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Abstract 
Spatial patterns is of core interest for landscape ecology, and tracking its temporal 
evolvement helps to attain a better understanding of the ecological effects of current 
ecosystems. The presence and recent digitization of the first Swedish National Forest 
Inventory data and the occurrence of a concurrent historical map offers a unique chance to 
take on this very challenging task. The objective was to describe and test a statistical model 
of the historical forest landscape for a study area in the county of Halland, Sweden during 
the 1920s by utilizing different spatial data sources in the model building towards a 
plausible methodological application of the model. Data from a detailed digital elevation 
model, thematic maps of soil type, and topographic maps were introduced into the 
modeling. Both deterministic and stochastic parts of response variables were extracted by 
combining Partial Least Squares and logistic regressions with ordinary Kriging. 
Conventional cross-validating was applied to judge the performance of the modeling, so 
were two compatible estimations, one made by applying k-Nearest Neighbor method, and 
the other origins from quartic kernel function. Both of them indicate the performance of 
the modeling is fairly good for the vegetation type part (with an accuracy no less than 0.75), 
and barely acceptable for the forest stand age and openness part (Root Mean Square Error 
is no bigger than 18.45 years for stand age, and 0.17 for stand openness). The modeling 
results agree poorly with information extracted from historical map. The nature of the data 
available is considered to be the determinant causal factor behind the results. Certainly, the 
modeling has the potential to be further improved methodologically. 
 
Keywords: landscape, regression, Kriging, k-Nearest Neighbor, kernel, R 
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Introduction 

Background 

To landscape ecology, which emphasizes broad spatial scales and the ecological effects of 
the spatial patterning of ecosystems (Turner, 1989), spatial patterns are of primary 
importance. As populations respond to changes in the structure of landscape with certain 
time lags, temporal perspectives are also important in landscape ecology (Hanski, 1998). 
Hence it is not sufficient to consider just the current area, quality and spatial connectivity 
of habitats for the purpose of assessing population viability, temporal changes in habitat 
structure should also be taken into account (Gu et al., 2002). This means historical 
landscape structure and spatial distribution of specific habitats are important for analyzing 
and understanding the current prevalence of species, and beneficial for predicting its future 
development. This theory, on which the practical meaning of this study lies, is relevant also 
when applied to a forest landscape context. 
 
For the three landscape characteristics, namely structure, function, and change, this 
modeling specifically deals with the first one in the forest context. Since structure refers to 
spatial relationships between distinctive ecosystems (Turner, 1989), here it is the 
distribution of forest in relation to the various attributes (as response variables of this 
modeling) of its components (as grid cells in this modeling). So, amid all possible 
approaches, the attempt to modeling historical forest landscape here is to reconstruct forest 
structure at landscape scale built up on estimations of relevant forest attributes on each of 
its components. 
 

Methodological glimpse 

Various spatial regression methods ranging from Ordinary Least Squares (OLS) regression 
to Geographically Weighted Regression (GWR) and etc. have often been applied for 
modeling of forest attributes. Such methods are of especial relevance for modeling the 
relationship with environmental covariates (Hooten, 2001). Specific in the historical field, 
He et al. (2007) applied hierarchical Bayesian model in mapping pre-European settlement 
vegetation in Missouri, USA, and considered that this method outperforms simply logistic 
regression when sample size is small. 
  
It is generally accepted that almost all natural processes are subject to some measure of 
spatial dependence. Environmental covariates may even account for some of this 
dependence (since spatial structure more or less is also contained in those covariates), in 
addition to the deterministic part of variation in forest attributes they contains, it mostly 
remains unexplained. Kriging and its variants, also non-parametric methods, e. g., Inverse 
Distance Weighting (IDW), are popular choices for this situation. There are numerous such 
applications, and Brown (1998) also used Kriging and co-Kriging to map historical forest 
types in Michigan, USA. 
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One problem is that those methods assume interpolated data are numerical and spatially 
continuous, yet many covariates, e. g., soil and landuse type, often cause spatial 
discontinuity. Therefore, these interpolation methods may ignore the ecological principles 
underlined by those environmental covariates (He et al., 2007). Also, because knowing the 
existence of spatial autocorrelation is nowhere near the revelation of it, performance of 
geostatistical methods like Kriging frequently stay under expectation. This may explain the 
boom of the application of k-Nearest Neighbor method (k-NN). 
 
It should be noted that the ambition in modeling more historical forest attributes than just 
species composition, probably stand age, openness, and density too, implies this 
modeling’s different methodological approach than those of the studies mentioned. 
 

Purpose and objectives 

The purpose of this study is to develop statistical models revealing historical forest 
landscape by combining different types of comprehensive data and spatial dependence with 
detailed historical information from the first Swedish National Forest Inventory (NFI). 
 
Concrete objectives of this study are to: 
 
1) describe and test a statistical model of the historical forest landscape for a study area in 
Halland, Sweden during the 1920s; 
 
2) evaluate the effectiveness of utilizing different data in the model building towards a 
plausible methodological application. 
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Study area and data sources 

Study area 

The study area (Figure 1) of a size of about 10 ൈ 10 km is situated in the county of 
Halland, which is located on the western coast of Sweden belonging to the nemoral zone. 
The vegetation change in Halland during the Holocene was drastic, and followed a general 
pattern of from deciduous forest to heathland, then to coniferous forest (dominated by 
spruce). This change responded to both climatic and human impacts, but majorly to the 
latter. In the mid-19th century, heathland reached its largest extent of 150,000 ha in Halland. 
After that, the reforestation movement started, and reduced heathland to an extent of 
73,000 ha by 1913 – 1914. The continuous reforestation made coniferous forest the most 
prevailing vegetation type. (Blennow and Hammarlund, 1993) 
 

   

 
 
 
 
 
The selection of this study area was based on three reasons: 1) Its dramatic change of forest 
– the area of productive forest in the county of Halland increased by 70,000 ha or 35% 
during the past 50 years before early 1990s (Blennow and Hammarlund, 1993); 2) Its well 
documented forest history – Carl Malmström made the classic forest history study of 
"Forests of Halland during the last 300 years" (Lindbladh et al., 2011); 3) The historical 
economic map was surveyed during 1919 – 1925, which matches well with the first NFI 
data in terms of time. 
 

Data sources 

Data available for this study originated from five sources, namely the first Swedish NFI, 
the historical county economic map, the latest digital elevation model (DEM), thematic 

Figure 1. The study area (shown in the form of historical county economic map ©

Lantmäteriet, I2011/0032.) with transects of the 1st NFI imposed on it (left), its location in the

county of Halland (middle) and its location in Sweden (right). 
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maps of soil type from the Geological Survey of Sweden, and topographic maps from the 
Swedish mapping, cadastral and land registration authority (Lantmäteriet). 
 
The first NFI 
The first Swedish NFI started in 1923 (and was implemented in the study area in 1928). 
The NFI was performed on east-west directional parallel transects covering Sweden from 
border to border. The transects were 10 meters wide, and spaced variously from the south 
to the north of Sweden (at 2.5 kilometers in the study area) (Figure 1). Three different 
types of information was collected on the transects, namely stand characters, tree count and 
detailed measurements of individual sample trees (Thorell and Östlin, 1931). In this study 
stand characters: i.e. vegetation type, stand age, and stand openness were used. 
 
The first NFI provides fundamental information on reconstructing historical forest 
landscape (from which the variables of interest of this study were extracted). The line 
transects sampling design provides information on landscape extent, patchiness, and 
connectivity, captures spatial dependencies better than inventories conducted on small 
circular plots. The main reason is that this design provides sufficient pairs of samples at 
consecutive distances to build spatial autocorrelation models as a function of distance on, 
and maintains the information regarding the dimensions of forest stands. This probably is 
not the case in current Swedish NFI, in which clustered circular plots are dispersed out. 
 
The historical county economic map 
The historical county economic map (surveyed in the study area during 1919 – 1925) that 
contains information on extents and borders of different land cover types, supplies another 
type of information than the first NFI data. The map provides full coverage of the study 
area that do not exist in the NFI sample data, despite its lacking of information on forest 
stand age, growing stock, and openness. 
 
Besides marking land cover types, the historical county economic map also visualizes the 
distribution of coniferous and deciduous forests by using different symbols. A detailed 
example of the map used in this study is illustrated in Figure 2. The historical landcover 
borders and the tree symbols within the study area were digitized within another project. A 
wall-to-wall map created by merging the digitized historical and current digital layers were 
also provided (Axelsson et al 2012) and was used for further data processing and analysis. 
Information compatible with the modeling result was generated from the digitized tree 
symbols, and was used in a comparison with results from the modeling as performing the 
role of validation. 
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Figure 2. An example of a detailed part of the historical county economic map © Lantmäteriet, 

I2011/0032, in which coniferous forest is represented by the symbol “*”, and deciduous forest is 

represented by the symbol “○”. A part of the first NFI transect is also imposed on the map shown as 

the narrow green strip in the middle. 
 
DEM 
The DEM used in this modeling was produced by The Swedish mapping, cadastral and 
land registration authority through airborne laser scanning (LiDAR) with an aim to limit 
the standard error within 0.5 m. The density of laser points is 0.25-0.5 points/m2 in the 
study area. In this way, there is at least one point on ground within one 2 × 2 m grid cell. 
Variables derived from this DEM are elevation, incoming solar radiation, aspect, plan 
curvature, profile curvature, slope, wetness index, X and Y coordinates. 
 
Thematic maps of soil 
Maps from the Geological Survey of Sweden present information about the distribution, 
structure, and properties of quaternary deposits at a scale of 1: 50 000 and 1:100 000 at a 
resolution of 5 meters. The maps are based mainly on interpretation of aerial photographs 
combined with field observations along roads. When the variable of soil type was 
generated, all those detailed soil types have been aggregated into three types, namely peat, 
sediment and rock, and moraine. 
 
Topographic maps 
The topographic maps at a scale of 1:50 000 with a standard error of approximately 10 m 
in plane are from the Swedish mapping, cadastral and land registration authority. They 
come in “shapefile” format with layers of administrative divisions, built-up areas and 

0 500250
Meters



8 
 

buildings, hydrography, roads, etc. In this modeling, these maps have been used to generate 
variables of the distance (of study objects) to arable land and water. 
Table 1. Overwiev of variables used in the modeling 

Variable Abbreviation Type Description 

Response Variables (From the First NFI) 

Vegetation Type  Nominal 
“C”, “D”, “MI”; “M”, “J” for 

coniferous, deciduous, and mixed 

forest; mire, and heath respectively 

Stand Age AGE Ordinal / 

Continuous 

“0-20”, “21-40”, “41-60”, “61-80”, 

“81-100”, and “101-120” years 

Stand Openness OPENNESS Ordinal / 

Continuous 

“0”, “0.1-0.2”, “0.3-0.4”, “0.5-0.6”, 

“0.7-0.9”, “0.9-1.0”, and “1.0+” (“1.0” 

for 100% canopy coverage) 

Explanatory Variables (From DEM, Soil and Topographic Maps) 

Ground elevation DEM Continuous Meter 

Incoming Solar 

Radiation 

SOLAR Continuous Watt / year · square meter 

Aspect ASPECT Continuous Degree 

Plan Curvature CURV_PL Continuous  

Profile Curvature CURV_PR Continuous  

Slope SLOPE Continuous Percentage 

Wetness Index WI Continuous Calculated by: 

ln ሺ݂݈ݓ ݊݅ݐ݈ܽݑ݉ݑܿܿܽ · 20ଶ/
ௌைா

ଵ
ሻ 

X Coordinate X Continuous Meter 

Y Coordinate Y Continuous Meter 

Soil Type SOIL Nominal “1”, “8”, “93” for peat, sediment and 

rock, and moraine respectively 

Distance to Arable Land DIST_A Continuous Meter 

Distance to Water DIST_W Continuous Meter 

* Variables will be represented by their abbreviations in this paper. 

