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Abstract

Wetlands are an important ecosystem for many vital functions such as groundwater
recharge, flood control, water quality improvement, and to mitigate erosion. Monitoring
and mapping wetlands on a large scale is becoming increasingly more important, and
satellite remote sensing provides a practical approach. This study examines the potential
for using multi-beam Radarsat-2 C-band polarimetric SAR, Landsat-5 TM, and DEM data
for classifying wetland and non-wetland classes in a forested watershed in Ontario,
Canada. It investigates the influence of incidence angle, leaf presence and moisture
conditions in the classification of SAR images. The images were classified using two
classification methods: the Maximum Likelihood Classifier and Random Forests classifier.
Lastly, SAR polarimetric variables and decompositions were investigated for their
usefulness in classification.

Fourteen Radarsat-2 Fine Quad (FQ) SAR images were acquired from October 2010 to
November 2011 at different incidence angles but with the same orbit-descending pass
(west-looking direction). The images were paired according to the beam mode (FQ4 and
FQ22/27), leaf presence (off and on) and moisture (wet/dry) conditions. The FQ image pair
which gave the best classification overall accuracy (76.3%) using the Maximum
Likelihood classification was those from the two FQ22/27 images acquired under leaf-off
and dry conditions. When the FQ images were classified together with five optical bands
of a Landsat image, the classification accuracy was higher for all classes as well as for the
overall accuracy (94.4%). When the FQ images were combined with the Landsat image
and slope, overall accuracy improved only slightly from the FQ and Landsat combination
(95.4%).

With the Random Forests classification, the best overall accuracy was obtained with the
combination of the FQ 22/27 image pair acquired under leaf-off and dry image conditions,
Landsat and slope (98.7%), followed closely by the FQ pair and Landsat combination
(98.6%). When all FQ images were used as input to the Random Forests classification, this
also produced high cross-validation overall accuracies (98.3%), indicating that while
Landsat does add accuracy FQ images can give comparable accuracies if the right dates
and conditions are chosen. A benefit of using Random Forests is the ability to rank band
importance in image classification. From this it was determined that using multiple FQ
images with leaf-off conditions were preferred. As for the other conditions, a mix of
incidence angles, moisture conditions, and polarizations were important for classification.
The incoherent target decompositions were the most important polarimetric variable in the
classification, while the only other parameter indicated as important from both
classifications was the orientation angle for the maximum of the completely polarized
component.

In future studies, it may be of interest to test the combination of multi-date polarimetric
variables and decompositions parameters together with all polarizations (HH, HV, VH, and
VV). So far, we classified only two types of wetlands (closed and open). Further studies
are needed to test the Random Forests classifier for classifying the wetlands into more
detailed classes (bog, fen, marsh, swamp, etc.). Lastly, future studies should test the results
found here using independent evaluation data to assess the accuracy.

Keywords: Radarsat, Landsat, wetlands, classification, land cover, multi-source data,
remote sensing, Random Forests, Maximum Likelihood Classifier

1






A S ACT . ..o et e e ————te e e e e e e e —————ae e e e —— 1

I [ o [FTox {0 o USSP PPTURTPRPRURORPIN 4
1.1 Importance Of the STUAY ........cccveiiiiiici e 4
1.2 WEBLIANGAS ...ttt sttt b et e st sbeebesnnesbe e b 4
1.3 Radar remote sensing of WELIaNdS...........ccoiviiiiiiiieie e 5
1.4. Classification MethOUS.........coviiiiiiiie e s 10
1.5 ODBJECLIVES ...ttt bbbttt b et ne e sae b eneers 11

P L0 [0 )Y  =T TSR PRPR 11

3. Materials and METhOUS .........coviieiiiiiei e 14
0 111 T=To =T o TP U PP UR PP OUPTUPRPURRPR 14
B2 TrAINING DALA ... eevieiieic ettt b e sbeebesneesne e e 16
3.3 Pre-classification processing of the FQ IMages........ccoocvvveieieninniie e 18
KR O F- L1 1 (o= 11 o] [P S U RSPPRRPRTRR 19

A RESUILS ettt bt bbbt et bttt ne e be e te e reeae s 22
4.1 Maximum likelihood ClasSifiCation.............ccccovvreriieiiiisiee s 22
4.2 RANOM FOTESTS ...ttt bbbttt bbb 27

ST B 1T oT 1] o] o FO TSRO UPO PP URPRPRPRIN 36
5.1. Maximum Likelihood and Random Forests Classification ..............ccocooeeveenireninnne. 36
5.2 Radarsat-2 polarization, beam mode and environmental conditions ....................... 36
5.3 Image combination of radar with optical data and sIOpe ...........cccccvevvvieiviieiinenns 38
5.4 INdividual ClasS @CCUTACY .......cviiieiiieieiie et se et e e ae e e sae e e ae s 39
5.5 Polarimetric variables and deCOMpPOSITIONS..........cccvivveieeresieseese e 40

B. CONCIUSIONS ...ttt bbb bbbt e ettt be st b ne e 41

ACKNOWIEAGMENTS ...t te et e reente e e e sreenteeneesreenaeas 41

RETEIBINCES ...ttt ettt b e et e se e sbeebe st e nbe e b e nreenns 42



1. Introduction

1.1 Importance of the study

Wetlands are an important ecosystem as they perform a variety of functions that are
beneficial to society and the environment. They are crucial for groundwater recharge, flood
control, water quality improvement, and mitigate erosion (Li & Chen, 2005).
Understanding the distribution and dynamics of wetlands are essential for understanding
ecosystem diversity and function and how it is impacted by human practices and global
changes. Monitoring and mapping wetlands in Canada is significant as wetlands cover
14% of Canada’s land area (over 127 million ha; Cox, 1993) and make up 24% of the
world’s wetlands (Baghdadi et al., 2001). There is even increasing importance globally, as
there has been extensive wetland loss in the last half century due to constant pressures for
land use changes and development (Henderson & Lewis, 2008). Developing a mapping
tool to extract information about wetland areas from satellite imagery is essential for
mapping large scale regions. Satellite remote sensing has several advantages over other
methods such as aerial photograph interpretation and ground surveys as they provide multi-
temporal data over large area. The images are also relatively easy to acquire, and this is
more cost-effective (Li & Chen, 2005). The use of satellite remote sensing technologies
provide a practical approach to mapping wetlands in Canada, due to the vast areas that
need to be mapped, most of which are in remote areas.

Optical images like those provided by Landsat and SPOT (Systeme Probatoire
d’Observation de la Terre) satellites can be used, but image availability is limited to clear
sky conditions. By contrast, synthetic aperture radar (SAR) images can be acquired
whatever the cloud conditions. They should be suitable for wetland mapping as radar
backscatter is sensitive to moisture conditions, because both depend on the dielectric
properties of vegetation and soil (Henderson & Lewis, 2008). RADARSAT-2 is a C band
SAR system that can acquire dual polarized (HH and HV, or VV and VH), multi-polarized
images (HH, HV, VH, VV) as well as polarimetric images (multi-polarized images that
have the phase information).

C-band has been shown to be useful in discriminating between forests and forested
wetlands in leaf-off conditions (Henderson & Lewis, 2008) and can detect standing water
under low vegetation (Henderson & Lewis, 2008; Li & Chen, 2005), such as marshes. Our
study will test the use of multi-neam RADARSAT-2 multi-polarized images (HH, HV,
VH, and VV) and polarimetric images (that include the phase information) for mapping
wetland areas in forested regions in Ontario. The study also uses Landsat-5 TM and DEM
data.

1.2 Wetlands

Wetlands are defined as “land that is saturated with water long enough to promote
wetland or aquatic processes as indicated by poorly drained soils, hydrophytic vegetation
and various kinds of biological activity which are adapted to a wet environment (National
Wetlands Working Group, 1988). They are generally discrete entities between unsaturated
upland and aquatic deep water, with the water table at or near the surface, or shallow water
for most of the growing season (National Wetlands Working Group, 1997). Three basic
elements in identifying wetlands include hydrophytic vegetation, hydric soils, and wetland
hydrology. Hydrophytic vegetation consists of macrophytic plants that grow in water, soil,
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or substrate that is at least periodically deficient in oxygen due to the presence of excess
water. Hydric soils are soils that are saturated, or flooded long enough during the growing
season to develop anaerobic conditions. Wetland hydrology exists in conditions of
permanent or periodic inundation or saturated soils at the surface for at least part of the
year (National Wetlands Working Group, 1997). Wetness for an area is influenced by
precipitation, topography, soil permeability, and plant cover. Wetlands are saturated long
enough to promote soil development and vegetation conditions that are adapted to
saturated conditions.

