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Abstract 

The genetic diversity within and among 27 accessions of local maize maintained at the 
National Gene bank of Mozambique was studied. The accessions were originally collected 
from farmers’ fields in 8 of the 10 agro-ecological zones of Mozambique. Eleven SSR 
markers were used. A total of 84 alleles were found with an average of 7.63 alleles per locus. 
The effective number of alleles per locus (Ne) ranged from 1.37 to 6.80 with an average of 
3.47. The values for observed heterozygosity (Ho) ranged from 0.10 to 0.68 with an average 
of 0.36. Expected heterozygosity (He) ranged from 0.27 to 0.86 with an average of 0.67. 
Shannon’s information index (I) ranged between 0.68 and 2.11 with an average of 1.40 per 
locus. Estimation of genetic diversity at each locus across all accessions (Nei) ranged from 
0.27 to 0.85 with an average of 0.67. For the 27 accessions the effective number of alleles 
(Ne) ranged from 2.06 to 3.21 with an average of 2.56. The observed heterozygosity (Ho) 
across the eleven loci ranged from 0.25 to 0.48 with an average value of 0.35. Ten of the 
accessions scored less than the mean of the observed heterozygosity while four accessions 
recorded the same value as the mean observed heterozygosity of all accessions. AMOVA 
revealed significant differentiation among the ungrouped 27 maize accessions but most of the 
variation (88.28%) was found within accessions. There was no differentiation among 
accessions when they were grouped according to agro-ecological zones. Both the cluster 
analysis and the PCoA showed no clear grouping of accessions belonging to the same agro-
ecological zones. 

 

Keywords: Genetic diversity, maize, Zea mays, germplasm, Mozambique, Simple Sequence 
Repeat (SSR), AMOVA, PCA  
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1. Introduction 

Maize (Zea mays L) is one of the most important cereal crops in the world and a strategic 
food crop for the majority of  the  developing countries (Lopes and Larkins, 1996). 

1.1. Maize taxonomy and origin    

Maize is a member of the grass family Poaceae (Gramineae), sub-family Paniccoideae. tribe 
Andropogeneae (Piperno and Flannery, 2001). 
The genus Zea is a group of annual and perennial grasses native to Mexico and central 
America (Galinat, 1971). 
The genus Zea includes the wild taxa, known collectively as teosinte (Zea ssp) and 
domesticated corn or maize (Zea mays). Based on the morphological characteristics and 
geographic delineations five species of Zea are currently recognized: 

- Zea diploperennis Iltis, Doebley and Guzman, a perennial, diploid teosinte found 
in very limited regions of the highlands of Western Mexico (Buckler and Stevens, 
2006). 

- Zea perennis (Hitchcock) Reeves and Mangelsdorf, a perennial, tetraploid teosinte, 
with a very narrow distribution in the highlands of Western Mexico (Buckler and 
Stevens, 2006) . 

- Zea luxurians (Durieu and Ascherson) Bird, an annual teosinte found in the more 
Equatorial regions of Southeastern Guatemala and Honduras (Buckler and 
Stevens, 2006) 

- Zea nicaraguensis Iltis and Benz, closely related to Zea luxurians and found in     
Nicaragua (Orr and Sundberg, 2004). 

- Zea mays L, a highly polymorphic, diploid annual species, including both wild 
teosinte and cultivated maize. 

 
Maize was domesticated from teosinte, 6300 years ago in Mexico. After initial domestication, 
early farmers continued to select for advantageous morphological and biochemical traits in 
this important crop (Buckler and Stevens, 2006). 
However, other sources suggest that maize was domesticated in central America about 9000 
years ago (Matsuoka et al., 2002). 
According to Staller (2010), the domestication of maize was a result of a hybridization event 
between an unknown pre-Columbian wild maize and a species of the related genus 
Tripsacum. Recently molecular data indicated that new maize was domesticated from annual 
Balsas teosinte (Zea mays ssp. parviglumis) in Southern Mexico 6,600 to 9,000 years ago. 
Selection for some favorable alleles at loci controlling plant morphology and kernel 
nutritional quality fixed those alleles, at least 4,400 years ago. Moreover, further selection by 
native Americans facilitated maize adaptation to various environments (GeoChemBio, 2012).  
 
The chromosome number of Zea mays is 2n=20 (Fisk, 1925). 
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Maize is a cross pollinating, monoecious plant with separate male inflorescence (pollen-
producing tassels) and female inflorescence (egg-producing ear) with extended silks (stigmas) 
on top and the mid of the same plant, respectively. 

 

1.2. Maize status in Mozambique 

In Mozambique, maize is the most important food crop, since more than 80% of the 
population living in rural areas use maize as dominant staple food. Cassava ranks as a distant 
second (IFAD, 2010). The demand for food is increasing worldwide due to population 
growth. The sustainable use of limited available natural resources is the crucial point to keep 
balance between population growth and food production (Bernardo et al., 2000). The 
production of cultivated maize was reduced from 1982 to 1997 in terms of both number of 
farmers and yield as Mozambique was facing problems of civil war (Tschirley et al., 1996). 
Moreover, the growth rate of maize production decreased by 20% in 2000 compared to 1999, 
because of floods followed by drought stress (FAO, 2000). However, the International Maize 
and Wheat Improvement Center (CIMMYT) reported an increase in maize production in 
Mozambique of about 28.5% from the end of the civil war in 2000. The increase in maize 
production is mainly attributed to the recovery of production from the previous years of 
drought which affected all provinces in Mozambique (Aquino et al., 2001). 

Maize in Mozambique is a relevant food source since it contains nutritionally important grain 
constituents. It is important to develop new highly productive varieties to assure food security 
and safety. Evaluation of genetic diversity in maize germplasm is important for identifying 
genotypes that could be interesting in breeding programs (Berardo et al., 2009) Proper 
characterization of genetic resources is aimed to help the breeders to identify the most suitable 
material for the development of new varieties with high yield and high value in terms of oil 
and protein content. Maize can grow in light (sandy) medium or heavy (clay) soil with good 
drainage but it requires nitrogen, phosphorus and potassium to thrive (FAO, 2003) 
Mozambique has a moderate production of 18,780,000 metric tons compared to the major 
world producers of maize, USA, China, Brazil, Argentina, Mexico and France (FAO, 2010). 