* Since data have been standardized before used for analyses in this study if necessary, their scale 

(unit) is not problematic. 

 

Data pre-processing 

All these original data are in “shapefile” format of ArcGIS, except the DEM coming in 
IMAGINE’s “img” format with a cell size of 2 ൈ 2 m. From these data sources, all of the 
variables (Table 1) were derived, and transformed to a uniform IMAGINE’s “img” format 
with a cell size of 20 ൈ 20 m in ArcGIS prior to being imported into R 2.12.2 (R 
Development Core Team, 2011) for analysis. Subject to different analyses performed in R, 
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these data were further manipulated and transformed into various suitable formats (All 
codes for these operations along with complete analyses can be found in Appendix: R 
Codes Used).  
 
It should be noted that from the description in Table 1, AGE and OPENNESS are more of 
continuous variables with discrete values than being ordinal. Considering ordinal variables 
are often treated as continuous variables in research (Winship and Mare, 1984), it is 
reasonable to treat AGE and OPENNESS as continuous variables here. And it is indeed the 
practice in this study.  
 

Allocation of NFI sample plots to the gridded study area 

Conventionally, sample plots, regardless of their sizes, are reduced to points to be allocated 
to the study area during modeling. In the case of explanatory variables being presented in a 
gridded style, values of response variables of a sample plot will be assigned to a certain 
cell of the grid to be combined with respective values of explanatory variables. This 
admittedly is a convenient way to base the following analyses on, as long as the sample 
plots are not much larger than the grid cells on size. Otherwise, not only the dimensional 
information of the sample plots will get lost, but cells with erratic values of explanatory 
variables may more severely undermine the following analyses. 
 
In this study, a certain section of NFI sample strips will be allocated to all of the cells it 
contains in the gridded study area simultaneously, (specifically, when the centroid of a cell 
falls in an NFI sample plot, it is considered that the sample plot contains the cell). This 
equals to taking the dimension of the plots into account by giving larger plots more 
weights in the following analyses. The comparison of these two ideas is illustrated in 
Figure 3. 
 

    
 
 

 

A glance at the sampling quality 

As for anyone else, the performance of the modeling in this study depends not only on how 
well the sample dataset are fitted by the models, but how sufficient and representative the 

Figure 1. Illustration of two possible ways to allocate NFI sample plots to the grid. As

individual points in a certain cell (left); or as polygons to all cells of the grid that they contain

(right) 
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sample dataset are. It is important to have a glance at this problem before the actual 
analyses are presented. 
For the data sufficiency part, the major problem is the nonexistence of sample plots 
between NFI transects that were far apart, which will affect the prediction of Kriging 
severely. For the representativity part, except the obvious clustered spatial distribution of 
NFI sample plots, Figure 4 compares the distributions of each explanatory variable (except 
SOIL, X, and Y) in the sample and in the whole study area. Differences can be observed 
from all these pairs of distributions, even though the results from Kolmogorov-Smirnov 
test (Table 2) suggest only the distributions of CURV_PR and SLOPE are significantly 
different (α = 0.05) in the sample and in the study area. 
 
In this sense, models well fitted for the sample dataset do not guarantee their performance 
in the whole study area, and vice versa. However, quantifying the influence of the 
insufficiency of samples and the disparities between the two types of distributions on the 
following modeling does not seem to be possible. This type of study surely has more 
implications to the sampling design, which however is out of the scope of this thesis. 
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Table 2. Results from Kolmogorov-Smirnov test on the distributions of each explanatory variable 

(except SOIL, X, and Y) in the sample and in the whole study area 

 DEM SOLAR ASPECT CURV_PL CURV_PR SLOPE WI 

p-value 0.6994 0.09956 0.964 0.1528 0.02816 0.01705 0.9897 

 DIST_A DIST_W      

p-value 0.9048 0.7937      

 

  

Figure 2. Back to back histograms of distributions of explanatory variables (except SOIL, X,

and Y) in, left-hand side) the sample, right-hand side) the whole study area; horizontal scale of

each histogram is of percentage. 



12 
 

Methods 
The possible lack of information with high explanatory power to the variables of interest 
may undermine the modeling effort enormously, that is the main reason why a rather 
delicate modeling design (Figure 5) has to be created here intended to compensate for this. 
Another driving force behind the design surely is the nature of the available data. 
 

Figure 5. Diagram of the modeling design in this study 

  

Modeling 

Non-parametric Method 

(k-NN) 

Parametric Method 

Deterministic Part 

(Regression) 

Stochastic Part 

(Kriging) 

Non-forest Forest 

Binary Logistic Regression 

(Forest vs. Non-forest *) 

Residuals 

Ordinary Kriging 

Binary Logistic Regression 

(“M” vs. “J”) 

Residuals 
Ordinary Kriging 

Partial Least Squares Regression 
(“AGE” and “OPENNESS”) 

Multinomial Logistic Regression 

(“C”, “D”, and “MI”) 

Residuals 
Ordinary Kriging 

Residuals 
Ordinary Kriging 

*Non‐forest means mire and heath here, does not include arable land, water, wasteland, etc. 
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Partial least squares regression 

One general idea of this modeling design is to combine regression and Kriging to explain 
both the deterministic and the stochastic parts of the response variables. The former part 
lies on the seemingly weak correlations between the explanatory and the response variables, 
which are illustrated in Figure 6. On the contrary, some correlations within the explanatory 
and the response variables seem not so weak, and this may adversely affect this modeling 
as well. That is the main reason why Partial Least Squares (PLS) regression, among other 
multivariate methods, was chosen to deal with this situation. 
 

     
 
 
 
 
 
 
The main theory of PLS regression is to decompose (Singular Value Decomposition, SVD) 
the matrices of explanatory variables (X) and response variables (Y) simultaneously with 
the constraint that these decomposed components explain the covariance between X and Y 
as much as possible. It is the major difference between it and principal components 
regression, which is focused on explaining the variance in X, even these two methods 
shares some common traits. Some also claim that PLS regression yields somewhat better 
results in terms of the predictive ability when compared to the other regression methods 
(Yeniay and Göktas, 2002). 
 
ࢅ ൌ ઠࢄ  ણ, where ࢄ ൌ ࢅ ,Ԣࡼࢀ ൌ  Ԣࢀ
࢚ ൌ ࢛ ,࢝ࢄ ൌ ࢝ᇱ࢝ so ,ࢉࢅ ൌ 1 (or ࢃᇱࢃ ൌ ࢚ᇱ࢚ ,(ࡵ ൌ 1 (or ࢀᇱࢀ ൌ  be ࢛ᇱ࢚ and ,(ࡵ
maximized 
 ൌ  ࢅԢࢀሻିଵࢀԢࢀሻିଵሺࢃᇱࡼሺࢃ
 
T is the same scores of both X and Y, and P is the loadings of X from SVD; ࢚ and u are 
column vectors of X and Y selected iteratively in a way to maximize the covariance 

Figure 6. Correlation matrices of explanatory variables (X, from left to right and top to bottom

following the order, in which they are listed in Table 1) and response variables (Y, from left to

right and top to bottom, of AGE, DENSITY (discarded in this study because of poor data

quality), and OPENNESS) in all SOIL types (left), SOIL type 8 (middle), and SOIL type 93

(right). SOIL type 1 is not individually included because of insufficient sample size on it 
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between X and Y; W (and its component vectors ࢝) and  (not for the covariance matrix 
here; and its component vectors ࢉ) is the weights; B is the regression coefficients. 
 
It needs to be mentioned that one common feature of all regression models included in this 
study is that they are global, which means positions in the geographical space are treated in 
the same way. However some local regression methods, e. g., GWR, may benefit such kind 
of study considerably to response to the same stimulus differently by taking those positions 
into account. But due to the inadequate sample size and software’s capability, it is not the 
case in this study yet. 
 

Logistic regression 

Since PLS regression is only suitable for continuous variables, a series of logistic 
regression models on a hierarchical style have been built for the categorical variable of 
vegetation type. When applying these logistic models, the problem of collinearity 
mentioned above may arise as well. To determine its influence on these models, the 
conditional number κ was calculated for each model (Table 3) following the method 
suggested by Belsley et al. (1980), according to whom, κ with a value between 0 and 6, 
around 15, and over 30 indicates no, medium, and harmful collinearity respectively. 
Obviously collinearity does not seem to be a problem here. 
 
Table 3. Conditional number κ for each logistic model used in this study 

 Binary Logistic Regression 

(Forest vs. Non-forest) 

Binary Logistic Regression 

(“M” vs. “J”) 

Multinomial Logistic Regression 

(“C”, “D”, and “MI”) 

κ 4.41 5.97 4.21 

 
The fundamental difference of logistic regression from least squares linear regression is 
that the response variable is constrained to a limited number of integer values (Peterson, 
1998). Other than that, they share some common principles (Of course, the regression 
function for the parameters ߚ is no longer linear.). Binary and multinomial logistic 
regressions are also quite similar, only response variable in the latter one is polytomous, 
thus ݉ െ 1 other than one set of coefficients will be fitted. 
 

ߨ ൌ                                                    ೕሺೣ; ഁሻ

ଵା∑ ೕሺೣ; ഁሻ
ೕసమ

, ݆ ൌ 2, … , ݉ 

ଵߨ ൌ 1 െ  ߨ



ୀଶ

 

 
  is the probability that observation i is in response class j (݉ classes in total); ݃ hereߨ
is the logit, which is a linear function of ߚ for class j. 
 
Along the design of modeling continuous and categorical response variables separately, 
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another suspicion of whether this will violate the relations between these two types of 
variables emerges. It is not a problem for non-forest samples since they only have one 
attribute, which is the categorical variable of vegetation type. But for forest samples with 
attributes of both types of variables, there are potential violations. So ANOVA of different 
vegetation types on AGE and OPENNESS within forest samples have been carried out, and 
the results of which are shown in Table 4 and 5. The hypotheses that there is no difference 
among the means of different vegetation types either on AGE or on OPENNESS cannot be 
rejected at a significance level of 0.05. So it is justified to regress these two parts 
separately for forest samples. 
 
Table 4. Result of ANOVA of different 

vegetation types on AGE 

 Table 5. Result of ANOVA of different 

vegetation types on OPENNESS 

H0: The means of of different vegetation 

types on AGE are equal. 

 H0: The means of of different vegetation types 

on OPENNESS are equal. 

 df SS p-value   df SS p-value 

Vegetation 

Types 

2 1754.8 0.106  Vegetation 

Types 

2 0.07377 0.389 

 

Ordinary Kriging 

Concerned about the performance of those regression models, especially of the PLS model 
due to the absence of strong correlations between the explanatory and the response 
variables indicated by Figure 6, residuals from each of all those regression models were 
passed on to variogram modeling to track down spatial autocorrelations within them, on 
which Kriging can be based. Undoubtedly, better estimations can be obtained by this sort 
of combination of regression and Kriging than by either of these techniques alone. 
 