The Canadian Wetland Classification System divides wetlands into five main classes based
on genetic and environmental factors. The five classes are bog, swamp, fen, marsh, and
shallow waters. Bogs are peat lands with generally raised or level surfaces. The water table
is usually at, or slightly below the bog’s edges. Bogs are typically acidic, and may have
tree cover or not, and covered with Sphagnum moss and ericaceous shrubs. Swamps are
forested wetlands with tall woody vegetation covering over 30% of the area. Generally the
water table is below surface. They are not as wet as open wetlands (i.e. without trees, such
as fen and marsh) and are comparable to bogs with tree cover. Fens are peatland forms
with a fluctuating water table, where surface water may be present through channels or
pools. The vegetation consists of predominantly sedge and brown moss, however it varies
depending on water table level. When the water table is above surface, the vegetation
consists generally of graminoids and some bryophytes. With a lower water table, shrubs
are generally present, and trees can be present on drier fens. Marshes are distinguished by
shallow waters that fluctuate. The water table may be at, or below soil surface, however,
water usually remains within the rooting zone for most of the growing season. Vegetation
mostly consists of rushes, reed grasses, and sedge and there is very little organic material
or peat. Shallow waters are usually less than 2 meters at mid-summer. They are the
transitional stage between lakes and other wetland types, and are free of vegetation
(National Wetlands Working Group, 1997). Within the study area used in this thesis, the
wetland classes found were mainly swamp (called “closed wetland” in this study) and fen
and marsh (together called “open wetland” in this study).

1.3 Radar remote sensing of wetlands

Radar sensors are active sensors that operate in the microwave portion of the
electromagnetic spectrum. Active sensors emit waves from their antenna, and record the
“backscatter” of the imaged surface. Radar backscatter from a target is influenced by
imaging geometry, topography, surface roughness, and dielectric constant (Lillesand et al.,
2008). Unlike optical waves, microwaves are unaffected by clouds, can penetrate
vegetation canopies to some degree. They are also sensitive to moisture and rainfall.
Indeed, they are affected by the dielectric properties of the surface (soil and vegetation)
that change with the moisture conditions (Henderson & Lewis, 2008). For example tonal
differences between forests and clear cut are more prominent under wet conditions, as
forested areas present rougher surfaces (Lillesand et al., 2008).

Radar signals can be transmitted and received in different polarization modes. Polarization
refers to the orientation and shape of the pattern traced by the tip of the rotating electrical
vector (E) of the electromagnetic wave. All the existing SAR sensors transmit and receive
linear polarized waves, i.e., when the tip of E traces out a single line in the (X,Y) or (H,V)
plane (H for horizontal and V for vertical). If E is parallel to the Earth's surface, then the



linear polarization is horizontal (H) (Figure 1a) and if it is perpendicular to the Earth's
surface, then the linear polarization is vertical (V) (Figure 1).

The current SAR sensors can send and receive the H or V polarization, thereby there are
four polarization combinations (HH, HV, VH, and VVV) where the first letter represents the
transmitted polarization and the second is for the received polarization. HH and VV are
called co-polarizations, whereas HV and VH are cross-polarizations.

y Yy

Horizontal Polarization Vertical Polarization

Figure 1. Radar horizontal (H) and vertical (V) wave polarizations. (CCRS, 2008).

Radar systems operate at different wavelengths, initially given an arbitrary letter code by
the military for security reasons. Today they are still referred to by the same letter codes
(Table 1).

Table 1. Radar band code and wavelength ranges

Band Wavelength (1) range (cm)
Ka 0.75-1.1

K 1.1-1.67

Ky 1.67-2.4

X 2.4-3.75

C 3.75-7.5

S 7.5-15

L 15-30

P 30-100

Table 2 lists some of the existing SAR systems. The only systems which have a
polarimetric mode are Radarsat-2, ALOS-PALSAR and Terra-SAR-X. This thesis uses
Radarsat-2, which was launched in December 2007. It is a quad-polarization SAR system
that has multiple beam modes, with a spatial resolution that can range from 3 m to 100 m,
and the ability to be left — and right looking (CSA, 2007).



Table 2. Characteristics of the previous and existing spaceborne SAR sensors

Incidence Resolution Swath

. L.
Sensor(*) Band  Polarization angle (m) Width (km)
ERS-1&2 C \VAY/ 23° 26 100
Radarsat-1 C HH 10-59° 10-100 50-500
JERS-1(*) L HH 38° 18 75
Almaz(*) S HH 30-60° 15-30 20-45
SEASAT L HH 20-26° 25 100
ENVISAT C HH 15-45° 30-1000 50-500
ASAR \VAY/

HH+HV

VV+VH

HH+VV
SIR-C/X (*) X \VAY/ 15-50° 30 15-60
SIR-C/L(*) C,L HH+VV+HV+VH 15-50° 30 15-60
ALOS L HH 8-60° 10-100 20-350
PALSAR(*) vV

HH+HV

VV+VH

HH+VV+HV+VH
Radarsat-2 C HH 10-60° 3-100 10-500

\VAY/

HH+HV

VV+VH

HH+VV+HV+VH
TerraSAR-X X HH 20-55° 1 5-100

\VAY/

HV

VH

HH+HV

VV+VH

HH+VV+HV+VH

(*) does not exist anymore; the SIR-C systems were temporary missions on board of the
Space Shuttle
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Radar also has the ability to penetrate vegetation canopies to some degree, which varies
with the wavelength band. Longer wavelength (10-30 cm) bands such as L and P- bands
have the ability to penetrate through the canopy to tree trunks, while shorter wavelengths
may not be able to fully penetrate the canopy, and can vary with canopy density, canopy
volume, structure of canopy and species composition (Townsend, 2002). Radar backscatter
is a function of geometrical factors relative to sensor and terrain, such as surface
roughness, incidence angle, wavelength, and dielectric factors, such as the nature and
moisture content of terrain. Surface roughness is expressed by the root mean square height
of surface variation that depends on the wavelength and the incidence angle (Lillesand et
al., 2008). For smooth surfaces, the radar beam is specularly scattered in one single
direction, so the imaged surface appears dark on the SAR image.

Water is an example of a surface that can be smooth and thus often appears dark on the
image. For rough surfaces, the radar beam diffuses in all directions and the imaged surface
appears brighter on the SAR image. Double-bounce scattering can occur when a beam is
spectrally reflected off a smooth horizontal surface to a vertical surface, resulting in a
strong return. This is the case of flooded forests, where the radar beam is reflected from the
water to tree trunks (Henderson & Lewis, 2008). Volume scattering occurs when the radar
beam penetrates more than just the surface of the target, for example when it penetrates the
vegetation canopy. The penetration is higher in the absence of leaves, which result in high
backscatter of leaf-off deciduous trees (Baghdadi et al., 2001).

Table 3 summarizes some early literature results on the suitable frequencies and
polarizations for wetland mapping with SAR imagery as a function of wetland types.
Wetland classification can be improved through the use of multiple polarizations as
opposed to single polarized imagery (Ozesmi & Bauer, 2002; Wang et al., 1998). Changes
in polarizations result in changes in backscatter, and multiple polarizations can provide
more information than a single polarization alone, especially when there is a specific
orientation to an object or objects being detected. In the case of wetlands, when there is
emergent vegetation within wetlands, L-VV return decreases while HH and VH returns
rise (Ramsey et al., 1999). C-HH data was found to be superior to HV or VV data in
delimiting flood extent, although HV data provides some information in regard to flood
detection (Henry et al., 2006). According to Pope et al. (1997), C-HH data provided the
highest accuracies for delimiting sawgrass and cattails, but C-VV data are useful to
separate cattails and low-density marshes. Co-polarizations (HH and VV) give a higher
contrast backscatter between swamps and dry forest than cross-polarization for X- and L-
bands, which gives the ability to separate between flooded and non-flooded forests
(Henderson & Lewis, 2008).

However, some studies have noted that cross-polarization is better at separating between
marsh and swamp classes for L-band (e.g., Henderson & Lewis, 2008). The P- and L-
bands have been useful in detecting standing water under forest canopies, as the surface
water under forest canopies results in a double bounce and enhances the signal response.
C-band data have been useful in detecting standing water under short vegetation
(Henderson & Lewis, 2008: Li & Chen, 2005). C-band and X-band data have also been
shown to be favorable in some wooded wetlands with low density canopies, or leaf off
conditions (Henderson & Lewis, 2008; Townsend, 2002).



