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ABSTRACT

ZBEDS6 is a novel mammalian transcription factor that was recently identified and shown to act as
a repressor of /GF2 transcription in skeletal muscle. Chromatin Immunoprecipitation (ChIP)
sequence data in murine C2C12 myoblasts indicated that ZBED6 holds 2499 targeting sites.
Whereas microarray data portrayed that ZBED6 differentially regulates almost 400 genes in
C2C12 myoblasts. This data suggested that ZBEDG6 is targeting and regulating a vast array of
genes, so there was a need to investigate system level knowledge of ZBED6. To elucidate the
complete interactome of ZBED6 and particularly to build and visualize muscle-specific networks
by using ChIP sequence and microarray data, Ingenuity Pathway Analysis (IPA) was employed.
Networks of ZBED6-targeted genes suggested that ZBED6 mainly induces tissue development and
is involved in development of cancer. These effects most likely involve the Wnt, human embryonic
stem cell pluripotency and TGFf canonical pathways. Many of ZBED-targeted genes like /GF2,
IGFIR, SRF, SMAD7, CDH2, CTNND2, PITX2, TRIO, WNT3a, WNTI, MSXI, PAX7, VEGFA,
ACTNI, HEYI, SKI, E2F1, EP300, FGF9, MTOR, FGFRI, BMP7, and TGFf have established
roles in skeletal muscle myogenesis. Whereas networks of ZBED6-regulated genes revealed that
ZBEDG6 is mainly involved in organismal development and cell-to-cell interaction and signaling;
and also engaged into hepatic fibrosis, clathrin-mediated endocytosis and tight junction signaling
cascades. ZBED6-regulated genes including BMP4, DBP, CDH2, AGT, IGF1, IGF2, THBSI,
PDGFRA, MPP2, AKTI, HGF, MET, FGF4, TGFf3, ACTNI, F2R, and VCAM]1 have established
roles in muscle proliferation, myogenesis and contraction. Our findings suggest that ZBED6 holds
promise as a target to control and influence many cellular functions and canonical pathways and
also controls many factors and cascades that are crucial for skeletal muscle myogenesis.

INTRODUCTION

Muscle Development

Muscles, the contractile tissues of animals, are classified into skeletal, cardiac and smooth muscles.
During early embryogenesis, mesodermal cells give rise to muscles. Paraxial mesoderm is divided
into somites which give rise to myotome. Myotome further produces myoblasts. In response to
activation by certain growth factors like fibroblast growth factors, myoblasts start to proliferate [1];
when these factors are exhausted myoblasts secrete fibronectin that leads to cell cycle arrest. The
action of fibronectin leads to muscle cell differentiation [1]. Differentiation is mediated by
myoblasts alignment and fusion. Cell membrane proteins like cadherines, fibronectins, integrins
mediate myoblast alignment [1]. After alignment, myoblasts are fused. Calcium ions and certain
metalloproteinases are crucial for myoblast fusion [1] which further give rise to muscle fiber.
Different stages of muscle formation are shown in Figure 1.1. Healthy adult skeletal muscles
contain satellite cells, which are undifferentiated and mitotically quiescent cells. These cells are
activated in response to injury and stimulate proliferation and differentiation to repair damaged
fibers (Clow & Jasmin 2010).
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Figure 1.1: Differentiation of myoblasts into muscle cells. Various stages of muscle development and
factors mediating muscle development are illustrated. A: Myotome determination induced by Wnt, Shh
B: Myoblast multiplication implied by growth factors primarily FGFs. C-D: Alignment and fusion,
after growth factor depletion, myoblasts start to align and fuse to form myotubes that is induce by
fibronectin, cadherin integrin. E: mature muscle.