The basic idea of Kriging is that the value of target variable at a new location (ܼሺݏሻ) can 
be derived as a weighted average of values at neighboring locations (ܼሺݏሻ), (for ordinary 
Kriging, an unknown constant mean ߤ of this variable is included). Hence, the critical 
part of Kriging is to obtain the weights. In order to do so, the covariance as a function of 
distance ࢎ has to be estimated first, and this can be achieved by estimating the 
(semi-)variogram ߛሺࢎሻ. The consideration behind choosing Kriging over other 
interpolation methods is that it is supposed to minimize the error variance of prediction 
(Isaaks and Srivastava, 1989). 
 

መܼሺݏሻ ൌ ∑ ሻݏሻܼሺݏሺݓ
ୀଵ , where ܧ൫ መܼሺݏሻ൯ ൌ  ߤ

ሻݏሺ࢝ ൌ ሻݏሺࢉ ሻ, whereݏሺࢉଵି ൌ ሺܥሺݏ, ,ଵሻݏ … , ,ݏሺܥ  ሻሻԢݏ
ሻࢎሺܥ ൌ ଶߪ െ  ሻࢎሺߛ

ሻࢎሺߛ ൌ
1
2

ሻݏሺݖሺ൫ܧ െ ݏሺݖ  ሻ൯ࢎ
ଶ

ሻ 
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 ሻ is the transposed covarianceݏሺࢉ ;is the covariance matrix  ;is the weight vector ࢝
vector at point ݏ;  ߪଶ is the variance. 

k-Nearest Neighbour 

The main reason to include k-NN method in this study is to set up a reference to the 
modeling. Because of its ability of multivariate imputation, more importantly its relaxation 
on those limitations, concerns, and delicate and arbitrary parameter estimation of 
parametric methods, the performance of applying k-NN method will help evaluate the 
worthiness of the modeling based on parametric methods. 
 
In k-NN method, the values of target variables at a certain point are weighted by those 
values of its k nearest neighbors in the reference space defined by reference variables. The 
major difference among variants of k-NN method is how the nearness is constructed using 
different definitions of metrics. The specific k-NN variant used here is Mahalanobis, in 
which the weight is defined as the inversed covariance matrix  of reference variables, 
and k is set to be one (so that the imputation of vegetation type can be meaningful). 
 
݀ሺ࢞, ሻ࢟ ൌ ሺሺ࢞ െ ࢞ଵሺିሻԢ࢟ െ  ሻሻଵ/ଶ࢟
 
݀ሺ࢞,  .and y ࢞ ሻ is the distance between points࢟
 

Quartic kernel 

The predictions of OPENNESS through the 1920s historical economic maps and the first 
NFI data were compared. The former prediction was based on quartic kernel function since 
it is not a straightforward procedure. It started after the maps being digitized (Figure 7), 
which means symbols of coniferous and deciduous forests (Figure 1) had been transformed 
to corresponding points that each of them represents a certain amount of forest at a certain 
location. From this outset, point intensities, which reflect forest densities, can be 
computed. 
 

ሻݔመሺߣ ൌ ଵ

మ ∑ ݇
ୀଵ ሺ|௫బି௫|


ሻ, where ݇ሺݑሻ ൌ ቊ

ଷ

గ
ሺ1 െ ݑ ݂݅ ଶሻଶ|ݑ| א ሺെ1, 1ሻ

݁ݏ݅ݓݎ݄݁ݐ               0
 

 
 .ݔ  is a point within bandwidth ݄ of pointݔ  ;ݔ is the point intensity of point ߣ
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Figure 7. Digitized historical county economic maps, in which points indicating forest

densities are for coniferous forests ( left); deciduous forests (right).
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Results and Discussion 

Separation of forest and non-forest 

The first step towards modeling historical forest landscape is to separate forest and 
non-forest areas. This was achieved by building a binary logistic regression model on these 
two features using full predictors. After that, a subset of this model was selected among all 
of the possible subsets based on their scores on Akaike Information Criterion (AIC) in 
order to balance between goodness of fit and over-fitting. The selected one is shown in 
Table 6.  
 
Table 6. Result of the selection of predictors of the regression model on forest and non-forest 

 Predictors Discarded Predictors Retained

 CURV_PR CURV_PL The Other Predictors 

AIC 879.34 877.35 875.4 

 
The overall performance of this selected model is displayed in Table 7. The results 
indicates that distinguishing forest and non-forest areas should be applicable, since the 
fitted values and the observed values are not significantly different according to the p-value 
of the χଶ statistic of the residual deviance (ܦெ) (Menard (2001) considered the test of 
ሻ݁ܿ݊ܽ݅ݒ݁݀ ݈݈ݑ ሺ݊ܦ െ  be more appropriate, and did not (ெܩ referred to as) ெܦ
recommend the statistic used here). An overall classification accuracy of 0.75 (coincide 
with a prediction error ࢾ of 0.265 of the adjusted leave-one-out cross-validation based on 
the cost function of ݉݁ܽ݊ሺ|݀݁ݒݎ݁ݏܾ െ |݀݁ݐܿ݅݀݁ݎ  0.5ሻ) with an un-weighted Kappa 
statistic of 0.48 on the sample dataset further confirms this possibility. However, the 
p-value may also arise concerns about the resemblance of the fitted values and observed 
values not being substantial enough, considering this model will set the scopes of the 
consequential modeling, hence its uncertainty will be added up to the uncertainties of the 
consequential modeling. 
 
Table 7. Performance of the selected model on forest and non-forest 

H0: There is no difference between observed and fitted values.

 ࢾ df p-value ࡹࡰ

851.4 840 0.3847 0.265 

 Observed   

Predicted Forest Non-forest  

Forest 234 108  

Non-forest 105 405  

After extracting the deterministic part of observed values regarding forest and non-forest 
using the selected logistic model, the corresponding stochastic part was extracted from the 
residuals on probability through variogram modeling. The sample variogram and the fitted 
variogram model, which has the lowest value of the weighted Sum of Squared Errors (SSE) 
of 5.33e-06 among all candidate variogram models, (the selection of all variogram models 
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in this thesis was trying to follow this routine) are shown in Figure 8. It should be noted 
that the fitted variogram model has been isotropic, because the one directional line transect 
sampling design of the first NFI makes an anisotropic variogram model less than possible 
within a reasonable range. This is the common practice for all of the variogram models in 
this paper. 
 
The most noticeable character of the fitted variogram model is its rather short range. This 
leads to many regions of the study area being uncovered by the prediction of Kriging. This 
can be observed also in the following output images of Kriging prediction. Even with 
repeated attempts of different ranges, the same situation occurs in parameter estimation 
using least squares method (also maximum likelihood method). This can be interpreted in 
two different ways, either little spatial autocorrelation remains after regression, or the 
spatial autocorrelation stays profoundly uncovered. But without truly understanding the 
mechanism behind it, which is the case here, it can never be sure, so as for the estimation 
of the other parameters. As reported in many other studies, this ambiguity in parameter 
estimation has been deteriorating Kriging’s applicability. 

     
 
 
 
When these two models were ready, they had been applied separately to predict the 
probabilities of regions in the study area being forest or non-forest. Then predicted 
probabilities were combined together to form the outputs, in one of which regions with 
probabilities of being forest less than 0.5 have been categorized as non-forest, otherwise as 
forest; in the other one of which only the probabilities of being forest have been illustrated, 
so forest regions can be separated using any suitable threshold value (Figure 8). The 
successive estimations of further forest and non-forest attributes, i.e. vegetation type, AGE, 
and OPENNESS will be limited in the corresponding scopes of forest or non-forest set up 
here. Surely, regions in the study area not belonging to any of those forest or non-forest 

Figure 8. Sample variograms and fitted variogram models of the residuals from, left) the

logistic model on forest and non-forest; right) the logistic model on mire and heath  



20 
 

vegetation types, e.g. arable land, water, and wasteland etc. have not been clipped from 
these outputs, but will be clipped from the final outputs of this paper. 
 
There are some patterns of the distribution of forest can be observed from Figure 9. One is 
that forest areas mainly are distributed along the main rivers where SOIL type is 8 
(sediment and rock), and repels SOIL 1 (peat). This partially coincides with the result of 
the logistic model, in which three variables: Y (ΔAIC = 40.36), SOIL (ΔAIC = 39.43, here 
df equals 2), and SLOPE (ΔAIC = 18.55) count for most of the model’s explanatory power. 
Also forest covers about 35% of the study area, which matches the proportion of forest in 
the sample. 
 

     

    
 
 
 
 

 

Dividing non-forest into mire and heath 

After forest and non-forest areas had been separated, the latter were further divided into 
areas of mire and heath following the same modeling approach as in the previous section. 
Table 8 shows the selected model, while Table 9 shows its overall performance, in which 
the p-value of the χଶ statistic of the residual deviance suggests a high-level similarity 

Figure 9. Outputs of the prediction on forest and non-forest, top left) using the logistic model;

top right) using ordinary Kriging; bottom left) Combining two models (all these three outputs

are scaled on the probability of success of forest); bottom right) Combining two models

(mapped with the threshold probability of 0.5 of being forest) 
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between the fitted and the observed values. This similarity results in an overall 
classification accuracy of 0.81 (coincide with a prediction error ࢾ of 0.199 of the adjusted 
leave-one-out cross-validation based on the cost function of ݉݁ܽ݊ሺ|݀݁ݒݎ݁ݏܾ െ
|݀݁ݐܿ݅݀݁ݎ  0.5ሻ) with an un-weighted Kappa statistic of 0.61 on the sample dataset. 
Table 8. Result of the selection of predictors of the regression model on mire and heath 

 Predictors Discarded Predictors Retained 

 DIST_W CURV_PL X DEM CURV_PR ASPECT The Other Predictors 

AIC 442.19 440.26 438.75 437.38 435.62 434.76 434.46 

 
Table 9. Performance of the selected model on mire and heath 

H0: There is no difference between observed and fitted values.

 ࢾ df p-value ࡹࡰ

418.46 505 0.998 0.199 

 Observed   

Predicted Heath Mire  

Heath 201 53  

Mire 46 213  

 
The sample variogram and the fitted variogram model (SSE = 3.48e-06) for the residuals 
from the binary model on mire and heath are presented in Figure 8. Again, here predictions 
from both the binary model and Kriging were combined together to form the estimation for 
regions of mire and heath. The estimation results are shown in two ways (Figure 10), in 
one of which regions with probabilities of being mire less than 0.5 have been categorized 
as heath, otherwise as mire; in the other one of which only the probabilities of being mire 
have been illustrated, so regions of mire can be separated using any suitable threshold 
value. The same as in the first binary model, Y (ΔAIC = 12.78), SOIL (ΔAIC = 15.95, here 
df = 2), and SLOPE (ΔAIC = 4.39) are also the key determine factors here. The areas of 
mire highly accord with areas of SOIL 1 (peat) and concentrate at the southern part of the 
study area. 
 