Table 3. Suitable frequencies and polarizations for wetland mapping with SAR imagery as a
function of wetland types

Wetland type Band Polarization Authors

Forests, dense vegetation P,L Kasischke & Bourgeau-Chavez,1997
Bog and inundated vegetation L HH Yamagata & Yasuoka, 1993
Herbaceous and sparse vegetation C Kasischke & Bourgeau-Chavez,1997
Low density marshes C \YAY Pope et al., 1997

High density marshes C HH, VvV Pope et al., 1997

V’\\l/gaévr:/gsdy and  herbaceous C HH,VV Kasischke & Bourgeau-Chavez, 1997

With regard to incidence angle of the radar beam, the results vary inconsistently with forest
type, stand structure, moisture content, and canopy. Steep incident angle multi-polarized
data can be used to identify emergent and forested wetlands (Hess et al., 1990; Augusteijn
and Warrender, 1998; Wang et al., 1995; Bourgeau-Chavez et al., 2001). Steep incidence
angles are able to penetrate forest canopy cover best with L-band, however, multiple
angles are preferred to discriminate between forest structures (Ramsey, 1998; Henderson &
Lewis, 2008). Lower incidence angles for C-, X- and K-bands have been used to detect
forested wetlands under leaf-off conditions (Ramsey, 1998; Henderson & Lewis, 2008).

A number of studies recommend using multi-temporal, multi-incidence angle combinations
to detect wetlands (Kandus et al., 2001; Leconte & Pultz 1991; Henderson & Lewis, 2008).
However, Wang et al. (1998) in their land cover study including cattails, Phragmites
(common reed) and tree covered swamp wetlands using ERS imagery data, found that
adding multiple date images increased accuracy, only up to a certain point, where more
than 5 images decreased accuracy. Grings et al. (2006) found that multi-temporal, multi-
polarized C-band data can be used to accurately monitor temporal changes of marsh
grasses, specifically within junco (cylindrical) and cortadera (randomly oriented disc)
marshes. They found large differences in HH and VV backscatter from junco marshes,
specifically, a change in the HH/VV ratio response. The VV data were also found to have
increased sensitivity to plant density (Grings et al., 2006).

Polarimetric SAR systems transmit and receive waves in the horizontal and vertical
polarizations. The system records the amplitude and relative phase in all four polarization
combinations (HH, HV, VH, and VV). The received backscatter data are stored in
scattering matrix S. From the scattering matrix, polarimetric data can be expressed into
useful parameters such as the co-polarized phase difference. Such data allows also
representing the scattering power graphically through polarization signatures. Co-polarized
polarimetric signatures allow defining another polarimetric parameter, the pedestal height.
Finally, polarimetric data allow expressing the scattering mechanisms through incoherent
target decompositions. These polarimetric variables and decomposition can be useful in
image classification.

Optical sensors such as Landsat’s Multispectral Scanner System (MSS), Thematic Mapper
(TM) and SPOTs High Resolution Visible (HRV) imaging have been used in wetland
mapping. (Li & Chen, 2005). However, due to limitations in optic sensors, they cannot

9



penetrate vegetation canopies, which pose a problem in dense vegetation wetlands. The
combination of radar and optical sensors is a promising approach, as together they provide
complementary information (Ramsey et al., 2009).

Li & Chen (2005) used rule-based decision tree, to classify wetlands in three different
study sites in Canada using Landsat, Radarsat-1 C-band and Digital Elevation Model
(DEM) data. Wetland classification improved using a rule based approach where they
analyzed multi-source data individually, then combined the results in a separate joint
analysis. From this, they were able to distinguish between different wetland types and
overall classification of rule-based method was 83% compared to 69% using classical
supervised classification.

Some limitations existed for C-band radar, as it could not penetrate dense canopy forests
(Li & Chen, 2005). Slight classification improvement of wet areas in agricultural landscape
in Spain was found when using SAR ERS-2 and Landsat together than separately
(Castafieda & Ducrot, 2009). Michelson et al. (2000) compared ERS-1 SAR data to the
combination of Landsat and ERS -1 SAR for Swedish land cover, and found better
separation in land cover classes with the combination than with SAR alone.

1.4. Classification methods

Classification and interpretation of SAR data are more complex than other multispectral
imagery. Maximum likelihood classifiers are one of the most widely used in remote
sensing. It operates by assigning a pixel to the class whose likelihood is the highest. This
method is standard and simplistic, and assumes equal probability of class occurring, as it is
not given use information about class occurrence frequency. By assuming equal
probability, maximum likelihood may over-classify less frequent classes, and under-
classify others (Pedroni, 2003). Maximum likelihood classifiers have been used in many
studies, however, due to the complex nature of SAR images it may not be the optimal
choice. For example, it assumes a Gaussian distribution of the data, while polarimetric
SAR data have been shown to follow a Wishart distribution (Lee et al., 1994).

In order to accommaodate the difference in the data distribution of multi-look polSAR data,
such as filtered polSAR images (Wishart) (Lee et al., 1994) and of optical data (Gaussian),
it is desirable to use a non-parametric classifier. Indeed, such classifier does not involve
estimation of statistical parameters before classification and thus has its performance
independent of the probability distribution functions of the input data. One of these
classifiers is the Random Forests classifier. It is an ensemble classification method where
multiple classifications are performed and their results combined through a voting process.

Random Forests is a tree type classifier that uses bootstrap aggregating to generate training
sample subsets (Gislason et al., 2006; Waske and Braun, 2009). Each training sample
subset is used to create an individual decision tree which is applied to produce an
independent classification. When the independent classifications are run, they are then
combined into the final classification map (Waske and Braun 2009). Random Forests are
not sensitive to noise or over classifying, and can estimate the importance of the individual
input variables (Gislason et al., 2006; Waske and Braun 2009). Waske and Braun (2009)
compared boosting, Random Forest, Gaussian maximum likelihood and decision tree
classifying methods for general landscape classification of SAR images. They found that
Random Forests classifier outperformed decision tree and maximum likelihood classifiers.
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1.5 Objectives

The purpose of this thesis is to determine the potential for using multi-beam Radarsat-2 C-
band polarimetric SAR imagery for classifying wetland and non-wetland classes in a
forested watershed. In particular, the influence of different factors on classification of SAR
data were to be investigated, namely the sensor properties, the environmental conditions,
the classification method, the addition of optical data and DEM-derived slope information,
and the use of polarimetric variables. Specifically, the individual objectives were to:

1. Determine the influence of some environmental conditions and sensor properties
for classification of forested and open wetlands using SAR images, and their
seperability from other classes. Factors under examination were:

I. Leaf-on vs. leaf-off,

ii. Wetness conditions (using two classes: “dry” and “wet”),

iii. Radar beam incidence angle (using two classes: 22° and 41-46°),
iv. Single polarization (HH) vs. multi-polarization (HH, HV, and VV),

2. Determine if classification results improved with the combination of SAR, Landsat
and DEM-derived slope data.

3. Test two different types of classifiers, namely maximum likelihood classification
(MLC) and Random Forests (RF).

4. Test the use of polarimetric SAR images for classification and determine which
polarimetric variables are the most useful.

2. Study Area

The study area is a 15 km x 17 km area within the Turkey Lake watershed and surrounding
area in Ontario, Canada (Figure 2). It is located approximately 50 km north of Sault Ste.
Marie, between 47°02° and 47°05° North, and 84°23’ and 84°27° West. The landscape
consists of mostly mixed hardwood forests. As indicated by the 1:50,000 DEM, the
elevation differential is 290 m, ranging from 340 m above sea level at the lower streams to
630 m above sea level at the highest point on “Batchawana Mountain”. The drainage
network is composed of five lakes, the largest being Big Turkey Lake. The overall
discharge direction of lakes is from Upper and Lower Batchawana Lake to Wishart Lake to
Little and Big Turkey Lake then flowing from Norberg Creek into Batchawana River.
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Figure 2. Map of Turkey Lake watershed and surrounding area.

