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SUMMARY 
The Pig is one of the most important sources of animal protein and an essential animal model for 

human biomedical research due to its anatomical, physiological, biochemical and metabolic 

similarities with human being. Profound understanding of the pig genome helps to understand its 

biology in depth. To help this, availability of the pig genome sequence in the public databases 

facilitates research of wider spectrum. Generating Expressed sequence tags (EST) by partial 

sequencing normalized full-length cDNA libraries can improve the discovery of genes expressed in 

different tissues. cDNA libraries are also vital resources to elucidate alternative splicing pattern of 

genes and infer splice variants. The objective of this study was to pick and sequence the 5’end of 

7,680 individual clones, identify clone sequences blasted against identical genes to determine the 

transcript size by Agarose-gel analysis and examining the presence of splice variants. Total RNA was 

isolated from eleven different tissues of an adult pregnant pig (113 days of gestation) and a 

normalized full-length cDNA library was constructed by a commercial company. Individual cDNA 

clones were cultured in 384-well plates and Sanger sequenced on an ABI3730 DNA analyser. The 

obtained sequence results were merged with results of two previous studies of the same cDNA 

library which resulted in 26,880 processed clones. In total 19,470 edited sequences were used for 

further analysis. Sequence similarity was searched using Basic Local Alignment Searching Tool 

(BLAST) against pig cDNA, human cDNA and mouse cDNA databases. A total of 12,461 sequences 

provided hit against the pig cDNA database and 8,300 sequences provided hit against the human 

cDNA database. 5,268 sequences provided hit against the mouse cDNA database. Moreover, the first 

100 base pairs of the sequences were blasted against the newly released pig genome (build 10.2). In 

total of 12,222 sequences provided hit against the pig genome. Significant amount of clones provided 

database specific hits in either the Human or Mouse cDNA database which are important to retrieve 

homologous pig genes which are not mapped in the pig genome. A total of 7,074 non-redundant 

transcripts and 6,877 non-redundant genes were retrieved. PCR and Gel-electrophoresis protocols 

were optimized to determine insert the size of transcripts. Transcript length of 108 clones blasted 

against 10 different genes was determined and variation in size was obtained. The complete 

sequence of the 13 clones blasted to the same gene; the Swine Leucocyte Antigen (SLA-3) gene was 

obtained by sequencing with internal primers and variation in length and Exon-intron organization 

was confirmed. A comparison between the clone sequences and mRNA sequence stored in gene bank 

revealed higher degree of similarity and tissue specific transcripts were found. Large-scale screening 

and sequencing of cDNA libraries constructed from various tissues and development stages using the 

direct sequencing procedure can help to understand the pig genome. The procedure is also 

important to identify tissue specific splice variants. 
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1. INTRODUCTION 

The pig (Sus scrofa) is one of the most important sources of animal protein that provides about 

36% of the global meat supply (FAO, 2009). Moreover, the pig is an essential animal model for 

human domestication (Archibald et al., 2010), evolutionary studies, biomedical and organ 

transplantation research (Fang et al., 2005). Its anatomical, physiological, biochemical and 

metabolic similarities with human makes the pig a useful target for human disease related 

research such as obesity and cardiovascular disease (Zhang et al., 2007). There are significant 

similarities in size and complexity of genomes of human and pig. Furthermore, comparative 

mapping revealed that there is similar genomic organization in the genome of pig and human 

than either of them compared to the mouse genome (Frönicke et al., 1996). 

Detailed description and profound understanding of the pig genome brings significant benefits 

to both the economy and health sectors (Zhang et al., 2007). The pig genome has been 

sequenced using a combined approach of hierarchical shotgun and whole genome shotgun 

sequencing techniques by the swine genome sequencing consortium (Archibald et al., 2010). The 

latest version of the pig genome (Build 10.2) including the gene annotation is in the process of 

completion and being released to public databases. The availability of the pig genome sequence 

has an important role in widening our understanding of the pig biology in greater depth. 

Interpretation of a genome sequence in eukaryotes is enormously complicated and difficult. The 

coding regions of a genome; the exons are intermingled by non-coding intronic regions of the 

gene (Kawai et al., 2001). Furthermore, several gene products can be obtained from a single gene 

through alternative splicing (Zhang et al., 2007). This makes prediction of the real number of 

protein coding genes in an organism ambiguous. This leads to a conclusion that genomic 

sequences cannot decipher precisely the actual picture of the transcriptome in particular and the 

proteome in general (Kawai et al., 2001). However, scrutinizing the transcribed region of a gene 

in depth can provide more information. Therefore, sequencing the messenger RNA (mRNA) after 

converting into its complementary DNA (cDNA) is of paramount importance (Kato et al., 2005). 

The structure of a complete nuclear mRNA contains two distinct structural features; the Cap-

structure at the 5'-end and the poly-A tail at the 3’-end of the mRNA. These structural features of 

mRNA play important roles in transport, intron splicing, stability and prevent mRNA degradation 

by endo-nuclease enzymes (Sachs, 2000).  The region between the cap-structure and the poly-A 

tail is the coding region of matured mRNA. Kato et al., (2005) mentioned that sequencing the 

entire mRNA of a gene and mapping its sequence on the genome helps to easily identify 

structure of the coding and non-coding regions and other functional domains of a gene. The 
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nature, distribution and expression of mRNA in eukaryotic cells vary spatiotemporally making full-

length cDNA library construction challenging and complicated (Carninci, 2000). The mRNA 

constitutes only 1-5 %  of the total RNA mass and it can further be classified according to the level 

of expression and abundance as super abundant, intermediate and rare (Shcheglov et al., 2007). 

Even though, there is a variation among cells derived from different tissues (Carninci, 2007), in a 

cellular transcriptome there can be 5-10 types of superabundant, 500-2000 types of intermediate 

and above 10,000 types of rare mRNA representing 20-30%, 30-50% and 30-40% of the total cellular 

mRNA mass respectively (Alberts et al., 1994). The presence of superabundant cellular mRNA can 

cause uneven distribution of expressed genes during cDNA library construction (Carninci, 2007). 

Eventually, this can cause difficulty in rare gene discovery and over representation of the highly 

expressed genes like housekeeping genes (Carninci, 2000). Despite the challenges, generating a 

normalized full-length cDNA library can improve the representativeness and discovery of genes 

(Natarajan et al., 2010, Nguyen et al., 2010). Therefore, normalizing the cDNA library can enrich 

the library and improve the sequencing efficiency by decreasing the abundance of 

superabundant genes in the library. This will help in the discovery of new genes and transcripts 

(Carninci, 2007, Natarajan et al., 2010).  

cDNA libraries can be constructed using a PCR and solid matrix-based approaches (Shcheglov et 

al., 2007). Nevertheless, such cDNA libraries are characterized as non-normalized and of higher 

sequence redundancy. Carninci (2000) developed a cDNA library normalizing procedures based 

on physical separation of fractions. The normalization procedure includes biotinylation of the first 

cDNA strand and removal of the biotinylated RNA-DNA duplex using streptavidin magnetic 

beads. According to the length and entirety there are two types of cDNA libraries; the 

conventional and full-length cDNA libraries. The conventional cDNA libraries are truncated and 

contain about 20-30% of the full-length cDNA. The full-length cDNA libraries represent more than 

90% of the full-length cDNA. The full-length enriched cDNA libraries have advantage over the 

conventional ones in providing a complete amino acid sequence of a particular protein and 

functional screening of genes (Shcheglov et al., 2007). There have been efforts to generate a full-

length cDNA library sequences over the past decades. Nonetheless, the information obtained 

from the sequences was limited. The limitations arose due to technical complications; reduced 

efficiency of reverse transcriptase to produce full-length first strand cDNA and lack of efficient 

techniques to select full-length cDNA (Carninci et al., 1996). A cap-tapper method developed by 

Carninci et al. (1996) was reported to be an effective technique to construct a full-length and 

high-content cDNA library.  Functional analysis of expressed genes in different tissues, cells and 

developmental stages can be effectively studied by analysing the expressed sequence tag (EST) 
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(Adams et al., 1992, Maeda et al., 2006). Partial sequencing of clones of cDNA libraries 

constructed from specific tissues can help to discover new and tissue specific genes (Yao et al., 

2002). Accumulating larger amount of expressed sequence tags on public repositories have been 

providing information on the transcriptome and enhancing the on-going mammalian genome 

sequencing projects (Al-Swailem et al., 2010). In addition to the functional analysis of genes, 

cDNA libraries are vital resources to elucidate alternative splicing pattern of genes and infer novel 

splice variants.  

Alternative splicing is a cellular activity in eukaryotes through which several gene products are 

obtained from a single gene (Zhang et al., 2007) which subsequently increases transcriptome and 

proteome complexity (Bonizzoni et al., 2006). The alternatively splicing nature of immature-

mRNA provides multiple transcripts of a single gene. This is the reason for the outnumbering 

transcripts of vertebrates to their protein coding genes. More than 70% of human genes undergo 

alternative splicing (Johnson et al., 2003). According to the splicing pattern of the coding regions 

of a gene, there are four different types of alternative splicing namely; exon skipping, alternative 

5’ splice site selection(5’ SS), alternative 3’ splice site selection (3’ SS) and intron retention (Kim 

et al., 2008). The Exon skipping pattern of splicing can remove an entire exon from the transcript 

with its flanking introns and it is the most predominant type of splicing pattern in both vertebrate 

and invertebrates (Zhang et al., 2007). Alternative splicing of mRNA can be detected using both 

computational algorithms (Bonizzoni et al., 2006) and experimental analysis of mRNA of either 

single or pooled tissue samples. However, computational approaches of splice variant detection 

are of lower specificity (Leparc and Mitra, 2007) and experimental analysis of mRNA can be an 

important resources to validate results of the computational approach of splice variant 

detection. 

Over the past decades there have been remarkable efforts to generate EST by sequencing cDNA 

libraries derived from different porcine tissues. Smith et al. (2001) generated and sequenced 1,132 

clones from a porcine early embryonic cDNA library. Fahrenkrug et al. (2002) also constructed 

two normalized porcine cDNA libraries derived from porcine embryonic and reproductive tissues 

and sequenced the 5’-end of 66,245 clones. Wang et al. (2006) constructed 131 randomly isolated 

clones from a longissimus Dorsi muscle tissue to study expression pattern of genes of skeletal 

muscle tissues of Chinese native pig. Lee et al. (2009) constructed five normalized and non-

normalized cDNA libraries and generated a total of 71,000 high-quality ESTs. The cDNA library was 

constructed from porcine tissues related to energy metabolism; abdominal fat, induced fat cells, 

loin muscle, liver and pituitary gland.55,658 of the sequenced EST were stored in the database of 

expressed sequence tag (dbEST). Similarly, Kim et al. (2006) constructed a full-length enriched 
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cDNA library from porcine back fat tissue to comprehend the expression of genes in backfat 

tissues. 16,110 sequences were deposited in the database of expressed sequence tags. Tan et al. 

(2006) also constructed and characterized a cDNA library from liver tissues of a Chinese Mini-pig 

inbred line. The cDNA library was constructed to investigate the genetic background of protein 

incompatibility after liver xenotransplantation and recommend an alternative strategy for further 

gene manipulation. Likewise, Yao et al. (2002) have constructed a normalized cDNA library from 

porcine skeletal muscles tissue to identify changes in the regulation of genes responsible for 

muscle growth. A total of 782 expressed sequence tags were generated. Chen et al. (2006) 

constructed a cDNA library of porcine adipose tissue to understand the functional expression of 

genes abundantly expressed in adipose tissue and sequenced 2880 individual clones.  

Currently several research groups are highly involved in generating huge amount EST of cDNA 

libraries constructed from tissues derived from either multiple or specific organs and 

developmental stages of pigs. Useful information related to different pig metabolisms, and 

expression of specific genes affecting traits of economic importance is being generated. 

Nevertheless, in comparison to the human and mouse the profile of porcine EST generated from 

cDNA libraries is far from complete. Currently there are 1,669,337 pig ESTs stored in the database 

of expressed sequence tag (dbEST) (May 1, 2012). While for human and mouse there are 

8,315,296 and 4,853,570 ESTs respectively (http://www.ncbi.nlm.nih.gov/dbEST). This indicates 

that the porcine transcriptome profile is not as well studied as the human and mouse ones.  

