distributed. Saprotrophic and 

ectomycorrhizal sporocarps were distributed sporadically across the site.  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Location of Rosinedalsheden experimental forest, Vindeln, Northern Sweden.  
Photo: N. Hasselquist.  

 

Mean annual temperature at the site is 1.5°C and precipitation averages 591.3 mm 

according to the long-term temperature and precipitation series (SMHI normal period (1961-

1990) series). Approximately 35% of the precipitation falls as snow during October to May. 

The mean monthly temperatures for the four months previous to sampling (June-September 

2012) at Rosinedalsheden were 11, 14.9, 12.8, and 7.7 °C respectively.  Cumulative monthly 

precipitation averaged 134.3, 83.7, 101.1 and 66.8 mm respectively.   
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The temperatures for the growing period were close to the monthly long-term mean but 

precipitation means for the whole period were wetter than normal (SMHI normal period 

(1961-1990) series). The mean daily temperature during late August and early September 

where was close to 10 °C. However, both the previous and the actual day of collection, 

temperatures rose to 13.2 and 11.9 °C respectively. Two weeks prior to the sampling, a single 

rain event of 46.7 mm occurred, which represented 8% of the total precipitation recorded 

from June to October. The soil type is classified as a ferric podzol which is relatively poor in 

nutrient available for plants and contains glaciofluvial soil > 50% sand (FAO-UNESCO 

1988). 

Experimental	  design	  and	  sampling	  

On September 12, 2012, two weeks after a large rain event, I randomly established 4 blocks 

(5 x 5 m) at the site, wherein I collected replicates of plant, berries, fungi and soil samples for 

isotopic analyses. Within each block, I collected woody tissue from four ericaceous species: 

Calluna vulgaris (L) Hull, Vaccinium vitis idaea (L), Vaccinium myrtillus (L) and Empetrum 

hermaphroditum (Hagerup).  I also collected fruits from V. vitis idaea, V. myrtillus and E. 

hermaphroditum in order to examine if 18O signature in berries matched the 18O signature of 

xylem water. Soil samples for water content and isotopic analyses were also taken at two 

points within each block and at different depths (organic matter, 1 cm, 4 cm, 10 cm and 30 

cm into the mineral soil). Nearby two of the blocks, deeper pits were dug to collect soil 

samples at 75 cm depth.  

Moreover, I identified and collected cap tissue of saprotrophic and ectomycorrhizal 

sporocarps in and nearby the blocks. Genera of saprotrophic fungi included Cystodérma sp. 

and Paxillus atrotomentosa (Batsch) Fr., whereas EM species included Cortinarius traganus 

(Fr.), Cortinarius brunneus (Pers.) Fr., Cortinarius semisanguineus (Fr.) Gillet and Lactarius 

rufus (Scop.) Fr.  At the time of the collection, every individual sample was inserted into 8 x 

70 mm test tubes with straight rim, sealed with Parafilm® and preserved in a cool bag for 

transport to the university (located approx. 55 km away from the study site). Once there, the 

samples were kept frozen (-14°C) until further treatment. Precipitation samples for isotopic 

analysis were obtained from the Svartberget research station located approx. 10 km away 

from Rosinedalsheden experimental forest. 
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Extraction	  line	  and	  isotopic	  analysis	   	  

Extraction of water from soil, stem, berry and fungal tissue was performed using a cryogenic 

vacuum distillation line (Ehleringer et al. 2000; West et al. 2006) at the soil physics 

laboratory, Department of Forest Ecology and Management (Swedish University of 

Agricultural Sciences, Umeå). Extraction times ranged between 40 min for stems to 30 min 

for soils, fruits and fungi. Thereafter, the water extracted from the samples was pipetted from 

the extraction line´s collection tubes into 32 x 11.6 mm vials and kept frozen (-14 °C) until 

further isotopic analyses. For precipitation samples, water was pipetted from collection 

containers into vials, and kept refrigerated until isotopic analyses. Since all water samples in 

my study are within the range of precipitation inputs and fall on the local meteoric water line 

of the study area, likely no fractionations were occurring (in agreement with Brooks et al, 

2010). 