Eight land cover classes were used in this study: hardwood forest, softwood forest, open
wetland, closed wetland, harvest areas, low vegetation, bare soil, and water (Figure 3). The
hardwood and softwood forest classes are non-wetland forest classes. Hardwood forest is
dominated by deciduous trees. In this area the predominant deciduous tree species is sugar
maple (Acer saccharum). The softwood forest class consisted of white pine (Pinus
strobes), white spruce (Picea glauca) and eastern white cedar (Thuja occidentalis mix.).
Wetland classes were separated into open wetland, which consists of both fens and
marshes, and closed wetland which consisted of forested swamps where the predominant
tree cover was deciduous. Harvest areas consist of recent clear cuts. Low vegetation was
dry areas with short bushes and shrubs.
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Figure 3. Ground photographs of some of the land cover types.
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3. Materials and Methods

3.1 Imagery

In this study two types of satellite imagery for wetland mapping were used: (1) Radarsat-2
Single Look Complex (SLC) Fine Quad polarization (FQ) polarimetric SAR (pixel size
that varies with the beam mode (Table 4), swath of 25 km), and (2) Landsat-5 TM optical
(pixel size of 30 m, swath of 185 km) imagery. Fourteen Radarsat-2 SAR images (hereafter
called “FQ images”) were acquired in October-November 2010 and from May to
November 2011 at different incidence angles, but with the same orbit descending pass
(west-looking direction) (Table 4). These images were acquired under different leaf-off /
leaf-on conditions, and different moisture conditions as shown by the precipitation data
recorded at the Sault Ste. Marie weather station, approximately 62 km south of the study
area (Table 4).

The Landsat-5 TM image was obtained from the USGS Landsat archive (glovis.usgs.gov).
The image was acquired on May 17, 2010 leaf-on and was cloud, ice, and snow free. Five
Landsat optical bands were used in the classification process. The bands used were TM 2
(0.52-0.60 pm, green), TM 3 (0.63-0.69 um, red), TM 4 (0.76-0.90 um, near-infrared), TM
5 (1.55-1.75 pm, short-wave infrared), and TM 7 (2.08-2.35 um, short-wave infrared). TM
1 (the blue wavelength) was not used due to the potential atmospheric effects on the blue
band.

A DEM (scale 1:50000) was obtained from Natural Resource Canada GeoGratis GeoBase
archive (www.geogratis.gc.ca). The DEM had pixel spacing of 23 m x 17 m was used to
georeference the SAR images, as they were not pre-processed when acquired. It was also
used to create a slope dataset of the area, which was used in classification.
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Table 4. Characteristics of the RADARSAT-2 polarimetric SAR images used for this study

Incidence
Angle Pixel Nominal
degrees from Spacin Resolution (m
Date Beam ( gnadir) P ’ ™ quf prec;li_g;gtion L.O cal
Mode conditions * time
Near Far Ra_ngex Near Far (mm)
Range Range Azimuth range range
(mxm)

27/10/2010 FQ 27 45.27 46.52 47x49 73 7.2 Leaf off 49 11:39
20/11/2010 FQ 27  45.27 46.52 47x49 73 7.2 Leaf off 0 11:39
20/05/2011 FQ4 22.62 24.17 47x49 138 12.7 Leaf off 1.2 11:59
13/06/2011 FQ 4 22.27 24.17 47x49 138 12.7 Leaf on 24 11:59
24/06/2011 FQ 27 45.28 46.53 47x49 73 7.2 Leaf on 45.4 11:39
07/07/2011 FQ4 22.26 24.17 47x49 138 12.7 Leaf on 12.2 11:59
11/07/2011 FQ 22 41.10 42.47 47x55 19 7.7 Leaf on 34.6 11:43
04/08/2011 FQ22 41.10 42.48 47x55 719 7.7 Leaf on 6.6 11:43
24/08/2011 FQ4 22.26 24.17 47x49 138 12.7 Leaf on 7.6 11:59
28/08/2011 FQ22 41.09 42.48 47x55 719 7.7 Leaf on 2.4 11:43
17/09/2011 FQ4 22.25 24.16 4.7x49 138 12.7 Leaf on 3.8 11:59
11/10/2011 FQ 4 22.25 24.16 47x49 138 12.7 Leaf off 0 11:59
15/10/2011 FQ22  41.09 42.47 47x55 19 7.7 Leaf off 48.2 11:43
08/11/2011 FQ22 41.09 42.47 47x55 19 7.7 Leaf off 4.6 11:43

(*) mm of rain 3 days prior the image acquisition date that were recorded at Sault Ste. Marie weather station, approximately 62 km
south of the study area
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3.2 Training Data

Training areas were delineated for the following classes were 1) Hardwood forest, 2)
softwood forest, 3) closed wetland (forested wetland or swamp), 4) open wetland (Fens), 5)
harvest area, 6) low vegetation (grasses), 7) bare soil and 8) water (Figure 4). They were
based on GPS ground-truth points that were collected in August 2011 and visual
interpretation of the Landsat-5 TM images. Table 5 shows the number of polygons used in
the classification, as well as total area of each class.

Table 5. Training data polygons used in classification

Class Number of Total Area
Polygons (ha)
Hardwood Forest 23 55.1
Softwood Forest 34 62.9
Closed Wetlands 15 29.8
Open Wetlands 38 22.5
Harvest Area 16 20.4
Low Vegetation 7 24.7
Bare Soil 6 7.7
Water 10 219.7
Total 149 442.8
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classification.
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3.3 Pre-classification processing of the FQ images

The FQ images had to undergo pre-classification processing. All the processing was
completed using PCI Geomatica software. The raw image was extracted, then a Gaussian
filter with 11x11 pixels window size was used to reduce speckle. Speckle is an inherent
characteristic property of SAR imagery, generated by the phase interference of coherent
signals from various scattering surfaces within a pixel, and imparts granularity to a SAR
image (Goodman, 1976). The resultant combination of signals can either reduce or amplify
the intensity of return, resulting in darker or brighter pixels. The application of a filter can
reduce this effect (Lillesand et al., 2008).

The polarimetric analysis of the FQ images uses the full polarimetric information of the
images that includes also the phase information. All the polarimetric analysis was
performed using the SAR Polarimetric Work Station (SPW) module of PCI Geomatica.
Speckle noise was removed by applying a 5x5 polarimetric Lee speckle filter (Lee et al.,
1999). This filter preserves polarimetric properties by filtering each element of the
covariance matrix independently, while maintaining spatial information. Various
polarimetric product images were produced that include the co-polarized phase difference,
the co-polarized correlation coefficient, and the pedestal height. Incoherent target
decomposition techniques were also applied to produce the variables that are listed in
Table 6.

Table 6. Incoherent target decompositions used in study

Decompositions Variables

Cloude-Pottier Alpha, Anisotropy, Entropy,
Beta

Freeman-Durden Power contributions due to

double-bounce, volume
scattering, and rough surface.
Touzi Psi Angle, Dominant
Eigenvalue, Touzi Alpha_S
Parameter, Phase
Van Zyl Van Zyl classes

Both the multi-polarized and polarimetric FQ images were then orthorectified using the
““Radarsat-2 Rational Function Model”” function of the Orthoengine module of PCI
Geomatica. It used DEM and Ground Control Points (GCP), which were extracted from
the Landsat-5 TM georeferenced images. Accuracy of the orthorectification process and
number of GCPs used are recorded in Table 7. The Landsat-5 TM image pixels were split
into 3x3 10m pixels to match the 10 m spacing of the FQ images. The resulting FQ images
have a 10 m resolution and a UTM Zone 16T122D projection with a NAD83 datum.
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Table 7. Orthorectification accuracy

Number of RMS Error(*)

Image Date .
Ground Control Points X v Mean

27/10/2010 25 143 1.73 225
20/11/2010 25 222 137 261
20/5/2011 25 203 163 2.60
13/06/2011 25 219 1.87 2.88
24/06/2011 25 1.88 1.44 237
07/07/2011 27 222 189 2091
11/07/2011 25 233 151 2.78
04/08/2011 26 229 149 273
24/08/2011 25 2.65 245 3.61
28/08/2011 25 197 181 2.68
17/09/2011 25 258 2.08 3.31
11/10/2011 25 227 187 294
15/10/2011 26 234 173 291
08/11/2011 25 1.84 1.89 2.64

*Root Mean Square (RMS) errors are given in pixels

3.4 Classification

The filtered and orthorectified images were then used in a Maximum Likelihood
Classification (MLC) and Random Forests classification. MLC assumes a Gaussian
(normal) distribution and evaluates both the variance and covariance of a class when
classifying an unknown pixel. The statistical probability of pixel being included in a class
and the probability density function is calculated. MLC uses the Bayesian discriminant
analysis to then determine which class is most “likely”. The MLC classifier was tested
using various FQ image combinations as a function of the polarization and the beam mode.
From the polarization point of view, the following image combinations were used as image
inputs into the MLC classifier:

i) HH: Representing the case of Radarsat-1 SAR images,
i) HH, HV, and VV: Representing the case of multi-polarized Radarsat-2 SAR
images.

The polarimetric variables were not used in the MLC classifier as they do not follow a
Gaussian distribution that is assumed when using a MLC.