The Animal Breeding and Genomics Centre (ABGC) of Wageningen University is one of the 

leading groups in the international swine genome consortium. It is leading the swine Hapmap 

consortium where over 4,000 pig samples from almost all breeds have been collected (either 

commercial, traditional as well as wild). Currently the ABGC is sequencing and characterizing a 

normalized full-length cDNA library constructed from pooled tissues samples of multiple organs 

of a clone of the pig from which the pig genome is derived.  

Therefore, the aim of this project is to sequence and analyse cDNA clones from a normalized full-

length cDNA library and blast all sequences generated by the project to the latest pig genome 

(build 10.2) to retrieve transcript ID, gene names and gene description. Furthermore, the project 

aims to identify clones sequences blasted to identical genes and examine the variation transcripts 

of these individual clones.  

 

http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html
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2. OBJECTIVES 
 

a. To sequence the 5’-end of 7,680 individual clones in twenty 384 well-plates. 

b. Combine all sequences (including the ones from previous experiments) and blast against 

the newly released pig genome (Build 10.2) and pig cDNA databases in order to retrieve 

transcript ID, gene names and gene descriptions. 

c. To identify clones blasted to the same gene and elucidate presence of splice variants. 

3. MATERIALS AND METHODS 

3.1 RNA Extraction and cDNA Library Construction 

Total RNA was isolated from individual 0.1 g of eleven different pig (Duroc Pig T.j. Tabasco; a 

clone of the pig from which the pig genome is derived) tissues (Kidney, Liver, lymph node, 

cerebellum, placenta, colon, hypothalamus, brain frontal lobe, spleen, small intestine and lung) of 

an adult pregnant pig (113 days of gestation) using Trizol extraction according to the 

manufacturer’s instruction (Appendix 1.1). Samples were loaded into RNeasy column and 

subjected for purification. Finally, 5-10 μg of the extracted total RNA of individual tissue samples 

were pooled together. The pooled total RNA samples were sent to a commercial company (K.K 

DNAFORM, JAPAN) for a normalized full-length cDNA library construction.  

The normalized full-length cDNA library was constructed by a commercial company according the 

cap-tapper method (Carninci et al., 2001). The full-length double stranded cDNA was digested, 

purified and cloned in λ-FLC III cloning vector (Detail information on cloning vector see Appendix 

3). Finally, the plasmid DNA was transformed into an E.coli bacteria strain DH10B. 

As part of the quality control procedures the insert size of 48 randomly isolated clones was 

determined. The average insert size was estimated to be about 2 Kb (Appendix 5. Table s1). 

Sequences were also checked for redundancy, contamination, success rate and full-lengthiness. 

Finally, plasmid and phage stock were delivered and stored at -80 0C. 

3.2 Culturing and sequencing of Clones  

Plasmid stock (1.75 μl) was mixed with 200 μl of LB media supplemented with Ampicillin (0.1 

μg/ml). From the mix 100 μl was plated on petri dishes with 1% agar in LB medium which was 

supplemented with Ampicillin (0.1 μg/ml). Finally, Petri dishes were incubated upside down 

overnight (18 hours) at 37 oC. (Details see: Appendix 1.2-1.5) 
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3.2.1 Master and Replica Plates Preparation  
 

For the sequencing procedures one 384-well master plate (POR_A) and two 384-well replica 

plates (POR_B and POR_C) were prepared. Plates POR_A and POR_B were supplemented with 

LB medium, Ampicillin and 10X freezing medium (see: Appendix 1.6). The freezing media 

(Appendix 1.4) was added to plates because both plates (POR_A and POR_B) had to be stored in -

80 oC and serve as back-up plates. Plate POR_C was supplemented with only LB media and 

Ampicillin. (Freezing media was not added to POR_C in order to prevent negative effect of salt 

residues while sequencing). Individual bacterial colonies were picked from the agar petri dishes 

and transferred into 384 master plates (POR_A). Plates were incubated overnight (18 hours) at 37 

oC. The following day, replication of plates containing bacterial colonies was done using the 384-

Pin replicator (Appendix 1.7). Similarly both replica plates (POR_B and POR_C) were incubated 

overnight at 37 oC. Plates POR_A and POR_B were stored in -80 oC to serve as back-up plates. 

Whereas, plates POR_C were used to prepare cell lysate for further sequencing procedures. 

3.2.2 Cell lysate, Direct Sequencing Reaction and DNA Precipitation  

Cell lysate was prepared by spinning down bacterial colonies at 2000 rcf for 20 minutes followed 

by series of washing the media using MQ water. Bacterial pellets were re-suspended in 25 μl of 

MQ water. Plates were loaded into a thermo-cycler for cell denaturation at 95 oc for 5 minutes. 

The cell lysate were stored directly on ice and centrifuged at 1000 rcf for 10 minutes to separate 

the cell debris from the plasmids. (Details see: Appendix 1.8). 2 μl of the cell lysate was used for 

direct sequencing by mixing it with 3 μl sequencing master mix (BigDye 3.1, 5X sequencing buffer, 

MQ water, Universal T3 forward Primer). Cycle sequencing was performed using BD50x50 

program in PCR thermo-cycler (Appendix 1.9). DNA samples were precipitated with 0.5 μl sodium 

acetate (NaAc-EDTA), 17 μl of 100% ethanol. DNA samples were then dissolved in 10 μl of 

formamide (Appendix 1.10). Finally, samples were transferred into a barcoded 384 well-plates and 

loaded into ABI 3730 DNA analyser (Applied Biosystems®). A summary of the whole sequencing 

procedure is represented schematically in figure 1. 

3.3 Sequence Analysis 

Raw sequences reads were retrieved from the ABI 3730 DNA analyser and converted to FASTA 

format (Appendix 2.1) using ABI-2-FASTA converter of the DNA baser sequence assembler 

package (http://www.dnabaser.com/download/Abi-to-Fasta-converter.html). MULTI-FASTA files 

of each 384 well-plates were generated using the Multi-Fasta builder of the DNA baser sequence 

assembler package (Appendix 2.2).  

http://www.dnabaser.com/download/Abi-to-Fasta-converter.html
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Figure 1: Graphic representation of direct sequencing procedures 

Sequence lengths of 50 base pairs and above were considered as good reads for further analysis. 

Sequencing efficiency percentage, total number of sequences in base pairs, maximum sequence 

length, minimum sequence length and average sequence length of each 384 well-plate were 

calculated. All edited sequence files from this experiment were merged with another two 

sequence files from previous experiments of the same project for further analysis. 

3.3.1 Sequence Quality Control and Open Reading Frame Detection 

Presence of vector sequence and an open reading frame was searched for 10 randomly selected 

clone sequences of each plate sequenced. This was done to confirm the full-lengthiness of the 

cDNA sequences for blast search in the presence of the transcription start codon (ATG) and the 5’ 

untranslated region (UTR). Moreover, the presence of open reading frame (ORF) signifies the 

presence of a gene and was searched using the ORF finder software hosted on the National 

Centre for Biotechnology information (NCBI) using the default settings.  

3.3.2 Basic Local Alignment Search Tool Analysis 

The pig genome (Build 10.2), Pig cDNA, Human cDNA, Mouse cDNA ,λFLC-III DNA and E.Coli 

genome databases were downloaded from Ensembl (www.ensembl.org/index.html) (Appendix 

2.3) and converted into blastable database using specific command lines in MS DOS (Appendix 

2.4). The Blast-2.2.26+ application for windows was also downloaded (Appendix 2.5) from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/). Sequence similarity search was 

http://www.ensembl.org/index.html
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
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performed using the Basic Local Alignment Search Tool (BLAST) resource of nucleotide Blastn 

(Appendix 2.6). In order to reduce the number of redundant hits, only the first 100 bps of the 

clone sequences were used to blast against the pig genome (Build 10.2). However, the entire 

clone sequences were used to blast against the pig cDNA, Human cDNA, and Mouse cDNA 

databases. Sequence similarity with an e-value of less than 1E-10 was considered as a significant 

hit. The blast output was screened for redundancy and for clones blasted against identical genes.  

3.4 PCR amplification and Gel-Electrophoresis Analysis  

All sequences blasted against the pig cDNA database and blast output was merged with a 

separate gene annotation file that was used by Ensembl for gene annotation but not yet released 

when performing the analysis. Clones with hits to identical genes were selected. We randomly 

selected 108 clones blasted to 10 different genes (Appendix 5. Table 5s). The aim of the PCR 

reaction was to amplify the whole cDNA insert and verify presence of size variation among 

transcripts. Furthermore, sequence their 3’-end to infer presence of splice variants of the genes. 

All clones of one gene were selected for the whole transcript sequencing using internal primers. 

3.4.1 Optimizing PCR protocol 

PCR reaction was performed to amplify the cDNA insert of selected clones using both universal 

forward and universal reverse primers; T3 and T7 respectively. Optimized PCR protocol and PCR 

conditions were developed (Table 1).  

Table 1: DNA template dilution rates and annealing temperatures for trial PCR protocol 

Sr.No DNA template ( Cell lysate) Dilution rates Annealing temperature 

1 ± 1:7 

50 and 55 2 ± 1:12 

3 Stock ( Undiluted cell-lysate) 

3.4.2 Agarose Gel Electrophoresis  

An Agarose gel of different percentages (Table 2) were prepared and dissolved in 300 ml of 0.5% 

TBE buffer. Etidium Bromide (EtBr) was added at a rate of 5 μl/100 ml of TBE buffer. (Detail see: 

Appendix 1.11) Per gel, 2 μl of PCR product of the three types of DNA dilution rates and two 

different annealing temperatures were mixed with 2 μl of loading dye and 6 μl of MQ water and 

loaded on the Agarose gel. Size standards of 100 bp and 500 bp were used to estimate PCR 

amplicon size.   
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Table 2: Agarose percentage and Gel electrophoresis running time 

Sr.No Agarose percentage Gel running time in minutes 

1 1.5   

60 and 180 2 1.25   

3 1.00   

 

3.4.3 Purification of PCR products and Transcripts Length Estimation 

The PCR products of the selected clones were purified using the Millipore PCR clean-up vacuum 

system to remove primers and dNTPs The quality and quantity of the purified PCR products were 

assessed on 1.5% Agarose gel by using the precision marker for the presence of single band 

without primer dimer(Appendix 1.12). 

The purified PCR product was sequenced by adding BigDye 3.1, 5X dilution buffer, MQ water and 

universal T7 reverse primer on Biometra 384 well-plate thermo cycler with an annealing 

temperature of 55 oC (Appendix 1.13). The sequencing products were precipitated using (NaAc-

EDTA) and Ethanol (Appendix 1.14). Samples were dissolved in formamide and transferred into 

barcoded 96 well-plate and analysed on the ABI3730 DNA analyser. 

The poly-A tail at the 3’-end of the cDNA inserts made the sequencing procedure using the 

universal T7 reverse primer difficult and resulted bad quality sequences. To solve the problem 

further sequencing of the purified PCR product from the 5’-end by designing internal primers was 

considered as a solution. Sequence result from purified PCR products are longer than sequence 

product from direct sequencing. Additional sequencing on selected 13 clones blasted to one gene 

was performed by making internal primers in the program Primer3 (Appendix 2.7) (Appendix 5 

table S4). Purified PCR amplicon were sequenced until the complete cDNA was sequenced. 

Sequences were aligned to the reference pig genome on UCSC genome browser to detect 

differences among transcripts. 
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4. RESULTS  

4.1 Direct Sequencing of Clones of a Full-Length cDNA Library 

In total 6,912 individual clones were picked and sequenced in eighteen 384 well-plates. The 

overall sequencing efficiency of the experiment was 79.4% ranging from 33.6 to 93.2%. The lowest 

sequencing efficiency was attained in plates POR_C062 and POR_C063 with overall efficiency of 

33.6% and 49.5% respectively due to a failure in the sequencer. Therefore, only 5,481 clone 

sequences were considered as good sequence reads and used for further analysis. Sequences 

had an average length of 505 base pairs (bp) ranging from 50 bp to 857 bp (Table 3). On the 

contrary, seven plates (POR-C056, POR-C060, POR-C061, POR-C067, POR-C071, POR-C072 and 

POR-C073) had an efficiency of more than 90%.  