Myogenesis is controlled by a set of transcription factors denoted myogenic master regulators. In
Figure 1.2 a schematic representation of the key transcription factors is shown (Figure 1.2). For
skeletal muscle formation, myoblast differentiation is indispensable and is directed by regulation of
such muscle-specific transcription factors including MyoD, myogenin and transcriptional co-
regulators (Jeong et al., 2010). Myogenic regulatory factors (MRFS) including MyF5, MyoD,
MRF4 and myogenin activate transcription of muscle-specific genes (Harada et al., 2010). MyoD
and Myf5 are imperative for myogenic determination while myogenin and MRF4 are pivotal for
terminal differentiation and lineage maintenance. MyoD and MyF5 knockout mice embryo showed
entirely ablated skeletal muscle myoblasts and myofibers (Kablar et al., 1999). MyoD belongs to
the basic helix-loop-helix (b HLH) protein family of transcription factors. The 68 amino acid bHLH
domain plays a crucial role in myogenesis (Weintraub et al., 1991). Only skeletal muscle and its
precursors express MyoD while in non-muscle cells and tissues MyoD transcription remains silent
due to methylation at CpG sites of distal enhancer (Brunk et al., 1996). The skeletal muscle-
specific MyoD transcription is known to be regulated by a set of transcription factors including
SRF (L'honore et al., 2003), MSTN (Langley et al., 2002), PAX3, PAX7 (Horst et al., 2006), IGF1
(Strle et al., 2004), WWRT1 (Jeong et al., 2010).
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Figure 1.2: MyoD and MyF5 Regulatory pathway. Wnt signaling (Ridgeway et al., 2000, Borello et
al., 2006) positively regulate expression of MyoD and MyF5. Bone morphogenic proteins (BMP)
signaling (Reshef et al., 1998) and Notch signaling (Hirsinger et al., 2001) act as antagonist for
expression of MyoD. Sonic hedgehog (SHH) signaling (Gustafsson et al., 2002) and Pax3 (Sato et al.,
2010) positively regulate expression of MyF35.

IGFs and Muscle Development

Insulin-like growth factors (IGFs), are evolutionary conserved mitogenic proteins, encompasses
IGF1 and IGF2. During embryogenesis, IGFs stimulate two biological events of myogenesis i.e
myoblast proliferation and differentiation. All vertebrates studied to date elucidate critical role of
IGFs in growth and development (Wood et al., 2005). The major organ for IGF expression is the
liver but IGFs are ubiquitously expressed in most tissues. /[GF'1 or IGF2 knockout mice has birth
weight 60% of wild type littermates while null mutations in both /GFI or IGF2 leads to body
weight 30% of their wild type litter mates and mice died shortly afterwards (Baker et al., 1993; Liu
et al., 1993). IGF1 over expression in mice leads to 1.3 fold increase in body weight (Mathews et
al., 1988). IGF-I peptide administrated to rats causes increase in protein synthesis and body
growth (Tomas et al., 1992). IGFs stimulate various cellular processes including proliferation,
differentiation, migration and survival. These biological actions are accomplished through binding
of IGFs to IGF receptors. There are two IGF receptors, IGF1 receptor (IGF1R) and IGF2 receptor
(IGF2R). IGF1R shows sequence and structure similarity with insulin receptor (IR). Once ligand is
bound to IGFIR it results in autophosphorylation and activation of multiple signal transduction
cascades including phosphatidylinositol 3-kinase (PI3K)-Akt cascade and the Raf-Mek-Erk1/2
cascade. Phosphatidylinositol 3-kinase (PI3K)-Akt signaling cascade is regulating glycogen
synthesis, glucose transport, protein synthesis, cellular proliferation and apoptosis while Raf-Mek-
Erk1/2 cascade is playing significant role in cellular proliferation and apoptosis (Dupont and
LeRoith, 2001). /GFIR knockout mice have body weight 45% of wild littermates and die shortly
after birth (Baker et al., 1993; Liu et al., 1993). IGF2R is different from IGFIR structurally and
functionally. Mice inheriting loss of imprinted IGF2R/ M6P has body weight 25-30% greater than



wild type siblings and die around birth (Lau et al., 1994). Recent studies have elucidated that IGF2
binding with IGF2R stimulates Erk signaling by inducing sphingosine kinase (SK)-dependent
transactivation of sphingosine 1 phosphate (S1P) receptors (El-Shewy et al., 2007).

In addition to IGFs and IGF receptors, other important components are IGF binding proteins
(IGFBPs). To date six members IGFBP1- IGFBP6 have been identified. IGFBPs are secreted
proteins and perform functions that are important to coordinate and regulate IGFs activities.
IGFBPs are responsible for transport, prolong half-life, localization and interactions of IGFs (Jones
& Clemmons, 1995).