The FQ images were separated into seven different groups of two images each, based on
rainfall, incidence angle, and leaf presence (Table 8). The images were sorted in this
manner to help determine the effect that these different characteristics had on the
classification of the radar images. Two images of each were used together for each
classification to improve classification accuracy (Wang et al., 1998), and to have the same
number of images in each grouping. The FQ images were considered as being acquired
under wet conditions if the total rainfall amount over the three days prior the image
acquisition date was greater than 10 mm. Conversely, the images were and considered as

19



being acquired under dry conditions, if this rainfall amount was less than 10 mm. For the
beam mode, we consider in one hand, the steep incidence angle (22-24°) images (FQ4) and
the other hand, the shallow incidence angle images (FQ22 & FQ27). We did not do a
difference between the FQ22 and FQ27 images, because both have similar incidence
angles. Indeed, FQ22 images were acquired under an incidence angle of 41-42° and FQ27
images are acquired under an incidence angle of 45-46° (Table 1). To determine if the FQ
images were acquired under leaf-on or leaf-off conditions, the Landsat images matching
the date of the FQ images were inspected visually. Unfortunately, there were no FQ4
images taken during leaf off and wet conditions.

Table 8. FQ image pairs used in the MLC classification

Leaf Presence  Moisture Rainfall (mm)  Beam Date
Conditions Mode

Leaf-off Dry 4.6 FQ 22 08/11/2011
0 FQ 27 20/11/2010
1.2 FQ4 20/05/2011
0 FQ4 11/10/2011

Leaf-on Dry 6.6 FQ 22 04/08/2011
2.4 FQ 22 28/08/2011
7.6 FQ4 24/08/2011
3.8 FQ4 17/09/2011

Leaf-on Wet 454 FQ 27 24/06/2011
34.6 FQ 22 11/07/2011
24 FQ4 13/06/2011
12.2 FQ4 07/07/2011

Leaf-off Wet 49 FQ 27 27/10/2010
48.2 FQ 22 15/10/2011

After classification of the FQ data alone, for the FQ image pair that gave the highest
classification accuracy, the classifier was run using a combination of the FQ image pair
and the Landsat image (May 2010). In a next step, DEM-derived slope was added to the
FQ/Landsat combination, as slope can be a useful tool in delineating wetland presence. In
addition, classification of the single Landsat image was also performed in order to make a
comparison.

Random Forests uses a combination of decision trees classifiers that uses bootstrap
aggregating to generate training sample subsets in individual classification, which are then
in turn used in a final classification result. The Random Forests classifier was performed
using the Random Forests algorithm in R (R Development Core Team, 2012).
Classification using Random Forests was completed using the FQ image pair giving the
best MLC cross-validation overall accuracy (leaf-off, dry, FQ22/27), alone, and in
combinations with the Landsat data and slope. For each classification, the settings used
were 800 trees. The mtry variable was set to include all input features.

Random Forests can be used to select the input features that are able to best separate
between classes, called “variable importance”. Random Forests was therefore run using all
14 FQ images and polarizations (HH, HV, VH, and VV) creating a 56 band file, to see
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which bands were found most important or useful. It was also run using the polarimetric
variables of Table 6 for the leaf-off dry, FQ22/27 image pair. This was done in attempt to
see if the polarimetric variables provided a better classification than just the HH, HV, VV
intensity images alone, and to see which polarimetric variables provided the most useful
information. In the case of the polarimetric classification, the mtry was set to 15 (out of
39).

Theoretically, classification accuracy should be assessed against existing independent data,
for example, from field work, aerial photo interpretation, or detailed land cover maps.
However, as noted previously, this was not possible due to the lack of these types of data
over the area. Hence, for this study, the performance of the different classification
algorithms and the effect of the input data were compared using cross-validation. The
cross-validation results are expressed in error matrices, showing Producer’s individual
class accuracies, and corresponding average accuracies, overall accuracies and Kappa
coefficients. The Producer’s class accuracy for class i is the number of pixels that are
labeled as class i in both the classified and ground-truth images divided by the total
number of pixels of class i in the ground-truth image (Congalton, 1991). The
corresponding average accuracy is the simple average of individual class accuracies,
whereas the corresponding overall accuracy is the average of individual class accuracies,
weighted by the size of class samples for that class in the total training set. The Kappa
coefficient can be interpreted like a coefficient of correlation, with values close to 0
indicating poor classification accuracies and values closer to 1 indicating good
classification accuracies.
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4. Results

4.1 Maximum likelihood classification

The cross-validation results for the various FQ images classified using the MLC are shown
in Table 9. The FQ image pair that gave the best overall result (76.3%) using the MLC was
the FQ22-27 images acquired under leaf-off and dry conditions (Table 9). The
corresponding confusion matrix shows that for the non-water classes, the user’s accuracy is
the highest for the softwood (67.0%) and low vegetation (69.4%) classes, but the lowest
for the open wetlands class (26.6%) (Table 10).

Table 11 presents the cross-validation for results from classifying the Landsat-5 TM image
alone and for the leaf-off, dry, FQ 22/27 images combined with Landsat-5 TM and/or slope
data. Adding five optical bands from the Landsat-5 TM image in the classification process
for the FQ22-27 images acquired under leaf-off and dry conditions increased the cross-
validation result for the individual classes. The overall accuracy increased from 73.3% to
94.4%. The addition of the slope data to the classification only slightly increased the
overall classification accuracy to 95.4%. The corresponding classified image is presented
in Figure 5 and the corresponding confusion matrix is presented in Table 12. For the non-
water classes, the user’s accuracy is the highest for the forested classes (hardwood class
with 99.4% and softwood class with 91.5%) as well as for the low vegetation class
(91.4%). The open wetlands class has a user’s accuracy that increased from 26.6% to
80.5% (Table 12).
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Table 9. Cross-validation results (%) for the MLC applied to various combinations (*) of multi-polarized Radarsat-2 SAR images as a function of the beam
mode, polarization and acquisition condition

Conditions  Beam Mode Bands or ITI TY SO SO »I <C w < Average Overall Kappa
Polarization 3 E 3 § % % % -‘E g 3 % 2 % 2 Accuracy  Accuracy  coefficient
-2 "9 592 5 & 8 0 =
S
Leaf-off, FQ 22/27 HH 294 616 473 182 285 213 328 995 423 69.0 56.1
ory HH,HV,VV 538 670 594 266 404 694 612 96.6 59.3 76.3 66.9
FQ4 HH 160 76.1 614 3.2 432 355 619 924 487 68.0 55.5
HH,HV,VV 364 811 644 163 565 585 58.9 90.0 578 72.8 62.6
Leaf-on, FQ 22/27 HH 206 716 435 112 372 3.6 542 99.6 427 68.5 554
bry HH,HV,VV 29.2 759 56.6 152 426 279 584 976 504 72.0 60.6
FQ4 HH 219 586 453 00 471 316 443 912 425 64.0 49.2
HH,HV, VV 276 823 651 83 53.7 518 504 932 541 72.4 61.9
Leaf-on, FQ 22/27 HH 227 719 465 19.2 306 127 30.2 99.5 417 69.2 56.3
et HH,HV,VV 295 779 504 201 350 30.0 535 984 493 72.2 60.8
FQ4 HH 243 780 628 170 403 48 523 947 4638 69.2 56.7
HH,HV,VV 23.7 821 59.8 19.4 512 350 602 925 53.0 70.9 59.7
Leaf-off, FQ 22/27 HH 315 670 621 273 304 123 394 98.6 46.1 70.7 58.6
et HH,HV,VV 56.8 735 579 336 472 438 563 945 579 75.6 66.0

(*) the best FQ pair is highlighted in bold
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Table 10. Confusion matrix for the best case from MLC which was the Radarsat-2 HH, HV and VV FQ22/27 leaf-off, dry image
pair

Class T T o O >T <r W Total User’s
S8 S5 55 %?, ss &2 5 § Accuracy
22 8z F& - g5 2 @ @
- = ~ 8 5 5 2 ] @ =
8 a <« o = 5 =
o -]
Hardwood
Forest 2962 144 1487 24 867 0 24 0 5508 53.8
Softwood
Forest 180 4215 683 385 64 440 231 93 6291 67.0
Closed Wetland 259 363 1775 144 233 23 178 0 2975 59.7
Open Wetland 50 318 166 599 150 770 197 0 2250 26.6
Harvest Area 301 152 472 108 824 18 167 0 2042 40.4
Low Vegetation 12 146 40 186 138 1715 235 0 2472 69.4
Bare Soil 3 29 41 76 59 89 469 0 766 61.2
Water 5 43 1 3 33 665 4 21218 21972 96.6
Total 3772 5410 4665 1525 2368 3720 1505 21311 44276
Producer’s
Accuracy 78.5 77.9 38.1 39.3 34.8 46.1 31.2 99.6 76.3
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Table 11. Cross-validation results (%)for the MLC applied to Landsat-5 TM alone and to the multi-polarized FQ 22/27 leaf-off dry image pairs (*)
combined with Landsat-5 TM and/or slope derived from the DEM. All the images were acquired under dry conditions. The best case is highlighted in bold