Distinguishing between coniferous, deciduous, and mixed forest 

Forest areas separated from the first binary model were then classified into three vegetation 
types using a different multinomial logistic model, but the procedure of model selection is 
the same. Table 10 shows the selected model here, while its performance including an 
overall classification accuracy of 0.76 with an un-weighted Kappa statistic of 0.58 on the 
sample dataset can be found in Table 11. 
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Table 10. Result of the selection of predictors of the regression model on vegetation types 

 Predictors Discarded Predictors Retained 

 CURV_PL SOLAR CURV_PR WI The Other Predictors 

AIC 461.66 459.32 457.51 456.63 455.38 

 
Table 11. Performance of the selected model on vegetation types 

H0: There is no difference between observed and fitted values.

  df p-value ࡹࡰ

415.38 997 >0.9999  

 Observed   

Predicted Coniferous Deciduous Mixed 

Coniferous 148 20 21 

Deciduous 16 101 20 

Mixed 1 4 8 

 
Following the routine, the sample variograms and the fitted variogram models (individual 
models for vegetation types of coniferous, deciduous, and mixed forests with SSEs of 
7.77e-06, 1.01e-05, and 1.21e-06 respectively) for the residuals from the multinomial 

Figure 10. Outputs of the prediction on mire and heath, top left) using the logistic model; top

right) using ordinary Kriging; bottom left) Combining two models (all these three outputs are

scaled on the probability of success of mire); bottom right) Combining two models (mapped

with the threshold probability of 0.5 of being mire, and clipped by the extent of non-forest). 
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model here are plotted in Figure 11, and estimations of forest vegetation types again were 
obtained by combining predictions from both types of models. Figure 12 presents the 
outputs of those estimations, in which the vegetation type of a certain region is the one 
with the highest probability of success. 
 

   

 
 
 
 
The single most important explanatory variable in this logistic model is DIST_A (ΔAIC = 
28.86). Its coefficients of -2.21 and -2.23 imply the closer to arable land, the bigger chance 
to find deciduous or mixed forest compared to coniferous forest (the reference response 
class). SOIL (ΔAIC = 3.35) is of the second importance, which shows coniferous forests 
prefer sediment and rock, while deciduous forests prefer moraine. Mixed forest obviously 
is a minor element in the study area. 
  

Figure 11. Sample variograms and fitted variogram models of the residuals from the

multinomial logistic model, left) on coniferous forest; middle) on deciduous forest; right) on

mixed forest  
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Figure 12. Outputs of the predictions on coniferous (1st row), deciduous (2nd row), and mixed 

forests (3rd row), left) using the logistic model; right) using ordinary Kriging (both scaled on the 

probability of success of a certain vegetation type); bottom) Combining two types of models 

(mapped with the vegetation type of the highest probability of success, and clipped by the extent of 

forest) 
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Estimating AGE and OPENNESS of forest stands 

The last also the most challenging step in this modeling attempt is to model AGE and 
OPENNESS of forest stands, since all we can resort to are some seemingly weak 
correlations between the explanatory and the response variables plus the incomplete spatial 
coverage of Kriging prediction. In this step, except a general PLS model, individual PLS 
models for different SOIL types had also been applied, in which predictors had been 
standardized to avoid the influence of their scales on decomposition. The performances of 
these models by including different numbers of principal components are summarized by 
two means: 1) Figure 13 illustrates the changes of Root Mean Square Error of Prediction 
(RMSEP); 2) Table 12, 13, and 14 compare the percentages of variances of both the 
explanatory and the response variables being explained. 
 

     

 
 
 
 
 
 

   

Figure 13. Standardized RMSEP (black solid lines for the ordinary leave-one-out

cross-validation; red dotted lines (mostly overlap the black lines) for a bias-corrected one of

that (Mevik and Cederkvist, 2004)) of the PLS models on, top left) all SOIL types; top right)

SOIL type 8; bottom) SOIL type 93 
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Table 12. Percentages of variances explained by the PLS model on all SOIL types 

 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 

Predictors 17.4589 30.376 40.701 46.914 61.018 68.681 75.050 

AGE 0.2052 4.844 6.341 6.671 6.837 6.907 7.072 

OPENNESS 16.0944 16.490 18.265 19.770 19.982 20.307 20.385 

 8 comps 9 comps 10 comps 11 comps    

Predictors 81.920 88.957 94.530 100.000    

AGE 7.077 7.102 7.105 7.105    

OPENNESS 20.561 20.570 20.572 20.573    

 
Table 13. Percentages of variances explained by the PLS model on SOIL type 8 

 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 

Predictors 18.25 27.96 39.45 52.30 60.39 70.40 84.44 

AGE 20.62 23.87 24.67 26.14 26.37 26.54 26.58 

OPENNESS 18.81 29.79 32.65 33.30 33.78 34.06 34.20 

 8 comps 9 comps 10 comps 11 comps    

Predictors 90.34 94.81 99.51 100.00    

AGE 26.64 26.65 26.66 26.66    

OPENNESS 34.37 34.43 34.44 34.45    

 
Table 14. Percentages of variances explained by the PLS model on SOIL type 93 

 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 

Predictors 17.6512 33.561 43.60 53.32 65.64 72.14 77.54 

AGE 0.1639 4.134 8.91 11.17 11.18 11.95 12.96 

OPENNESS 21.4819 23.238 25.73 26.47 27.64 28.00 28.03 

            8 comps  9 comps 10 comps  11 comps    

Predictors 82.12 89.72 95.05 100.00    

AGE 13.13 13.24 13.24 13.25    

OPENNESS 28.24 28.27 28.28 28.28    

 
The summarization above indicates that candidate PLS models can only explain a 
maximum of 7 to 26% of the variation on AGE, 20 to 34% of that on OPENNESS, which 
is a quite poor performance. However there are two factors may still render the modeling 
useful: 1) The variables AGE and OPENNESS include more discrete values (see Table 1) 
than the main three classes, e. g., “low”, “medium”, and “high”, to which the final results 
will be aggregated. The aggregation will improve the estimation performance substantially, 
and the reason it will be performed afterwards is to keep its flexibility; 2) The predictions 
from Kriging will also be combined. 
 
The selected PLS models on all SOIL types, SOIL type 8, and SOIL type 93 included 9, 3, 
and 10 principal components respectively, so maximum amounts of variances in both 
response variables of each model can be explained (the same as RMSEPs being 
minimized). The sample variograms and the fitted variogram models (SSE of 21 and 
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1.53e-07) combining residuals from all three PLS models on AGE and OPENNESS are 
presented in Figure 14. The sample variograms do not show clear patterns of spatial 
autocorrelation, which is preferred if the previous PLS models had explained most of the 
variances in response variables. Otherwise not much may be expected from including 
Kriging prediction. 

      
 
 
Prediction result on either AGE or OPENNESS from regression was obtained by applying 
three individual PLS models, while that from Kriging was obtained by applying a single 
model combining residuals from all three PLS models. In the outputs that merge 
predictions from those two types of models, predicted values had been grouped into classes 
in accordance with the classes of the original data shown in Table 1. Figure 15 and 16 
present these three sorts of prediction results on AGE and OPENNESS, the former of 
which covers 5 of the 6 original AGE classes (except class “101 - 120”) and suggests the 
classes of “21 - 40” and “41 - 60” are the dominant classes; whilst the latter of which 
covers all 7 OPENNESS classes, and indicates classes “0.5 – 0.6” and “0.7 – 0.8” have the 
largest extent. Either old forest or sparse forest is very uncommon in the study area. The 
most important predictors for each PLS model are summarized in Table 15. 
 
Table 15. Standardized predictors with the highest weights in each PLS models (coefficients in 

parentheses) 

Model Predictor 

All SOIL Types 
AGE DIST_A (-0.295) X (0.103) SOLAR (0.090) 

OPENNESS Y (-0.332) DEM (-0.297) DIST_A (-0.237)

SOIL Type 8 
AGE DEM (0.195) DIST_W (0.181) Y (0.173) 

OPENNESS CURV_PL (0.281) DIST_W (-0.258) SOLAR (0.209) 

SOIL Type 93 
AGE DIST_A (-0.478) X (0.367) Y (-0.293) 

OPENNESS X (-0.359) Y (-0.309) SOLAR (0.262) 

Figure 14. Sample variograms and fitted variogram models of the combined residuals from,

left) the three PLS models on AGE; right) the three PLS models on OPENNESS  
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Figure 15. Outputs of the prediction on AGE, top left) using the three PLS models; top right) 
using ordinary Kriging; bottom) Combining two types of models 
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The k-NN reference of estimation 

As planned, estimations had also been made by implementing k-NN method in order to set 
up a reference to the modeling attempt, and the results of which are manifested in Figure 
17. It is noticed that they share some common features, albeit more dissimilarities with the 
modeling outputs. Despite these, the outputs here look patchier and less smooth, which 
probably not agree with the real landscape structure. This is a drawback of k-NN method 
since the exact known values of target variables will be imputed, which ends up in discrete 
and enveloped estimation results. Such a problem is often dealt with by enlarging the 
support, which is not the case here since it is just used as a reference. Also because 
categorical variables cannot be included in the weights of distances that is the inversed 
covariance matrix used in the k-NN method here, from which the predictor of SOIL is 
excluded, and this is a loss of important information. 
 
A direct comparison between the performances of k-NN method and the modeling effort on 
AGE and OPENNESS can be made by using corresponding RMSEs (Crookston and Finley 
(2008) consider it is more appropriate to name it Root Mean Square Difference (RMSD) in 
the k-NN case). Such a comparison reveals the modeling effort considerably outperforms 
k-NN method (Table 16). The performance of k-NN method on classification of vegetation 
type is summarized in Table 17, which leads to an overall classification accuracy of 0.72 
with an un-weighted Kappa statistic of 0.62 on the sample dataset. This performance is so 

Figure 16. Outputs of the prediction on OPENNESS, top left) using the three PLS models; top 
right) using ordinary Kriging; bottom) combining two types of models 
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close to that of the modeling that hardly a judgment can be made upon them. 

 

 

Table 16. RMSEs on AGE and OPENNESS of k-NN method and the modeling 

 AGE (year) OPENNESS 

 The Modeling k-NN The Modeling k-NN

RMSE 18.45* 23.64 0.17* 0.36 

* It should be noted that the RMSEs of the modeling is that of PLS models. After Kriging was 

implemented to the residuals of those models, the Kriging variance (hence RMSE) should be 

considerably lower. Although to which extent the RMSEs will be lowered is hard to be reliably 

summarized (which partially is a drawback of the way that NFI sample plots had been allocated 

(Figure 3), since the attribute value of each of these plots (over 100 m long on average) was 

assigned to all the grid cells it contains, which causes a certain grid cell is surrounded by its 

neighbors with the same attribute value and high weighs, finally leads to underestimated and 

unrealistic low Kriging variance). 

  

Figure 17. Outputs of predictions from implementing k-NN method on, top left) AGE; top right) 
OPENNESS; bottom) vegetation type. 
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Table 17. Classification performance of k-NN method on vegetation type  

 Observed 

Predicted C D MI M J 

C 115 4 15 17 3 

D 10 81 11 14 10

MI 22 11 187 22 5 

M 17 21 29 205 7 

J 1 8 5 8 24

 

Final outputs 

Combining all elements, final outputs of this modeling are manifested in Figure 18 and 19. 

