Läkemedelsförgiftning hos katt orsakad av paracetamol, acetylsalicylsyra och permetrin

Emelie Nygren

Självständigt arbete i veterinärmedicin, 15 hp
Veterinärveterinärsprogrammet, examensarbete för kandidatexamen Nr. 2013: 19
Institutionen för biomedicin och veterinär folkhälsovetenskap
Uppsala 2013
Läkemedelsförgiftning hos katt orsakad av paracetamol, acetylsalicylsyra och permetrin

Drug toxicity in cats caused by acetaminophen, acetylsalicylic acid and permethrin

Emelie Nygren

Handledare: Pia Larsson och Jonas Tallkvist, SLU, Institutionen för biomedicin och veterinär folkhälsovetenskap

Examinator: Eva Tydén, SLU, Institutionen för biomedicin och veterinär folkhälsovetenskap

Omfattning: 15 hp
Kurstitel: Självständigt arbete i veterinärmedicin
Kurskod: EX0700
Program: Veterinärprogrammet
Nivå: Grund, G2E

Utgivningsort: SLU Uppsala
Utgivningsår: 2013
Omslagsbild: Katten Knut. Foto: Emelie Nygren
Serienamn, delnr: Veterinärprogrammet, examensarbete för kandidatexamen Nr. 2013: 19
Institutionen för biomedicin och veterinär folkhälsovetenskap, SLU

On-line publicering: http://epsilon.slu.se

Nyckelord: Katt, paracetamol, permetrin, acetylsalicylsyra, läkemedelsförgiftning
Key words: Feline, acetaminophen, permethrin, acetylsalicylic acid, drug toxicity
INNEHÅLLSFÖRTECKNING

Sammanfattning ... 1
Summary ... 2
Inledning .. 3
Material och metoder ... 3
Litteraturöversikt .. 3
Läkemedelsmetabolism ... 3
 Fas I ... 3
 Fas II ... 3
 Kattens förmåga att metabolisera läkemedel .. 4
Paracetamol .. 5
 Metabolism .. 5
 Kattens metabolism av paracetamol ... 5
Toxiska mekanismer ... 6
 Kliniska och patologiska fynd .. 7
 Exponering .. 7
Acetylsalicylsyra ... 7
 Metabolism .. 7
 Kattens metabolism av acetylsalicylsyra ... 7
Toxiska mekanismer ... 8
 Kliniska fynd ... 8
 Exponering .. 9
Permetrin ... 9
 Metabolism .. 9
 Kattens metabolism av permetrin ... 9
Toxiska mekanismer ... 9
 Kliniska fynd ... 9
 Exponering .. 10
Diskussion .. 10
Referenslista ... 12
SAMMANFATTNING

Katter får toxiska effekter av vissa läkemedel vid avsevärt lägre doser än andra djur. Syftet med denna litteraturstudie är att ta reda på vad det beror på. Paracetamol, acetylsalicylsyra och permetrin är tre substanser som ger är eller ger upphov till enkla plana fenoler, och som är kända för att orsaka problem hos katt.

Läkemedel behöver metaboliseras för att kunna utsöndras ur kroppen, och det är här katter skiljer sig från de andra djuren. Alla djur i Felidae-familjen har begränsad förmåga att glukuronsyrakonjugera läkemedel och andra xenobiotika, framför allt fenoler. Detta beror på att de har lägre nivåer av eller helt saknar en grupp av UGT-transferas. UGT-transferas katalyserar överföringen av glukuronsyra till läkemedelsmolekylen. Den transferasgrupp som katter saknar eller har låg aktivitet av heter UGT1.6 och har preferens för enkla plana fenoler.

Den ökade toxiciteten av paracetamol, acetylsalicylsyra och permetrin hos katt beror på att alla dessa tre substanser normalt sett huvudsakligen metaboliseras genom glukuronsyra-konjugering. När inte detta kan ske i samma utsträckning måste läkemedlet metaboliseras via andra metaboliska vägar med lägre kapacitet än glukuronsyrakonjugeringen, vilket i slutändan leder till att läkemedlet ger upphov till reaktiva metaboliter som ger de toxiska effekterna.

Den främsta exponeringsvägen för de tre substanserna som tagits upp är att djurägare själva försöker behandla sina katter, och inte känner till att substanserna är toxiska för katten. En stor del av problemen skulle därför kunna undvikas genom att nå ut med information till djurägare.
SUMMARY

Cats get the toxic effects of some drugs at significantly lower doses than other animals. The purpose of this literature review is to find out what causes this. Acetaminophen, acetylsalicylic acid and permethrin are three substances that are or generate simple planar phenols, and that are known to cause problems in cats.