Conditions  Sensor (and Beam Bands or TI 1Y S0 SO>I <IC w < Average Overall Kappa
Mode) Polarizations S S5 39 38 a8 &2 2 S  Accuracy Accuracy Coefficient
o 2L 58 55 < @ @ T o
A 22 20 3 e g w = (%)
S S a o ~ = S,
o Q o =
o Q =]
Leaf-on, Landsat -5 TM ™ 2,3,4,5,7 96.2 812 851 758 884 77.0 96.6 99.7 875 92.6 89.6
Leaf-off, FQ 22/27 and Landsat- HH, HV,VV,TM2- 995 87.3 86.6 76.8 904 84.6 96.7 99.5 90.2 944 92.1
Dry 5 7
Leaf off, FQ 22/27 and Slope HH, HV, VV, Slope 656 79.0 649 446 48.0 674 59.1 96.1 65.6 80.7 73.1
Dry
Leaf-off, FQ 22/27 and HH, HV,VV, TM 2- 994 915 881 805 914 859 96.6 994 91.6 954 935
Dry Landsat-5 TM and 7, Slopes

Slope

(*) the best FQ pair from the initial MLC result
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Figure 5. Classified image of the Turkey Lake watershed area obtained by applying a MLC to a
combination of Radarsat-2 (HH, HV, VV) FQ 22/27 images which were acquired under leaf-off,
dry conditions, Landsat -5 TM (TM bands 2, 3, 4, 5 and 7), and slope data.
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Table 12. Confusion matrix for the MLC applied to the Radarsat-2 (HH, HV, and VV) FQ 22/27
image pair combined with the Landsat -5 TM (TM bands 2, 3, 4, 5 and 7) image and slope data

Class T TO o O >T <r w = User’s

S8 S5 %5 %g s2 &8 2 ngs S Accuracy

22 &= & S5 s o @ @ =

- g - 8 5 2 5 2 D 8 =

o) 8 < o I =
o >

Hardwood
Forest 5477 4 6 16 2 3 0 0 5508 99.4
Softwood
Forest 8 5754 337 164 27 1 0 0 6291 91.5
Closed
Wetland 18 185 2620 145 6 1 0 0 2975 88.1
Open
Wetland 20 33 107 1811 25 215 39 0 2250 80.5
Harvest
Area 9 0 0 40 1867 18 108 0 2042 91.4
Low
Vegetation 7 8 0 244 88 2124 1 0 2472 85.9
Bare Soil 0 0 0 4 22 0 740 0 766 96.6
Water 0 55 1 63 2 1 0 21850 21972 99.4
Total 5539 6039 3071 2487 2039 2363 888 21850 44276
Producer’s
Accuracy 98.9 95.3 85.3 72.8 91.6 89.9 83.3 100.0 95.4

4.2 Random Forests

The cross-validation results from the Random Forests classifications are summarized in
Table 13. The overall classification accuracy increased from 86.7% (when only the leaf-off
dry FQ22/27 image pair was used) to 98.6% (when the Landsat optical images were added
to the classification). Adding the slope resulted in only a very small improvement (overall
accuracy of 98.7%). A similar overall accuracy (98.3%) is obtained when all the multi-
polarized (HH, HV, VH, and VV) FQ images are used. The classified image resulting from
the combined leaf-off, dry FQ22/27 image pair and Landsat -5 TM is shown in Figure 6.
The classified image for leaf-off, dry FQ22/27, Landsat and the slope data are shown in
Figure 7, and in Figure 8, the case where all the multi-polarized FQ images are used is
shown.

Random Forests allows the identification of variable importance, indicating which input
features were most important to achieving the highest accuracy for separating different
classes. These features are presented in Figures 9, 10 and 11, giving the variable
importance for the cases where the input was Radarsat-2 and Landsat-5 TM; Radarsat-2,
Landsat-5 TM and slope; and, All radar images. The figures illustrate variable importance
through mean decrease in accuracy, where the most important variables have the highest
mean decrease accuracy. Mean decrease in accuracy is a measure of the accuracy decrease
when another variable is added, thus a variable with a large decrease in accuracy would be
more important. The variables are ordered by importance in Table 14 for the case when all
the multi-polarized FQ images are used.
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Table 13. Cross-validation results (%)for the Random Forests classifier applied to all multi-polarized FQ images, to the multi-polarized FQ 22/27 leaf-off
dry image pair (*) alone or combined with Landsat-5 TM and/or slope data, and to polarimetric products that were computed for the FQ22 and FQ 27 leaf-
off dry images

Images n nw 0 - o) Average  Overall

S 5 S % S %% (-)IE &I’ § g = § accuracy  accuracy

=t & = > @ > -5 s o ® @

- = ~ o 5 2 5 & @ 1% =

s & & & % & g
o =]

All FQ images 99.0 98.6 93.6 90.4 955 97.9 970 99.8 96.5 98.3
Leaf-off, dry, 87.0 86.8 65.8 55.2 433 68.8  62.1 99.5 71.1 86.7
FQ22/27
Leaf-off, dry, 91.0 92.6 82.1 67.6  53.6 748 723 99.8 79.2 90.8
FQ22/27, and slope
Leaf-off, dry, 99.8 97.4 95.9 926  98.0 95.9 98.2 100.0 97.2 98.6
FQ22/27, and
Landsat-5 TM
Leaf-off, dry, 99.8 98.0 96.2 93.6 977 96.0 974 100.0 97.3 98.7
FQ22/27, slope, and
Landsat
Polarimetric variables 82.3 74.1 17.7 12.3 8.8 37.6 12.4 99.6 43.1 74.7
of the FQ27 image
Polarimetric variables 79.5 74.3 23.8 17.6 11.0 46.7 19.1 99.6 46.4 75.8

of the FQ22 image
(*) the best FQ pair from the initial MLC result

28



TN =L gl = Lyl
1 1 1

[=11"FCN

4TI N

[~

W ETH=

=11 ¢TN

AT H

=2

2N

st St2emn siFmn

Legend 0051 2 3
e e filOmeters

- Hardwood Forest |:| Harvest Area  Turkey Lake watershed and sumsunding area

Random Forests Classification using

- Softwood Forest - Law “Yegetation Radarsat-Z and Landsat-5 Thi

- Open Wetlands :I Bare Soil hay 2012
Closed YWetlands - YWWater

Figure 6. Classified image of the Turkey Lake watershed area obtained by applying Random
Forests to a combination of Radarsat-2 (HH, HV, VV) FQ 22/27 image pair acquired under leaf-off
and dry conditions plus Landsat-5 TM (TM bands 2, 3, 4, 5 and 7) data.
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Figure 7. Classified image of the Turkey Lake watershed area obtained by applying Random
Forests to a combination of Radarsat-2 (HH, HV, VV) FQ 22/27 image pair acquired under leaf-off
and dry conditions, Landsat-5 TM (TM bands 2, 3, 4, 5 and 7), and slope data.
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Figure 8. Classified image of the Turkey Lake watershed area obtained by applying Random
Forests classification to all the multi-polarized FQ images (HH, HV, VH, VV).
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Figure 9. Variable importance in terms of mean decrease in accuracy in Random Forests
classification for the case when leaf-off dry FQ22/27 images and Landsat-5 TM are used. The
image file name listed in the figure reads as follows: RS (for Radarsat-2), date and polarization, and
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Figure 10. Variable importance in terms of mean decrease in accuracy in Random Forests
classification for the case when leaf-off dry FQ22/27 images, Landsat-5 TM and slope are used.
The image file name listed in the figure reads as follows: RS (for Radarsat-2), date and
polarization, and b followed by a number represents the different Landsat TM bands.
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Figure 11. Variable importance in terms of mean decrease in accuracy in Random Forests
classification for the case when all multi-polarized FQ images are used. The image file
name listed in the figure reads as follows: RS (for Radarsat-2), date and polarization.