In Mozambique, drought is a factor that dramatically limits maize production in low-land 
areas of the country that are characterized by sandy soils (Verduijn, 2005). Small-holder 
farmers in Mozambique occupy more than 95% of the maize growing areas and together they 
produce more than 90% of the total annual production. In these small-holder production 
systems maize is grown mixed with other crops in small plots (0.3 to 1.3 ha) usually using 
traditional system and mostly these agro-systems depend on rainfall. The average yield of 
maize is very low (0.2 to 1.2 t/ha), because the farmers do not use improved seeds or fertilizer 
(DINA, 1995). 

Since the population is constantly increasing we need to conserve genetic diversity for food 
and environmental security. The farmers have progressively abandoned their traditional 
varieties and landraces and shifted to more productive modern varieties because of higher 
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yield, and the number of landraces may decrease and thereby affect the genetic diversity of 
the crops (Irrondo and Maxted, 2008). 

Conserving germplasm in a gene bank is an effective way of preserving large amounts of crop 
germplasm that may be used by future generations and for future plant breeding. This activity 
necessarily involves the protection of habitat and ecosystems (Irrondo and Maxted, 2008). 

Shifting cultivation (bush fallow) is the traditional land use system in Mozambique. The 
increasing population is causing a substantial pressure on arable land by reducing the fertility 
of soils and reducing tree cover in some areas. This has affected the natural resources, because 
the population encroachment resulted in degazetting of forests. 

Private commercial farmers contribute 25% of the marketed maize production. These include 
capital intensive farms of less than 50 ha (Tschirley et al., 1996). 

Farms of 50 to 1000 ha are less capital intensive and produce cereals, meat and fruits for the 
commercial market. Farms of more than 1000 ha are found in high potential areas and 
produce industrial and export crops such as cotton, tea, tobacco and sugarcane (Tschirley et 
al., 1996). 

The last category of farmers includes joint venture farms and state farms of up to 40000 ha for 
export crops (tea, cotton, copra and sugarcane) ( da Silva et al., 1996). 

 

1.3. Maize pests and diseases 

These problems appear always in Northern Mozambique because of higher rainfall. Also at 
low-land soil or in areas with  periodic drought the farmers can get problems  with pests and 
diseases such as stem borer (Chilo patellus), grain weevils (Sitophilus zea mays Motsch), 
termites (Microtermes spp), Fusarium, Diplodia ear rots, Helminthosporuim ssp, downy 
mildew (Pernosclerospora sorghi) and maize streak virus (MSV) (Mariote, 2007). 
 

1.4. Breeding strategy of maize in Mozambique 

The maize breeding program of the Agricultural Research Institute of Mozambique (IIAM) is 
focused on the improvement of maize regarding drought stress, low soil nitrogen uptake, 
downy mildew, maize streak virus, stem borers and grain weevils in order to obtain more 
varieties adapted to the conditions in Mozambique. The maize breeding program of IIAM was 
focused on developing open pollinated varieties until 2000. However, a new activity started in 
2002/2003 in order to produce hybrids that are especially adapted to the low-land areas, 
tolerant to drought and resistant to downy mildew (Fato et al., 2004; Denic et al., 2007; Fato, 
2010). Groups of maize populations with different traits as well as quality protein maize 
(QPM) germplasm were obtained from CIMMYT and the International Institute of Tropical 
Agriculture (IITA). Maize plants were subjected to different drought conditions. Two 
different levels of soil fertility were used in two agro-ecological zones; the mid altitude and 
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low-land (Chauque et al., 2004 and Denic et al., 2012). The achievements up to date are the 
release of two hybrids in 2008 of which one hybrid was developed by a South African breeder 
based on a South African inbred line and two inbred lines from Ghana. The second hybrid 
was developed by the Mozambiqan plant breeders using locally selected material from 
populations sourced from International Institute of Tropical Agriculture (IITA). A third 
hybrid from the CIMMYT regional network was released in 2011. Two more hybrids from 
the same CIMMYT regional network were submitted for release in 2013. A total of twelve 
open pollinated maize varieties were released by IIAM during the last twelve years (Pedro 
Fato, personal communication, March 15, 2013). 

IIAM has experimental stations in different provinces of Mozambique: the three main 
experimental sites situated in the Lichinga province in the high lands, in Chokwe in the South, 
and in Manica in the center of the country. 

The IIAM section of technology transfer works with the smallholder farmers sector and 
cooperative farms in cooperation with the Rural Development Department of the Ministry of 
Agriculture in transfer of new technologies. The small holder farmers produce 50% of 
marketed maize in Mozambique. There are problems of extension services and there is a 
limited distribution of seed, pesticides, and farming tools and these services may even be 
unavailable some years (Nunes et al., 1986). 

 
1.5. Aim of the study  

It has been claimed and shown that Mozambique is a rich country in terms of genetic 
resources (da Silva et al., 1996). The aim of the study was to: 

- Collect maize accessions in the field of farmers in Mozambique for evaluation of 
genetic diversity. 

- Use SSR markers to characterize the accessions. 
- Identify duplicates that will allow the gene bank manager to reduce the number of 

accessions kept in the gene bank. 
- Help in the formulation of a new national maize breeding programme for 

Mozambique in which local germplasm kept at the gene bank or farmers’ fields are 
utilized through pre-breeding activities.  
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2. Material and methods 

2.1. Plant material 

Maize seeds used in the study were originally collected from farmers’ fields in eight out of the 
ten agro-ecological zones of Mozambique (Table 1, Figs. 1 and 2). The germplasm was 
collected according to the procedure of International Plant Genetic Resources Institute 
(IBPGR, 1991). The representative samples were then processed, assembled and conserved as 
numbered accessions at the National Gene Bank in Maputo.  
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Table 1. Main features of the ten agro-ecological zones of Mozambique.  