Table 3: Total sequenced cDNA clones 

 
 

Sr.No 
  

Plates 
Number 

Sequences Statistics 

Total 
number of 

good 
sequences  

Length of 
sequences 

(bp) 

Min 
 (bp) 

Max 
    (bp) 

Average 
(bp) 

Efficiency* 
(%) 

1 POR-C056 358 210937 61 745 589 93.229 

2 POR-C057 339 184994 87 716 545 88.281 

3 POR-C058 299 161161 66 857 539 77.865 

4 POR-C059 290 150538 60 704 519 75.521 

5 POR-C060 347 195445 72 728 563 90.365 

6 POR-C061 357 189291 65 730 530 92.969 

7 POR-C062 129 27520 55 545 213 33.594 

8 POR-C063 190 45884 51 526 242 49.479 

9 POR-C064 254 95886 69 591 378 66.146 

10 POR-C065 226 78889 51 619 349 58.854 

11 POR-C066 318 139490 50 697 439 82.813 

12 POR-C067 352 171497 52 670 487 91.667 

13 POR-C068 292 94419 57 751 323 76.042 

14 POR-C069 332 186462 60 766 562 86.458 

15 POR-C070 339 196138 61 754 579 88.281 

16 POR-C071 353 204524 57 767 579 91.927 

17 POR-C072 358 221794 50 755 620 93.229 

18 POR-C073 348 213087 118 738 613 90.625 

Overall 5481 2,767,956 50 857 505 79.4 

*Sequencing Efficiency of each plate is equals to the number of total good reads divided by 384 multiplied by 100 

The Sequences obtained in this project were combined with sequences obtained in two earlier 

performed experiments which generated 13,989 useful sequence reads from 19,968 processed 

clones from fifty two 384 well-plates. The average overall sequencing efficiency of the previous 



 

11 

 

experiments was 71.21% and 69.34% respectively with an average sequence length of 365 and 314 

bp respectively (Table 4). (Details see Appendix 5 Table s2 and Table s3). 

4.2 Sequence Similarity Search against Reference Databases 

Sequences from the three separate experiments were edited and merged together to create one 

file that included 19,470 individual cDNA clone sequences from seventy 384-well-plates (Table 4).  

Table 4: Summery of the total number of sequences generated from the three experiments 

Experiment 

Total No 
of 

plates 

Number 
of clones 

Processed 

Maximum 
length 

(bp) 

Minimum 
length 

(bp) 

Average 
length 

(bp) 

Average 
efficiency 

(%) 

Number of 
good 

sequences 

1 20 7,680 750 51 365 71.21 5,469 

2 32 12,288 811 51 314 69.34 8,523 

3 18 6,912 857 50 505 79.40 5,481 

Total 70 26,880 857 50 394 72.46 19,470 

 

Prior to the search for sequence similarity using the Blast analysis, the latest version of blast+ 

application (blast-2.2.26+) and fasta sequence files were downloaded. Blastable databases were 

created from the fasta sequences. Sequences were blasted against the pig genome (build 10.2), 

Pig cDNA, Human cDNA, Mouse cDNA, λFLC-III vector sequences and E.Coli genome. 80% of the 

sequences (15,388) of all useful sequence reads displayed hit in either of the pig genome, pig 

cDNA, Human cDNA and mouse cDNA databases ( Examples Table 6-10).  

The blastn analysis output revealed that a total of 12,222 hits were obtained by blasting the first 

100 bp of the sequences against the pig genome database. The reason for blasting only the first 

100 base pairs of the sequences against the pig genome was to avoid redundant hits. The 

blastable part of the sequence mainly contains only the first exon of the cDNA sequences. In total 

12,461 sequences gave a hit against the pig cDNA database (Table 5). 

In addition to the blasting against the pig databases, blasting sequences against databases of 

species which are well analysed and evolutionarily related to pig (human and mouse) databases 

can help to identify homologous pig genes which are not mapped in the pig genome. As a result, 

8,300 sequences showed hit against the human cDNA and 5,268 clone sequences showed hit 

against the mouse cDNA databases (Table 5). 

 

 



 

12 

 

Table 5: Summery of hits generated by blasting 19,470 cDNA sequences against different databases  

Sr. No Database Total Number of hits 

1 Pig Genome (Build 10.2)A 12,222 

2 Pig cDNA (Build 10.2) 12,461 

3 Human cDNA 8,300 

4 Mouse cDNA 5,268 

5 E.Coli genome 20 
A: Only the first 100 bps of the sequences were blasted against the pig genome database  

Blasting against the E.Coli genome was also performed to check the inclusion of bacterial 

genome during the sequencing process. Only 20 clones displayed hits against the E.coli genome. 

All hits were thoroughly inspected if they can be found in the blast output of either of the pig 

databases. It turned out only 5 hits are obtained from the E.coli genome which represents only 

0.04 per cent of the overall good sequence reads used for blastn analysis. The sequence reads 

were also blasted against the λFLC-III vector DNA sequence. There were 2,325 clones which gave 

hits against the vector sequence. It is quite normal to get significant amount of hit as the cDNA 

insert was cloned into the λFLC-III vector. Moreover, the vector sequences were not trimmed 

from the cDNA sequences. The average alignment length of the clones which displayed hit 

against the λFLC-III DNA sequence is 36 bps (Figure 2). This implies that on average 36 bp of the 

vector sequences before the start site of the inserted sequences are sequenced as the forward 

primer anneals into the vector sequence.  

Blasting the cDNA clone sequence to the pig genome and comparing the alignment of the cDNA 

clone exons with the predicted positions of exons can indicate the full-lengthiness of the clone 

sequences. The clone sequence POR_C070_P17 blasted against the pig reference genome 

contains 5 exons. The positions of all exons of the clone perfectly match with the predicted 

positions of exons (Figure 3). The first exons of the predicted gene is not fully coding due to 5’-

untranslated region (UTR).  

The presence of both the vector sequence before the start of the cDNA insert can be an indicator 

of the quality of the sequencing product. For instance, the clone sequences POR_C070_P17 

indicated in figure 2 contains a vector sequence before the start of the cDNA insert. The first 5-10 

bps of the cDNA sequence is of lower in quality which is the start site of the cDNA insert. This is 

due to the annealing of the T3 universal forward primer to the vector sequence 
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Table 6: Example of clones hits against the Pig genome database 

Clone ID Chr. Number % Identity 

Alignment 

length Mismatches Gap Opens 

Query 

start 

Query 

End 

Subject 

Start 

Subject 

End E-Value Bit score 

POR_C070_P17 8 100 57 0 0 44 100 130451297 130451353 2.00E-21 106 

POR_C073_P14 10 100 67 0 0 34 100 54244382 54244448 5.00E-27 124 

 

Table 7: Example of clones hits against the Pig cDNA database 

Clone ID Subject ID  % Identity 
Alignment 

length Mismatch Gap Opens 
Query 
start 

Query 
End 

Subject 
Start 

Subject 
End e-value Bit Score 

POR_C070_P17 ENSSSCT00000010058 99.81 526 0 1 44 569 38 562 0 965 

POR_C073_P14 ENSSSCT00000022795 99.24 131 1 0 517 647 1 131 1.00E-61 237 

 

Table 8: Example of clones hits against the Human cDNA database 

Clone ID Subject ID 
 per cent 
Identity 

Alignment 
length Mismatch 

Gap 
Opens 

Query 
start 

Query 
End 

Subject 
Start 

Subject 
End e-value Bit Score 

POR_C070_P17 ENST00000508511 93.83 405 22 3 166 569 16 418 3.00E-172 606 

POR_C073_P14 ENST00000376139 96.74 614 20 0 34 647 19 632 0 1024 

 

Table 9: Example of clone hits against the Mouse cDNA database 

Clone ID Subject ID 
 per cent 
Identity 

Alignment 
length Mismatch 

Gap 
Opens 

Query 
start 

Query 
End 

Subject 
Start 

Subject 
End e-value Bit Score 

POR_C070_P17 ENSMUST00000005964 90.35 404 36 3 167 569 89 490 2.00E-148 527 

POR_C072_E11 ENSMUST00000147559 83.49 212 24 9 152 359 24 228 4.00E-46 187 

 

Table 10: Example of clone hits against the E.Coli genome database 

Clone ID Subject ID 
 per cent 
Identity 

Alignment 
length 

Mismatch 
Gap 

Opens 
Query 
start 

Query 
End 

Subject 
Start 

Subject 
End 

e-value Bit Score 

POR_C037_L12 DH10B_withdup_FinalEdit 84.68 222 32 2 28 247 3504344 3504123 6.00E-76 279 

POR_C057_D17 DH10B_ withdup_FinalEdit 98.63 219 0 2 161 377 1384971 1385188 2.00E-107 385 
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Figure 2:   A partial overview of a vector sequence and cDNA insert of the clone sequence POR_C070_P17. The vector sequence; highlighted in light blue is indicated in the red box 

and the cDNA insert sequence is indicated in dark blue box. The sequence quality of the first 10-15 base pairs of the cDNA insert clone is low. However, as we move further 

towards the 3’-end the quality gets better. The presence of the vector sequence before the 5’-end of the insert clone sequence signifies the full-lengthiness of the cDNA library. 

 

 

 

 

 

 

Figure 3:  BLAT/BLAST hit of the cDNA clone POR_C070_P17 against the pig genome using Ensembl genome browser. The clone sequence aligns with the gene F1SOC1_PIG . The 

Ensembl gene structure, gene scan prediction and the blast hit output of the cDNA clone are indicated. The cDNA Clone is a full-length as the first exon starts exactly at the 5’-

end forward strand, which perfectly matches to the 5’-end forward strand of the Protein coding F1SOC1_PIG gene.   
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Figure 4: Open reading frame (ORF) search output of clone sequence POR_C070_P17. Figure A indicates 

the ORF search of a clone sequence including the vector sequence whereas; figure B indicates ORF 

without the vector sequence. Both ORF predictions showed the same frame which covers most of the 

query sequences. This signifies that the clone sequence is a full-length cDNA clone sequence.  The 43 bps 

before the start of the open reading frame in figure B represents the 5’-untranslasted region (5’-UTR).  

Finding the open reading frame of a sequence helps to identify the part of the gene which encodes 

for protein and assists gene prediction. The open reading frame of the clone POR_C070_P17 was 

searched both in the presence of the vector sequence and without the vector sequence. It was 

shown the second forward strand is the longest ORF and encode for 183 amino acids. Figure 4A 

indicates prediction of ORF including the vector sequence and the third frame is the longest one 

stretched from 81 to 629 base pair. Figure 4B indicates of ORF prediction without the vector 

sequence and covers 44 to 592 base pair. The first 43 base pairs are part of the gene but not part of 

the ORF and the position of the 5’-UTR region is presumably located in this region. 

The blast outputs of each database were thoroughly inspected and there were significant number 

of sequences displayed hit to specific databases and were categorized as database specific hits 

(Examples Table 12 and 13). The pig genome showed to have highest number of database specific 

hits; 2,473 sequences provided hit only to the pig genome database. The pig cDNA database also 

provided 1,564 database specific hits. Whereas, Human cDNA, Mouse cDNA, and E.coli genome 

sequence provided 340, 109, and 5 specific hits respectively (Table 11). 

Table 11: Summery of database specific blast  hits 

Sr. No Database Number of Database specific blast  hits* 

1 Pig Genome(build 10.2) 2,473 

2 Pig cDNA (build 10.2) 1,564 

3 Human cDNA 340 

4 Mouse cDNA 109 

5 E.Coli genome 5 

*Database specific blast hits are clones that provided hit only in one of the databases but not in others. 