Isotopic analyses were made using a Picarro L1102-i Isotopic Water Liquid Analyzer at 

the instrument laboratory, Department of Forest Ecology and Management (Swedish 

University of Agricultural Sciences, Umeå). This device uses a Wavelength-Scanned Cavity 

Ringdown Spectroscopy (WS-CRDS) to scan the absorption lines distinctive to H2
16O, 

H2
18O, and HD16O. The raw data for all samples obtained from this instrument was treated 

following the procedure created by Ohlsson (2011), Swedish University of Agricultural 

Sciences, Umeå. The procedure includes correcting data for a memory effect and averaging 

results from individual vials. Moreover, data was sorted and corrected for drift after being 

calibrated against measured values from standard samples. Data is expressed as deviations 

from the Vienna Standard Mean Ocean Water (VSMOW) in δ notation (‰). Precision 

between batches was 0.04‰ for δ18O and 0.15‰ for δ2D.  

Isotopic	  correction	  on	  water	  extracted	  from	  fungi	  

Because the 18O signature of fungal sporocarps were enriched relative to soil surface water, I 

used the methodology described by Lilleskov et al. (2009) to determine the relative 

enrichment of the sporocarps against the surface soil (top 10 cm) 18O signature and corrected 

fungal sporocarp isotopic signatures to reflect their sources. 
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Calculations	  and	  statistical	  analysis	  	  

The gravimetric water content for the mineral and organic soil samples were obtained and 

calculated as: 

𝑊! = 𝑊! −𝑊! /𝑊!                                                                                 (1) 

where 𝑊! equals the mass of the wet sample and 𝑊! is the mass of the oven-dried soil. In this 

study, the mass of the oven-dried soil was replaced by the mass of the sample after the 

extraction, making the assumption that all water has been extracted. Weighing controls 

performed at the start, middle and end of the extraction process confirmed this assumption. 

The per cent water holding capacity for the organic matter was obtained by placing the 

material on a plastic mesh into a plastic funnel and saturating it with water for ½ h.  The 

organic matter was then drained for ½ h until no more water was dropping. The water 

holding capacity was then calculated as for gravimetric water content (eq. 1) (Ilstedt et al 

2000). 

Statistics were run with Minitab® 16 statistical programme (Norsys Technology AB, 

Sweden). Isotopic data was tested for normality using the Anderson-Darling test.  Differences 

between functional groups (i.e. between evergreen and deciduous shrubs as well as between 

saprotrophic and ectomycorrhizal fungi) and between the shrubs and respective fruits were 

examined using one-way analyses of variance. Similarly, analyses of variance were 

performed in order to evaluate possible differences within the soil profile. A posterior 

Tukey’s test was performed in order to evaluate significant (P < 0.05) differences among 

means. The main data obtained in this study included the 18O signature of water from 

ericaceous woody stems and fruits, soils at different depths throughout the soil profile, and 

caps of ectomycorrhizal and saprotrophic fungi.  

The corrected signatures of the sporocarps were related to possible soil water sources to 

assess the likelihood of different depths to contribute to the mixture of water used by the 

fungi. Acknowledging the differences between the 18O signature of shallow layer of the soil 

(organic matter-1 cm into the mineral soil) and the 18Osignature found at deeper layers (>4 

cm into mineral soil), two source pools (shallow and deep) were first created. To assess the 

source partitioning for the two fungal functional groups, multiple source partitioning models 

were used.  Possible water sources for the two fungal functional groups were examined using 

the IsoError 1_04, Microsoft Excel 2000™ spreadsheet (Phillips and Gregg 2001), which for 

stable isotope analyses, enables to calculate the proportions of various sources in a mixture. 
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Results 

	  

Figure 3 shows the daily precipitation isotopic signature of the rain during late August and 

early September fluctuated between -13.1‰, corresponding to the large event of rain in late 

august, to -6.9‰ corresponding to the day of sampling.  

 

	  
	  

Figure 3. Daily precipitation (orange bars) and temperature (solid line) distribution during June-September 
2012 at Rosinedalsheden experimental forest, Vindeln, Northern Sweden. The daily distribution of the 18O 
isotopic composition of the precipitation during the same period was sampled at Svartberget experimental 
station (the inverted triangle shows the 12th of September, the day of sampling).  
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Soil δ18O decreased gradually with depth in the profile with means ranging from -11.5  

‰ in the organic matter to -12.9 ‰ at 75 cm. At 1 cm depth (still in the organic layer), the 

signature peaks to -11.2 ‰, corresponding to the most enriched value in the soil profile (Fig. 