Agro-ecological 
zones 

Province Altitude (m) Temperature (°C) Rainfall (mm) Humidity Index1 Predominant Soils2 

Production system 

R1 Inland Maputo 
& South Gaza 

Major part 
under 200 

20-25 800-1000 Dry Semi-arid, 
with small 
humid semi-arid 
spots  in the 
Libombos 
heights 

Arenosols and 
Nitosols 

Rain-fed cowpea, 
cassava and maize. 
 

R2 Southern 
Maputo to 
Northern 
Inhambane 

0-200 20-25 800-1000 Humid Semi-
arid, with some 
sub-humid spots 
in the littoral    

Arenosols, 
Fluvisols and 
Manangas 

Mixed cereals, cassava 
and cashew. 
Maize, rice, 
vegetables, banana and 
sugar-cane. 

R3 Centre and 
North of Gaza 
and West of 
Inhambane 

100-200 22-26 400-600 Semi-arid and 
arid 

Manangas and 
Arensols 

Maize, sorghum, 
millet, rice and beans. 
However, rice and 
beans grown under 
irrigation. 

R4 Sofala and 
Manica 

200-1000 17.5-22.5 1000-1200 Sub-humid  with 
humid semi-arid  

Ferralsols and 
Luvisols 

Maize, sorghum, 
cassava and cowpea 
are dominant while 
sweet potato and rice 
are cultivated in more 
moist areas. 

R5 Sofala and 
Zambezia 

0-200 24-28 1000-1400 Humid  semi-
arid 

Fluvisol and 
Arenosols 

Rice, cassava, maize 
and sorghum. 
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R6 
 
 

Zambezia  
valley and 
Southern Tete  

0-200 20-25 Mostly 500- 
800 with one 
area 1200 – 
1400 and 
another with 
water deficit 

Dry Semi -arid Lixisolls and 
Fluvisols 

Sorghum and millet. 

R7 Zambezia, 
Nampula, 
Tete, Niassa 
and Cabo 
Delgado 
 

200-1000 20-25 1000-1400 Humid Semi- 
arid , with sub-
humid. 

Ferralsols, Luvisols 
and Acrisols. 
  

Cassava, maize, 
cowpea, pigeon pea 
and sorghum. 

R8 Coastal 
Littoral of 
Zambezia, 
Nampula and 
Cabo Delgado  

0-200 Above 25 800-1200 Humid Semi-
arid with spots 
of sub- humid 
and an extensive 
dry and semi-
arid area. 

Lixisols, Leptosols 
and Arenosols 
  

Cassava and millet. 
Rain-feed cultivation 
in low areas, cashew 
an important crop. 

R9 North of Cabo 
Delgado 

200-1500 20-26 1000-1200 Humid and 
semi-arid. 

Nitosols Maize is the dominant 
crop, sorghum, 
cowpea, cassava and 
sesame are also 
cultivated. Cashew is 
an important crop. 

R10 Zambezia, 
Niassa,Tete 
and Manica 

Above 1000 15-22.5 Above 1200 Sub-humid and 
humid. 

Ferrasols and 
Leptosols 

Maize is the dominant 
crop, commune beans 
and potatoes, finger 
millet cultivated. 

 

Source: Programa de investimento em extensao agrarian/Documento de trabalho n°2/B 1ª versao-15 de Junho de 1996(DNER, 1996) 

1Humidity index: Arid: < 500 mm of precipitation; Dry semi-arid: 500-800 mm, Humid semi-arid 800-1000 mm, Sub-humid, 1000-1400 mm. 
2Based on FAO soil classification.
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Table 2. Maize accessions analyzed in this study. 

Accessions 
number 

Name of accession Agro-ecological 
zones 

Province Village Latitude 
degrees 

Longitude 
degrees 

Altitude, m 
above sea level 

Acc1749 Kandjerendgere R2 Inhambane Muchai-2 23° 05' 034°22' 67 
Acc1750 Gremo R2 Inhambane Mabote 23° 26' 034°07' 157 
Acc1929 Kenya R2 Inhambane Mabote 22°09' 034°07' 157 
Acc2274 Chibubane R2 Inhambane Mabote 22° 09' 034°07' 157 
Acc2324 Mukhambe R2 Inhambane Muchai-2 23°05' 034°22' 77 
Acc2608 Maguere R2 Inhambane Mabote 22° 09' 034°07' 157 
Acc1772 Mangunda-2 R3 Gaza Massingir 23°54' 031°57' 157 
Acc2078 Chimwambane R3 Gaza Chicualacuala 23° 26' 031°46' 185 
Acc2079 Chitsonga R3 Gaza Chicualacuala 23° 26' 031°46' 185 
Acc1748 Mbuangafe R4 Manica Guro 17° 25' 034°21' 709 
Acc1792 Munguenda R4 Manica Guro 17° 25' 033°21' 709 
Acc1809 Munguenda R4 Manica Catandica 18° 01' 033°45' 611 
Acc1810 Kandjerendgere R4 Manica Catandica 18° 01' 033°45' 611 
Acc1817 Kandjerendgere R4 Manica Barue 16°58' 034°14' 802 
Acc2121 Chibubane R4 Manica Catandica 18° 01' 033°45' 611 
Acc1494 Makolo R5 Sofala Buzi 19° 53' 034°35' 7 
Acc1939 Xigoia R5 Sofala Buzi 19° 53' 034°35' 7 
Acc1657 Bantamo R6 Tete Moatize 16° 07' 033°44' 370 
Acc2201 Xidiwane R7 Niassa Mavago 12° 31' 036°18' 720 
Acc2513 Metho R7 Cabo Delgado Balama 13° 19' 038°35' 499 
Acc1269 Kanhangulo R8 Nampula Monapo 14° 55' 040°18' 137 
Acc2146 Sacana R8 Cabo Delgado Muidumbe 11° 49' 039°49' 512 
Acc2165 Serena R8 Cabo Delgado Macomia 12° 14' 040°14' 330 
Acc2482 Kalombe kusho R8 Cabo Delgado Mueda 11° 38' 039°37' 618 
Acc2497 Lidjele R8 Cabo Delgado Muidumbe 11° 49' 039°49' 596 
Acc2529 Nthale-wa Rame R8 Cabo Delgado Chiure 13° 25' 040°13' 299 
Acc1685 Ngogodo R10 Tete Ulongwe 14° 42' 034°21' 1300 
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Table 3. SSR loci used for analysis of genetic diversity.                                                                                   