A B 



 

16 

 

The human and mouse cDNA database specific blast hits are important for comparative mapping of 

pig genes. We can easily indicate genes that are not mapped on the pig genome by searching their 

homologous genes in either human or mouse genomes. This is due to the fact that both the human 

and the mouse genomes are studied comprehensively.  

Table 12: Example of clone sequences provided hit only in Pig cDNA database 

Clone ID Transcript ID 
% 

Identity 

Align. 

Length 

Query 

Start 

Query 

End 

Subject 

Star 

Subject 

End 
E-Value 

Bit 

Score 

POR_C067_L01 ENSSSCT00000019064 100 173 0 0 19 191 3.00E-87 320 

POR_C069_L16 ENSSSCT00000007385 98.19 332 2 4 308 638 5.00E-164 577 

POR_C070_N16 ENSSSCT00000014539 79.62 265 39 14 311 568 2.00E-43 176 

POR_C072_O24 ENSSSCT00000010475 95.48 509 16 7 1 507 0 806 

 

Table 13: Example of clone sequences provided hit only in Human cDNA database 

Clone ID Transcript ID % Identity 
Align. 

Length 

Query 

Start 

Query 

End 

Subject 

Star 

Subject 

End 
E-Value 

Bit 

Score 

POR_C063_H01 ENST00000361264 85.09 161 18 174 132 287 4.00E-37 156 

POR_C064_B16 ENST00000535674 85.71 168 3 165 1021 1185 1.00E-41 171 

POR_C070_K19 ENST00000540734 83.69 325 45 8 41 361 555 875 

POR_C068_G01 ENST00000263754 100 66 0 0 1 66 422 487 

4.3 Identification of Pig Transcripts and Pig Genes  

The blast output of all the useful sequence reads was analysed thoroughly for the number of 

transcripts and genes obtained. There were 12,461 clones which provided hit against the pig cDNA 

database. These clones were blasted against 70,023 transcripts. Nevertheless, most of the 

transcripts were redundant. The output was edited for redundancy and the total numbers of non-

redundant transcripts were 7,074.  

For example, the transcript ID ENSSSCT00000001005; is a novel transcript of the gene Plasma 

membrane calcium-transporting ATPase (ATP2B1) located on chromosome number 5:87,958,687-

87,973,227 forward strand. It was obtained from five different clones (Detail see: Table 14). 

Table 14: Example of redundant hits against the pig cDNA database 

Clone ID Transcript ID 

per 

cent 

Identity 

Alignment 

Length 

Query 

Start 

Query 

End 

Subject 

Star 

Subject 

End 
E-Value 

Bit 

Score 

POR_C033_K13 ENSSSCT00000001005 93.85 260 41 298 1494 1753 5.00E-116 416 

POR_C037_J18 ENSSSCT00000001005 96.76 278 39 315 1978 2253 1.00E-132 472 

POR_C049_N16 ENSSSCT00000001005 94.02 234 36 264 1980 2213 5.00E-101 366 

POR_C070_C04 ENSSSCT00000001005 99.1 555 28 582 1977 2529 0 996 

POR_C071_O02 ENSSSCT00000001005 98.82 170 385 553 19 188 3.00E-81 302 
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The number of genes discovered from all useful sequence reads showed higher degree of 

redundancy like that of transcripts. For example, four different clones mentioned in table 15 

provided hit against the Acetyl-CoA acyltransferase 1 gene (ACAA1); A gene encode for an enzyme 

operative in the beta-oxidation system of the peroxisomes located in chromosome number 13: 

25,168,719-25,179,429 reverse strand.  

Table 15: Example of redundant  clone hits against the gene ACAA1 

Clone ID Transcript ID Sus_Gene 

Ensembl_ 

GeneID Chr Start End 

POR_B006_E07 ENSSSCT00000012317 ENSSSCG00000011250 ACAA1 13 25168719 25179429 

POR_B025_H14 ENSSSCT00000012317 ENSSSCG00000011250 ACAA1 13 25168719 25179429 

POR_C040_B10 ENSSSCT00000012317 ENSSSCG00000011250 ACAA1 13 25168719 25179429 

POR_C047_K12 ENSSSCT00000012317 ENSSSCG00000011250 ACAA1 13 25168719 25179429 

 
The blast output was merged with a gene annotation file used by ensembl which contains list of 

predicted genes with their transcripts to infer the number of genes obtained from the direct 

sequencing of the cDNA library. The file with cDNA database blast output and list of genes was 

edited for redundancy and a total number of 6,877 non-redundant genes were obtained. The 

numbers of non-redundant genes discovered from the first experiment were 3,028. Similarly, 

numbers of non-redundant genes discovered from the second and third experiments were 2,242 

and 1,607 respectively. Figure below summarizes the number of non-redundant genes discovered 

from the three experiments 

 

Figure 5: Histogram of the number of non-redundant genes obtained from each experiment.  

The probability of finding new non-redundant genes from a cDNA library is higher in the first batch 

of sequenced plates than in last ones. This is the reason why the first experiment provided higher 

number of non-redundant genes than the other two experiments regardless of the number of 384 
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well-plates sequenced. The average number of genes discovered from each plate sequenced also 

showed variation among experiments. The first experiment has displayed higher number of non-

redundant genes per plate. This is due to higher probability of each sequence being new and non-

redundant. The number of non-redundant gene per plate discovered in the second experiment is 

relative lower than the two experiments. Table 16 illustrates the average number of non-redundant 

genes obtained per plate sequenced in the three experiments. 

Table 16: Average number of non-redundant genes discovered per plate 

Experiment Number of -plates sequenced 
Average number of Non-redundant 

genes per plate 

1 20 151 

2 32 70 

3 18 89 

Average 70 98 

 

Sequencing more plates can minimize possibility of discovering non-redundant genes from the 

cDNA library. As shown in figure 6, there is still higher possibility of finding non-redundant genes by 

sequencing more new plates. On the other hand, the number of non-redundant genes obtained 

from plates POR_C062, POR_C063, POR_C064 and POR_C065 are comparatively lower. The overall 

sequencing efficiency of these plates was also much lower than the remaining plates; 33.59, 49.48, 

66.15 and 58.85% respectively and the number of useful sequence reads generated from these 

plates was fewer (Detail see: Table 3).  

 

Figure 6: number of non-redundant genes retrieved from each plates of experiment 3. 
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4.3.1 Identification of Homologous Pig Genes in Human and Mouse genomes 

The blast output of sequences showed significant number of database specific hits against both 

human and mouse genome. Thus, clone sequences which are specific to either of the human or 

mouse genome are vital sources for homologous pig genes identification. Genes that are not 

mapped onto the pig genome can be mapped by observing for the presence of identical flanking 

genes in both species. For instance, the clone sequence POR_C068_I17 provided hit only in human 

cDNA database to the human transcript ENST00000369505 located on chromosome X: 

154,609,763-154,614,139 forward strand. The transcript is one of the 9 gene products of the 

coagulation factor VIII-associated 2 (F8A2) gene. The homologous pig gene was searched by 

looking for a syntenic region shared by both human and pig. It was revealed that the gene F8A2 

human gene does not have a homologous pig gene (Figure 7 and 8). 

 

 

 

 

 

  

 
 

 

 

 

 

Figure 7: Homologous pig gene of the human gene F8A2 (ENSG00000198444). There is not 

homologous pig gene displayed on the figure.  

The flanking genes around the F8A2 human gene were also navigated and compared with the 

flanking pig genes. The upstream and downstream genes are identical in both human and pig 

except the F8A2 and F8A3 genes which are not mapped on the pig genome. Therefore, we can 

deduce that the gene is a true homologous gene and not mapped on the pig genome. We can 
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predict the position of both the F8A2 gene is on chromosome X: 142,864,520 and 142,728,032 

between the pig genes CLIC2 and TMLHE (Figure 8).  

 

 

 

 

 

 

Figure 8: Upstream and downstream comparison of flanking genes of the F8A2 gene between human 

and pig. The pig genes CLIC2 and TMLHE are the flanking genes to the homologous gene in both human 

and pig.  

Similarly, the clone sequence POR_C070_K19 provided hit only against the Human cDNA database. 

It was blasted against human gene RPA interacting protein (RPAIN). The gene is located on 

chromosome 17:5,322,961-5,336,196 forward strand of human genome. The homologous pig gene is 

not located in the pig genome. The flanking genes of the RAPIN gene are MED31 and TXNDC17 in 

both human and pig genomes. Therefore, the position of the gene RPAIN in the pig genome is 

between the position of MED3 and TXNDC17 pig genes. 

There are also 109 sequences displayed hit only to the mouse cDNA database. For example, the 

clone sequence POR_C058_A17 provided hit only in the mouse cDNA data base. It provided the 

gene ENSMUSG00000020719; a DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (Ddx5) located on 

chromosome 11: 106,641,669-106,650,499 reverse strand of the mouse genome. The homologous 

pig gene cannot be found through the mouse genome. Nevertheless, it has a homologous human 

gene DDX5 (ENSG00000108654) located on chromosome 17:62,494,374-62,502,484 reverse strand 

of the human genome. The homologous pig gene can easily be navigated from the human DDX5 

gene. However, the human gene DDX5 has no homologous pig gene. In addition to the DDX5 gene 

there are three other human genes (POLG2, LRR37A3 and RGS9) which are not mapped on the pig 

genome. Further inspection on both upstream and downstream of the DDX5 gene showed that 

identical genes are located in both human and pig genomes at the specific location. Therefore, we 

can deduce that the pig DDX5 gene is not mapped in the pig genome and its location is between 12: 

13,602,445 and 12:13,030,855 on the pig genome. 
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4.3.2 Identification of Clone Sequences which did not provide hit to any of the data bases 

Among the 19,470 obtained sequences which were blasted against the pig databases, Human 

cDNA and the Mouse cDNA databases only 80% of the sequences (15,388 sequences) provided hits 

in either of the databases. The remaining 20% of the sequences (4,082) did not provide hit in any of 

the data bases. To analysis these sequences further we took 10 sample sequences blasted the 

entire sequence against the nucleotide collection. It was revealed that 8 of the sequences provided 

hit against the pig genome but the start of the query sequences are beyond the first 100 base pairs 

or the alignment length is too short to be considered as a significant hit within the range of the 

given e-value. Meanwhile the sequence quality of the sequences was very low with several 

unidentified nucleotides (N) which might cause shorter alignment length.  

4.4 PCR and Gel-Electrophoresis Protocol Optimization 

An appropriate PCR and gel-electrophoresis protocols were established for transcript length 

estimation of clones blasted to identical genes. A DNA samples with different dilution rates were 

used to run PCR reactions with an annealing temperature of 50 and 55 oC. Similarly, size of PCR 

products was examined in agarose gel with different agarose percentage and electrophoresis 

running time. Pictures of the agarose gel analysis were examined for clarity of bands and presence 

of primer dimer. It was shown that PCR reactions with DNA dilution rate of both ± 1:7 and ± 1:12 and 

annealing temperature of 55 oC are best visualized in 1% agarose when running in the 

electrophoresis for three hours. Thus, it was optimum protocol to determine insert size of the 

clones effectively (figure 9). 

 

 

 

 

 

Figure 9: Optimized PCR and gel-electrophoresis protocols with different DNA dilution rate, annealing 

temperature and gel running time. The picture represents 1% agarose, 3 hours of running time and 

annealing temperature of 55 oC. Letters A, B and C represent DNA dilution rates of ± 1:7 and ± 1:12 and 

stock undiluted DNA respectively. Size standards of 100 and 500 bp are indicated on the picture. The 

picture showed better result; single bands with no primer dimer.  
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4.5 Transcript Length Estimation  

The blast output of the pig cDNA database was thoroughly inspected for the presence of clone 

sequences with multiple hit against identical gene. There were several sequences blasted to 

identical genes. This might be due to either redundancy in the cDNA library or clones are from 

different transcripts of a single gene. However, the cDNA library is normalized and checked for 

redundancy by the commercial company. Thus, elucidating further for variation in the insert size 

among individual clones can be insightful. We selected 108 clones which provided hit to 10 different 

genes (Appendix 5 table s5). Clones were amplified by the optimized PCR protocol using both 

universal T3 forward and universal reverse T7 primers. Insert size was estimated using agarose gel 

electrophoresis (Appendix 4 Figure F1).  