Drugs need to be metabolized to be able to be excreted from the body, and this is where the cat differs from other animals. All animals in the family of Felidae have a limited ability to metabolize drugs and other xenobiotics by glucuronidation, especially phenols. This is because they have lower levels of or completely lack a group of UGT-transferases. UGT-transferases catalyze the transfer of glucuronic acid to the drug molecule. The group of transferases that cats lack or have a low activity of is called UGT1.6 and has affinity to simple planar phenols.

The higher toxicity of acetaminophen, acetylsalicylic acid and permethrin in cats is because all of these three substances are normally mainly metabolized by glucuronidation. When this can’t be done at the same extent the drug must be metabolized by other metabolic pathways with lower capacity than the glucuronidation, which in the end leads to the drug generating reactive metabolites that gives the toxic effects.

The main route of exposure for the three substances that have been addressed is that the owners try to treat their cats by themselves, because they are not aware that the substance is toxic to the cat. The problems could therefore be avoided to large extent by getting information out to the owners.
INLEDNING

Katter har visat sig vara mer känsliga mot vissa läkemedel än vad andra djur är, vilket innebär att de får toxiska effekter av läkemedlet vid doser som rekommenderas till andra djur (Shrestha et al, 2011). Syftet med den här litteraturstudien är att ta reda på vad som ligger bakom den här känsligheten. Varför är just katter så känsliga mot dessa läkemedel som vi utan problem använder till oss själva, våra spädbarn och andra husdjur?

Många djurägare känner inte till att katter är mer känsliga, utan tror att det går bra att använda samma receptfria preparat som de har till sig själva och sina andra djur även till sina katter. Detta leder till att katten löper stor risk att råka illa ut till följd av dåligt kunskap (Boland & Angles, 2010).

Några läkemedel som är kända för att ge problem är paracetamol, acetylsalicylsyra och permetrin. Dessa tre substanser, och deras toxicitet hos katt, kommer att tas upp och diskuteras i uppsatsen.

MATERIEL OCH METODER

En litteraturstudie som genomfördes genom sökning efter relevanta artiklar i följande databaser: Web of knowledge, Scopus, Google Scholar och PubMed.

Sökord, med olika ändelser, som använts är: paracetamol, acetaminophen, permethrin, pyrethrins, glucuronosyltransferase, glucuronidation, acetylsalicylic acid, salicylate, aspirin, NSAID, toxicity, intoxication, toxicosis, toxic, cat, kitten, feline i olika kombinationer.

Ytterligare artiklar hittades utifrån källhänvisningar i relevanta publikationer. Dessutom användes flera läroböcker i toxikologi och farmakologi.

LITTERATURÖVERSIKT

Läkemedelsmetabolism

För att läkemedel och andra xenobiotika ska kunna utsändras ur kroppen så behöver det ofta metaboliseras på något sätt för att kunna utsändras via njurar eller lever (se fig. 2). Metabolismen sker i två steg; fas 1 och fas 2, och är främst till för att öka vattenlösliheten så att xenobiotikat kan gå ut via njurarna (Rang et al., 2012).

Fas I

I fas 1 sker en oxidation, reduktion eller hydrolys av xenobiotika, främst med hjälp av cytochrom P450-enzyme, för att t.ex. koppla på eller frilägga en funktionell grupp gör att ett lipofil ämne kan konjugeras till en vattenlös endogen molekyl i fas 2. Många gånger blir ämnet farmakologiskt inaktivt redan i fas 1, men ibland kan metaboliten från fas 1 vara mer reaktiv och/eller toxisk än ursprungssubstansen (Rang et al., 2012).

Fas II

I fas 2 kommer xenobiotika bli vattenlösligt och, om det inte redan blivit det i fas 1, även farmakologiskt inaktivt. Detta sker genom konjugering av en vattenlöslig endogen molekyl
till den funktionella gruppen på fas I-metaboliten. Konjugeringen sker genom glukuronsyra-
konjugering, sulfatering, acetylering eller metylering. Dessa reaktioner katalyseras av
transferas som kopplar på den endogena gruppen. Eventuella reaktiva metaboliter från fas 1
kan även konjugeras till reducerat glutation (GSH) för att detoxifieras (Rang et al., 2012).