4a). There were significant differences in the 18O signature of soil water between 1 cm and 10 

cm and between 1 cm and 75 cm depth (P = 0.017). There was a steep decrease in soil water 

content (i.e. gravimetric water content per gram dry soil) with soil depth (i.e., > 200% in the 

organic layer and < 20% at 4 cm into the mineral soil). At depths greater than 4 cm the 

decline in water content was more gradual and was only significantly different (P < 0.0001) 

between 1 cm and 75 cm depth (Fig. 4b).  

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Mean (± SE) oxygen δ18O isotopes signature (a) and percent soil moisture, i.e. gravimetric water 
content per gram dry soil (b) of the soil profile developed in a ferric Podzol at Rosinedalsheden experimental 
forest, northern Sweden  

a	   b	  
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In general, the xylem water δ18O signature did not differ between functional groups  (P = 

0.607), and their means ranged between -9.25 and -9.98 ‰. Moreover, these values were 

consistently enriched relative to the soil 18O values, especially those found at deeper depths 

(Fig. 4a and Fig. 5). The mean δ18O signature of water in fruits ranged between -6.67 and -

7.65 ‰, and were roughly 2.5 ‰ enriched relative to xylem water found in shrubs (Fig. 5). 

Significant differences in δ18O values were observed when comparing the signature of 

individual shrubs species and its corresponding fruits. For example, the signature of bilberry 

fruits significantly differed from that of bilberry shrubs xylem water (P = 0.001). Similarly, a 

significant difference (P = 0.007) was observed between the average δ18O signatures of 

crowberry fruits and shrubs xylem water. However, no such difference was observed between 

lingonberry and its fruit.  

 

B Bb E Eb L Lb C
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Figure 5. Mean (± SE) δ18O isotopic signature for the two functional groups of ericaceous shrubs. B and Bb 
stands for bilberry xylem (V. myrtillus) and its fruit respectively; E and Eb for cowberry xylem 
(E.hermaphroditum) and its fruit; L and Lb for lingonberry xylem (V.vitis.idaea) and its fruit and C stand for 
heather (C. vulgaris). 
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Figure 6. Mean (± SE) δ18O isotopic signature for the two functional groups of fungi. The bar designated as 
Saprotrophic included only samples of Cystodérma sp. whereas the bar designated as EM included the species 
Cortinarius traganus (Fr.), Cortinarius brunneus (Pers.) Fr., Cortinarius semisanguineus (Fr.) Gillet and 
Lactarius rufus (Scop.) Fr. 

 

Although not significant (P = 0.077) there was a general trend indicating that saprotrophic 

fungi caps contained relatively more enriched water (-11, 37 ‰) as compared to EM fungi 

caps (-12, 46 ‰) (Fig. 6).  After assessing the relative enrichment of the sporocarps against 

the surface soil signature using the methodology proposed by Lilleskov et al. (2009), I pooled 

the 18O signature of different depths in the soil profile. One source pool (shallow source) was 

formed by the signature of the organic matter layer and 1cm into the mineral soil. The second 

pool (deep source) was formed by the signatures obtained from 4, 10, 30 and 75 cm into the 

mineral soil. According to results obtained from IsoError software it appears that 100 % of 

the water in the cap of saprotrophic fungi originated in the organic layer and 1 cm pool, yet 

this value could range between 20-100%. In contrast, it appears that sporocarps of EM fungi, 

in general used deeper water sources. More specifically, 65-75% of water in EM caps 

originated from the pool water sources > 4 cm into the mineral soil (Table 1). Moreover, the 

model showed that superficial sources (i.e. organic matter layer and 1 cm pool) contributed 

25- 35% to the water in the caps of these fungi. 
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Table 1. Mean proportion (± SE) of shallow and deep water sources used by fungi. The lower and upper 95% 
confidence intervals are shown as estimated with IsoError using a single isotope, two sources approach. The 
pooled 18O values were -11, 37 ‰ for shallow and -12, 46 ‰ for deep sources. The model calculates the 
proportions of various sources in a pool of isotopic signatures and takes account the variability of both pooled 
signatures and sources.  
 

  	  	  
Ectomycorrhizal sp     Saprotrophic sp 

	  
C. semisanguineus  L. rufus C. brunneus 

 
Cystodérma spp. 