Primers Primers sequences (5'-3') Repeat motif Alleles range (bp) Na  
Phi041 F:TTGGCTCGAAGCGCCGCAAA 

R:GCTTCTGATCCAGAGCGATTTGACGGCA 
AGCC 201-221 5 

Phi085 F:AGCAGAACGGCAAGGGCTAT 
R:GCTTCTTTTGGCACACCACGACGA 

AACGC 237-264 9 

Phi061 F:GACGTAAGCCTAGCTCTGCAT 
R:GCTTCTAAACAAGAACGGCGGTGCTGA 

TTCTGTAT 134-190 12 

Phi056 F:ACTTGCTTGCCTGCGTTAC 
R:GCTTCTCGCACACCACTTCCCAGAA 

CCG 237-264 9 

Bnlg1194 F:GCGTTATTAAGGCAAGCTGC 
R:GCTTCTACGTGAAGCAGAGGATCCAT 

AG 161-180 8 

Phi127 F:ATATGCATTGCCTGGAACTGGAAGGA 
RGCTTCTAATTCAAACACGCCTCCCGAGTGT 

AGAC 114-129 4 

Bnlg1520 F:TCCTCTTGCTCTCCATGTCC 
R:GCTTCTACAGCTGCGTAGCTTCTTCC 

AGCT 172-205 9 

Phi073 F:GTGCGAGAGGCTTGACCAA 
R:GCTTCTAAGGGTTGAGGGCGAGGAA 

AGC 189-215 7 

Bnlg1523 F:GAGCACAGCTAGGCAAAGG 
R:GCTTCTCTCGCACGCTCTCTCTTTCTTT 

AG   189-201 6 

Phi116 F:GCATACGGCCATGGATGGGA 
R:GCTTCTTCCCTGCCGGGACTCCTG 

ACTG 148-178 6 

Bnlg1484 F:GTAAAAGACGACGACATTCG 
R:GCTTCTGACGTGCACTCCGTTTAACA 

AG                   120-157 9 

mean    7.63 
St.dev    2.29 
 

Source of primers: Loáisiga et al. (2012)   

Na-Number of alleles 
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Figure1. Map of the agro-ecological zones of Mozambique  
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 Figure 2. Map of Mozambique showing collection sites of the maize accessions 
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2.2. DNA extraction 

Twenty seeds of each accession were sown in seedling trays in a greenhouse at SLU-Alnarp 
under a temperature of 25°C. When plants were two weeks old, two leaves per plant were 
collected from a total of 12 individuals per accession. The leaves were then kept at -80°C 
until DNA extraction. 

DNA was extracted employing a modified CTAB procedure (Doyle and Doyle, 1987). Two 
leaves were put in a 2 ml Eppendorf tube and frozed in liquid nitrogen. Two metal balls 
(approximately 4 mm in diameter) were added to each Eppendorf tube. Plant material was 
ground in a mixer mill (frequency 30s-1 for 3 min). The finer the grind, the larger the yield. 1 
ml of CTAB buffer was pipetted into each tube. The samples were shortly vortexed and then 
incubated for 1h at 60°C. After incubation, the tubes were put on ice for 5 minutes, and then 1 
volume of chloroform/isoamyl alcohol (24:1) was added. The tubes were put into a rotating 
shaker for 10 minutes. The samples were then centrifuged for 10 minutes at 13 200 rpm in a 
fume hood. The top aqueous layer was carefully pipetted into new Eppendorf tubes. 1 volume 
of cold isopropanol (-20°C) was added and gently mixed with the sample. The tubes were 
placed on ice for 10 minutes and then centrifuged for 10 minutes at 13 200 rpm. The 
supernatant was removed and 1 ml ice cold (-20°C) 75% ethanol was added to the pellet. 
Tubes were put on a rotating shaker for 5 minutes and then centrifuged for 3 minutes at 
13 200 rpm. The ethanol was removed using a pipette. Again, 1 ml ice-cold 75% ethanol was 
added and the tubes were put on a rotating shaker for 5 minutes and then centrifuged for 3 
minutes at 13 200 rpm. Ethanol was removed and the pellet was left to air dry for about 15 
minutes. The pellet was re-suspended in 100 µl of TE buffer and then 4 µl of RNAse 
(1mg/ml) was added. The samples were incubated in a water bath at 37°C for 30 minutes. In 
total 27x12=324 samples were extracted. Samples were stored in -20°C until SSR analysis.  

 
 

2.3. PCR protocol for SSR primers 

PCR was performed in a 20 µl reaction volume containing 1x PCR buffer, 0.2 mM dNTP 
mix, 1.25 mM MgCl2, 0.1 µM primer pairs, 0.75 units Taq polymerase and 15 ng DNA for all 
DNA samples used in this study. Primers are listed in Table 3. 

A Touch-Down PCR amplification program (BioRad S1000 Thermal Cycler) was used: 

95°C for 3 min, followed by 10 cycles of 94°C for 30 s, 68°C decreased by 1°C per cycle for 
30 s and 72°C for 45 s. This was followed by 40 cycles of 94°C for 45 s, 58°C for 45 s and 
72°C for 1 min and a final elongation at 72°C for 8 minutes. 
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2.4. Statistical analysis 
 
PopGene version 1.31(Yeh and Boyle, 1999) was used to calculate number of effective alleles 
(Ne), observed heterozygosity (Ho), expected heterozygosity (He), Shannon’s information 
index (I), Nei’s estimation of genetic diversity and unbiased heterozygosity (UHe). 