 

 

Figure 18. Final output of AGE on different vegetation types; areas in grey are anything but out of 

the scope of this study, e. g., arable land, water, roads, and etc. © Lantmäteriet, I2011/0032. 
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Comparison of predictions based on two different data sources 

The predictions made by the modeling are based on the first NFI data. These same 
predictions can also be obtained by using information from the historical economic maps. 
A comparison of predictions based on these two different data sources will serve as a sort 
of validation. Cross-validations had already been implemented for individual models 
before. 
 
The main reason why not following the conventional way to divide samples into two 
groups as cases and controls to perform the validation is the inadequate sample size. 
Among a total of 1019 sample cells, 164 of them fall in water, arable land, and wasteland 
etc., which is not a part of this study; within the 855 sample cells left, only 342 are of 
forest, which are further separated by different types of soil. Also, the relatively large 
number of predictors means fewer samples will fall on a certain combination of predictors. 
This is a limitation of using parametric approaches where large amount of data is required. 
Instead, nonparametric approaches could be considered. 
 
Besides, even a few samples on each soil type had been selected to form a control group, 
validation based on which probably would not be reliable because the fitness is more likely 
a result of chance (Kravchenko, 2003). The same author suggests permuting the samples of 
cases and controls a number of times, and performing validation on the simulated control 
groups to obtain more generalized and reliable information on the performance of the 
modeling. However, this is way beyond the computational capacity given the number of 
models included in this study. 

Figure 3. Final output of OPENNESS on different vegetation types; areas in grey are anything but 

out of the scope of this study, e. g., arable land, water, roads, and etc. © Lantmäteriet, I2011/0032. 
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Comparison on OPENNESS 

It has been considered that the key choice of the computation of point intensity is not the 
specific kernel function but the bandwidth used (Bivand et al., 2008). When applying the 
quartic kernel function, we selected the bandwidths by following the proposal of Berman 
and Diggle (1989) on minimizing the Mean Square Error (MSE) of the kernel estimator. 
Figure 20 shows such a selection of bandwidths and Figure 21 shows the estimations of 
point intensities based on the selected optimal bandwidths. 
 

 
 
 
 
 
 

   
 
 
 
 
Once obtained point intensities, its connection with OPENNESS has to be built in order for 
it to be used for the comparison. The bridge of this connection is the NFI samples used in 
this study. One problem is that point intensities here represent forest densities, and the 
same density does not necessarily lead to the same OPENNESS, which is also heavily 
decided by AGE. The adjusted R2 of 0.3004 of the connection between OPENNESS and 
intensity, of 0.7563 between OPENNESS and intensity plus AGE confirmed this argument. 

Figure 20. MSEs (rescaled (Anonymous, 2011)) of point intensity at different bandwidths

using quartic kernel, left) for coniferous forests, minimized at 120 m; right) for deciduous

forests, minimized at 150 m.  

Figure 21. Estimated point intensities of the digitized historical county economic maps based

on quartic kernel function with selected optimal bandwidths, left) for coniferous forests; right)

for deciduous forests. 
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Unfortunately, AGE is one of the variables to be estimated, not already known in this study. 
In this case, estimated values of AGE had been used to transfer point intensity to 
OPENNESS. Although not preferred, this operation nevertheless still helps improve the 
precision of the transfer to a certain extent. 
 
Finally, the prediction of OPENNESS through the digitized 1920s economic map had been 
generated (clipped by the extent of forest in these maps). It should be noted that heath is a 
part of forest in these maps, and assigned with the attributes of OPENNESS and AGE. 
However this was not the case in the first NFI data, on which the estimation was based. 
This disparity certainly contributed much to the differences between OPENNESS 
estimated from these two different data sources (Figure 22). Yet this inconsistency is an 
unchangeable fact, and historical county economic maps will set the par for the 
comparisons here and afterwards, hence the modeling outputs will be retailored. 
 
Except the visual comparison on Figure 22, the agreement on the estimations of 
OPENNESS from these two different data sources is summarized in Table 18, while that 
between using k-NN method and historical county economic maps is in Table 19. The 
former presents an overall agreement of 0.52 with a weighted Kappa statistic of 0.11, while 
those of the latter are 0.27 and 0.09.  
 

 
 
Table 18. Summary of the agreement on the estimations of OPENNESS between using 1920s 

economic maps and the 1928 NFI data 

 Historical County Economic Maps  

The Modeling (First NFI) Sparse Open Closed Total 

Sparse 0.2% 0.1% 0.0% 0.3% 

Open 2.0% 23.7% 14.8% 40.5% 

Closed 0.8% 30.3% 28.0% 59.1% 

Total 3.0% 54.1% 42.8% 100.0% 

Figure 22. Estimated OPENNESS grouped into three classes (“sparse” for OPENNESS ≤ 0.2; 

“Open” for 0.2 < OPENNESS ≤ 0.6; “Closed” for OPENNES > 0.6), left) from historical 

county economic maps; right) from the modeling result of this study based on the first NFI data. 

   



35 
 

Table 19. Summary of the agreement on the estimations of OPENNESS between using 1920s 

economic maps and k-NN method 

 Historical County Economic 

Maps 

 

k-NN Sparse Open Closed Total 

Sparse 2.4% 33.6% 20.2% 56.2% 

Open 0.3% 5.7% 3.9% 9.9% 

Closed 0.3% 14.9% 18.8% 34.0% 

Total 3.0% 54.2% 42.9% 100.0% 

 

Comparison on vegetation type 

The agreement on the estimations of vegetation type from the two different data sources is 
summarized in Table 20 (and can be visually compared from Figure 23), while Table 21 is 
that between using k-NN method and historical county economic maps. The overall 
agreement for the former is 0.34. The misinterpretation mostly rests on mixed forest, which 
is the major vegetation type in historical county economic maps. However, there are 
merely 49 out of 1019 NFI samples are of mixed forest, and when the modeling is based on 
this, the result here is really not a surprise. And again, the modeling outperforms the k-NN 
method, which has an overall accuracy of 0.19 here. 

 
Table 20. Summary of the agreement on the estimations of vegetation type between using historical 

county economic maps and the first NFI data 

 Historical County Economic Maps 

The Modeling (First NFI) Coniferous Deciduous Mixed Total 

Coniferous 21.3% 7.1% 26.4% 54.8% 

Deciduous 2.9% 5.5% 27.9% 36.3% 

Mixed 1.3% 0.9% 6.9% 9.1% 

Total 25.5% 13.5% 61.2% 100.0% 

 

Figure 23. Estimated vegetation classes (“C” for coniferous forest; “D” for deciduous forest; 

“MI” for mixed forest), left) from historical county economic maps; right) from the modeling 

result of this study based on the first NFI data. 
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Table 21. Summary of the agreement on the estimations of vegetation types between using 

historical county economic maps and k-NN method (Others here means non-forest vegetation types, 

since they had not been imputed separately with forest vegetation types) 

 Historical County Economic Maps 

k-NN Coniferous Deciduous Mixed Total 

Coniferous 11.7% 3.0% 8.9% 23.6% 

Deciduous 1.9% 3.0% 10.5% 15.4% 

Mixed 1.3% 1.0% 4.0% 6.3% 

Others 10.4% 6.4% 37.8% 54.6% 

Total 25.3% 13.4% 61.2% 100.0% 
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Conclusion and Perspective 
In summary, the performance of the modeling works fairly well for the vegetation type 
while it is barely acceptable for the forest stand age and openness part. Quite common as 
for similar studies, this situation is mainly caused by the nature of the available data, to 
which there hardly is a foreseeable solution. Nevertheless, the way the existing data 
soruces are combined and utilized is also a causal factor behind the results, and this may be 
improved. 
 

Constraints of data 

In the modeling, a fundamental assumption is that the distributions of forest attributes of 
interest are varying with environmental covariates, which could be topographical, 
pedological, climatic, spectral etc. However, the lack of relevant data containing such 
covariates, or from which such covariates could be derived, is the most troublesome 
constraint being encountered (Figure 6). 
 
To make things worse, such limited data regarding those covariates are seldom available 
from the same era of this study. Thus, contemporary surrogates or proxy data have to be 
considered, and this may be problematic. For instance, spectral information from remote 
sensing supplies valuable direct measurement subject to this study, but there hardly is a 
means to utilize it rationally in the historical context. To put the rationality of using 
specific contemporary surrogates or proxies in this study under scrutiny, the changes of 
terrain (DEM) and soil types are admittedly extremely slow processes, so as for the 
changes of water areas especially in the rural part of Sweden. He et al. (2007) confirmed 
this point of view. But it may not be reasonable to neglect the changes in areas of arable 
land, since it decreased by about 1.2% (or about 5,000 km2) of the total land area of 
Sweden just from 1967 to 2008 (Trading Economics, 2011). At a regional level changes in 
area of arable land were even larger. 
 
Therefore, even the utilization of some of those covariates (their surrogates) can be 
justified; they probably have already lost much of their explanatory power to factors 
concerning human involvement in forest. For instance, the long history of forest 
management in Sweden makes the distribution of forest more as consequences of the 
supply and demand of forestry products, human preference, social development, and etc., 
less affected by environmental factors even in the 1920s. 
 
Another major constraint is for the two data sources containing information of forest 
attributes in this study, i.e. the first NFI and the 1920s economic map. Since the interest of 
the former lay on the living stock and increment of forest, while forest is just one of many 
components of the latter, thereby it was not always the case that these two data sources can 
supply sufficient information to generate those attributes from, not to mention being of the 
same caliber. 
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This not only makes the modeling less productive and reliable, but makes verifying the 
predictions from these two data sources of less value. For instance, with its full coverage of 
the study area, the historical county economic maps are supposed to supply the ground 
truth of the study objects, against which a validation of the modeling result can be made. 
However, in order to achieve an estimation of forest stand openness — one of the variables 
of interest, forest density had to be estimated from symbols in these maps first, this 
estimation then was used to facilitate a linear function to obtain the estimation intended. 
Along the process of estimation on estimation, uncertainties accumulated intolerably; and 
the only hypothesis can be rejected by comparing estimations from these two data sources 
is that they both fit the sample well. 
 
Another example regarding this constraint is about heath in the study area, which is treated 
separately from forest in the first NFI data, but not in the historical county economic maps. 
Attempting to include heath in forest in the first NFI data to make these two data sources 
compatible did not seem possible, because although NFI sample plots of heath have the 
attribute of stand openness, but not stand age (for most of them), PLS regression that 
estimates multiple response variables simultaneously thereby treats all plots of heath as 
missing values (absent stand age values of heath plots could be imputed firstly, but the 
extra uncertainty arisen surely devalues the effort). 
 
After all, these constrains are quite common for studies of historical landscapes. To deal 
with them, some compromises and premises have to be made before any progress can be 
achieved. But this whole procedure must be guided by proper historical methods, e. g. 
explication of the interconnectedness of variables, contextualization and causation of 
events, tolerance of ambiguity, and etc. (Lewenson and Herrmann, 2008), which is the 
exact practice all through this modeling. 
 

Future improvement of modeling 

Despite all the constraints with the used approach, the modeling methods certainly could 
be further improved. So far two sorts of potential improvement approaches have been 
perceived (but not tried). Besides these there are some other premature and rather wild 
notions. 
 