IGFs play a vital role in skeletal muscle growth and differentiation and also in muscle regeneration.
IGF-II levels increase dramatically during myogenesis. Endogenous IGF expression induces
differentiation in murine C2C12 cells (Yoshiko et al., 2002). Inactivation of /GFI gene in mice
causes reduced body size which was attributed to decrease in muscle, bone mass and multiple
organs (Powellbraxton et al., 1993). Mice deficient in IGFIR developed hypoplasia including
muscle and delay in ossification, abnormalities in central nervous system and epidermis while
double knockout /GF2/IGFIR and IGF1/IGF2 mice showed intense dwarfism (Liu et al., 1993).
Virus-mediated over-expression of IGF1 induced increase in muscle mass and strength in adult
mice (Barton-Davis et al., 1998). Over-expression of IGF1 in mice suffering from a muscle disease
similar to duchenne muscular dystrophy led to 40% increase in muscle mass as IGF1 induces
muscle regeneration and protein synthesis pathways (Barton et al., 2002). IGF-II antisense
oligodeoxynucleotide complementary to first five codons of IGF2 abolished differentiation in
cultured muscle cells in absence but not in presence of exogenous IGF2. IGFBPS is the most
abundant IGFBP secreted by skeletal muscle cells and it stimulates muscle differentiation and
growth. Consequently, IGF signaling pathway encompassing IGFs, IGFRs and IGFBPs is critical
for muscle differentiation and growth.

Regulatory Mutation in IGF2 Effects Muscle Growth

Meat is a substantial dietary constituent for humans. Animal domestication allowed production of
meat and breeding of animals to improve meat production. Different domestic animals like
chicken, sheep, goat, cattle and pig are principal source of meat. The pig (Sus scrofa) was
domesticated around 9000 years ago (Chen et al., 2007). It is a meat production source throughout
the world except in most Muslim countries. Lean meat is demanded by consumers and has
consequently been a major selection criteria resulting in increased muscle growth caused by
favorable alleles for muscle growth in most pig breeds used for meat production. Muscle growth
studies unveil knowledge about muscle development. In pigs, three mutations have been identified
that affect muscle growth. Firstly, a single point mutation identified in the porcine ryanodine
receptor gene (RYRI) leads to a recessive disorder called malignant hyperthermia (Fujii et al.,
1991). Secondly, a nonconservative substitution in the PRKAG3 gene mediates high glycogen
content in pig skeletal muscle (Milan et al., 2000). PRKAG3 encodes a muscle-specific isoform of
the regulatory y subunit of adenosine monophosphate-activated protein kinase (AMPK). Thirdly, a
single nucleotide substitution, a G to A transition in an evolutionary conserved region in intron 3 of



the paternally expressed porcine /GF2 gene was identified, which results in a three-fold increased
IGF?2 transcription skeletal muscle that results in increased postnatal muscle growth (Van Laere et
al., 2003).

In the late 1980ies, a Quantitative Trait Locus (QTL) mapping study was performed in pigs. The
experimental design for the QTL study was based on intercross between a European wild boar and
domestic large white. The F2 individuals generated from this intercross were used for QTL
mapping of genes influencing a number of growth-related traits including carcass weight, growth,
fatness and meat quality and significant QTLs were identified on chromosome 2, 3, 4 and 8
(Andersson et al., 1994, Andersson-Eklund et al., 1994). A similar QTL study was performed
using a Pietrain and large white intercross and significant score was obtained on chromosome 2 for
muscle mass and fat deposition (Nezer et al., 1999). While in another study, siginificant QTLs for
muscle, heart weight and backfat thickness were obtained at chromosome 2 in wild boar and large
white intercross (Jeon et al., 1999). Consequently, the QTL on chromosome 2 was reduced to
250kb region (Nezer et al., 2003). This region embraces the insulin (/NS) and /GF2 genes. The
IGF?2 gene is an imprinted gene with paternal expression. /GF2 was therefore a very strong
candidate gene for the observed QTL phenotype. Initially, all the coding exons were sequenced but
no mutations could be identified in coding sequence of /GF2 (Van Laere et al., 2003). Then a 28.6
kb region was resequenced and a single causative mutation was identified at G3072A in intron 3 of
IGF2 (Van Laere et al.,, 2003). This quantitative trait nucleotide (QTN) was located in an
evolutionary conserved CpG island with unknown function. This mutation in /GF2 did not affect
the imprinting status of /GF2. The methylation status of this QTN was defined by using bisulphite
sequencing in four month old pigs. The result of this sequencing revealed that the CpG island was
methylated in liver but remained unmethylated in skeletal muscle (Van Laere et al., 2003). To
reveal whether the QTN region functions as a transcriptional regulatory element biochemical and
functional experiments were performed. First, DNA-protein interaction studies using
electrophoretic mobility shift assays (EMSA) were performed. In EMSA double-stranded 20 bp
oligonucleotides corresponding to a sequence spanning the QTN position (3072) for both wild type
q (G3072) and mutant type Q (A3072) sequence were used. Q and q radioactively labelled double-
stranded oligonucleotides were incubated with nuclear extracts prepared from murine C2C12
myoblast. A complex was obtained with the q probe but not with Q and methylated q (Van Laere et
al., 2003). Slightly weak complex migration was also observed in HEPG2 hepatocytes and
HEK293 embryonic kidney cells.