The Numerical Taxonomy  and Multivariate Analysis System (NTSYSpc) package version 
2.1.11 (Rohlf, 2000) was used for cluster analysis and PCoA. Arlequin version 3.5 (Excoffier 
and Lischer, 2010) was used for analysis of molecular variance (AMOVA). Calculation of 
Nei’s genetic distance was performed using the FreeTree program (Pavlicek et al., 1999). 

 
3. Results 

3.1. Molecular analysis 

The 11 microsatellite primer pairs used to analyze genetic variation in 27 accessions of maize 
from 8 agro-ecological zones revealed a total of 84 alleles with an average of 7.63 alleles per 
locus. The size of the alleles ranged from 114 to 264 base pairs (Table 3). The number of 
alleles per locus ranged from 4 for Phi127 to 12 for Phi061.  

Table 4. Genetic diversity estimators for 11 microsatellite loci across 27 local maize 
accessions 

Locus Ne Ho He I Nei UHe 
Phi041 3.57 0.20 0.72 1.38 0.72 0.52 
Phi085 2.96 0.34 0.66 1.34 0.66 0.54 
Phi061 6.80 0.24 0.86 2.11 0.85 0.67 
Phi056 4.12 0.52 0.76 1.66 0.76 0.63 
Bnlg1194 3.86 0.68 0.74 1.51 0.74 0.68 
Phi127 2.72 0.17 0.63 1.07 0.63 0.48 
Bnlg1520 2.69 0.34 0.62 1.46 0.63 0.55 
Phi073 3.53 0.57 0.72 1.47 0.72 0.62 
Bnlg1523 3.14 0.13 0.68 1.33 0.68 0.55 
Phi116 3.36 0.64 0.70 1.39 0.70 0.60 
Bnlg1484 1.37 0.10 0.27 0.68 0.27 0.22 
Mean 3.47 0.36 0.67 1.40 0.67 0.55 
St.dev 1.33 0.21 0.15 0.35 0.15 0.13 
 
Ne-Effective number of alleles 
Ho-Observed heterozygosity 
He-Expected heterozygosity 
I-Shannon information index 
Nei-Estimation of genetic diversity  
UHe- Unbiased heterozygosity 
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The effective number of alleles (Ne) ranged from 1.37 (Bnlg1484) to 6.80 (Phi061) with an 
average of 3.47 across the 11 primers (Table 4). The values for observed heterozygosity (Ho) 
ranged from 0.10 (Bnlg1484) to 0.68 (Bnlg1194) with an average of 0.36. Expected 
heterozygosity (He) ranged from 0.27 (Bnlg1484) to 0.86 (Phi 061) with an average of 0.67. 
Shannon’s information index (I) ranged between 0.68 (Bnlg1484) and 2.11 (Phi061) with an 
average of 1.40. Estimation of genetic diversity (Nei) ranged from 0.27 (Bnlg1484) to 0.85 
(Phi061) with an average of 0.67. Unbiased heterozygosity (UHe) ranged from 0.22 
(Bnlg1484) to 0.68 (Bnlg1194) with an average of 0.55. 
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Table 5. Genetic diversity in 27 accessions of maize from 8 agro-ecological zones. 

Accession 
number 

Name of accession Ecological zone Ne Ho He I Nei %P 

Acc1749 Kandjerendgere R2 2.87 0.36 0.65 1.15 0.62 100 
Acc1750 Gremo R2 2.15 0.36 0.49 0.85 0.46 100 
Acc1929 Kenya R2 2.33 0.41 0.52 0.82 0.50 90.91 
Acc2274 Chibubane R2 2.57 0.30 0.58 0.98 0.55 90.91 
Acc2324 Mukhambe R2 2.80 0.33 0.63 1.12 0.59 100 
Acc2608 Maguere R2 2.86 0.36 0.64 1.15 0.61 100 
Acc1772 Mangunda-2 R3 2.95 0.35 0.63 1.17 0.60 100 
Acc2078 Chimwambane R3 2.32 0.25 0.52 0.89 0.49 90.91 
Acc2079 Chitsonga R3 2.45 0.36 0.56 0.96 0.59 100 
Acc1748 Mbuangafe R4 2.29 0.37 0.49 0.89 0.47 100 
Acc1792 Munguenda R4 2.46 0.40 0.57 0.96 0.54 100 
Acc1809 Munguenda R4 2.91 0.42 0.64 1.10 0.60 100 
Acc1810 Kandjerendgere R4 3.21 0.40 0.69 1.23 0.66 100 
Acc1817 Kandjerendgere R4 2.09 0.32 0.52 2.09 0.49 100 
Acc2121 Chibubane R4 2.83 0.40 0.64 1.14 0.61 100 
Acc1494 Makolo R5 2.63 0.32 0.58 0.97 0.54 100 
Acc1939 Xigoia R5 2.15 0.30 0.46 0.78 0.44 90.91 
Acc1657 Bantamo R6 2.67 0.48 0.61 1.07 0.58 100 
Acc2201 Xidiwane R7 2.63 0.33 0.59 1.02 0.55 100 
Acc2513 Metho R7 2.22 0.26 0.52 0.89 0.50 100 
Acc1269 Kanhangulo R8 2.48 0.42 0.60 0.99 0.58 100 
Acc2497 Lidjele R8 2.96 0.35 0.64 1.15 0.61 100 
Acc2146 Sacana R8 2.70 0.31 0.64 1.10 0.61 100 
Acc2165 Serena R8 2.06 0.32 0.48 0.78 0.45 90.91 
Acc2482 Kalombe kusho R8 2.87 0.35 0.66 1.16 0.63 100 
Acc2529 Nthale-wa Rame R8 2.48 0.38 0.53 0.94 0.50 90.91 
Acc1685 Ngogodo R10 2.48 0.35 0.57 0.95 0.54 100 
Mean   2.56 0.35 0.58 1.04 0.55 97.98 
St. Dev.   0.29 0.04 0.06 0.23 0.06 3.71 
 

Ne-Effective number of alleles 

Ho-Observed heterozygosity 

He-Expected heterozygosity 

I-Shannon information index 

Nei-Estimation of genetic diversity  

%P-Percentage of polymorphic loci 
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3.2.     Genetic structure 

For the 27 accessions the effective number of alleles (Ne) ranged from 2.06 (Acc2165) to 3.21 
(Acc1810) with an average of 2.56 (Table 5). The observed heterozygosity (Ho) across the 
eleven loci ranged from 0.25 (Acc2078) to 0.48 (Acc1657) with an average value of 0.35. Ten 
of the accessions scored less than the mean of observed heterozygosity, while accessions 
1685, 2482, 2497 and 1772 recorded the same observed heterozygosity as the mean of all 
accessions. 