För att kunna konjugera till glukuronsyra krävs ett UDP-glukurontransfersas (förkortas UGT-
transfersas) som katalyserar reaktionen. Det behövs också UDPGA (uridine diphosphate
glucuronic acid), en mycket energirik fosfat, som donerar en glukurongrupp till
läkemedelsmolekylen (se fig. 1) (Rang et al., 2012).

Figur 1. Exempel på glukuronsyrakonjugering av en fenol (Timbrell, 2008).

UGT-transferas är en stor grupp, med mer än 26 olika isoenzymer med olika specificitet för
olika substratgrupper (Court & Greenblatt, 1997). Dessa transferas är av stor betydelse för att
konjugera många både endogena och exogena substanser. Exempel på endogena substanser
som konjugeras på det här sättet är bilirubin och kortikosteroider (Rang et al., 2012).

Figur 2.
Översikt av fas I- och II-metabolism och hur dessa kan leda till eliminering av ett läkemedel (Rang et al., 2012).

Kattens förmåga att metabolisera läkemedel

Alla djur i Felidae-familjen har jämfört med andra djur begränsad förmåga att
glukuronsyrakonjugera xenobiotika, framför allt fenoderivat med låg molekylvikt. Detta
leder till att läkemedel som normalt sett konjugeras på det här sättet metaboliseras
långsammare eller via andra metaboliska vägar än det skulle ha gjort hos andra djur (Court &
Greenblatt, 1997).
Kattens begränsade förmåga till konjugering av fenoler beror på att de har lägre nivåer av, eller till och med eventuellt helt saknar, en grupp av UGT-transferas som man kallar för UGT1.6. UGT1.6 har prefeners för just enkla plana fenoler, och är det viktigaste transferaset vid konjugering av den här typen av fenoler som t.ex. vid konjugering av paracetamol (Court & Greenblatt, 1997).

Denna genetiska defekt återfinns i Felidae-familjen, och även hos brun hyena och nordlig sjöelefant (Shrestha et al., 2011). Shrestha et al. (2011) redogör i sin publikation för teorier om att den kan ha ha uppkommit till följd av kattens hyperkarnivorism. De har inte haft något behov av att skydda sig mot växtgifter och liknande substanser, i kombination med att katten genomgått perioder av genetiska flaskhalsar som gett möjlighet för den här typen av mutationer att kvarstå genom generationer.

Paracetamol

Metabolism

Paracetamol är en NSAID (Non Steroidal Anti-Inflammatory Drugs) som är vanligt förekommande som verksam substans i många receptfria läkemedel som t.ex. alvedon och panodil. Substansen metaboliseras genom tre olika vägar: glukuronsyrakonjugering, sulfatering eller oxidering via cytochrom P-450 (se fig. 3) (Davis, 1986). Den främsta djurslagskillnaden i metabolismen av paracetamol är i vilken utsträckning de använder sig av de olika metaboliska vägarna (Savides et al., 1984).

Vid normal dosering metaboliserar de flesta djur paracetamol främst genom glukuronsyrakonjugering och sulfatering, vilket ger vattenlösliga metaboliter som kan utsändas i urin och galla, och det är bara små mängder som metaboliseras via oxidering. Oxideringen med cytochrom P-450 ger upphov till en reaktiv metabolit; N-acetyl-p-benzoquinonimin (NAPQI). Denna metabolit kan antingen inaktiveras genom att konjugeras med glutation eller ge toxiska effekter genom att interagera med proteiner i kroppen om det inte finns tillräckligt mycket glutation (Davis, 1986).

Kattens metabolism av paracetamol

Katter är mer känsliga mot paracetamol än många andra djur, och får de toxiska effekterna vid en tiondel så höga doser jämfört med andra djur (Peterson & Talcott, 2006). Detta beror på att katter har begränsad förmåga till glukuronsyrakonjugering, och att deras återstående möjlighet, sulfatering, är en mättångsbar reaktion. Istället kommer den reaktiva metaboliten som bildats via cytochrom P-450-bioaktivering av paracetamol att börja akkumuleras vid lägre doser än hos andra djur (Savides et al., 1984). Det NAPQI som bildas kommer till en början att detoxifieras av glutation, glutationkonjugeringen förbukar snabbt kroppens förråd av reducerat glutation, vilket leder till att det inte längre kan detoxifieras på det här sättet utan istället börjar akkumuleras (Davis, 1986).