Shallow source proportion [%] (SE) 0.35 (0.23) 0.25 (0.14) 0.93 (0.14) 
 

1.07 (0.31) 
95 % Confidence limits(%) 0-100 0-100 60-100 

 
20-100 

Deep source proportion [%] (SE)  0.65 (0.23) 0.75 (0.14) 0.07 (0.14) 
 

– 0.07 (0.31) 
95 % Confidence limits (%) 0-100 0-100 0-40 

 
0-80 

Sample size 5 2 5   5 
	  

Discussion 

Sources	  of	  water	  for	  ericaceous	  shrubs	  	  

Based on differences in morphological traits between deciduous and evergreen ericaceous 

shrubs, I hypothesized that V. myrtillus (deciduous) utilizes deeper, more reliable, water 

sources compared to C. vulgaris, V. vitis idaea, and E. hermaphroditum (evergreen). My 

results however, show no support for such a distinction in access to different water sources. 

Plant roots normally access water from areas in the soil where water potentials are highest 

(Adar et al 1995), which in my case corresponds to the upper organic soil layer. Valenzuela-

Estrada et al. (2008), suggested root systems of the genus Vaccinium are constituted by fine 

roots and are particularly highly branched. Previous studies have shown that fine roots of the 

genera Calluna and Vaccinium are confined to the organic and upper mineral soil layers 

(Kalela 1949; Persson 1978 and 1983; Makkonen and Helmisaari 1998). The δ18O isotopic 

values of xylem water were enriched relative to all δ18O soil profile values, which hindered a 

direct determination of water sources within the soil profile (i.e. either by direct inference or 

using stable isotopes mixing models). As suggested by previous studies (Dawson 1996; Yakir 

in Griffiths, 1998; Barbour, 2007) I utilized xylem water for isotopic analyses to minimize 

the effects of evaporative fractionation. Thus, the enriched signature in xylem water relative 

to water found throughout the soil profile cannot be explained by evaporative enrichment 

within plant tissue. Instead there is some evidence to suggest that understory vegetation use 

superficially, temporally available water from recent rain events in early autumn. On the 27th 

of August, a single event of 46.7 mm rained upon the site of this study. This single event, the 

largest recorded for the whole year, represents 64 % of the amount of rain normally falling in 
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the month of August (SHMI normal precipitation period 1961-90). The isotopic analysis 

revealed the 18O value of this event corresponds to -13.1 ‰ (Fig. 3). Further, my results show 

the 18O signature of the superficial soil layers is 1.58 ‰ enriched relative to this number. The 

signature I recovered from deeper soil layers is -12.93 ‰, which is certainly close to the 

signature of this large event (Fig. 4). 

In agreement with previous studies showing soil profile gradients (Barnes and Allison 

1988; Dawson and Ehleringer 1991; Dawson 1996; Lilleskov et al. 2009), the values obtained 

in my study follow a pattern of enrichment towards the soil surface, most likely caused by the 

breakup of weak bonds of lighter isotopes in the liquid phase during evaporation of the soil 

water at the surface level. During the period between last days of August and my date of 

collection (12th of September) few rain events with distinctive enriched 18O values have 

occurred of which none could account for the isotopic soil profile or xylem water signature 

obtained. Thus, it appears that the depleted 18O signature I observe in my study is a remnant 

from the large late August rain event, which probably saturated the soil profile, displaced any 

other signature and served as the main source of water for the shrubs. Similarly, Brooks et al. 

(2010) suggest a large early autumn rain event falling in a small watershed at the Cascade 

Mountains of Oregon, USA, could explain the depleted values observed throughout the soil 

profiles as well as the 18O signature in tree xylem water. 

One additional observation relevant to point out is that temperature at the site dropped 

continuously from 13.8 °C the last days of August and was as low as 4.6 °C a week later. 

However, during the three previous days to my collection, there was no rain and temperatures 

rose again and peaked at 13.2 °C the day before I conducted the sampling. I make the 

assumption that the evaporative demand from superficial soil layers was augmented due to 

the absence of rain water and the rise in temperature and that this phenomenon, at least 

partially, drove the water uptake pattern of the shrubs during these specific days. This 

indicates two major points: 1) The ericaceous shrubs were extremely responsive to the rain 

event two weeks previous to the sampling day and 2) rather than using water from different 

sources vertically in the profile, both evergreen and deciduous shrubs appeared to use 

superficial, readily available water. This suggests both functional groups may display a 

temporal based water uptake pattern during the early autumn. 

At a Scots pine stand comparable to that of my study, Bishop and Dambrine (1995) found 

the water uptake pattern of these trees to be mainly localized to 13 cm in the soil profile. 