The highest value for expected heterozygosity (He) was found in accession number 1810 
(0.69) and the lowest one was recorded for accession 1939 (0.46). The average value was 
0.58. 

The lowest Shannon’s information index (I), 0.78 was recorded for both accession 2165 and 
accession 1939 and the highest, 2.09 was found in accession 1817. 

The highest value for estimation of genetic diversity (Nei’s) was shown by accession 1810 
and the lowest was detected in accession number 1939. 

The percentage of polymorphic loci (%P) ranged from 90.91 to 100 with accessions 2529, 
2165, 1939, 2274, 2078 and 1929 recording the lowest percentage thereby lowering the mean 
for all accessions to 97.98 %.  

The analysis of molecular variance (AMOVA) revealed significant differentiation among the 
ungrouped 27 maize accessions (P=0.00; Table 6), however, most of the variation (88.28%) 
was found within accessions. There was no differentiation among accessions when they were 
grouped according to agro-ecological zones. 

Nei’s genetic distance between pairs of the 27 accessions ranged from 0.124 between 
accessions 1772 and 2324 to 0.646 between accession 1929 and accession 1269 (Table 7).  
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Table 6.  Analysis of molecular variance (AMOVA) for 27 maize accessions from Mozambique based on SSR data (A) without grouping the 
accessions (B) by grouping accessions based on eight agro-ecological zones. 

Groups Source of variation d.f. Variance component % of variation Fixation index p-value 

(A) ungrouped Among accessions 26 Va = 0.332 11.72 FST = 0.1172 0.00 

 Within accessions 537 Vb = 2.503 88.28   

 Total  563 2.836    

(B) agro zones Among groups 7 Va = – 0.001 – 0.04 FST = 0.1171 0.00 

 Among accessions within groups 19 Vb = 0.333 11.76 FSC = 0.1175 0.00 

 Within accessions 537 Vc = 2.503 88.28 FCT = – 0.0003 0.49 

 Total 563 2.836    

FST = the degree of gene differentiation among accessions in terms of allele frequencies 

FSC = the deficiency or excess of average heterozygotes in each accessions 

FCT = the deficiency or excess of average heterozygotes in a group of accessions 

d.f.= degrees of freedom 
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Table 7. Nei’s genetic distance between the 27 maize accessions from Mozambique. 
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Acc2146                            
Acc1750 0.314                           
Acc1939 0.341 0.422                          
Acc1810 0.294 0.294 0.414                         
Acc2497 0.181 0.249 0.376 0.227                        
Acc2274 0.316 0.440 0.372 0.336 0.277                       
Acc2078 0.248 0.544 0.331 0.416 0.359 0.230                      
Acc1749 0.254 0.302 0.387 0.319 0.264 0.384 0.443                     
Acc1657 0.205 0.262 0.447 0.307 0.207 0.298 0.350 0.302                    
Acc2482 0.361 0.480 0.586 0.367 0.351 0.617 0.632 0.430 0.290                   
Acc1809 0.177 0.397 0.410 0.367 0.243 0.341 0.412 0.388 0.307 0.475                  
Acc1772 0.198 0.205 0.294 0.218 0.192 0.296 0.342 0.284 0.202 0.409 0.250                 
Acc2165 0.288 0.371 0.381 0.310 0.259 0.440 0.421 0.343 0.237 0.474 0.281 0.146                
Acc1494 0.160 0.292 0.321 0.256 0.214 0.408 0.351 0.289 0.193 0.345 0.341 0.190 0.302               
Acc1269 0.315 0.279 0.437 0.321 0.219 0.404 0.575 0.343 0.280 0.414 0.301 0.232 0.218 0.383              
Acc1817 0.466 0.419 0.377 0.479 0.447 0.449 0.337 0.472 0.300 0.632 0.593 0.334 0.389 0.480 0.494             
Acc1685 0.224 0.423 0.424 0.319 0.222 0.383 0.332 0.417 0.248 0.545 0.202 0.174 0.140 0.268 0.316 0.397            
Acc2324 0.195 0.262 0.273 0.273 0.193 0.254 0.292 0.251 0.207 0.420 0.217 0.124 0.157 0.190 0.228 0.392 0.174           
Acc2079 0.151 0.392 0.493 0.379 0.291 0.279 0.331 0.344 0.194 0.563 0.291 0.315 0.551 0.273 0.474 0.495 0.306 0.353          
Acc2513 0.254 0.399 0.381 0.389 0.321 0.242 0.221 0.311 0.223 0.575 0.349 0.295 0.276 0.291 0.413 0.380 0.319 0.199 0.355         
Acc1748 0.309 0.409 0.399 0.317 0.367 0.576 0.550 0.232 0.315 0.518 0.609 0.357 0.399 0.155 0.451 0.550 0.474 0.354 0.349 0.384        
Acc2608 0.227 0.241 0.385 0.267 0.181 0.406 0.313 0.308 0.336 0.422 0.440 0.221 0.407 0.246 0.328 0.519 0.351 0.265 0.397 0.376 0.363       
Acc2529 0.257 0.439 0.511 0.297 0.220 0.321 0.521 0.291 0.331 0.469 0.272 0.284 0.206 0.390 0.193 0.624 0.285 0.280 0.394 0.393 0.421 0.460      
Acc2201 0.182 0.341 0.428 0.342 0.225 0.233 0.274 0.344 0.200 0.514 0.203 0.299 0.388 0.292 0.281 0.443 0.289 0.205 0.162 0.256 0.464 0.392 0.277     
Acc2121 0.277 0.286 0.464 0.311 0.155 0.208 0.351 0.265 0.341 0.563 0.294 0.304 0.516 0.407 0.351 0.543 0.357 0.298 0.284 0.370 0.583 0.264 0.367 0.272    
Acc1792 0.278 0.299 0.446 0.241 0.202 0.317 0.285 0.264 0.342 0.447 0.258 0.254 0.380 0.363 0.332 0.426 0.260 0.270 0.339 0.347 0.532 0.221 0.338 0.264 0.195   
Acc1929 0.279 0.509 0.470 0.571 0.439 0.544 0.339 0.325 0.339 0.450 0.493 0.330 0.460 0.296 0.646 0.554 0.514 0.407 0.459 0.454 0.519 0.447 0.643 0.498 0.512 0.558   
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Table 8. Comparison of the alleles range (bp) found in this study with previous studies. 