1) For data preparation 
Grid cell size has heavy influence on the modeling result that larger size generally leads to 
less noisy hence statistically better performance (at the cost of the compromise of some 
information), also the computational convenience, but may also make the sample size less 
than sufficient to build all the models on. Also, different grid cell sizes offer different 
opportunities to reveal spatial autocorrelations within samples. In this study, concerns 
about grid cell size were placed on trying to enlarge it so two soil types (the minimum area 
of any certain soil type is 400 m2), so as for two NFI sample plots (the minimum distance 
between any two plots is 30 m) will not fall into the same cell. But this enlargement should 
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optimize, not undermine the usability of this modeling. Although, whether this is the case 
can only be found out after repeated trials of different cell sizes (meaning the whole time 
consuming modeling process), which have yet been done. 
 
2) For statistical techniques 
The motivation to apply Kriging after regression in this modeling is that we believe there is 
autocorrelation left in the residuals of regression, which needs to be caught in order to 
reach a better estimation. As a matter of fact, this modeling do benefit from this design. 
But this however contradicts with the assumption of parameter estimation of the regression 
models used in this study that residuals of each of those models are independent (having 
constant error variance). Therefore, the formerly estimated regression model parameters 
are biased. To deal with this problem and further enhance the estimation, covariance matrix 
of errors estimated during applying Kriging can be used to re-estimate error variance, 
hence parameters of regression models. This process then should be iterated until 
convergence. The “NeweyWest” function from package “sandwich” (Zeileis, 2004) 
implementing heteroskedasticity and autocorrelation consistent (HAC) estimator, and the 
“gls” function from package “nlme” (Pinheiro et al., 2011) performing Generalized Least 
Squares (GLS) regression of R make this theory generally applicable, but maybe not in the 
specific PLS regression context. 
 
Another statistical technique that might be applied is Bayesian inference. As the study area 
of Halland has an interesting and dramatic forest history, there are many studies (both new 
and older) that could supply additional valuable information for enhanced modeling 
(constructing priors). The broad use of Bayesian inference also boosted the development of 
relevant programs and software. Specifically in R, there are plenty of functions suitable for 
many different statistical models (all the models used in this study). 
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Appendix: R Codes Used 

 
* Except the packages come with R 2.12.2, the following packages have been used in this 
study: boot (Canty and Ripley, 2011), CCA (González and Déjean, 2009), geoR (Ribeiro 
and Diggle, 2001), gstat (Pebesma, 2004), Hmisc (Harrell, 2010), languageR (Baayen, 
2011), mda (Leisch et al., 2011), nnet (Venables and Ripley, 2002), pls (Mevik and 
Wehrens, 2011), rgdal (Keitt et al., 2011), splancs (Rowlingson et al., 2010), vcd (Meyer et 
al., 2011), yaImpute (Crookston and Finley, 2007). 
* R codes used for repeated trials, image production, and quoting results are not included 
here. 
 
### Import all the data into R, and perform necessary pre-processing 

############################################################################ 

> predictors = readGDAL("D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/dem_clip_20.img") 

> predictors$DEM = readGDAL("D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/dem_clip_20.img")$band1 

### (Also import data of SOIL, SOLAR, ASPECT, CURV_PL, CURV_PR, SLOPE, WI, DIST_A, 

DIST_W, X, Y) 

> predictors@data[[1]] <- 1:dim(predictors@data)[1] 

> indices_1 <- is.na(predictors$WI) 

> predictors$WI = replace(predictors$WI, indices_1, 0) 

> indices_2 <- which(predictors$SOIL == "888") 

> indices_3 <- which(predictors$SOIL == "200" | predictors$SOIL == "66" | 

predictors$SOIL == "91") 

> indices_4 <- is.na(predictors$SOIL) 

> predictors$SOIL = replace(predictors$SOIL, indices_2, "8") 

> predictors$SOIL = replace(predictors$SOIL, indices_3, "NA") 

> predictors$SOIL = replace(predictors$SOIL, indices_4, "NA") 

> predictors$SOIL = as.factor(predictors$SOIL) 

> co <- coordinates(predictors) 

> predictors$X = co[1:248040, 1] 

> predictors$Y = co[1:248040, 2] 

> polygons = readOGR(dsn="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/30", layer="NFI_polygon_simp") 

> proj4string(predictors) = CRS("+init=epsg:3854") 

> proj4string(polygons) = CRS("+init=epsg:3854") 

 

### Combine data of predictors and response variables into one dataset 

############################################################################ 

> over1 <- over(predictors, polygons) 
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> over1$ID = predictors$band1 

> over1$DEM = predictors$DEM 

### (Also add in the data of SOIL, SOLAR, ASPECT, CURV_PL, CURV_PR, SLOPE, WI, DIST_A, 

DIST_W, X, Y) 

> variables = over1[!is.na(over1$OBJECTID_1),] 

 

### Check the representativity of the sample 

############################################################################ 

> options(digits=1) 

> DEM.histbb = histbackback(variables$DEM, predictors$DEM, prob=TRUE) 

### (Also perform this on SOIL, SOLAR, ASPECT, CURV_PL, CURV_PR, SLOPE, WI, DIST_A, 

DIST_W, X, Y)  

> options(digits=7) 

> ks.test(DEM.histbb$left, DEM.histbb$right) 

### (Also perform this on SOIL, SOLAR, ASPECT, CURV_PL, CURV_PR, SLOPE, WI, DIST_A, 

DIST_W, X, Y) 

 

### Check the correlations between variables, and separate predictors from response 

variables for the PLS regression 

############################################################################ 

> v_f = variables[variables$Vegetation == "C" | variables$Vegetation == "D" | 

variables$Vegetation == "MI",] 

> v_f_8 = v_f[v_f$SOIL == "8",] 

> v_f_1 = v_f[v_f$SOIL == "1",] 

> v_f_93 = v_f[v_f$SOIL == "93",] 

> X <- as.matrix(v_f[, c(9, 11:20)]) 

> X8 <- as.matrix(v_f_8[, c(9, 11:20)]) 

> X1 <- as.matrix(v_f_1[, c(9, 11:20)]) 

> X93 <- as.matrix(v_f_93[, c(9, 11:20)]) 

> Y <- as.matrix(v_f[, c(5:7)]) 

> Y8 <- as.matrix(v_f_8[, c(5:7)]) 

> Y1 <- as.matrix(v_f_1[, c(5:7)]) 

> Y93 <- as.matrix(v_f_93[, c(5:7)]) 

> cor <- matcor(X, Y) 

> cor8 <- matcor(X8, Y8) 

> cor1 <- matcor(X1, Y1) 

> cor93 <- matcor(X93, Y93) 

 

### Build the PLS regression models 

############################################################################ 

> YAGEs = scale(Y)$AGE 

> YDENSITYs = scale(Y)$DENSITY 

> YOPENNESSs = scale(Y)$OPENNESS 
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> Y8AGEs = scale(Y8)$AGE 

> Y8DENSITYs = scale(Y8)$DENSITY 

> Y8OPENNESSs = scale(Y8)$OPENNESS 

> Y1AGEs = scale(Y1)$AGE 

> Y1DENSITYs = scale(Y1)$DENSITY 

> Y1OPENNESSs = scale(Y1)$OPENNESS 

> Y93AGEs = scale(Y93)$AGE 

> Y93DENSITYs = scale(Y93)$DENSITY 

> Y93OPENNESSs = scale(Y93)$OPENNESS 

> plsss <- plsr(cbind(YAGEs, YDENSITYs, YOPENNESSs) ~ X, scale=TRUE, validation="LOO") 

> pls8ss <- plsr(cbind(Y8AGEs, Y8DENSITYs, Y8OPENNESSs) ~ X8, scale=TRUE, 

validation="LOO") 

> pls1ss <- plsr(cbind(Y1AGEs, Y1DENSITYs, Y1OPENNESSs) ~ X1, scale=TRUE, 

validation="LOO") 

> pls93ss <- plsr(cbind(Y93AGEs, Y93DENSITYs, Y93OPENNESSs) ~ X93, scale=TRUE, 

validation="LOO") 

> plss <- plsr(cbind(YAGEs, YOPENNESSs) ~ X, scale=TRUE, validation="LOO") 

> pls8s <- plsr(cbind(Y8AGEs, Y8OPENNESSs) ~ X8, scale=TRUE, validation="LOO") 

> pls93s <- plsr(cbind(Y93AGEs, Y93OPENNESSs) ~ X93, scale=TRUE, validation="LOO") 

 

### Perform predictions using the PLS models built 

############################################################################ 

> pre_8 <- predict(pls8s, ncomp=3, as.matrix(over1[which(over1$SOIL == "8"), c(9, 

11:20)])) 

> pre_all <- predict(plss, ncomp=9, as.matrix(over1[which(over1$SOIL == "1" | 

over1$SOIL == "NA"), c(9, 11:20)])) 

> pre_93 <- predict(pls93s, ncomp=10, as.matrix(over1[which(over1$SOIL == "93"), c(9, 

11:20)])) 

> pre_8_df <- as.data.frame(pre_8) 

> pre_93_df <- as.data.frame(pre_93) 

> pre_all_df <- as.data.frame(pre_all) 

> colnames(pre_8_df) <- c("AGEs", "OPENNESSs") 

> colnames(pre_93_df) <- c("AGEs", "OPENNESSs") 

> colnames(pre_all_df) <- c("AGEs", "OPENNESSs") 

> pre_8_df$ID = over1[which(over1$SOIL == "8"), "ID"] 

> pre_93_df$ID = over1[which(over1$SOIL == "93"), "ID"] 

> pre_all_df$ID = over1[which(over1$SOIL == "1" | over1$SOIL == "NA"), "ID"] 

> pre_8_df$AGEre = pre_8_df$AGEs * sd(as.data.frame(Y8)$AGE) + 

mean(as.data.frame(Y8)$AGE) 

> pre_all_df$AGEre = pre_all_df$AGEs * sd(as.data.frame(Y)$AGE) + 

mean(as.data.frame(Y)$AGE) 

> pre_93_df$AGEre = pre_93_df$AGEs * sd(as.data.frame(Y93)$AGE) + 

mean(as.data.frame(Y93)$AGE) 
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> pre_8_df$OPENNESSre = pre_8_df$OPENNESSs * sd(as.data.frame(Y8)$OPENNESS) + 

mean(as.data.frame(Y8)$OPENNESS) 

> pre_all_df$OPENNESSre = pre_all_df$OPENNESSs * sd(as.data.frame(Y)$OPENNESS) + 

mean(as.data.frame(Y)$OPENNESS) 

> pre_93_df$OPENNESSre = pre_93_df$OPENNESSs * sd(as.data.frame(Y93)$OPENNESS) + 

mean(as.data.frame(Y93)$OPENNESS) 

> pre_df <- rbind(pre_8_df, pre_93_df, pre_all_df) 

> pre_df = pre_df[with(pre_df, order(ID)),] 

> predictors$AGEre = pre_df$AGEre 

> predictors$OPENNESSre = pre_df$OPENNESSre 

 

### Perform ordinary Kriging on the residuals of the PLS models 

############################################################################ 

> pls8s_df <- as.data.frame(pls8s$residuals[1:100, 1:2, 3]) 

> colnames(pls8s_df) <- c("A_resi", "O_resi") 

> pls8s_df$X = v_f_8$X 

> pls8s_df$Y = v_f_8$Y 

> pls8s_df$ID = v_f_8$ID 

> pls8s_df$A_resi = pls8s_df$A_resi * sd(as.data.frame(Y8)$AGE) 

> pls8s_df$O_resi = pls8s_df$O_resi * sd(as.data.frame(Y8)$OPENNESS) 