In C2C12 myoblasts, the functional effect of the /GF2 mutation on transcription was analyzed by
transient transfection assay. Q and q construct were made containing a 578 bp fragment of the
region containing the QTN. This fragment was cloned upstream of the P3 promoter of IGF2 and
inserted in front of a Luciferase reporter gene. Fragment q showed 25% reduced activity while Q
showed 70% reduced activity compared with the activity of a reporter construct containing the P3
promoter alone driving luciferase (Van Laere et al., 2003). Expression studies for /GF2 mRNA
were carried out through real time PCR and northern blot analysis, these assays showed 3%
difference in expression level of postnatal skeletal muscle /GF2 mRNA. IGF2 mRNA expression



initiated from the P2, P3, and P4 promoters of /GF2, were analyzed by northern blotting and real-
time PCR. Transcription from all these promoters was affected by QTN but promoter 3 showed the
highest expression because it is main promoter for /GF2 in skeletal muscle (Van Laere et al.,
2003). In heart muscle, there was a small increase in /GF2 mRNA expression. Like the sense
transcript, the /GF2 antisense transcript (/GF2-AS) expression was imprinted paternally and was
affected by QTN in pigs (Braunschweig et al., 2004). Combination of the obtained results
suggested that a transcriptional repressor regulates expression of all four /GF2 promoters.

ZBEDG6 Repressor of IGF2 During Myogenesis

QTN containing 16 bp sequence shares identity with eight mammalian species including pigs,
bovine, horse, dog, rabbit, human, mouse, and rat (Van Laere et al., 2003). This QTN sequence did
not have binding sites for any known transcription factor. Thus, a hitherto unknown transcription
factor binding to QTN region function as a repressor for /GF?2 transcription in skeletal muscle.
Therefore, the identification of this unknown repressor for /GF2 transcription became a high
priority. Oligonucleotide affinity capture of proteins and quantitative mass spectrometry were used
to identify /GF2 repressor (Markljung et al., 2009). For this purpose, stable isotope labeling of
amino acid in culture (SILAC) technique was used to prepare two different nuclear extracts. In this
technique heavy extract proteins (stable isotope labeled arginine and lysine amino acids) and light
extract proteins (natural version of amino acids) were prepared. Biotinylated double-stranded
oligonucleotides q and Q were used to capture protein in heavy and light nuclear extracts,
respectively. Captured proteins of both extracts were mixed and analyzed by liquid
chromatography mass spectrometry (LCMS). Proteins indicating highest enrichment by q was an
alternative splice form of ZC3HI1A, a member of zinc finger family of transcription factors
(Markljung et al., 2009). Captured protein was encoded by an intronless gene located in intron 1 of
ZC3H11A. Northern blot analysis showed that captured protein is expressed with ZC3H11A. Two
BED and one hATC dimerization domain was observed in encoded protein. Bioinformatic analysis
was used for identifying BED domains (Markljung et al., 2009). Drosophila melanogaster BEAF
and DREF were the first proteins that indicated the presence of BED domains. ZBEDI to ZBEDS5
are already discovered so the captured protein was given the name ZBED6 (Markljung et al.,
2009). Two DNA binding domains of ZBED6 are more similar with each other compared to other
ZBED BED domains that indicates ZBED6 had duplicated its BED domains before integration into
ZC3HI1A4. The BED domain in ZBEDG6 shares 100% similarity among 26 mammals; therefore
ZBEDG is a highly conserved protein in placental mammals. ZBEDG6 contains two translation start
sites and translates into two isoforms ZBED6a and ZBED6b of 122 and 116 KDa respectively
(Markljung et al., 2009). ZBED6 mRNA is expressed in many tissues including skeletal muscle
and heart muscle, it was confirmed by Northern blot and real time PCR (Markljung et al., 2009).
EMSA showed that ZBED6 bound with q sequence but not with Q, these results proposed that
ZBEDG is the bona fide repressor of IGF2 transcription that interacts with QTN region of /GF2
(Markljung et al., 2009). It was also observed that ZBED6 is localized inside nucleus in the
nucleolus (Markljung et al., 2009). To get knowledge about functional significance of ZBED®6,
zbed6 mRNA was silenced in C2C12 cells by using siRNA. Quantitative PCR showed that ZBED6
mRNA was decreased to 75% in ZBEDG6 silenced C2C12 cells (Markljung et al., 2009). Transient