Table 14. Order of the variable importance from Random Forests for the case when all the multi-

polarized FQ images are used

Order Polarization Image Date Rain Fall Moisture Beam Leaf
(mm) Conditions  Mode Presence
1 vV 20/05/2011 1.2 Dry FQ4 Leaf-off
2,4 VV, HH 27/10/2010 49 Wet FQ 22/27 Leaf-off
3 HH 24/08/2011 7.6 Dry FQ 4 Leaf-on
56,11 HH, HV, 11/10/2011 0 Dry FQ4 Leaf-off
VH
7,10 VV, HH 15/10/2011 48.2 Wet FQ 22/27 Leaf-off
8 VH 20/11/2010 0 Dry FQ 22/27 Leaf-off
9 vV 08/11/2011 4.6 Dry FQ 22/27 Leaf-off
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The classifications based on the polarimetric products computed with the leaf-off, dry
FQ22 or FQ27 image gave the lowest cross-validation overall accuracies (74.73% and
75.82%, respectively). This is especially the case for the class accuracy associated to
closed wetland, open wetland, and harvest areas (Table 13). When applying the variable
importance of Random Forests to the polarimetric product-based classification, there are
some polarimetric variables that were found to be the most useful in classification (Figure
12 for the FQ27 image and Figure 13 for the FQ22 image).

Legend:
R1120P27 Code Polarimatric Variable
R1120P37 " 27 Freeman-Durden VVolume
Scattering

R1120P3 2 .

37 Touzi Alpha_S Parameter
R1120P32 2 .
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32 LL Backscatter
SARRRES 29 PSI angle for minimum of the
Bhaes ® completely polarized component
R1120P36 ® 28 PSI angle for maximum of the
R1120P10 5 completely polarized component
R1120P13 = 2 Cloude-Pottier Anisotropy
Bty | 36 Touzi Tau Angle

— 16 Maximum of the Scattered
0180 0190  0.200 Intensity
hEaRBeneaa T 13 Maximum of the completely
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38 Touzi Phase

Figure 12. Variable importance in terms of mean decrease in accuracy in Random Forests
classification for the polarimetric products of the leaf off, dry, FQ27 image of November 20, 2010.
The image file name listed in the figure reads as follows: RS (for Radarsat-2), date and polarization
code.
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Figure 13. Variable importance in terms of mean decrease in accuracy in Random Forests
classification for the polarimetric products of the leaf off, dry, FQ27 image of November 8, 2011.
The image file name listed in the figure reads as follows: RS (for Radarsat-2), date and polarization

code.
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5. Discussion

In this study, the properties of Radarsat-2 polarimetric SAR images were investigated for
their ability to distinguish between land cover types in a forested watershed. These classes
included non-wetland forests, open wetlands, and closed (forested) wetlands. The influence
of different factors on the classification of Radarsat-2 data were studied, namely different
environmental factors and sensor characteristics, the classification method, the addition of
optical satellite data and slope information, and the use of polarimetric variables. This
study involved three data sources (Radarsat-2 polarimetric SAR, Landsat-5 TM, and slope
derived from a DEM) and two different classification methods (Maximum Likelihood
Classification and Random Forests).

5.1. Maximum Likelihood and Random Forests classification

For all classifications, Random Forests provided higher cross-validation overall accuracies
than MLC (Table 14). Waske and Braun (2009) and Reese (2011) previously showed the
superiority of Random Forests over the MLC for land cover mapping. In our case, SAR
data is quite complex and polarimetric SAR data does not follow a Gaussian distribution
which is an assumption for the MLC. Random Forests’ ability to select the most important
variables and weight their importance in the classification appears to be useful to
classifying data.

Table 15. Comparison of overall accuracy between MLC and Random Forests Classification

Images Overall Accuracy
MLC Random Forests
Leaf-off dry FQ22/27 pair 76.3 86.7
Leaf-off dry FQ22/27 pair and Slope 80.7 90.8
Leaf-off dry FQ22/27 pair and Landsat TM2-7 944 098.6

Leaf-off dry FQ22/27 pair, Landsat TM2-7 and Slope 95.4 98.7

Since Random Forests is a non-parametric classifier, and does not require a normal
distribution, it appears to classify the FQ data much better than the MLC (86.7% vs.
76.3%). However, the addition of Landsat and slope data to the FQ images in the
classification appears to have a larger effect when using MLC than Random Forests, with
an increase of 20% vs. 12%.

5.2 Radarsat-2 polarization, beam mode and environmental conditions

With the MLC method, the FQ images were classified by considering the HH polarization
alone, and together with the HV and VV polarizations. For all the FQ images, using the
three polarizations had a clear advantage over using HH alone. When applying a MLC
multi-polarized Radarsat-2 FQ images for land cover mapping in a tundra environment,
Shelat et al. (2012) also showed that considering three polarizations significantly improved
the classification accuracy as compared to using only the HH polarization. When
classifying all multi-polarized FQ images with Random Forests, the classifier selected VV
and HH as the most important polarizations for the classification. Inclusion of Radarsat-2
C-VV polarized image in an MLC classifier was previously shown to facilitate
differentiation between vegetated and non-vegetated areas in a tundra environment (Shelat
et al., 2012). Other previous studies showed that the differences in backscatter between
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flooded and non-flooded areas were the highest at HH and lowest at HV using SIR-C
images acquired for the Red River flood in 1994 with an incidence angle of 39° (Crevier
and Pultz, 1996; Sokol et al., 2004). This is due to the greater penetrating capability of the
HH waves and the fact that the presence of water enhances the dominant scattering
mechanism of the tree trunks in the HH polarization.

For MLC classification accuracies that were obtained using the FQ images alone, it
appears that the most predominant factor influencing the classification is the season of
image acquisition (leaf-on vs. leaf-off). All of the leaf-off images gave higher cross-
validation results than the leaf-on images. A similar result is seen from the Random Forests
variable importance analysis for the case when all the multi-polarized FQ images are used.
Indeed, 10 of the top 11 most important input features correspond to the leaf-off images.
This could be due to the fact that the radar beam does not have to penetrate through the
leafy vegetation layer of the deciduous tree crowns and ground level vegetation, resulting
in less signal/canopy interactions. This in turn allows easier access to ground information
(including water of the wet areas) that makes it easier to distinguish between the closed
wetland class versus the hardwood and softwood forest (Henderson & Lewis, 2008).

The incident angle seems to have some effects on the classification results. When using
MLC, the FQ 22/27 beam modes (acquired at 41° - 46° incidence angle) performed better
than the FQ 4 beam mode image (~22°) when they were acquired under leaf-off and dry
conditions. However, when leaves are present, the FQ 4 beam mode performs better than
the FQ 22/27 beam mode under dry conditions. The opposite occurs under wet conditions.
The lowest classification accuracies were obtained with the FQ 4 pairs acquired over leaf-
on and wet conditions (70.9%). From the Random Forests classification results, it appears
that both the FQ modes were important in image classification, with FQ 4 images at the top
of the list of variable importance. It is interesting to note that the only leaf-on image
included as important was acquired with the FQ 4 incidence angle, indicating that maybe
the lower incidence angle could penetrate the canopy easier than at the higher incidence
angle. Shelat et al. (2012) classified land cover in a tundra environment with the MLC and
multi-polarized RADARSAT-2 SAR images acquired in FQ1, FQ12 and FQ20. From this
study they showed that moderate incidence angles (FQ12 or FQ20) performed better than
steep incidence angles (FQL1).

The effect of moisture conditions based on the rainfall amount is less clear. This may be
with due to identifying a threshold which defines what wet versus dry should be. As well,
wetlands are generally wet without any rainfall, and therefore there shouldn’t be too much
difference. With MLC, there is some indication that for leaf-off images, cross-validation
resultswere better for images acquired under dry conditions than under wet conditions,
whatever the beam mode. However, for the FQ 22/27 leaf-on images, the classification was
slightly better when the image was acquired under wet conditions than under dry
conditions. We cannot make any conclusions for the FQ 4 beam mode due to lack of leaf-
on images acquired under wet conditions. From the Random Forests classification, both
dry and wet images were considered to be important variables in classification.
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5.3 Image combination of radar with optical data and slope

The MLC algorithm applied to the Landsat image alone gave a cross-validation overall
result of 92.6%. For the FQ image pair, the highest cross-validation classification result
(76.3% ) was obtained with the FQ 22/27 image pair acquired under leaf-off and dry
conditions. We can expect that using both the Landsat-5 TM and the FQ images will allow
for better classification accuracy. When the Landsat-5 TM image was added to the FQ
22/27 image pair acquired under leaf-off and dry conditions, the MLC cross-validation
result for overall accuracy increased to 94.4%. Further small improvement was made in the
classification by adding slope data in the classifier, increasing the cross-validation result
for overall accuracy to 95.4%. Adding Landsat-5 TM and DEM data to the MLC
classification of SAR images had previously been shown to improve classification
accuracy of surficial materials in tundra environment from Radarsat-1 C-HH SAR images
(Grunsky et al., 2009), Radarsat-2 C-HH and C-HV images (LaRocque et al., 2012), and
multi-polarized Radarsat-2 SAR images (Shelat et al., 2012). Indeed, different aspects of
the land cover are captured by differences in spectral reflectance through the Landsat
image, radar backscatter of the FQ images, and topography from the DEM, all of which
help to differentiate the land cover classes.