> pls93s_df <- as.data.frame(pls93s$residuals[1:223, 1:2, 10]) 

> colnames(pls93s_df) <- c("A_resi", "O_resi") 

> pls93s_df$X = v_f_93$X 

> pls93s_df$Y = v_f_93$Y 

> pls93s_df$ID = v_f_93$ID 

> pls93s_df$A_resi = pls93s_df$A_resi * sd(as.data.frame(Y93)$AGE) 

> pls93s_df$O_resi = pls93s_df$O_resi * sd(as.data.frame(Y93)$OPENNESS) 

> plss_df <- as.data.frame(plss$residuals[1:342, 1:2, 9]) 

> colnames(plss_df) <- c("A_resi", "O_resi") 

> plss_df$X = v_f$X 

> plss_df$Y = v_f$Y 

> plss_df$ID = v_f$ID 

> plss_df$SOIL = v_f$SOIL 

> plss_df$A_resi = plss_df$A_resi * sd(as.data.frame(Y)$AGE) 

> plss_df$O_resi = plss_df$O_resi * sd(as.data.frame(Y)$OPENNESS) 

> plss_sub_df <- subset(plss_df, plss_df$SOIL == "1" | plss_df$SOIL == "NA", 

select=c(1:5)) 

> plss_all_df = rbind(pls8s_df, pls93s_df, plss_sub_df) 

> coordinates(plss_all_df) = ~ X + Y 

> proj4string(plss_all_df) = CRS(proj4string(predictors)) 

> out1 = plss_all_df[c(1:53, 56:59, 66:176, 214:328, 332:342),] 

> A_vgm_o <- variogram(A_resi ~ 1, out1) 

> A_vgm_o_fit <- fit.variogram(A_vgm_o, model=vgm(150, "Sph", 2500, 100)) 
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> krige_A_o_resi <- krige(A_resi ~ 1, out1, predictors, model=A_vgm_o_fit) 

> O_vgm_o <- variogram(O_resi ~ 1, out1, cutoff=1900) 

> O_vgm_o_fit <- fit.variogram(O_vgm_o, model=vgm(0.03, "Exp", 1900, 0.01)) 

> krige_O_o_resi <- krige(O_resi ~ 1, out1, predictors, model=O_vgm_o_fit) 

> predictors$A_K = krige_A_o_resi@data$var1.pred 

> predictors$O_K = krige_O_o_resi@data$var1.pred 

 

### Build the logistic models 

############################################################################ 

> variables_temp <- subset(variables, !(variables$Vegetation == "NA") 

& !(variables$SOIL == "NA")) 

> collin.fnc(scale(variables_temp[, c(9, 11:20)]))$cnumber 

> variables_sub <- data.frame(scale(variables_temp[, c(9, 11:20)]), variables_temp[, 

c(2, 5:8, 10)]) 

> variables_sub$FOREST = variables_sub$ID 

> indices_5 <- which(variables_sub$Vegetation == "C" | variables_sub$Vegetation == 

"D" | variables_sub$Vegetation == "MI") 

> variables_sub$FOREST = replace(variables_sub$FOREST, indices_5, "1") 

> indices_6 <- which(variables_sub$Vegetation == "J" | variables_sub$Vegetation == 

"M") 

> variables_sub$FOREST = replace(variables_sub$FOREST, indices_6, "0") 

> variables_sub$FOREST = as.factor(variables_sub$FOREST) 

> m_FOREST <- glm(FOREST ~ . -Vegetation -OPENNESS -AGE -DENSITY -ID, family=binomial, 

variables_sub) 

> m_FOREST_step <- step(m_FOREST) 

> m_FOREST_all <- glm(FOREST ~ . -Vegetation -OPENNESS -AGE -DENSITY -ID -SOIL, 

family=binomial, variables_sub) 

> m_FOREST_all_step <- step(m_FOREST_all) 

> v_vege <- subset(variables_sub, !(variables_sub$Vegetation == "J") 

& !(variables_sub$Vegetation == "M")) 

> collin.fnc(v_vege[, c(1:11)])$cnumber 

> v_mj <- subset(variables_sub, variables_sub$Vegetation == "J" | 

variables_sub$Vegetation == "M") 

> collin.fnc(v_mj[, c(1:11)])$cnumber 

> m_mj <- glm(Vegetation ~ . -FOREST -OPENNESS -AGE -DENSITY -ID, family=binomial, 

v_mj) 

> m_mj_step <- step(m_mj) 

> m_mj_all <- glm(Vegetation ~ . -FOREST -OPENNESS -AGE -DENSITY -ID -SOIL, 

family=binomial, v_mj) 

> m_mj_all_step <- step(m_mj_all) 

> v_vege$Vegetation = as.numeric(v_vege$Vegetation) 

> v_vege$Vegetation = as.factor(v_vege$Vegetation) 

> m_vege <- multinom(Vegetation ~ . -FOREST -OPENNESS -AGE -DENSITY -ID, v_vege) 
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> m_vege_step <- step(m_vege) 

> m_vege_all <- multinom(Vegetation ~ . -FOREST -OPENNESS -AGE -DENSITY -ID -SOIL, 

v_vege) 

> m_vege_all_step <- step(m_vege_all) 

 

### Perform predictions using the logistic models built 

############################################################################ 

> over1_temp <- subset(over1, !(over1$SOIL == "NA")) 

> over1_sub <- data.frame(scale(over1_temp[, c(9, 11:20)]), over1_temp[, c(2, 5:8, 

10)]) 

> pre_FOREST <- predict(m_FOREST_step, over1_sub, type="response") 

> over1_sub$FOREST = pre_FOREST 

> pre_FOREST_all <- predict(m_FOREST_all_step, over1, type="response") 

> over1$FOREST = pre_FOREST_all 

> pre_mj <- predict(m_mj_step, over1_sub, type="response") 

> over1_sub$mj = pre_mj 

> pre_mj_all <- predict(m_mj_all_step, over1, type="response") 

> over1$mj = pre_mj_all 

> pre_vege <- predict(m_vege_step, over1_sub, type="probs") 

> over1_sub <- data.frame(over1_sub, pre_vege) 

> pre_vege_all <- predict(m_vege_all_step, over1, type="probs") 

> over1 <- data.frame(over1, pre_vege_all) 

> FOREST_sub <- subset(over1, over1$SOIL == "NA", c(2, 5:25)) 

> over1_FOREST <- rbind(over1_sub, FOREST_sub) 

> over1_FOREST = over1_FOREST[with(over1_FOREST, order(ID)),] 

> predictors$FOREST = over1_FOREST$FOREST 

> predictors$mj = over1_FOREST$mj 

> predictors$C = over1_FOREST$C 

> predictors$D = over1_FOREST$D 

> predictors$MI = over1_FOREST$MI 

 

### Perform ordinary Kriging on the residuals of the logistic models 

############################################################################ 

> FOREST_resi <- as.data.frame(residuals(m_FOREST_step, type="response")) 

> FOREST_resi$X = variables_temp$X 

> FOREST_resi$Y = variables_temp$Y 

> coordinates(FOREST_resi) = ~ X + Y 

> proj4string(FOREST_resi) = CRS(proj4string(predictors)) 

> FOREST_vgm <- variogram(residuals(m_FOREST_step, type="response") ~ 1, FOREST_resi) 

> FOREST_vgm_fit <- fit.variogram(FOREST_vgm, model=vgm(0.1, "Exp", 2000, 0.1)) 

> krige_FOREST <- krige(residuals(m_FOREST_step, type="response") ~ 1, FOREST_resi, 

predictors, model=FOREST_vgm_fit) 

> predictors$FOREST_K = krige_FOREST@data$var1.pred 
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> mj_resi <- as.data.frame(residuals(m_mj_step, type="response")) 

> mj_resi$X = subset(variables_temp, variables_temp$Vegetation == "J" | 

variables_temp$Vegetation == "M")$X 

> mj_resi$Y = subset(variables_temp, variables_temp$Vegetation == "J" | 

variables_temp$Vegetation == "M")$Y 

> coordinates(mj_resi) = ~ X + Y 

> proj4string(mj_resi) = CRS(proj4string(predictors)) 

> mj_vgm <- variogram(residuals(m_mj_step, type="response") ~ 1, mj_resi) 

> mj_vgm_fit <- fit.variogram(mj_vgm, model=vgm(0.05, "Sph", 1100, 0.1)) 

> krige_mj <- krige(residuals(m_mj_step, type="response") ~ 1, mj_resi, predictors, 

model=mj_vgm_fit) 

> predictors$mj_K = krige_mj@data$var1.pred 

> vege_resi <- data.frame(subset(variables_temp, !(variables_temp$Vegetation == "J") 

& !(variables_temp$Vegetation == "M"))$X, 

subset(variables_temp, !(variables_temp$Vegetation == "J") 

& !(variables_temp$Vegetation == "M"))$Y, m_vege_step$residuals) 

> colnames(vege_resi) <- c("X", "Y", "C", "D", "MI") 

> coordinates(vege_resi) = ~ X + Y 

> proj4string(vege_resi) = CRS(proj4string(predictors)) 

> vege_vgm_C <- variogram(C ~ 1, vege_resi, cutoff=2000) 

> vege_vgm_C_fit <- fit.variogram(vege_vgm_C, model=vgm(0.15, "Exp", 800, 0)) 

> krige_C <- krige(C ~ 1, vege_resi, predictors, model=vege_vgm_C_fit) 

> vege_vgm_D <- variogram(D ~ 1, vege_resi, cutoff=1500) 

> vege_vgm_D_fit <- fit.variogram(vege_vgm_D, model=vgm(0.2, "Sph", 1000, 0)) 

> krige_D <- krige(D ~ 1, vege_resi, predictors, model=vege_vgm_D_fit) 

> vege_vgm_MI <- variogram(MI ~ 1, vege_resi, cutoff=3600) 

> vege_vgm_MI_fit <- fit.variogram(vege_vgm_MI, model=vgm(0.1, "Exp", 1000, 0)) 

> krige_MI <- krige(MI ~ 1, vege_resi, predictors, model=vege_vgm_MI_fit) 

> predictors$C_K = krige_C@data$var1.pred 

> predictors$D_K = krige_D@data$var1.pred 

> predictors$MI_K = krige_MI@data$var1.pred 

 

### Check the performance of the logistic models 

############################################################################ 

> cost_FOREST <- function(FOREST, pi=0) mean(abs(FOREST - pi) > 0.5) 

> cv.m_FOREST_step <- cv.glm(variables_sub, m_FOREST_step, cost_FOREST, 

K=nrow(variables_sub)) 

> cost_mj <- function(Vegetation, pi = 0) mean(abs(Vegetation - pi) > 0.5) 

> cv.m_mj_step <- cv.glm(v_mj, m_mj_step, cost_mj, K=nrow(v_mj)) 

> accu_FOREST <- data.frame(m_FOREST_step$fitted.values, variables_sub$FOREST) 

> colnames(accu_FOREST) <- c("FITTED", "OBSERVED") 

> coordinates(variables_temp) = ~ X + Y 

> proj4string(variables_temp) = CRS(proj4string(predictors)) 
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> krige_FOREST_accu <- krige(residuals(m_FOREST_step, type="response") ~ 1, 

FOREST_resi, variables_temp, model=FOREST_vgm_fit) 