SSR locus 1Hoxha et al. 
(2004)  

2Yuan et al. (2004) 3Zhang et al. 
(2003) 

4Senior et al. 
(1998) 

5Wang et al. 
(2011) 

6This study 

Phi041   195-213  296-334 201-221 
Phi085 233-260 70-95  70-95  237-264 
Phi061    80-88  134-190 
Phi056  84-93  84-93  237-264 
Bnlg1194 137-217     161-180 
Phi127  112-128 111-126 112-138  114-129 
Bnlg1520     156-204 172-205 
Phi073  90-99  90-99  189-215 
Bnlg1523     183-263 189-201 
Phi116 148-174  150-168 154-173 240-262 148-178 
Bnlg1484      120-157 
 

1Used 20 Albanian local open pollinated varieties. 
2Used 15 inbred lines. 
3Used  45 public inbred lines. 
4Used 94 inbred lines. 
5Used 231 inbred lines. 
6Used 27 accessions of farmers’ varieties. 
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Table 9. Comparison of the number of alleles found in this study with previous studies. 

SSR locus 1Enoki et al. 
(2002)  

2Jambrovic et al. 
(2008) 

3Senior et al. 
(1998) 

4Xu et al. (2004) 5Wang et al. 
(2011) 

6This study 

Phi041     6 5 
Phi085   5   9 
Phi061  2 3   12 
Phi056 4  4 3  9 
Bnlg1194  5    8 
Phi127 4  5 4  4 
Bnlg1520 9 3   6 9 
Phi073   4   7 
Bnlg1523 8 4   17 6 
Phi116   7  5 6 
Bnlg1484    3  9 
 

1Used 65 inbred lines. 
2Used 15 inbred lines. 
3Used 94 inbred lines. 
4Used 15 inbred lines. 
5Used 231 inbred lines. 
6Used 27 accessions of farmers’ varieties. 
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Table 10. Comparison of the genetic diversity found in this study with previous studies. 

SSR locus 1Kashiani et al. 
(2012)  

2Rupp et al. (2009) 3Xiang et al. 
(2010) 

4Qi-Lun et al. 
(2007) 

5Camus-
Kulandaivelu et 

al. (2006) 

6This study 

       
Ne 1.07 2.16 1.47 3.9  2.56 
       
Ho 0.06 0.17  0.37  0.35 
       
He 0.67 0.51  0.69  0.58 
       
I 0.05  0.40   1.04 
       
Nei’s 0.04  0.27  0.62 0.55 
       
%P 
             

 93.33 74.18   97.88 

 

1Used 13 tropical near-homogenous lines and 99 SSR markers. 
2Used 15 progenies and 113 SSR markers. 
3Used 22 maize landraces and 44 SSR markers. 
4Used 54 maize landraces and 42 SSR markers. 
5Used 131 maize landraces and 18 SSR markers. 
6Used 27 accessions of farmers’ varieties and 11 SSR markers. 
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3.2.1. Cluster analysis 

The UPGMA dendrogram of the 27 accessions of local maize from Mozambique based on 
Nei’s genetic distance (Fig. 3) showed four clusters with multiple accessions and four single 
accession clusters at the 0.30 Nei’s coefficient level. The first cluster was made up of two 
accessions from agro-ecological zone 7, two from agro-ecological zone 3 and one each from 
agro-ecological zone 2, 6 and 8, respectively. The second cluster was made up of 7 accessions 
of which three (Acc2529, Acc1269 and Acc2165) belonged to agro-ecological zone 8 and the 
remaining 4 were collected in zones 2, 3, 4 and 10, respectively. Accessions 2121, 1792 and 
1810 belonging to agro-ecological zone 4 constituted half of the number of the accessions of 
the third cluster, whereas the remaining three accessions originated from zones 2 and 8. The 
4th cluster was made up of accessions 1494, 1748 and 1749 belonging to agro-ecological 
zones 4, 5 and 2, respectively. The remaining four clusters were made up of single accessions 
1817 from zone 4, 1929 from zone 2, 2482 from zone 8 and 1939 from zone 5. Accessions 
2482 and 1939 were the most distantly related to the other accessions. 
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.  

Figure 3. UPGMA dendrogram of 27 accessions of local maize from Mozambique based on Nei’s genetic distance
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Figure 4. A two-dimensional plot of principal co-ordinate analysis of 27 accessions from 8 
agro-ecological zones in Mozambique based on Nei’s genetic distance 

 

3.2.2. Principal co-ordinate analysis (PCoA) 

Components PC1 and PC2 explained 26% and 25% of the total variation, respectively. Thus 
51% of the total variation is explained by PC1 and PC2 together (Figure 4). The results 
indicated that most accessions lie near to the centre except accession 2078, 1939 and 2482. 
No clear grouping based on agro-ecological zones was found. 
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4. Discussion 

The use of microsatellites for characterization of maize (Zea mays L.) and other cultivated 
crops is well documented (Enoki et al., 2002).  