The poorest classification accuracy obtained by using the FQ images alone can be
explained as follows. It is possible that the MLC classification might not be the best
method for classifying SAR images as compared to optical Landsat-5 TM images, since
MLC assumes a normal distribution. The normal distribution fits the case of Landsat data
while SAR data have a more complex distribution. As well, even though two dates were
chosen, they were acquired under similar conditions; perhaps considering two FQ images
acquired under contrasting conditions may have been more useful. With Radarsat-2 FQ
SAR images, Shelat et al. (2012) showed that using contrasting FQ1 (18.52°-20.34°) and
FQ20 (39.30°-40.74°) images and classified with MLC gave the highest overall accuracy
for land cover classes in a tundra environment.

With Random Forests, when all fourteen FQ images with all four polarizations (HH, HV,
VH and VV) were classified, the overall cross-validation result was 98.3%, which was not
very different than when the Landsat-5 TM image was combined with the best FQ image
pair (98.6%). Both of these cases gave better accuracies than using only the three
polarizations of the FQ22/27 image pair (86.7%). This may indicate that while the use of
Landsat does add to the accuracy, a similar accuracy may be achieved by using only FQ
images acquired in variable incidence angle, leaf and moisture conditions. Being able to
use solely SAR images rather than needing to use Landsat-5 TM images is of great interest.
Indeed, for the study area, there was only one completely cloud-free and snow-free
Landsat-5 TM image available from the vegetation season in 2011. In the case of the
FQ/Landsat combination classification, the most important variables were Landsat TM4
(near infrared) and TM3 (red) bands, followed by the HH polarization, and the HV
polarization of the FQ27 (dry, leaf-off) image. The least important variables were the two
short-wave infrared Landsat bands (TM5 and TM7). Landsat TM4, TM3 and C-HH and
HV images are all sensitive to the presence of vegetation in the imaged area. Indeed, TM4
and TM3 bands are sensitive to the chlorophyll activity of the vegetation. C-HV polarized
images detect the significant depolarization and volume scattering occurring with
vegetated areas (Evans et al., 1986, Greeley and Blumberg, 1995; Blumberg, 1998; del
Valle et al., 2010).
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Similar to the MLC classifier, adding the slope information in the classification had a
lower effect on the classification accuracy of land cover types than did the addition of the
Landsat opticaldata. When slope was combined with the FQ22/27 image pair, the overall
cross-validation result increased from 86.7% to 90.8%. When the Landsat-5 TM image
was added to the classification, the overall cross-validation result increased to 98.7%. Such
results were already observed when classifying SAR images using Radarsat-1 C-HH SAR
images (Grunsky et al., 2009), Radarsat-2 C-HH and C-HV images (LaRocque et al., 2012)
and multi-polarized Radarsat-2 SAR images (Shelat et al., 2012).

5.4. Individual class accuracy

This section shall discuss the individual class accuracy for the Random Forests classifier
only, as it is the one which gives the highest overall accuracy for any image combination
(Table 15). Overall, for the non-water classes, the highest class accuracy was obtained for
the hardwood forest class whatever the image combination, except for the one that
combined the FQ image pair with the slope data, for which the highest class accuracy was
obtained for the softwood forest class (Table 13).

It is the open wetlands class that had the lowest class accuracy for all classifications,
except the one that combined the FQ image pair with the slope data, for which the lowest
class accuracy was obtained for the harvest area class. The main confusion for open
wetlands was with low vegetation, bare soil, and softwood forests classes. Under dry
conditions, some of these open wetlands may have been dried out, thus explaining the
backscattering similarities with the low vegetation class, both having short vegetation. The
closed wetland class showed the most confusion with softwood forests and open wetlands.

The greatest class accuracy increase occurred for the open wetlands and bare soil classes
when adding the Landsat data to the FQ image pair. However, the classified image
obtained from the combination of an FQ image pair with the Landsat and slope data,
showed that the closed wetlands have most likely been over-classified (Figure 7) as
compared to the classified image produced from all fourteen FQ images (Figure 8). Indeed,
confusion between closed wetlands and hardwood forests exists, mainly because closed
wetlands are hardwood swamps, covered with maples (Figure 3), which may cause them to
have similar reflectance. Such over-classification appears not to happen when using only
the FQ images. The reason for this may be that these images better discriminate the
presence of water below the canopy. It should be mentioned that for both wetland types,
the study area comprises a limited number and size of wetlands. By having larger wetland
areas, the training polygons would less likely be influenced by mixed pixels around the
edges of the training areas. Further work is needed to test these algorithms in areas having
large wetland areas.
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5.5 Polarimetric variables and decompositions

Classification with the polarimetric variables had the lowest overall cross-validation
results. However, the most important polarimetric variables were identified by referring to
Random Forests variable importance. From the leaf-off dry FQ22 and FQ27 images, the
six variables that appeared in the top ten most important are presented in Table 15.

Table 16. Most important polarimetric parameters from the Random Forests classification of the
FQ 22 and FQ 27 polarimetric SAR images acquired under dry and leaf-off conditions

Type Variable

Freeman-Durden Power contribution due to volume scattering
decomposition

Cloude-Pottier Beta Angle

decomposition Anisotropy

Touzi Tau Angle

Alpha_S Parameter
Polarimetric variable Orientation angle for maximum of the completely
polarized component

Table 16 shows that the incoherent target decompositions are the most important
polarimetric variable in classification, as the only other variable that appears as important
from both classifications is the orientation angle for the maximum of the completely
polarized component. It would be interesting in the future to run a classification using
Radarsat-2 HH, HV, VH and VV data, and Freeman-Durden (Freeman & Durden, 1998),
Cloude-Pottier (Cloude & Pottier, 1997), and Touzi (Touzi, 2007; Touzi et al., 2007)
decompositions.
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6. Conclusions

This study examines the potential for using multi-beam Radarsat-2 C-Band polarimetric
SAR, Landsat-5 TM, and DEM data for classifying wetland and non-wetland classes in a
forested watershed in Ontario, Canada. It investigates the influence of incidence angle, leaf
presence and moisture conditions in the classification of SAR images. The images were
classified using two classification methods: the Maximum Likelihood Classifier (MLC)
and Random Forests classifier. Lastly, SAR polarimetric variables and decompositions
were investigated for their usefulness in classification.

The study showed that combining multi-beam Radarsat-2 C-band SAR data, Landsat-5 TM
data, and slope from a DEM produced higher classification accuracy when mapping
wetland areas over a forested watershed than Radar alone. It also highlighted the benefit of
using multi-polarized (HH, HV, VVV) over single polarization (HH) SAR imagery.

One of the most significant variables in the classification is the presence/absence of leaves
during the time of image acquisition. For all SAR images, the leaf-off images produced
higher cross-validation accuracies than leaf-on images, regardless of incidence angle or
moisture conditions. Another factor that was investigated was the incidence angle. There
was indication that steeper incidence angle was better in leaf-off conditions, however for
leaf-on conditions, a conclusion could not be drawn. Lastly, dry conditions seem to be
better than wet conditions. However, optimal conditions appear to be leaf-off, with a mix
of incidence angle and moisture conditions for the Radarsat-2 C-band SAR images used in
this study.

It was found that Random Forests produced higher classification accuracies than MLC for
all image combinations. Random Forests also was beneficial in identifying which images
are the most important in the classification of wetlands. When all fourteen multi-polarized
SAR images were classified together, it showed that the leaf-off condition was the most
important factor, and that a mix of incidence angles, moisture conditions, and polarizations
(HH and VV) was important.

Polarimetric variables on their own did not provide good classification accuracies.
However, with Random Forests, the most important polarimetric variables were identified,
which were orientation angle for the maximum of the completely polarized component as
well as others such as the Cloude—Pottier, Touzi, and Freeman-Durden decompositions.
Combining these polarimetric variables with multi-polarized (HH, HV, VH, and VV)
intensity images may be interesting in future studies.
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