transfection assays were performed on control and ZBEDG6-silenced C2C12 cells. Luciferase
activity was reduced to a large extent in wild type q construct when compared with construct
containing P3 alone. These results suggested that ZBEDG6 represses expression of /GF2 promoter 3
after binding with the QTN in the CpG island (Markljung et al., 2009).

Interaction of ZBED6 with QTN site in IGF2 was also confirmed by chromatin
immunoprecipitation (ChIP). Real time PCR showed that controlled C2C12 cells had clear
difference in enrichment of QTN as compared with ZBEDG6 silenced C2C12 cells (Markljung et al.,
2009). To get knowledge about ZBEDG6 activity during myogenesis, /GF2 mRNA expression was
measured in control and ZBED6-silenced C2C12. There was no effect in /GF2 mRNA at first days
but there was an increase in IGF2 expression at day 6 when myotubes are formed compared with
controlled cells. ZBED6-silenced C2C12 cells showed increased proliferation and faster wound
healing compared with control cells (Markljung et al., 2009). These results implicated that ZBED6
acts as a repressor for IGF2 and plays an important role in muscle myogenesis. Consequently IGF2
is a crucial factor for muscle development and ZBED6 acts as its repressor. We have ChIP
sequencing and microarray data of ZBED6 in C2C12 myoblast indicating that ZBED6 regulate
transcription of a large number of different genes besides IGF2. Thus, there was a need to elucidate
system level knowledge of ZBED6 and in particular during IGF2-mediated muscle development in
myoblasts.

Systems Biology and Network Analysis

Systems biology refers to a “study of an organism, viewed as an integrated and interacting network
of genes, proteins and biochemical reactions which give rise to life [2]”. Instead of individual
system analysis, systems biology focuses on all components and their interaction and considers
them as a part of one system. According to Kitano H. systems biology comprise of following four
modules. 1: System Structures including gene interaction networks and biochemical pathways, 2:
System Dynamics focusing on system behavior under various conditions over time, 3: Control
Methods including mechanisms controlling cell state systematically, 4: Design Methods including
strategies to construct and modify desired properties into biological system (Kitano 2002). The
term systems biology was first time coined in 1993 by Zieglgansberger W & Tolle TR. Explosive
progress in genome sequencing and massive data generated by DNA microarray, proteomics,
transcriptomics, interactomics allows systems biology to integrate all this data. Systems biology is
thus combination of omic approaches, data integration and modeling, and requires fusion of
various disciplines including biology, computer sciences, mathematics etc. A critical component of
system biology is software infrastructure. Analysis and modeling of complex biological processes
at system level requires integrated databases that can provide properties of genes, proteins and also
complex network. Molecular interaction networks reveal knowledge about complex roles of genes,
gene products (RNA and proteins) and cellular environment during biological processess. In
networks there are two important objects: nodes and edges; nodes depict genes and gene product
while edges illustrate specific interaction between nodes (Baitaluk et al., 2006). An edge may be an
illustration of transcription factor binding to a promoter region in protein-DNA network while it
may represent evidence of co-immunoprecipitation or two-hybrid interaction of proteins in protein-



protein interaction (Baitaluk et al., 2006). Currently, a number of tools is available for network
analysis, modeling and visualization including Osprey [3], Cytoscape [4], BiologicalNetworks [5],
and Ingenuity Pathway analysis [6].

The aim of this study is to investigate the complete interactome of ZBED6 and specifically
building and visualizing muscle specific networks participating into muscle development by using
Chip sequencing and microarray data. Another objective of this study was to compare IPA versus
other available gene ontology and network analysis tools.