The eleven microsatellite markers used in this study were capable of differentiating among the 
twenty-seven accessions of the local maize originating from eight agro-ecological zones in 
Mozambique. The fragment sizes of the different alleles were smaller for Phi041 than what 
was reported by Wang et al. (2011), for Bnlg1194 than what was reported by Hoxha et al. 
(2004) and for Bnlg1523 than what was reported by Wang et al. (2011) (Table 8).  The allele 
sizes detected for Phi085 were higher than what was reported by Yuan et al. (2004), Senior et 
al. (1998) and Hoxha et al. (2004). The range and allele size for locus Phi061 was larger than 
that reported by Senior et al. (1998). Although the allele size for locus Phi127 was smaller 
than that reported by Senior et al. (1998), it was higher than the results of Yuan et al.(2004), 
and Zhang et al. (2003). The range of allele size of locus Phi116 was lower than that reported 
by Wang et al. (2011) but higher than what was found by Zhang et al. (2003), Senior et al. 
(1998) and Hoxha et al. (2004). The number of alleles recorded for locus Phi041 was lower 
than that reported by Wang et al. (2011) (Table 9). The number of alleles for loci Phi085, 
Phi061, Phi056, Bnlg1194, Phi073 and Bnlg1484 detected in this study were higher than 
those reported by Senior et al.(1998), Jambrovic et al. (2008), Xu et al.(2004), Enoki et al. 
(2002) and Xu et al. (2004). The number of alleles found for Phi127 in this study was similar 
to previous results by Enoki et al. (2002) and Xu et al. (2004) but lower than those reported 
by Senior et al. (1998). The number of alleles for locus Bnlg1520 was similar to the results 
obtained by Enoki et al. (2002) but higher than those reported by Wang et al. (2011) and 
Jambrovic et al. (2008). The number of alleles detected in this study for locus Bnlg1523 was 
lower than those reported by Enoki et al. (2002), and Wang et al. (2011) but higher than what 
was found by Jambrovic et al. (2008). The detected number of alleles for Phi116 was lower 
than that reported by Senior et al. (1998) but higher than the results of Wang et al. (2011). 

For the loci Phi041 and Phi127, the effective number of alleles (Ne), the observed 
heterozygosity (Ho) and the expected heterozygosity (He) were lower than those reported by 
Qi-Lun et al. (2007). In a study involving 124 maize landraces and 46 loci, Sharma et al. 
(2010) reported an effective number of alleles (Ne) of 2.69 and an expected heterozygosity 
(He) of 0.62 for locus Phi041, which are lower than our values. They also reported a Ne value 
of 3.22 and an expected heterozygosity (He) of 0.62 for locus Phi127. In the present study Ne, 
Ho, He, I and Nei of locus Bnlg1520 were all higher than those reported by Kashiani et al. 
(2012). This is probably due to the fact that they used 99 microsatellite markers for 13 tropical 
sweet corn inbred lines while we used 27 accessions of farmers’ varieties and 11 SSR 
markers. 
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A comparison of genetic diversity estimates (Table 10) showed that the mean effective 
number of alleles (Ne) in this study was 2.56 and higher than what was reported by Kashiani 
et al. (2012) in tropical sweet corn lines (Ne=1.07), by Rupp et al. (2009) in 15 sweet corn 
varieties (Ne=2.16) and by Xiang et al. (2010) (Ne=1.47) but lower than the 3.9 reported by 
Qi-Lun et al. (2007). 

The mean observed heterozygosity (Ho) in this study (0.35) was higher than the mean value 
reported by Kashiani et al. (2012) and by Rupp et al. (2009) but lower than the mean value of 
0.37 reported by Qi-Lun et al. (2007). In the present  study the expected heterozygosity (He) 
was lower than He=0.67 found by Kashiani et al. (2012) and He=0.69 reported by Qi-Lun et 
al. (2007), but higher than He=0.51 reported by Rupp et al. (2009). Since the observed 
heterozygosity (Ho) was lower than the expected heterozygosity (He) in all our analysed 
accessions (Table 5) this indicates that the populations from which the accessions were 
collected might have been more isolated and received less external gene flow (Relethford and 
Blangero, 1990). 

The Shannon information index (I) and estimation of genetic diversity (Nei) in the present 
study were higher than the values found by Kashiani et al. (2012) and by Xiang et al. (2010). 
However, Camus-Kulandaivelu et al. (2006) reported of a somewhat higher genetic diversity 
value (Nei=0.62). The percentage of polymorphic loci (%P) in the present study was higher 
than that reported by Rupp et al. (2009) and Xiang et al. (2010).  

The SSR analysis conducted in the present study showed a high degree of diversity of local 
maize populations. Although the variation within and among accessions was very high, the 
differentiation between accessions when grouped according to agro-ecological zones was 
insignificant and showed negative value. The high diversity within and among accessions is 
expected in open pollinating farmers’ varieties that are distinct from each other. The negative 
value for differentiation between accessions when grouped under agro-ecological zones is an 
evidence of larger differences among and within accessions than between the groups of 
accessions. Louette et al. (1997) and Gómez et al. (2000) as quoted by Hoxha et al. (2004)  
argued that for open pollinated crops such as maize, diversity within a given variety is often 
the result of deliberate replacement, exchange or mixing of seed by farmers. 

 

5. Conclusions 

The present study showed that there is a high genetic diversity within and among local maize 
accessions originating from farmers’ varieties in eight agro-ecological zones in Mozambique. 
However, the differentiation between agro-ecological zones was non-significant. 

The SSR molecular markers used in this study were highly polymorphic and revealed 
differences among the maize accessions. 

This is one of the first studies involving molecular markers analysis of farmers’ varieties from 
Mozambique. Thus, similar studies would be valuable to characterize the collections kept at 
the National Gene Bank of Mozambique. 
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The detection of high genetic diversity in the twenty-seven accessions used in this study 
should be an incentive to plant breeders in Mozambique to include local farmers’ varieties in 
the breeding programme of IIAM. 

This study was very important, since existing genetic variability can be used for identification 
of new sources of germplasm with special traits, which could be crossed with the existing 
varieties to give rise to novel gene and trait combinations. 

The absence of differentiation among groups of accessions originating from various agro-
ecological zones indicate that there is a need of further investigation involving more 
accessions and molecular markers in combination with morphological characterization. 
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