När NAPQI akkumuleras så kommer det att börja binda kovalent till cellulära proteiner som enzymer och strukturella och regulatoriska protein, och störa den normala funktionen hos dessa. Eftersom glutationet är förbrukat, så kan det nu inte heller längre skydda celler mot oxidativ stress som det normalt sett gör (Peterson & Talcott, 2006).
Toxiska mekanismer

Den oxidativa stressen blir mest påtaglig hos de röda blodkropparna hos katt, som är mycket känsliga för oxidativa skador då deras hemoglobin har 8 reaktiva sulfhydrylgrupper jämfört med 4 hos hund och 2 hos människa. Detta leder till att stora mängder methemoglobin bildas. Methemoglobin bildas när järnet i hemoglobin oxideras från Fe$^{2+}$ till Fe$^{3+}$, och har inte förmåga att binda och transportera syre. Det är normalt att det alltid bildas en viss mängd methemoglobin som sedan reduceras tillbaka till hemoglobin med hjälp av methemoglobinreduktas (Sjaastad et al., 2010). Normalt sett utnyttjas erytrocyternas glutation för att hjälpa methemoglobininreduktas om methemoglobininnivåerna blivit så höga att reduktaset inte hinner hålla hemoglobinet reducerat, men vid paracetamolförgiftning hos katt sjunker glutationinnivåerna i erytrocyterna. Detta gör att de stora mängder methemoglobin som bildats ackumuleras (Anvik, 1984).

De känsliga erytrocyterna, och avsaknaden av glutationkonjugering gör att katter utvecklar methemoglobinemi tidigare än andra djur, vilket i sin tur leder till att methemoglobinemin får större klinisk betydelse. Hos hund, vars röda blodkroppar inte är lika känsliga är det uppkomsten av leverskador som får den största kliniska betydelsen (Peterson & Talcott, 2006).

Figur 3.

De olika metaboliska vägarna för paracetamol (Davis, 1986).
Kliniska och patologiska fynd

Vid en eventuell obduktion kan man, beroende av dos och svårighetsgrad, se ikterus, skumfylda luftvägar och lung- och subkutana ödem. Även tecken på hemolys i lever, mjälte och urinvägar, t.ex. mörkt färgade njurar och urin, sk. fenol-urin kan ses. (Anvik, 1984).

Exponering

Den största anledningen till att katter får i sig paracetamol är att djurägarna tror att det är säkert att ge till sin katt när de har ont eller feber, eftersom det är ett receptfritt läkemedel och många inte känner till att kattens metabolism skiljer sig från människans. De kan också råka få det i sig av misstag om de åter tableetter som ligger framme, men det är framför allt ett problem hos hund (Jones et al., 1992).

Acetylsalicylsyra

Acetylsalicylsyra var det första kommersiellt sålda NSAID-preparatet, och är fortfarande vanligt i många receptfria läkemedel som t.ex. treo, aspirin och magneceyl (Peterson & Talcott, 2006).

Metabolism

Acetylsalicylsyra absorberas snabbt från mag-tarmkanalen och hydrolyseras i levern till salicylsyra, den aktiva formen av acetylsalicylsyra, innan det går ut i cirkulationen. (Peterson & Talcott, 2006). Salicylsyran konjugeras sedan med antingen glukuronsyra till fenolglukuronid och esterglukuronid eller med glycin till salicylursyra (se fig. 4) (Timbrell, 2009). Glukuronsyrakonjugering är den huvudsakliga eliminationsmekanismen (Peterson & Talcott, 2006).

Kattens metabolism av acetylsalicylsyra

Precis som för de andra exemplen som tagits upp tidigare i uppsatsen så är det kattens dåliga förmåga till glukuronsyrakonjugering av fenolföreningar som gör att den är mer känslig för acetylsalicylsyra än andra djur (Jones et al., 1992; Khan & McLean, 2012).

Det finns preparat innehållande denna substans som används till katt t.ex. för analgesi vid artrit eller antitrombotiskt vid hypertrofisk eller restriktiv kardiomyopati (Plumb, 2002). Om man ska behandla en katt med acetylsalicylsyra krävs dock betydligt lägre doser än för t.ex.
hund; den rekommenderade dosen för katt är 10-20 mg/kg var 48e timme, jämfört med 10-20 mg/kg två gånger om dagen till hund (Khan & McLean, 2012).

Toxiska mekanismer

Den exakta mekanismen bakom ataxin och kramperna är inte klarlagd, men man tror att de kan bero på att djuren hyperventilera och ger upphov till de huvudsakliga kliniska symptomen. (Peterson & Talcott, 2006).