MATERIALS AND METHODS

ChIP Seq Data

Chromatin Immunoprecipitation (ChIP) sequencing experiment for ZBED6 was performed in
mouse C2C12 cells by using anti ZBED6 antibody. ZBED6-silenced and control mouse C2C12
cells were used for ChIP sequencing. To sequence ChIP DNA fragments AB SOLid technology
was used. 2499 ZBED6 target sites were revealed.

Microarray Data

Microarray data was generated from ZBED6 microarray experiment. ZBEDG6-silenced and control
mouse C2C12 cells were used for microarray experiment and expression was measured at two time
points: day two and four. Illumina mouse ref-8 v2.0 array platform was used for generating
microarray data. There were near about 400 genes on both day points that showed a P value less
than 0.054 and were differentially expressed.

Ingenuity Pathway Analysis

Ingenuity Pathway Analysis (IPA) was used to construct and visualize networks and pathways, and
to get insight into functional analysis of ChIP sequencing and microarray data. IPA is a
commercially available service that is provided by Ingenuity systems, a company situated in
Redwood City, CA. Networks and pathways are constructed by implementing unique analysis
algorithms and ingenuity knowledge base. Novel algorithm approaches are developed and
deployed by ingenuity team but no information about them is available publically while Ingenuity
knowledge base, is a repository of functional annotations and biological interactions derived from
relationship among genes, proteins, complexes, tissues, cells, diseases and drugs. These
relationships are updated frequently and reviewed manually for accuracy. IPA is a tool that
facilitates to understand, analyze, explore, visualize and model the complex biological and
chemical systems. IPA quickly analyzes the experimental data by identifying interactions,
functions, mechanisms, and relevant pathways. IPA is equipped with enhanced data mining, query
language, filtering tools and graph manipulation;

IPA provides two main services:
e Search and explore
e Analyze and interpret data



Search and Explore

IPA contains search services: genes and chemicals, functions and diseases, pathways and toxicity
lists which provides updated information about genes, chemicals, drugs, protein families, normal
cellular functions and disease processes, signaling and metabolic pathways; and tox lists. [PA
search services also helps in extracting information from scientific literature about genes, drugs,
chemicals, biomarkers, cellular functions and diseases, signaling and metabolic pathways. Besides
this, IPA search and explore services help to enrich and filter datasets, identify common and
unique molecules among lists, pathways and to build and design pathways from datasets or gene
list provided by user.

Analyses and interpretation of Data

IPA can analyze and interpret data generated from smaller-scale experiments that generate gene
lists to larger scale experiments including SNP microarrays, gene expression and proteomics
experiments. IPA supports a vast variety of array platforms including Affymetrix, Applied
Biosystems, Illumina, Agilent and CodeLink; and also support vast variety of identifier types like
Kyoto Encyclopedia of Genes and Genomes (KEGG), RefSeq, UniGene, UniProt, Affymetrix,
Applied Biosystems, Illumina, Agilent and CodeLink, HUGO symbol, dbSNP, GenBank,
Ingenuity and miRBase. IPA integrates different interaction databases including protein-protein,
microRNA-RNA and many other interaction databases. Protein-protein interaction databases
integrated by IPA are Biomolecular Interaction Network Database (BIND), Biological General
Repository for Interaction Datasets (BiOGriD), Cognia, Database of Interacting Proteins (DIP),
Molecular Interaction database (IntAct), Interactome studies, Molecular Interaction Database
(MINT), Mammalian Protein-Protein Database (MIPs). IPA integrated microRNA-RNA
interaction databases are (Argonaute 2, TARBase) and additional interaction databases are Gene
Ontology (GO), GVK Biosciences, KEGG, Obesity Gene Map Database. IPA analyses and data
interpret services helps in core, tox, biomarker, and metabolomics analysis.

IPA Tox analysis

IPA tox analysis enables to assess toxicity and safety of compounds by using toxicity function and
relates the experimental data to clinical pathology endpoints. It helps to understand
pharmacological responses.

IPA Biomarker analysis
IPA Biomarker analysis identifies relevant biomarkers from datasets generated at each step of drug
discovery.

IPA Metabolomics analysis
[PA metabolomics analyzes metabolite data and provides important findings about cell physiology
and metabolisms.