The result showed that there is variation in insert size of clones of the same gene (Appendix 4 

Figure F1). It was also confirmed that the size of most of the selected clone was longer than the 

mean insert size of the cDNA library (i.e 2 kb). To decipher the variation in insert size among clones 

of the same gene, sequencing the clones from their 3’-end using universal T7 reverse primer was 

considered. Nonetheless, the sequencing procedure was not efficient and sequence reads were of 

bad quality. The presence of poly-A tail at the 3’-end of the clone sequences prevented to give a 

good sequence. Therefore, further sequencing of clones from their 5’-end by using internal primers 

was considered. 

  

 

 

 

 

  

Figure 10: cDNA insert size variation of SLA-3 gene is represented by 13 clones. 4 of the 13 clone 

sequences indicated by red arrows have different size than the remaining. Letters B, D, H and I 

represents clone sequences POR_B011_O02, POR_C058_G07, POR_C050_H02 and POR_C054_O20 

respectively. The size standards of 500 bp and precision marker are located at the right and left of the 

PCR amplicon. 

A    B     C    D    E     F     G     H     I      J     K     L   M             
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The Swine leucocyte Antigen-3 gene (SLA-3) (ENSSSCG00000001227) was selected for further 

analysis. The SLA-3 gene is a classical major histocompatibility complex type I antigen family (MHC 

Class I) located on chromosome 7:24,641,613-24,645,323 of the pig genome. According to Ensembl, 

the gene has two transcripts ENSSSCT00000001325 and ENSSSCT00000001325 which are 1,733 and 

1,730 bp long respectively. The gene transcripts have 9 exons encoding for 363 and 349 amino acids 

respectively (figure 11). 

 

Figure 11: Transcript summary of ENSSSCT00000001325. The transcript has 9 exons with reverse strand 

orientation. The line between each exon is position of the introns and the light boxes at both ends are 

5’ UTR and 3’ UTR regions.  

Fragment size of the 13 clone sequences balsted to SLA-3 gene on agarose-gel showed variation 

(figure 10). 9 of the 13 clones (represented by letters A, C, E, F, G, J, K, L and M in figure 10) have 

fragment size between 1500 and 2000 bps. 2 clones (Letters H and I) have a fragment length 

between 2000 and 2500 bps. The remaining 2 clones (Letters B and D) have shorter fragment; 

around 800 bps and 1500 bps respectively. To elucidate further the variation in insert size among 

clones, they were sequenced using the universal T3 forward primers and aligned with the reference 

pig genome. Significant variation was shown on the exon-intron organization of clones which is in 

agreement with the Agarose gel analysis (Detail see Figure 14). The second exon of the clone 

POR_C054_O20 (letter I in figure 10) was longer than the remaining clone sequences which also 

showed to have longer fragment size on the agarose gel analysis. Sequencing the complete 

transcripts using internal primers revealed better picture of the exon-intron organization of all 

clone sequences. It was also proven that clone sequences which showed to have longer fragment 

size have longer exon sizes in one of their exons (Detail see: Figure 15). 

The dot plot of the complete sequence of clones against the reference sequence of SLA-3 gene 

revealed that significant variation among sequences exists. The dot plot of each clone sequence is 

in consistent with both the Agarose gel analysis result and BLAT results indicated in (figure 10, 13 

and 14). 4 of the clone sequences; POR_C054_O20, POR_c039_G07, POR_C050_H02 and 

POR_B011_O02 are significantly different from the remaining 9 clone sequences (Figure 14). 
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Figure 12: Dot plot analysis for comparison of the 4 clone sequence which showed differences in insert 

size against the reference SLA-3 gene sequence. Letters B, D, H and I represent clone sequences 

POR_B011_O02, POR_C058_G07, POR_C050_H02 and POR_C054_O20 respectively.  

The figure above illustrates the variation among clone sequences. For instance, clone 

POR_C054_O20 indicated by letter I has a second exon that is longer than other clone sequences. 

This could be either due to segmental deletion in the other clone sequences or insertion into this 

particular clone sequence. This is in agreement with the agarose gel analysis result where insert 

size of this clone sequence is shown to be longer than other clones (Figure 10).The clone sequence 

POR_B011_O02 represented by letter B also revealed that the first 3 exons are not included in the 

transcript and the exon sizes are shorter than the others. Similarly, the clone POR_C058_G07 

represented in letter D its first exon is not included which turned out to be shorter in size.  

The presence of both the vector sequence and Open Reading Frame was checked for all clone 

sequences to confirm their full-lengthiness. All clone sequences except clone sequence 

POR_C039_G07 represented by letter D contain the vector sequences. It was separately blasted to 

the pig genome and it was not aligned to the first exon of the predicted gene. The four clone 

sequences which showed significant variation both in size and exon-intron organization were 

inspected for the presence of an open reading frame to confirm their full-lengthiness and presence 

of a gene. It was shown 4 of them have an open reading frame and are full-length. 
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Figure 13: Graphic representation of clone sequences obtained using the universal T3 primer aligned to the pig reference genome. The figure illustrates the exon-intron 

structure of clone sequences. 10 clone sequences showed higher degree of similarity in their organization except minor gaps in some of them. Meanwhile, 3 clones 

(POR_C054_O20, POR_C039_G07 and POR_B011_O02) Showed significant variation from the others.  

 

 

 

 

 

 

Figure 14: Graphic representation of the complete sequences of transcripts obtained using internal primers aligned to the reference pig genome. The figure shows the 

exon-intron arrangements of clone sequences in more depth than Figure 13.  9 of the 13 clone sequences showed higher degree of similarity whereas, 4 clone sequences 

showed significant variation from the remaining clones giving an insight of being splice variants. This figure is in agreement with the Agarose gel analysis.



 

26 

 

5. DISCUSSION 

The objective of this study was to build a resource of porcine full-length cDNA clones with known 

gene annotation for further studies. For this reason we picked and sequenced the 5’-end of 

another 6,912 individual clones of a full-length normalized cDNA library constructed from 11 

different porcine tissue samples. The study also intended to merge sequences results obtained 

from two previous experiments and blast to the newly released pig genome (Build 10.2), pig 

cDNA, Human cDNA and Mouse cDNA databases to retrieve the gene names, transcript name and 

their description. Additionally, to identify clone sequences blasted against identical genes and 

elucidate the variation in fragment size further. 

Recent advancement in sequencing technologies like RNA-sequencing can give better understand 

in both expression of genes and relative abundance of transcripts (Wang et al., 2009). However, 

sequencing cDNA library has an advantage over the RNA sequencing in a way the cloned cDNA 

can be used as back-up resources for further study on specific genes of interest (Natarajan et al., 

2010). Large scale screening and sequencing of cDNA library needs preparation of templates and 

cellular growth of bacterial colonies followed by plasmid purification. The plasmid purification 

steps remains expensive raising the cost of the whole sequencing procedure (Elkin et al., 2001). 

Bypassing the plasmid DNA isolation procedure reduces the cost of sequencing by minimizing the 

amounts of reagents (Jennifer et al., 2000). Previous experiment on the same cDNA library using 

direct sequencing on bacterial colonies was also proven to be cost effective way of large scale 

screening of cDNA libraries (Bernal et al., 2011). 

A total of 19, 470 individual sequences were obtained from the current and previous two studies 

with an average overall success rate of 72.46%. The sequencing success rate in 384 well-plate of 

the previous experiments was 71.21% (Bernal et al., 2011) and 69. 34% (Ketema et al., 2011) whereas, 

the success rate of this study is 79.4%. The overall sequence efficiency and average sequence 

length of this experiment is higher than the previous two experiments (Table 4). This is because 

during the first experiment the sequencing protocols were not fully optimized and technical 

failures in the second experiment. The cumulative effect of efficient sequencing, properly grown 

bacterial colonies, proper replicating procedures of plates, immediate processing of cell lysate, 

better pipetting skill and sample handling procedures resulted in better sequencing efficiency in 

this experiment. Moreover, there was no media contamination and all laboratory chemicals were 

available during the course of the experiment. The overall success rate of the cDNA library 

sequencing is higher than what Jennifer et al. (2000) obtained  (66%). However, it is in consistence 
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with the efficiency range of 75-80% obtained by Smith et al. (2000). The sequencing efficiency of 

this experiment could have been improved to up to 84% if the two plates with lower efficiency 

were not considered and technical inaccuracies were avoided. The computer aided bacterial 

colonies in liquid media can be a useful input in replacing manual and laborious procedure of 

bacterial colonies picking and transforming into well-plates throughout the sequencing procedure 

(Yehezkel et al., 2011).  

Sequence reads were blasted against the pig genome, pig cDNA, Human cDNA and Mouse cDNA 

databases providing 12,222, 12,461, 8,300 and 5,268 hits respectively. The first 100 bp of the 

sequences were used for blasting against the pig genome database in order to avoid redundancy 

in the output file. The number of genes that could have been obtained is undermined as some 

sequences with no hit in all of the data bases displayed hit in the pig genome after the 100 bp.  

Significant amount of database specific hits were obtained; the pig genome database provided 

2,473 database specific hits. These blast hits cannot be found in both the pig cDNA database and 

the database of expressed sequence tag (dbEST). This is due to the fact that ESTs are generated 

by cDNA library sequencing constructed from various tissues and developmental stages. 

Therefore, the 2,473 database specific sequences are possible candidates of novel EST obtained 

from this experiment.  

Additionally, the human and mouse cDNA databases provided 340 and 109 database specific hits 

respectively. These database specific hits can be vital sources to map homologous pig genes 

which are not mapped on the pig genome. The human and mouse genomes are comprehensively 

studied than the pig genome and can be used to identify homologous pig genes which are not 

mapped on the pig genome.  Fahrenkrug et al. (2002) underlined the importance of pig EST 

comparison with species of close evolutionary relation and comprehensively studied genome for 

mapping the pig genome comparatively. The newly released pig genome contains 21,640 protein-

coding genes and 26,487 gene transcripts and its coverage is about 95%. It is expected to find 

nearly 1,000 unmapped genes on the genome (Martien A.M. Groenen, Personal communication). 

The number of hits specific to both human and mouse cDNA databases are in the range of the 

expectation. A total of 6,877 non-redundant pig genes and 7,074 non-redundant pig transcripts 

were obtained from the cDNA library sequenced. This represents 31.8% of the total protein-coding 

pig genes. The coverage of gene discovery can be improved by sequencing and characterization 

cDNA libraries constructed from various tissues and developmental stages. The cDNA library 

sequenced was constructed from 11 different tissues of an adult pregnant cloned pig. Sequence 
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output of this study can only discover genes expressed in the tissues and developmental stage of 

the pig when the cDNA library is constructed.  

The study also aimed to estimate transcript length of clones blasted to identical genes by Agarose 

gel analysis and further investigate the variation in insert size. The insert size variation was 

confirmed among 108 clones blasted to 10 genes. Gupta et al. (2004) proposed that the 

computational approach of alternative splice variants prediction should be accompanied by 

experimental validation for accurate delineation of tissue specific transcripts. Splice variants can 

be effectively revealed using a combined cDNA library screening and RT-PCR (Angelotti and 

Hofmann, 1996)  

The SLA-3 gene is one of the three classical Major histocompatibility class-I genes. It was 

represented by 13 clone sequences of the blast output and insert size variation was confirmed by 

Agarose-gel analysis. Moreover, further sequence analysis through the 5’-end using the universal 

T3 forward primer and internal primers also confirmed the variation in insert size. The Exon-Intron 

organization of all the 13 transcripts was inspected using the BLAT tool of UCSC genome browser 

against the pig reference genome. As expected the 4 clone sequences showed significant 

variation than the remaining. Expression of mRNA is spatiotemporal dependent. Thus, different 

transcripts of identical genes can be expressed in different tissues and developmental stages 

(Gupta et al., 2004).  These tissues specific transcripts can have different arrangement and exon 

sizes.  For instance, the second exon of clone POR_C054_O20 as shown in figure 13 and figure 11 is 

longer than the remaining clone sequences could be the reason for having longer fragment size. 