Kliniska fynd

Vid acetylsalicylsyraförgiftning kan man se symptom såsom respiratorisk alkalos, följt av en metabolisk acidos som ger upphov till de huvudsakliga kliniska symptomen. Man kan också se illamående, kräkningar, andningsdepression, hepatit, kramper, ataxi och koma. (Peterson & Talcott, 2006).
Man kan också vid mildare överdosering se de typiska NSAID-biverkningarna i form av gastrointestinal problem, njurproblem och minskad trombocytaggregation till följd av prostaglandin- och tromboxaninhibering (Khan & McLean, 2012).

Exponering
Katten kan naturligtvis få i sig acetylsalicylsyra om den fått det utskrivet för någon av ovanstående åkommor, men det är främst när djurägare utan veterinärs ordination ger katten humanpreparat innehållande för höga doser av acetylsalicylarylacryla som man kommer upp i sådana nivåer att man får toxiska effekter (Jones et al., 1992).

Permetrin
Permetrin är en insekticid som används i många receptfria spot-on-preparat mot fästingar på hund, t.ex. i exspot. Det framställs från pyretroider som är en mer stabil och potent syntetisk analog av pyretriner; ett naturligt förekommande neurotoxin från krysantemumblomman (Boland & Angles, 2010).

Metabolism
Permetrin har blivit populärt därför att det har låg toxicitet för de flesta däggdjur, på grund av att det metaboliseras och utsöndras snabbt efter absorption. (Boland & Angles, 2010) Oralt absorberas det mycket snabbt, via huden varierar upptaget mer (Linnett, 2008).

Efter att permetrinet absorberats hydroxyleras det och glukuronsyrakonjugeras eller sulfateras för att sedan kunna utsöndras i urinen enligt samma princip som paracetamol (Boland & Angles, 2010).

Kattens metabolism av permetrin
Katter är extremt känsliga mot permetrin, och flera olika publikationer säger att det är högst sannolikt men ej bevisat, på grund av att de har nedsatt förmåga till konjugering enligt samma princip som beskrivits tidigare i uppsatsen (Boland & Angles, 2010; Linnett, 2008; Malik et al., 2010). I de preparat innehållande permetrin som är godkända för användning till katt i bland annat i Australien är permetrinkoncentrationerna 0,05-0,1%, jämfört med permetrinpreparaten till hund som har koncentrationer mellan 45-65% (Linnett, 2008).

Toxiska mekanismer
Pyretriner verkar genom att binda reversibelt till och blockera ett litet antal natriumkanaler på excitatoriska celler som muskel- och nervceller efter att aktionspotentialen passeras genom cellen. Genom att binda på det här sättet kan natrium föras in i cellen under längre tid, även efter att aktionspotentialen är över. Detta gör att cellens signal inte kan fortsätta överföras, eftersom cellerna inte depolariseras normalt utan man får en ständig urladdning av cellen som ger upphov till de kliniska symptomen (Boland & Angles, 2010).

Kliniska fynd
Katter som blivit förgiftade med permetrin kan upptisa symptom som kramper, ryckningar och darmningar i muskler, ökad salivproduktion, hyperestesi(överkänslighet), ataxi, feber och
pupillvidgning. De kan ibland också få kräkningar, diarré, anorexi, och andra typer av CNS-symptom som t.ex. tillfällig blindhet, oro och hallucinationer, men det förekommer mer sällan. Biokemiska och hematologiska värden brukar vara normala (Boland & Angles, 2010).

Katter är känsliga för väldigt små doser av permetrin, och man har inte kunnat se något samband mellan allvarsgraden på de kliniska symptomen och mängden permetrin katten har fått i sig. Symptomen uppkommer oftast inom ett par timmar, men det kan ta upp till 72 timmar innan man kan se några symptom (Boland & Angles, 2010).

Exponering

I en stor retrospektiv fallstudie såg man att den absolut vanligaste exponeringsvägen för katt är att de på något sätt kommer i kontakt med fästingpreparat för hund innehållande permetrin. Oftast är det djurägare som felaktigt använt preparaten till katt, men även i de fall där katter bara kommit i kontakt med hundar som nyligen blivit behandlade eller i enstaka fall slickat på tomma förpackningar och liknande har katten fått tydliga symptomer (Boland & Angles, 2010).

Man ser också en tydlig säsongssvariation; det dyker upp betydligt fler fall under sommar och höst när fästingproblemen är som störst (Boland & Angles, 2010).