Further, Plamboeck et al. (1999) studying the same forest stand showed that, under different 

water supply regimes, Scots pines are rather adaptable, drawing proportionally more water 
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from deep layers in the soil when water becomes less available at the upper layers. In this 

study, I show that ericaceous shrubs, rooted in the uppermost layer of the soil, appeared to be 

able to take advantage of large rainfalls, especially during early autumn, to acquire water 

when and not where it is more available. My observations further suggest that (in 

concordance to the conceptualization suggested by Brooks et al. (2010)) plant-readily 

available water from rains that occurred previous to my sampling have not completely mixed 

with water in the soil profile, likely because the rain water that first wetted the soil in late 

August is still being held into a complex of small pores in the organic layer. Soil water 

content (i.e. gravimetric water content per gram dry soil) of the organic matter layer was 10 

times greater than that of immediate underlying layers. Since this water content is close to the 

optimum conditions for microbial and plant growth (Ilstedt et al. 2000) it appeared to present 

a reliable source of water for the shrubs irrespective of functional group  

Water	  sources	  for	  berries	  

The observed enrichment of 18 O berry signatures relative to xylem water (Fig. 5) is likely to 

be related to the intrinsic cuticle composition of berries. The cuticle of plants functions as a 

barrier preventing water loss from tissues to the environment (Raven et al. 2005). The cuticle 

is mainly composed of waxy polymers of which cutin is regarded as an important structural 

component (Kallio et al. 2006) constituting up to 60-80% of fruit cuticle´s dry weight 

(Heredia 2003). Blueberry for instance, is a berry characterized by a single layer of epidermis 

with no stomata upon which a cuticle and a waxy blossom serve as coat (Giongo et al. 2012). 

In a study that examined the berry cutin composition of five species of shrubs, researchers 

found that V. myrtillus berries contain 6 % raw cutin whereas V. vitis idaea berries contained 

30% (Kallio et al. 2006). I argue that the notable difference in cutin and hence cuticle 

composition between these two berries lends support to my assumption given the important 

role of cutin in the regulation of water loss from plant tissues. Likely, this may also explain 

why I do not observe a significant difference between the xylem water 18O isotopic values of 

lingonberry and its berries. Additionally, differences in the phenology of berries may further 

explain the enriched 18 O values as bilberries and crowberries were developed and ripe one 

and two months earlier respectively than the berries from lingonberry (Phenological 

observations at Svartberget´s research station). That is, berries of crowberry and bilberry had 

been exposed a longer period of time to water loss and subsequent enrichment relative to 

lingonberries.  
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Sources	  of	  water	  for	  saprotrophic	  and	  ectomycorrhizal	  fungi	  	  

The second working hypothesis I examined was whether saprotrophic fungi utilize water 

found in the upper layers of the soil profile, whereas EM fungi use deeper water sources. My 

isotope results partly lend some support for this hypothesis. I observed the 18 O isotopic 

signatures of all mushroom caps were consistently enriched relative to all possible soil water 

sources. Thus a direct determination of the sources of water for both fungal functional groups 

was impossible. However, following the methodology proposed by Lilleskov et al. (2009), I 

used the enrichment of sporocarps relative to surface soils in my study as a mean to apply a 

correction factor to the isotopic signatures to test if the sporocarps could reflect their source 

of water. 

It is important to acknowledge that the influence of the large rain event of late august is 

notable in the corrected signature of both EM and saprotrophic sporocarps, as rain that 

occurred in the days previous to the sampling cannot account for the 18O signatures recovered 

from both fungal functional groups. This means also that both saprotrophic and EM in my 

study display a spatial water uptake pattern because the 18O signatures in the sporocarps are a 

reflection of the 18O soil water signatures recovered throughout the podzol profile. 

One aspect arising after employing the correction method is remarkable: Despite studying 

two quite different environments, the enrichment factor I calculated from my data was 6.3 ‰, 

which is surprisingly close to the factor calculated by Lilleskov et al. (2009). The study by 

Lilleskov et al. (2009) was in an alpine, drought- prone forest ecosystem receiving a total of 

810 mm of precipitation annually and a mean temperature of 15,5 °C during the growing 

season (June –September). This study examines a mesic boreal forest ecosystem at low 

elevation where mean annual temperature is 1.5°C and precipitation averages 590 mm. 

General ecological implications are difficult to draw from this, however one arguable 

assumption from this result is that epigeous sporocarps may exhibit similar rates of water loss 

irrespective of the environment they inhabit, because water loss may be one important 

mechanism by which, as suggested by Lilleskov et al. (2009), sporocarps create a water 

potential gradient that allow them to rapidly obtain carbon from their hosts. 