On the other hand, the first three exons are missing from clone sequence POR_B011_O02. 

Considering the alternative splicing nature of mRNA, the variation in both the insert size and 

genomic organization between transcripts of identical gene could be an indication for the 

presence of splice variants. However, the clone sequence POR_C039_G07 is represented only by 

second, third and fourth exons.  

Thorough search in Gene-Bank was made for mRNAs with similar exon-intron organisation like the 

clone sequences which showed variation than the remaining clone sequences. The mRNA with 

accession number AK237682 located on Chromosome 7:24,377,188–24,397,078 of the pig genome 

has similar exon-intron organization with the clone sequence POR_C054_O20. Like the clone 

sequence the mRNA have longer second exon than the remaining mRNAs. Further information 

described that the mRNA (AK237682) is expressed in spleen (Uenishi et al., 2004). It is long know 

that spleen is important in body immunity system of almost all vertebrates. This could be an 

indirect confirmation for the specific expression of the clone sequence in spleen for several 
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reasons; first the gene SLA-3 is MHC class-I Antigen which plays a vital role in body immunity 

system. Secondly, expression of MHC genes including SLA-3 in spleen is expected due to the fact 

that expression of genes is time and space and spleen is immunologically important organ (Gupta 

et al., 2004). Furthermore, the porcine cDNA library is constructed from 11 different tissues an 

adult pregnant cloned pig and tissue samples from spleen were included in the cDNA library 

construction. 

 

 

 

 

 

 

Figure 15: Dot plot analysis for comparison of the clone sequence POR_C054_O20 with mRNA sequence 

expressed in spleen (AK237682). The clone sequence and the mRNA sequence are represented on X 

and Y-Axis respectively. 

Comparison of the clone sequence POR_C054_O20 with the mRNA sequence (AK237682) 

revealed that there is higher degree of similarity. The dot plot shows that the two sequences are 

nearly identical (Figure 15). We can deduce that the clone POR_C054_O20 is tissues specific splice 

variant expressed in spleen of adult pregnant pig.  

There are also several gaps between exons of clones sequences and signify polymorphic nature of 

the sequences; small deletion and insertion. Rothschild and Ruvinsky (2011) describe that higher 

degree of within loci polymorphism is a remarkable feature of the MHC genes which increase the 

range of foreign antigen recognition. Smith et al. (2005) also mentioned that the SLA-3 gene is  

highly polymorphic and among 32 published DNA sequences 20 are unique. There is a distinct 

insertion of nine bp as a result of duplication creating additional insertion of three amino acids at 

the SLA-3*6 allele (Smith et al., 2005). The human leucocyte antigen (HLA) is also the most 

polymorphic region of the human genome which signifies the polymorphic nature of the MHC 

gene family across species (Horton et al., 2008). 
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6. CONCLUSION AND RECOMMENDATION 

The direct sequencing technique of a normalized full-length cDNA library is an efficient, cost 

effective but laborious procedure. It has several advantages over high throughput sequencing 

techniques like the RNA Sequencing in a way it provides physical access to clones in the quest for 

further study on specific genes. Finding the functional domains of genes, reporter gene assay can 

be performed in the presence of backup clones of specific genes. Besides the functional screening 

of genes, the procedure can also be a vital resource to infer tissue specific splice variants. Blasting 

clone sequences against both the human and mouse genome helps for comparative mapping of 

homologous pig genes which are not mapped on the pig genome.  

The rate of non-redundant gene discovery from the cDNA library is still high. Thus, sequencing 

more 384 well-plates is highly recommended to fully exploit the genes present in the cDNA 

library. The blast output contains significant number of clones blasted against identical genes. 

Further validation of transcripts by Agarose gel analysis, Sequencing the complete transcripts and 

decipher the exon-Intron organization is required.  It is also recommended to perform EST 

clustering analysis using gene ontology tools to functionally categorize the expressed genes 

according the biological process, cellular component and molecular function. The 2, 473 candidate 

novel ESTs found on this experiment should be validated further and submitted to the dbEST or 

the Pig Expression Data Explorer (PEDE). The 4, 082 clone sequences which didn’t provide hit in 

any of the databases should be blasted against the available RNA-seq data or vice versa and 

identify the gene they blast against 
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APPENDICES 

1. LABORATORY PROTOCOLS 

1.1 RNA extraction using RNeasy mini protocol (QIAGEN, Mini handbook) 

1. Determine the correct amount of starting material, as maximum 100 µg of RNA  

A. Adjust the sample to a volume of 100 μl with RNase-free water. Add 350 μl Buffer 

RLT, and mix well. 

B. Add 250 μl of ethanol (96–100%) to the diluted RNA, and mix well by pipetting. Do 

not centrifuge. Proceed immediately to step “c”.  

C. Transfer the sample (700 μl) to an RNeasy Mini spin column placed in a 2 ml 

collection tube (supplied). Close the lid gently, and centrifuge for 15 s at ≥8000 x g 

(≥10,000 rpm). Discard the flow-through. 

D. Re-use the collection tube in step “d”.  

E. Note: After centrifugation, carefully remove the RNeasy spin column from the 

collection tube so that the column does not contact the flow-through. Be sure to 

empty the collection tube completely.  

F. Add 500 μl Buffer RPE to the RNeasy spin column. Close the lid gently, and centrifuge 

for 15 s at ≥8000 x g (≥10,000 rpm) to wash the spin column membrane. Discard the 

flow-through.  

G. Reuse the collection tube in step “e”.  

H. Note: Buffer RPE is supplied as a concentrate. Ensure that ethanol is added to Buffer 

RPE before use (see “Things to do before starting”).  

I. Add 500 μl Buffer RPE to the RNeasy spin column. Close the lid gently, and centrifuge 

for 2 min at ≥8000 x g (≥10,000 rpm) to wash the spin column membrane. The long 

centrifugation dries the spin column membrane, ensuring that no ethanol is carried 

over during RNA elution. Residual ethanol may interfere with downstream reactions.  

J. Note: After centrifugation, carefully remove the RNeasy spin column from the 

collection tube so that the column does not contact the flow-through. Otherwise, 

carryover of ethanol will occur.  

K. Optional: Place the RNeasy spin column in a new 2 ml collection tube (supplied), and 

discard the old collection tube with the flow-through. Close the lid gently, and 

centrifuge at full speed for 1 min. Perform this step to eliminate any possible 

carryover of Buffer RPE, or if residual flow-through remains on the outside of the 

RNeasy spin column after step “e”.  
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L. Place the RNeasy spin column in a new 1.5 ml collection tube (supplied). Add 30–50 μl 

RNase-free water directly to the spin column membrane. Close the lid gently, and 

centrifuge for 1 min at ≥8000 x g (≥10,000 rpm) to elute the RNA.  

M. If the expected RNA yield is >30 μg, repeat step “g” using another 30–50 μl RNase 

free water, or using the eluate from step “g” (if high RNA concentration is required). 

Reuse the collection tube from step “g”. If using the eluate from step “g”, the RNA 

yield will be 15–30 per cent less than that obtained using a second volume of RNase-

free water, but the final RNA concentration will be higher. 

 

1.2 Lysogeny broth (LB) medium: to prepare 1 Liter 

A. To 800 ml MQ water add : 

 10 grams of Bactotryptone 

 5 grams of yeast extract 

 10 grams of NaCl 

B. Adjust pH to 7.5 with  NaOH 

C. Adjust volume to 1 L with MQ water 

D. Sterilize by autoclaving   

 

1.3 1 per cent agar in Lysogeny broth (LB): to prepare 1 Liter 

A. To 1 L of LB Add: 10 grams of agarose 

B. Sterilize by autoclaving 

C. When the medium reaches approximately  50 ºc, add Ampicillin to a final 

concentration of 0.1 µg/ml 
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1.4 10x Freezing Medium: to prepare 1 L 

A. To prepare solution A: 

 360 mM k2HPO4 (mw 174.18):  62.7 g 

 132 mM KH2PO (mw 136.09):  17.96 g 

 Fill up to 160 ml with H2O 

 Sterilize by autoclaving 

B. To prepare solution B: 

 17 mM Na citrate (mM 294.11): 4.99g 

 4 mM Mg SO4 (mw 132.15): 0.99 g 

 68 mM (NH4)2 SO4 (mw 132.15) 8.99 g 

 Fill up to 400 ml and autoclave 

C. Solution C: 

 Autoclave 440 ml of glycerol 

D. Mix all the sterilized solutions in a horizontal laminar flow workstation. 

 

1.5 Plasmid stock culturing  

A. Prepare two 145/20 mm petri dishes and label them 

B. Autoclave 50 ml of LB + 5 gm of agar and cool it down to 55 oC 

C. Add Ampicillin at 1000 g/litre  

D. Pour 50 ml of 1  per cent agar LB media (LM+Agar+Ampicillin)  

E. Wait until the petri dishes cool down  

F. Dilute 1.75 ul of library stock solution in 200 ul of LB + Ampicillin 

G. Transfer 100 ul of diluted library stock solution on the 145/20 mm petri dishes 

H.  Spread the diluted library stock solutions using glass bids 

I. Incubate bacteria upside down at 37 oc overnight (18 hrs)  

 

1.6 Preparation of Master plate and individual colony picking  

A. Mix 300 ml of LB media with 300 ul of Ampicillin  

B. Mix 45 ml LB+Ampicillin with 5 ml of 10x freezing media (FM) 

C. Add 100 ul of the LB+Ampicillin+FM using matrix pipette into every well of 384 well plate 

D. Label the plate as POR_A followed by the number of plate  prepared 

E. Pick individual colonies and transfer them into using sterilized cocktail sticks 

F. Incubate the master plates without shaking upside down at 37 oC overnight (18 hrs) 
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1.7 Making replica plates 

A. Prepare two replica plates ‘B’ and ‘C’ for every individual master plate. Fill plates ‘B’ 

with LB+AMP+FM and plates ‘C’ with only LB+AMP. 

B. Place a sterilized 384 pin replicator into the master plate (A) in order to make a copy 

into the plate B and again into the final plate 

C. Rinse the 384-pin replicator every time by dipping in 1% bleach solution, distilled 

water and 100 % Ethanol 

D. Place the device in flame to evaporate the ethanol  

E. Cool down the device for making a new copy 

F. Incubate both plates over night at 37 °C overnight (18hrs) 

G. Cool down both A and B plates for about 30 minutes and finally store them at -80 °C 

H. Use plate C for sequencing  

 

1.8 Cell lysate preparation 

A. Pellet cells by spinning plates in the centrifuge for 20 min at 2000Χ g and 20°C 

B. Invert the plate onto successive layers of paper towels 

C. Add 25 μl MQ/well to wash the remaining medium 

D. Centrifuge 5 min at 2000Xg at 20°C 

E. Invert the plate onto successive layers of paper towels and remove the medium 

F. Add 25 μl water per well 

G. Centrifuge 5 min at 2000Xg at 20 °C 

H. Invert the plate onto successive layers of paper towels and remove the medium  

I. Re-suspend the pellet in 25 μl MQ water/well  

J. Seal the plate with aluminum foil tape 

K. Vortex the plates (table vortex) 

L. Transfer the cell suspensions to a new 384-well PCR plate and heat seal 

M. Spin it down shortly 

N. Place the plates into a thermo cycler for 5 minutes at 95°C to denature the cell lysates 

O. store plates directly  on ice 

P. Centrifuge 10 min at 1000Xg at 4 °C 
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1.9 Sequencing  reaction  

A. Dilute the primer (T3 in this case is the forward primer): primer working solutions are 

40 pmol/μl, so each PCR primer should be diluted ±1:50 to attain a concentration of 

0.8 pmol/μl 

B. Add 2 μl from the lysate to a new 384 well-plate and spin it down shortly 

C. Prepare a master mix for sequencing reactions as follows ( for 410 samples) 

 