> accu_FOREST$FITTED = accu_FOREST$FITTED + krige_FOREST_accu$var1.pred 

> indices_7 <- which(accu_FOREST$FITTED >= 0.5) 

> accu_FOREST$FITTED = replace(accu_FOREST$FITTED, indices_7, "1") 

> indices_8 <- which(accu_FOREST$FITTED < 0.5) 

> accu_FOREST$FITTED = replace(accu_FOREST$FITTED, indices_8, "0") 

> accu_FOREST$FITTED = as.factor(accu_FOREST$FITTED) 

> confusion(accu_FOREST$FITTED, accu_FOREST$OBSERVED) 

> Kappa(confusion(accu_FOREST$FITTED, accu_FOREST$OBSERVED)) 

> accu_mj <- data.frame(m_mj_step$fitted.values, 

as.factor(as.numeric(v_mj$Vegetation))) 

> colnames(accu_mj) <- c("FITTED", "OBSERVED") 

> coordinates(v_mj) = ~ X + Y 

> proj4string(v_mj) = CRS(proj4string(predictors)) 

> krige_mj_accu <- krige(residuals(m_mj_step, type="response") ~ 1, mj_resi, v_mj, 

model=mj_vgm_fit) 

> accu_mj$FITTED = accu_mj$FITTED + krige_mj_accu$var1.pred 

> indices_9 <- which(accu_mj$FITTED >= 0.5) 

> indices_10 <- which(accu_mj$FITTED < 0.5) 

> accu_mj$FITTED = replace(accu_mj$FITTED, indices_9, "4") 

> accu_mj$FITTED = replace(accu_mj$FITTED, indices_10, "3") 

> accu_mj$FITTED = as.factor(accu_mj$FITTED) 

> confusion(accu_mj$FITTED, accu_mj$OBSERVED) 

> Kappa(confusion(accu_mj$FITTED, accu_mj$OBSERVED)) 

> accu_vege <- data.frame(m_vege_step$fitted.values, 

as.factor(as.numeric(v_vege$Vegetation)), v_vege$ID) 

> accu_vege$max <- whatsMax(m_vege_step$fitted.values)$fitted.values.maxCol 

> confusion(accu_vege$max, accu_vege[,4]) 

> Kappa(confusion(accu_vege$max, accu_vege[,4])) 

 

### Generate modeling outputs 

############################################################################ 

> predictors$FOREST = predictors$FOREST + predictors$FOREST_K 

> indices_25 <- which(predictors$FOREST >= 0.5) 

> indices_26 <- which(predictors$FOREST < 0.5) 

> predictors$FOREST = replace(predictors$FOREST, indices_25, "Forest") 

> predictors$FOREST = replace(predictors$FOREST, indices_26, "Non-forest") 

> predictors$FOREST = as.factor(predictors$FOREST) 

> predictors$mj = predictors$mj + predictors$mj_K 

> indices_27 <- which(predictors$mj >= 0.5) 

> indices_28 <- which(predictors$mj < 0.5) 

> predictors$mj = replace(predictors$mj, indices_27, "Mire") 
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> predictors$mj = replace(predictors$mj, indices_28, "Heath") 

> predictors$mj = as.factor(predictors$mj) 

> df_1 <- data.frame(predictors$FOREST, predictors$mj) 

> indices_29 <- which(!(df_1[,1] == "Non-forest")) 

> df_1[,2] = replace(df_1[,2], indices_29, "NA") 

> predictors$mj_c = df_1[,2] 

> predictors$C = predictors$C + predictors$C_K 

> predictors$D = predictors$D + predictors$D_K 

> predictors$MI = predictors$MI + predictors$MI_K 

> predictors$max = whatsMax(predictors@data[, c(“C”, “D”, 

“MI”)])$fitted.values.maxCol 

> predictors$max = as.factor(predictors$max) 

> df_2 <- data.frame(predictors$FOREST, predictors$max) 

> indices_33 <- which(df_2[,1] == "Non-forest") 

> df_2[,2] = replace(df_2[,2], indices_33, "NA") 

> predictors$max_c = df_2[,2] 

> df_3 <- data.frame(predictors$FOREST, predictors$OPENNESS) 

> indices_34 <- which(df_3[,1] == "Non-forest") 

> df_3[,2] = replace(df_3[,2], indices_34, "NA") 

> predictors$OPENNESS = df_3[,2] 

> predictors$OPENNESS = as.numeric(predictors$OPENNESS) 

> df_4 <- data.frame(predictors$FOREST, predictors$AGE) 

> indices_35 <- which(df_4[,1] == "Non-forest") 

> df_4[,2] = replace(df_4[,2], indices_35, "NA") 

> predictors$AGE = df_4[,2] 

> predictors$AGE = as.numeric(predictors$AGE) 

 

### Apply k-NN method 

############################################################################ 

> x = variables_sub[,c(1:11)] 

> y = variables_sub[,c(12, 13, 15)] 

> mah <- yai(x=x, y=y, method="mahalanobis") 

> xfiles <- list(DEM="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/DEM.asc", SOLAR="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/SOLAR.asc", ASPECT="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/ASPECT.asc", CURV_PL="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/CURV_PL.asc", CURV_PR="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/CURV_PR.asc", SLOPE="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/SLOPE.asc", WI="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/WI.asc", DIST_A="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/DIST_A.asc", DIST_W="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/DIST_W.asc", X="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/X.asc", Y="D:/Documents during in 
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Sweden/Thesis/Thesis_draft/Scratch/Y.asc") 

> outfiles <- list(Vegetation="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/Vegetation.asc", AGE="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/AGE.asc", OPENNESS="D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/OPENNESS.asc") 

> AsciiGridImpute(mah, xfiles, outfiles) 

 

### Estimate point intensity from the historical county economic maps 

############################################################################ 

> points_Barr = readOGR(dsn="D:/Documents during in Sweden/Thesis/From the 

Supervisor/Master thesis/Historical map 1920", layer="Barr_punkt") 

> points_Lov = readOGR(dsn="D:/Documents during in Sweden/Thesis/From the 

Supervisor/Master thesis/Historical map 1920", layer="Lov_punkt") 

> Extent = readOGR(dsn="D:/Documents during in Sweden/Thesis/Thesis_draft/Scratch", 

layer="Extent") 

> boundary <- slot(slot(slot(Extent, "polygons")[[1]], "Polygons")[[1]], "coords") 

> bandwidth_Barr <- mse2d(as.points(coordinates(points_Barr)), boundary, 100, 1000) 

> bandwidth_Lov <- mse2d(as.points(coordinates(points_Lov)), boundary, 100, 1000) 

> bandwidth_Barr$h[which.min(bandwidth_Barr$mse)] 

> bandwidth_Lov$h[which.min(bandwidth_Lov$mse)] 

> grid <- slot(predictors, "grid") 

> int_Barr <- spkernel2d(points_Barr, boundary, h0=120, grid) 

> int_Lov <- spkernel2d(points_Lov, boundary, h0=150, grid) 

> kernel_Barr <- SpatialGridDataFrame(grid, data=data.frame(int_Barr)) 

> kernel_Lov <- SpatialGridDataFrame(grid, data=data.frame(int_Lov)) 

 

### Comparisons on OPENNESS and vegetation types 

############################################################################ 

> kernel = kernel_Barr$int_Barr + kernel_Lov$int_Lov 

> validation <- data.frame(kernel, over1$AGE, over1$OPENNESS, over1$Vegetation) 

> validation_sub <- validation[!is.na(validation[,4]) & !(validation[,4] == "NA"),] 

> colnames(validation_sub) = c("kernel", "AGE", "OPENNESS", "Vegetation") 

> kernel2OPENNESS <- lm(OPENNESS ~ kernel + AGE, validation_sub) 

> validation2 <- data.frame(kernel) 

> validation2$AGE = predictors$AGEre + predictors$A_K 

> validation2$k2O = predict(kernel2OPENNESS, validation2) 

> validation2$O_group = predictors$OPENNESSre + predictors$O_K 

> indices_38 <- which(validation2$O_group <= 0.4) 

> indices_37 <- which(validation2$O_group > 0.4 & validation2$O_group <= 0.8) 

> indices_36 <- which(validation2$O_group > 0.8) 

> indices_41 <- which(validation2$k2O <= 0.4) 

> indices_40 <- which(validation2$k2O > 0.4 & validation2$k2O_group <= 0.8) 

> indices_39 <- which(validation2$k2O > 0.8) 
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> validation2$O_group <- replace(validation2$O_group, indices_36, 30) 

> validation2$O_group <- replace(validation2$O_group, indices_37, 20) 

> validation2$O_group <- replace(validation2$O_group, indices_38, 10) 

> validation2$k2O <- replace(validation2$k2O, indices_39, 30) 

> validation2$k2O <- replace(validation2$k2O, indices_40, 20) 

> validation2$k2O <- replace(validation2$k2O, indices_41, 10) 

> predictors$O_group = validation2$O_group 

> predictors$k2O = validation2$k2O 

> writeGDAL(predictors["O_group"], "D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/O_group.img", drivername="HFA", type="Float32", 

mvFlag=999) 

### (Also export “k2O”) 

> va = readGDAL("D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/k2O_group_Clip.img") 

> va$k2O = readGDAL("D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/k2O_group_Clip.img")$band1 

> va$O = readGDAL("D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/O_group_Clip.img")$band1 

> va$kNN2O = readGDAL("D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/O_asc_C2.img")$band1 

> indices_45 <- which(va$kNN2O <= 0.4) 

> indices_44 <- which(va$kNN2O > 0.4 & va$kNN2O <= 0.8) 

> indices_43 <- which(va$kNN2O > 0.8) 

> va$kNN2O <- replace(va$kNN2O, indices_43, 30) 

> va$kNN2O <- replace(va$kNN2O, indices_44, 20) 

> va$kNN2O <- replace(va$kNN2O, indices_45, 10) 

> va$k2O = as.factor(va$k2O) 

> va$O = as.factor(va$O) 

> va$kNN2O = as.factor(va$kNN2O) 

> confusion(va$O, va$k2O) 

> Kappa(confusion(va$O, va$k2O)) 

> confusion(va$kNN2O, va$k2O) 

> Kappa(confusion(va$kNN2O, va$k2O)) 

> predictors$max = as.numeric(predictors$max) 

> writeGDAL(predictors["max"], "D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/max.img", drivername="HFA", type="Float32", 

mvFlag=999) 

> va$max = readGDAL("D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/max_Clip.img")$band1 

> va$Tradslag = readGDAL("D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/Tradslag.img")$band1 

> va$Vege = readGDAL("D:/Documents during in 

Sweden/Thesis/Thesis_draft/Scratch/V_asc_C.img")$band1 
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> indices_46 <- which(va$Vege == 3 | va$Vege == 4 | va$Vege == 7) 

> va$Vege <- replace(va$Vege, indices_46, "NA") 

> va$Vege <- as.numeric(va$Vege) 

> indices_50 <- which(va$Tradslag == 0) 

> va$Tradslag <- replace(va$Tradslag, indices_50, 5) 

> va$max = as.factor(va$max) 

> va$Tradslag = as.factor(va$Tradslag) 

> va$Vege = as.factor(va$Vege) 

> confusion(va$max, va$Tradslag) 

> Kappa(confusion(va$max, va$Tradslag)) 

> confusion(va$Vege, va$Tradslag) 