The results of modeling with IsoError suggest that saprotrophic fungi rely more heavily on 

shallow water sources as compared to EM fungi. The main source of water (spanning a range 

from 20 to 100%) identified in the caps of saprotrophs likely originated from the organic 

matter layer and 1 cm into the mineral soil.   



	  

	   22 

This is in agreement with previous results showing that saprotrophic fungi occupy the 

upper layers of the forests floor (Lindahl et al. 2007) and given the small diameter of its 

mycelia, have a large surface area and access to water held even in small pores of the organic 

matter layer (Finlay et al. 2009). Additionally, it is known from previous studies that 

saprotrophic fungi dominate the recent, undecomposed soil surface both colonizing and 

utilizing energy-rich, recently fallen litter, outcompeting EM fungi from the upper soil 

horizons (Colpaert and van Tichelen 1996; Lindahl et al. 2007). Although the model showed 

that saprotrophic fungi may also be utilizing some deeper water sources, this is probably 

explained by the similarity between the 18O values of shallow (-11, 37 ‰) and deep (-12, 46 

‰) source pools (Table 1.) which were used to run the model. Although a two sample t-test 

revealed these two pooled signatures were significantly different (P = 0.017), it is probably a 

consequence of the  pooling of source signatures which facilitated the use of IsoError to 

identify the proportion each source contribute to a specific individual fungi. Yet, based on my 

results, I cannot rule out that saprotrophic fungi are utilizing deeper water sources. 

In contrast, my results showed EM fungi as a functional group appeared to use deeper 

water sources relative to saprotrophic fungi. This finding is consistent with the study by 

Rosling et al. (2003), who showed the root tips of EM where not only present in the organic 

matter layer but also two thirds of all root tips occurred and were associated with the mineral 

soil. However, looking at the EM fungi species level, the results are more contrasting. More 

specifically, 65 % (SE ± 0.23) of the water in the cap of Cortinarius semisanguineus species 

and 75 % (SE ± 0.14) of water in the cap of Lactarius rufus species originated from sources ≥ 

4 cm into the mineral soil. Contrastingly, the model showed the species Cortinarius brunneus 

obtained 92% (SE ± 0.14) of its water from sources at a depth between the organic matter 

layer and 1 cm into the mineral soil (Table 1). These results are indeed contrasting, yet in line 

with previous findings. In their paper, Genney et al. (2006) showed that mycelium of 

Cortinarius spp. extent often from deeper soil horizons colonizing tissues of dead mosses in 

shallower layers. Thus, the EM isotopic values obtained in my study are reflecting the 

distribution of the mycelia of EM fungi, which can extent several horizons within the soil 

profile.  Consequently, my results showed that both EM and saprotrophic fungi tended to use 

more or less spatially separated sources of water resembling their dominance in different 

horizons of the soil profile.   
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Whilst the proximity of the 18O signatures obtained from both functional groups reflects 

their close and complex interactions, Koide and Wu (2003) have suggested that some of the 

competitive interaction between EM and saprotrophic fungi indeed may be the result of 

competition for water between EM and saprotrophic mycelia.  

Conclusions 

My results indicate that the uptake pattern and sources of water for understory vegetation and 

fungi in boreal forests are greatly influenced by punctuated, large rain events falling in early 

autumn in northern Sweden. This is evident by the fact that the water extracted from soil 

profiles largely retained the 18O isotopic signature characteristic of the first big autumn 

rainfall and none of the rains previous to my sampling had 18O values that could account for 

the isotopic soil profile observed. Interestingly, rather than using water from different depths, 

both evergreen and deciduous shrubs appeared to use superficial, readily available water from 

the first autumn rainfalls, suggesting both functional groups display a temporal based water 

uptake pattern during the early autumn. Further, this study shows a general trend in the water 

sources used by saprotrophic and EM fungi, which reflects their dominance in different 

horizons of the soil profile. It is important to point out that this study is framed within a 

restricted time window which allowed for a single occasion sampling during autumn. Thus, 

there is the need for further evaluation to see if the mechanisms observed are the same year to 

year and to examine if the large rain events have effects extending from one year to the next. 

Moreover, the strength of the result can be improved by examining the patterns of uptake and 

sources of water in spring and summer. Given that temperature and precipitation in those 

seasons are different, plant and fungi phenological characteristics, soil water availability and 

the mixing of water in the layers of the soil would provide an integrated picture of the plant-

soil-fungi water dynamics in the boreal forests. 
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