D. Add 3 μl of master mix to each well in a new 384-well PCR plate  

E. Seal the new plates with heat sealing 

F. Spin down shortly 

G. Perform cycle sequencing as follows (Program: BD50x50) on the Biometra 384-PCR 

machine 
 

Reagent Volume(l
/ 1 sample Volume(l)/ 410 samples 

5X sequencing buffer 0.75 307.5 

BD 3.1 (Big dye) 0.5 205 

MQ 0.75 307.5 

primer (0.8 pmol/µl) 1 410 

Total Volume 5 2050 

Step Temperature(°C) Time  Number of cycles 

1 95 5 min 1 

 

2 

 

96 30 sec  

50  50 10 sec 

60 4 min 

3 4 ∞ ∞ 
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1.11 Agarose gel-electrophoresis ( 1 per cent agarose gel preparation) 

A. Add 3 grams of agarose powder 

B. Add 300 ml of 0.5  % of TBE buffer 

C. Dissolve the agarose by heating it in microwave  

D. Cool down the dissolved agarose to 50 oc 

E. Meanwhile, Prepare a Gel tray  warped with tape and  combs placed between 

F. Add 15 µl of Etidium bromide (EtBr) i.e. 5 µl EtBr / 100 ml of TBE buffer 

G. Mix thoroughly and pour into the gel tray with combs 

H. Let the gel cool down 

I. Meanwhile, prepare the DNA samples to be loaded into the gel as follows 

Sr.No Ingredients Amount per 1 well 

1 PCR product 2 µl 

2 Loading dye 2 µl 

3 MQ water 6 µl 

B. Add 10 µl of the above mix (PCR product, Loading dye and MQ water).  

C. Add 3 µl of  either 100 bp or 500 bp DNA markers or precision markers flanking the 

samples 

1.10 Precipitation of DNA samples 

A. 5 µl sequencing  reaction 

B. Add 0.5 µl of  NaAc-EDTA (1.5 M sodium acetate (pH > 8.0) and 250 mM EDTA) 

C. Spin it down shortly 

D. Add 17  µl of 70 % EtOH (-20 degrees) using 125 μl electronic pipette with 16 tips 

E. Seal with aluminum (not heat sealing) 

F. Mix by vortex (with Illumina vortex for 1 minute at 2000 rpm ) 

G. Incubate 30 minutes on ice box 

H. Centrifuge 30 minutes 3000g at 4 °C  

I. Centrifuge upside down for 1 minute 700g  at 4 °C  

J. Add 10 µl of formamide to each well and dissolve pellet by pipetting 20X up and 

down  

K. Transfer the solution into a barcoded plate 

L. Seal the plates with sequencer devices and run the barcoded plates with samples in 

the ABI3730 DNA analyzer 
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1.12 Purification of PCR products  

 (The PCR product should be cleaned from primers, to prevent the sequencing 

reaction to start at both ends) 

A. Use Millipore PCR cleanup vacuum system (Multiscreen_ PCR vacu 030). Load the 

complete PCR products into the Multiscreen_PCR plate. 

B. Place the Multiscreen_ PCR plate on top of the Vacuum manifold. 

C. Apply vacuum at 24 inches Hg for 5 minutes or until the wells have emptied. Allow 30 

extra seconds under vacuum after the well appears empty to be sure all liquid has 

been filtered. The filter appears shiny even after they are dry. 

D. Load filter with 35 l MQ water and apply the vacuum again for 5 minutes or until the 

wells have emptied.  

E. Repeat procedure “D” once  

F. After vacuum filtration is complete, remove the plate from the manifold, blot from 

underneath with paper towels and add 12 μl MQ water (equal to start volume of the 

PCR-reaction) to each well with a stepper-pipette.  

G. Mix samples vigorously on a plate shaker for 5 minutes. 

H. Retrieve purified PCR product from each well by pipetting and putting them in a new 

plate.  

I. Check quality and quantity on agarose gel. For quantification, use Gene-ruler or EZ 

load precision as a marker. Load 1 l on Agarose gel 

J. The bands should be single, clean and without primer-dimer 
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1.13 Perform sequencing reaction of purified PCR product 

A. Put a volume corresponding to 10-20 ng PCR product ( Below example is 1 l of PCR 

product , maximum is 5.5 l when no MQ is added) from each DNA sample in a Perkin 

Elmer 96-well PCR system plate 

B. Dilute the primer (T7 and internal primers in this case):  

                   NB: primer working solutions are around 40 pmol/l, so each PCR primer should be diluted ± 1:50 

C. Prepare the master mix for sequencing reactions 

 

D. add 9 µl of mix to each well in a new 96 well-plate PCR plate using a matrix pipette (in 

the example above 1 μl of PCR is added but it can vary according to the concentration 

of the product) 

E. Heat seal the plate and mix by vortex 

F. Spin all ingredients down shortly  

G. Perform cycle sequencing as follows (Program: BD50x50. NB: Annealing temperature 

is correlated with the annealing temperature in the PCR reaction and may vary!): 

Reagent Volume(l)/ 1 sample 

PCR product 1 

5X sequencing buffer 1.5 

BD 3.1 1 

MQ 4.5 

Primer (0.8 pmol/µl) 2 

Total 10 

 

1.14 Precipitation of DNA of sequencing reaction 

A.  10 µl sequencing  reaction 

B.  Add 1 µl NaAc-EDTA (1.5 M sodium acetate (pH > 8.0) and 250 mM EDTA) 

C.  Add 34  µl  of  70 % EtOH (-20 degrees) 

D.  Mix by vortex (with Illumina vortex for 1 minute at 2000 rpm) 

E.  Incubate 30 minutes on ice 

F.  Centrifuge for 30 minutes 3000g at 4 °C  

G. Centrifuge upside down for 1 minute 700g at 4 °C (NB: the plates cannot be frozen, 

then is    better  just to process one plate) 

H. Add 10 µl of formamide into a barcode plate to each well and add 2 μl of sample.  

I. Seal and run the barcode plate with samples in the ABI3730 
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2.  COMPUTATIONAL PROTOCOLS 

2.1 Convert the .abi files from ABI3730 sequencer into FASTA files 

A. Download the free version of ABI to FASTA converter software downloaded from 

(http://www.dnabaser.com/download/Abi-to-Fasta-converter/abi-to-fasta-

converter.html)  

B. Open the program and go to settings. Deselect all the trim options in order to get the 

complete files 

C. Go to open files and select the folder containing the .ab1 files  

D. Select all the sequences to convert. 

E. Press the CONVERT button 

F. Open the converted files and check if it has been changed accordingly 

 

2.2 Making Multi FASTA file with selected sequences ( in this case sequences from each dish) 

A. Download the free version of DNA Baser V3.5.0 from 

(http://www.dnabaser.com/help/tools-converters/MultiFASTA%20Builder/index.html )  

B. In the DNA BASER, start the MultiFasta Builder tool from the 'Tools -> MultiFasta 

Builder' menu. 

C. Locate the folder that contains individual FASTA files ( in this case from each 

sequenced plates) 

D. Select all individual FASTA files 

E. Choose a name for the output file (the default name is "Result 1")  

F. Deselect the option “ Add empty line”  

G. Press the 'Start' button.  

H. check roughly if the multifasta file is the correct format and name 

 

 

2.3 Download the databases   

A. Go to the ensembl web site http://www.ensembl.org/info/data/ftp/index.html  

B.  download the appropriate databases. NB: For this project  the databases 

downloaded were DNA and cDNA FASTA from Sus Scrofa ( build 10.2) 

C. Select the location and save them. NB: the databases must be in the same folder with 

the downloaded BLAST files. 

http://www.dnabaser.com/download/Abi-to-Fasta-converter/abi-to-fasta-converter.html
http://www.dnabaser.com/download/Abi-to-Fasta-converter/abi-to-fasta-converter.html
http://www.dnabaser.com/help/tools-converters/MultiFASTA%20Builder/index.html
http://www.ensembl.org/info/data/ftp/index.html
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2.5 Downloading BLAST Application  

A. Go to the NCBI web site ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ 

and download the latest version for windows (win.64).NB: For this project the BLAST 

version blast-2.2.26+ for windows was used. 

B. Select the install location and click install and accept the conditions. 

 

2.6 Running Blastn 

A. Go to start and select Run 

B. Type cmd and click OK  

C. The window for DOS is opened  

D. Type cd and the address of the folder  in which you have all the files you already downloaded 

(BLAST, databases) and the .FASTA files with the query sequences 

E. Type the name of the database (db) and your .FASTA file using the following commands in the 

same folder mention above 

F. In the address mention above run blastn typing the following commands:  blastn –query 

your_combined_fasta_files.FASTA -db your_db -outfmt 6 -out your_query.blast  –evalue 1e-10 

H. For the –db option the name of the database should be the name of the file generated 

while making blastable database 

 

2.4 Make the databases BLASTable 

A. Go to start and select Run 

B. Type cmd and click OK  

C. The window for DOS is opened 

D. Type cd and the address of the folder  in which you have all the files you already 

downloaded (BLAST, databases) and the .FASTA files with the query sequences 

E. Type the name of the database (db) using the following commands in the same 

folder mention above:  makeblastdb -in the database.FA -dbtype nucl -parse_seqids -

out your_blastable_ db 

F.  Press enter 

(NB:  after pressing enter six different files will be created. This confirms that the blastable 

database was created) 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
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2.7 Primer3: Internal primer development 

A. Go the primer3 web site and run  the latest version of primer3Plus (http://primer3.wi.mit.edu/) 

B. Upload or Paste your sequence into the  webpage 

C. Name your sequence 

D. Use the default setting  

E. Pick your primers and check for the complementarity  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

46 

 

3. CLONING VECTOR INFORMATION 

 

 

 

 

 

 

 

 

 

Figure 1. Plasmid sequence after excision. The sequence of elements as they appear, abbreviated 

under the plasmid schematic structure (primer sequences, RNA polymerases, promoters, 

restriction sites and recombination sites), is underlined. (Carninci et al., 2001) 

pFLCIII-cDNA sequence 
 
CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTC 

ATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGA 

GATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTC 

CAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACC 

CTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAG 

CCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAA 

AGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCAC 

CACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCCATTCGCCATTCAGGCTGCG 

CAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGG 

GGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTG 

TAAAACGACGGCCAGTGAATTGCGCGCAATTAACCCTCACTAAAGGGAACAAAGATGTGT 

AACTATAACGGTCCTAAGGTAGCGAGTCGAGGTCGAGCTCTATTTAGGTGACACTATAGA 

ACCA******************************************************** 

************************************************************ 

************************************AAAAAAAAAAAAAAAACTCTTGTT 

GGATCCTGCCATTTCATTACCTCTTTCTCCGCACCCGACATAGATGCATCGCCCCTATAG 

TGAGTCGTATTACATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACA 

ACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCA 

CATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGC 

ATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTT 

CCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACT 

CAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAG 

CAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA 

GGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACC 

CGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTG 

TTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGC 

TTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGG 

GCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTC 

TTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGA 

TTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACG 

GCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAA 
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AAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTG 

TTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTT 

CTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGAT 

TATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTATAACTTCGT 

ATAGCATACATTATACGAAGTTATAAATCAATCTAAAGTATATATGAGTAAACTTGGTCT 

GACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCA 

TCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCT 

GGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCA 

ATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCC 

ATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTG 

CGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCT 

TCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAA 

AAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTA 

TCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGC 

TTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCG 

AGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAA 

GTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTG 

AGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTC 

ACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGG 

GCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTAT 

CAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATA 

GGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC 

 

Cloning site: Xho I/Sal I and BamH I;  
 
LoxP is inserted between Amp

r
 and Ori. 