DISKUSSION

Alla referenser som hittats och använts i det här arbetet är eniga om att det är kattens avsaknad av fenolspecifika UGT-transferaser som gör att de är känsliga mot läkemedel som bildar fenolderivat. De kan inte som andra djur använda sig av glukuronsyrakonjugering för att eliminera dessa läkemedel, utan får förlita sig på sin förmåga att sulfatera och i sista hand detoxifiera reaktiva metaboliter genom glutationkonjugering (Anvik, 1984; Court & Greenblatt, 1997; Savides et al., 1984; Jones et al., 1992; Shrestha et al., 2011).

De tre läkemedel som tagits upp i uppsatsen blir mer toxiska för katten än för andra djur på grund av den här defekten. Paracetamolet blir toxiskt när sulfateringen mättats, glutationet förbrukats och NAPQI börjar binda kovalent till enzymer och proteiner. Vid paracetamolförgiftning hos katt är det främst methemoglobinemin som får den största kliniska betydelsen (Peterson & Talcott, 2006). Permetrinet blir högst sannolikt även det toxiskt på grund av oförmågan att glukuronkonjugera, även om det ännu inte bevisats i någon av de referenser som hittats till detta arbete (Boland & Angles, 2010; Linnett, 2008; Malet et al., 2010). De verkar sedan genom att störa den normala funktionen i excitoratoriska celler såsom muskel- och nervceller (Boland & Angles, 2010). Acetylsalicylsyra är mindre toxiskt för katten än vad paracetamol och permetrin är, och man kan sannolikt tro att det beror på att metabolismen av acetylsalicylsyra ger upphov till en reaktiv metabolit som är något mindre reaktiv än de metaboliter som fås från metabolismen av permetrin och paracetamol. Inga referenser som stödjer detta har hittats till detta arbete, men det är troligt eftersom acetylsalicylsyra normalt sett glukuronkonjugeras, och kattens återstående möjligheter till konjugering är mättnadsbara, vilket leder till att den reaktiva metaboliten börjar ackumuleras hos katt vid doser som är normala för andra djur (Peterson & Talcott, 2006).

Idag finns receptfria preparat tillgängliga även utanför apoteken, vilket möjligtvis kan öka problematiken. Man skulle kunna tänka sig att en apotekare med god kännedom skulle kunna stoppa några fall, t.ex. genom att de vid försäljning av permetrinprodukter till hund informerar om att det bara får användas till just hund och inte till katt, eller att de talar om för eventuella kunder som frågar om det är möjligt att använda t.ex. alvedon till sin katt att det inte är möjligt. När försäljningen av läkemedel sker på bensinmackar och i livsmedelsbutiker går det inte att ställa samma typ av kunskapskrav på de som säljer det.

De allra flesta problemen med exponering för de olika substanserna som tagits upp i den här uppsatsen har att göra med att djurägarna väljer att behandla själva utan att ha kontaktat veterinär. Det är möjligt att problematiken inte bara har att göra med kattens känslighet, utan även att katten länge betraktats som ett djur av lägre värde än till exempel hunden. Detta medför bland annat att katter inte är försäkrade i samma utsträckning som hundar. Enligt SCBs undersökning ”hundar, katter och andra sällskapsdjur 2012” var 76,5% av hundarna veterinärvårdsförsäkrade, jämfört med 35,6% av katterna (Jordbruksverket, 2013). Detta kan i sin tur medföra att kattägare är mindre benägna att äka in till veterinären för att behandla sin katt, eftersom det är dyrt att behandla ett oförsäkrat djur, framför allt under journatt, och att man istället väljer att försöka behandla katten själv.

Förutom att katten riskerar att förgiftas, så medför också deras känslighet att det finns betydligt färre alternativ för behandling i form av t.ex. smärtlindring och fästingskydd. Idag finns t.ex. bara ett preparat tillgängligt för fästingskydd på katt, i form av spot-on-lösning. Till hund finns det fler alternativ, bland annat så kallade fästinghalsband som skyddar under längre tid och därigenom blir både billigare och lättare att använda. Det är dessutom mycket lockande för en djurägare att skaffa fästinghalsband för hund, eftersom det är att behandla ett oförsäkrat djur, framför allt under journatt, och att man istället väljer att försöka behandla katten själv.

Slutligen kan man sammanfatta det här som att en stor del av problemen skulle kunna undvikas om man hade bra sätt att nå ut med information om det här till djurägare. Tydliga märkningar och varningsmärken, planscher med information på veterinärklinikerna, apotek, djuraffärer och andra återförsäljningsställen och receptbeläggning av vissa preparat skulle kunna göra mycket.
REFERENSLISTA