 
Outside of Forward and Reverse primer sequences in the vector are same as pBluescript 
except a LoxP site.  
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4. FIGURES 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: fragment size variation among 108 clones blasted against 10 different genes. Each 

gene is indicated between precision markers 
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5. TABLES 

Table s1. Insert size obtained from 48 tested clones 

Number of clones Size (bp) 

5 500 

6 1000 

7 1500 

9 2000 

7 2500 

3 3000 

4 3500 

0 4000 

1 4500 

3 5000 

1 5500 

1 6000 

Mean 2000 

 

Table s2:  Sequencing summery of Experiment 1 

Sr.No Plates Total number 

of sequences 

Length of 

sequences (bp) 

Min Max Average Efficiency 

(%) 

1 POR_B001 253 85648 59 693 339 65.89 

2 POR_B002 305 119788 125 672 393 79.43 

3 POR_B006 334 119108 56 612 357 86.98 

4 POR_B007 202 61785 64 581 306 52.60 

5 POR_B008 347 130970 61 727 377 90.36 

6 POR_B009 366 134370 63 685 367 95.31 

7 POR_B010 294 86802 52 563 295 76.56 

8 POR_B011 298 95403 80 549 320 77.60 

9 POR_B012 305 106946 60 630 351 79.43 

10 POR_B013 252 83541 58 714 332 65.63 

11 POR_B014 295 94686 73 646 321 76.82 

12 POR_B015 248 82466 52 594 333 64.58 

13 POR_B016 261 78317 51 641 300 67.97 

14 POR_B017 250 93369 56 633 374 65.10 

15 POR_B018 265 114195 57 656 431 69.01 

16 POR_B019 228 97330 74 653 427 59.38 

17 POR_B020 212 89252 71 750 421 55.21 

18 POR_B021 226 85400 75 677 378 58.85 

19 POR_B022 246 104783 58 744 426 64.06 

20 POR_B023 282 129475 51 693 459 73.44 

Total 5469 1993634 51 750 365 71.21 
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Table s3: Sequencing summery of Experiment 2  

SN Plates 

Total 

number of 

sequences  

Length of 

sequences (bp) 
Min Max  Average Efficiency 

1 POR-C024 137 46055 70 635 336 35.68 

2 POR-C025 215 65887 51 575 307 55.99 

3 POR-C026 351 118475 77 633 338 91.41 

4 POR-C027 345 119046 111 697 345 89.84 

5 POR-C028 49 15791 137 515 322 12.76 

6 POR-C029 324 111800 71 609 345 84.38 

7 POR-C030 332 132158 52 749 398 86.46 

8 POR-C031 333 129743 85 661 390 86.72 

9 POR-C032 366 145046 72 627 396 95.31 

10 POR-C033 328 118025 87 571 360 85.42 

11 POR-C034 313 117280 57 657 375 81.51 

12 POR-C035 337 117020 69 652 347 87.76 

13 POR-C036 330 108784 57 582 330 85.94 

14 POR-C037 258 81241 62 685 315 67.19 

15 POR-C038 323 115145 73 786 357 84.11 

16 POR-C039 230 62020 53 653 270 59.9 

17 POR-C040 337 111976 60 595 332 87.76 

18 POR-C041 314 101741 85 560 324 81.77 

19 POR-C042 219 57969 56 695 265 57.03 

20 POR-C043 336 120007 69 706 357 87.5 

21 POR-C044 298 88131 59 716 296 77.6 

22 POR-C045 275 82692 56 611 301 71.61 

23 POR-C046 131 42155 76 644 322 34.11 

24 POR-C047 280 94367 82 678 337 72.92 

25 POR-C048 195 49178 59 495 252 50.78 

26 POR-C049 206 50355 57 561 244 53.65 

27 POR-C050 232 64481 60 614 278 60.42 

28 POR-C051 297 73873 65 811 249 77.34 

29 POR-C052 335 93082 73 576 278 87.24 

30 POR-C053 204 46255 66 578 227 53.13 

31 POR-C054 175 39795 55 623 227 45.57 

32 POR-C055 115 26791 53 718 233 29.95 

Overall 8520 2,746,364 51 811 314 69.34 
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Table s4. List of primers and primer chemistry 

A. Universal T3 forward and T7 reverse primers 

Primer Sequence Bases TM % GC 
Universal T3 forward ATTAACCCTCACTAAAGGGA 20 56 40 

Universal T7 forward GTAATACGACTCACTATAGGG 21 45 42.9 

B. Second round sequencing primers 

Internal Primers Sequence Bases TM % GC 

A, C, E, F, G, H, J, K, L, M ATTACATCGCCCTGAACGAG 20 60.10 50 

I CCCGGTTTCGTTTTCAGTT 19 59.96 47.37 

D GGACAAGTCCCGTGCTCAT 19 61.10 57.89 

B CTGGACACCATCTCCATCCT 20 59.92 55 

C. Third round sequencing primer 

Internal Primers Sequence Bases TM % GC 
A, C, E, F, G, J, K, L, M CTCCGATGTGTCCCTTACCA 20 60.91 55 

H TCAGAGCCTCCAAAGACACA 20 59.55 50 

I CCTGGAGAGGAGCAGAGCTA 20 59.84 60 

D ATGTCCAAGCCACTTTCCTG 20 60.11 50 

 

Table s5: List if clone sequences selected for transcript size estimation  

Clone name Gene Name Gene description 

POR_C026_J04 CAPZA2 capping protein (actin filament) muscle Z-line, alpha 2 

POR_C037_J05 CAPZA2 capping protein (actin filament) muscle Z-line, alpha 2 

POR_C037_P07 CAPZA2 capping protein (actin filament) muscle Z-line, alpha 2 

POR_C040_C13 CAPZA2 capping protein (actin filament) muscle Z-line, alpha 2 

POR_C040_D13 CAPZA2 capping protein (actin filament) muscle Z-line, alpha 2 

POR_C040_E13 CAPZA2 capping protein (actin filament) muscle Z-line, alpha 2 

POR_C049_G01 CAPZA2 capping protein (actin filament) muscle Z-line, alpha 3 

POR_C052_M24 CAPZA2 capping protein (actin filament) muscle Z-line, alpha 4 

POR_C065_G03 CAPZA2 capping protein (actin filament) muscle Z-line, alpha 5 

POR_B007_B12 CPE carboxypeptidase E 

POR_B010_B07 CPE carboxypeptidase E 

POR_B011_M23 CPE carboxypeptidase E 

POR_B011_N23 CPE carboxypeptidase E 

POR_B011_O23 CPE carboxypeptidase E 

POR_C031_M21 CPE carboxypeptidase E 

POR_C033_G08 CPE carboxypeptidase E 

POR_C034_G18 CPE carboxypeptidase E 

POR_C034_J17 CPE carboxypeptidase E 

POR_C036_D10 CPE carboxypeptidase E 

POR_C038_P24 CPE carboxypeptidase E 

POR_C043_C12 CPE carboxypeptidase E 

POR_C043_P09 CPE carboxypeptidase E 
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POR_C044_N06 CPE carboxypeptidase E 

POR_C050_E16 CPE carboxypeptidase E 

POR_C060_D12 CPE carboxypeptidase E 

POR_C067_M07 CPE carboxypeptidase E 

POR_C069_O22 CPE carboxypeptidase E 

POR_C073_D10 CPE carboxypeptidase E 

POR_B005_G16 SLA-3 MHC class 1 anti gene family 

POR_B011_O02 SLA-3 MHC class 1 anti gene family 

POR_C027_H09 SLA-3 MHC class 1 anti gene family 

POR_C039_G07 SLA-3 MHC class 1 anti gene family 

POR_C043_N11 SLA-3 MHC class 1 anti gene family 

POR_C047_D11 SLA-3 MHC class 1 anti gene family 

POR_C049_K20 SLA-3 MHC class 1 anti gene family 

POR_C050_H02 SLA-3 MHC class 1 anti gene family 

POR_C054_O20 SLA-3 MHC class 1 anti gene family 

POR_C055_P14 SLA-3 MHC class 1 anti gene family 

POR_C058_G07 SLA-3 MHC class 1 anti gene family 

POR_C059_G04 SLA-3 MHC class 1 anti-gene family 

POR_C063_D24 SLA-3 MHC class 1 anti gene family 

POR_C066_B10 SLA-3 MHC class 1 anti gene family 

POR_B006_H03 SFXN1 sideroflexin 1 

POR_C026_J11 SFXN1 sideroflexin 2 

POR_C040_L24 SFXN1 sideroflexin 3 

POR_C052_M09 SFXN1 sideroflexin 4 

POR_C058_H07 SFXN1 sideroflexin 5 

POR_C061_C24 SFXN1 sideroflexin 6 

POR_C070_C15 SFXN1 sideroflexin 7 

POR_C073_A16 SFXN1 sideroflexin 8 

POR_C029_O12 OAZ1 ornithine decarboxylase antizyme 1 

POR_C029_P11 OAZ1 ornithine decarboxylase antizyme 2 

POR_C033_B14 OAZ1 ornithine decarboxylase antizyme 3 

POR_C040_K01 OAZ1 ornithine decarboxylase antizyme 4 

POR_C040_M01 OAZ1 ornithine decarboxylase antizyme 5 

POR_C045_F08 OAZ1 ornithine decarboxylase antizyme 6 

POR_C056_M10 OAZ1 ornithine decarboxylase antizyme 7 

POR_C060_G05 OAZ1 ornithine decarboxylase antizyme 8 

POR_C073_O15 OAZ1 ornithine decarboxylase antizyme 9 

POR_B009_N16 PRKAR2A protein kinase, cAMP-dependent, regulatory, type II, alpha 

POR_C029_B09 PRKAR2A protein kinase, cAMP-dependent, regulatory, type II, alpha 

POR_C029_C17 PRKAR2A protein kinase, cAMP-dependent, regulatory, type II, alpha 



 

53 

 

POR_C031_I18 PRKAR2A protein kinase, cAMP-dependent, regulatory, type II, alpha 

POR_C056_J20 PRKAR2A protein kinase, cAMP-dependent, regulatory, type II, alpha 

POR_C063_B11 PRKAR2A protein kinase, cAMP-dependent, regulatory, type II, alpha 

POR_C071_K01 PRKAR2A protein kinase, cAMP-dependent, regulatory, type II, alpha 

POR_C072_C18 PRKAR2A protein kinase, cAMP-dependent, regulatory, type II, alpha 

POR_B005_L10 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1  

POR_B007_A22 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1  

POR_C026_C23 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1  

POR_C031_C19 ELAVL1   ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 

POR_C039_E22 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1  

POR_C044_P14 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1  

POR_C058_D11 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1  

POR_C061_N08 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1  

POR_C064_D01 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1  

POR_C065_H18 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1  

POR_B025_I11 C17orf75 protein Njmu-R1 

POR_C027_D05 C17orf75 protein Njmu-R2 

POR_C029_C08 C17orf75 protein Njmu-R3 

POR_C033_A06 C17orf75 protein Njmu-R4 

POR_C035_E12 C17orf75 protein Njmu-R5 

POR_C056_P09 C17orf75 protein Njmu-R6 

POR_C026_N14 PSAP prosaposin 

POR_C032_M06 PSAP prosaposin 

POR_C037_L11 PSAP prosaposin 

POR_C037_N10 PSAP prosaposin 

POR_C037_O08 PSAP prosaposin 

POR_C040_F14 PSAP prosaposin 

POR_C041_I07 PSAP prosaposin 

POR_C052_F15 PSAP prosaposin 

POR_C056_A13 PSAP prosaposin 

POR_C060_G14 PSAP prosaposin 

POR_C061_C17 PSAP prosaposin 

POR_C062_C06 PSAP prosaposin 

POR_C071_F04 PSAP prosaposin 

POR_C073_L17 PSAP prosaposin 

POR_B002_F19 YWHAQ tyrosine 3-monooxygenase  

POR_B011_L02 YWHAQ tyrosine 3-monooxygenase  

POR_B024_P04 YWHAQ tyrosine 3-monooxygenase  

POR_C027_H16 YWHAQ tyrosine 3-monooxygenase  

POR_C032_A14 YWHAQ tyrosine 3-monooxygenase  
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POR_C033_H01 YWHAQ tyrosine 3-monooxygenase  

POR_C058_A06 YWHAQ tyrosine 3-monooxygenase  

POR_C059_G18 YWHAQ tyrosine 3-monooxygenase  

POR_C067_F22 YWHAQ tyrosine 3-monooxygenase  

POR_C067_H10 YWHAQ tyrosine 3-monooxygenase  

POR_C071_O06 YWHAQ tyrosine 3-monooxygenase  
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