IPA Core Analysis

IPA core analyses helps to assess the molecular networks, signaling and metabolic pathways and
biological processes which are significantly associated to uploaded datasets. The IPA core was
used to analyze ChIP seq and Microarray data. ChIP seq data was taken and uploaded for new core
analysis. File format was selected, as flexible format and in identifier type all identifiers were
selected provided by IPA. Other parameters were used according to default settings. Genes that
were differentially expressed on both day points were taken to make a dataset and was uploaded in
IPA and was run for new core analysis by using reference set illumina mouseref-8 v2.0 as array
platform. File format was selected, as flexible format and in identifier type all identifiers were
selected provided by IPA. Expression value was added as an observation and threshold value for
expression was set 0. Other parameters were used according to default settings. A schematic flow
chart about how datasets were analyzed by using IPA is shown in Figure 2.1.

IPA Statistics

IPA also provides statistical calculation to evaluate the significance of results. Significance value is
denoted by p-value and is measured by right tailed Fisher Exact Test. Significant value for
functions/ pathways/ tox lists/ tox functions is a measurement of likelihood that functions/
pathways/ tox lists/ tox functions is associated with dataset by random chance. P value less than
0.05 is statistically significant. IPA indicates p-value for high-level functions in the form of range.
IPA also provide ratio for canonical pathways and tox list. Ratio is calculated by dividing number
of genes in dataset that are present in canonical pathway/ tox list with total number of genes
present in that canonical pathway/ tox list. Ratio helps to determine which pathway/ tox list overlap
with most of genes in uploaded dataset. Ratio describes the strength of association. Both ratio and
significance value are insufficient to illustrate how the genes are associated with pathway, so to
evaluate the function of affected genes in canonical pathway one has to look whether pathway is
upregulated or downregulated.

RESULTS

ChIP Seq data Analysis

ChIP sequence data analysis, performed by using IPA, is divided into three components:
1. Networks
2. Canonical pathways

These components are illustrated below.

1: Networks
ChIP sequence data networks analysis comprises of:
I. Top five networks table
I. Top five networks figures
Network table and figures are shown below.
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Figure 2.1: This figure is depicting how dataset can be analyzed by using IPA core analysis service.
A): New core analysis can be performed by NEW tab. B): Upload Dataset, excel or text file can be
uploaded. C): Set filters, filters are file format, identifier type, and array platform. D): Set expression
value if dataset is expression data. E): save dataset and run analysis. F): When IPA completes analysis,
it creates results that contain summary, networks, canonical pathways and functions. G): By using IPA,
networks, pathways and chart for function and pathways can be visualized.

I: Top five networks table

Top five networks table from ChIP sequence data contains associated network functions and
scores, which are shown in Table 1

Table 1: ZBEDG6 ChIP sequence data networks table. Network associated functions and scores are
shown below. Score indicates network significance; higher the score lower is the p-value.

Network Associated Functions Score
Tissue Development, Cancer, Embryonic Development 32
Cancer, Immunological Disease, DNA Replication, Recombination, and Repair 32
Cellular Growth and Proliferation, Tissue Development, Gene Expression 30
Cell Cycle, Gene Expression, Connective Tissue Development and Function 28
Cellular Development, Nervous System Development and Function, Cellular Movement | 25
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Il: Top five network figures
Top five network figures constructed by using ChIP sequence data are illustrated and shown
below.

1): Tissue Development, Cancer, Embryonic Development

This network encompasses genes for tissue development, cancer and embryonic development.
Genes participating into above functions are illustrated below while network is shown in Figure
3.1.

Tissue Development

In this network there are 15 genes, which are targeted by ZBED6, which are participating into
tissue development. CDH2, CREBBP, FGF3, IKZF3, MSXI, PAX7, PITX2, RELN, RUNXI,
SREBF1, T, TRIO, VEGFA, WNTI, WNT3A.

Cancer

In this network there are 16 genes, which are participating into development of cancer: CDH?2,
CREBBP, EHHADH, FGF3, JUP, MSX1, NR4A41, PAX7, PITX2, RBBP4, RELN, RUNXI, SCN54,
TRIO, VEGFA, WNTI.

Embryonic Development

In this network there are 14 genes, which are playing role into embryonic development: CDH?2,
CREBBP, CTNND2, FGF3, IKZF3, MED21, MSXI, PITX2, RELN, RUNXI, T, VEGFA, WNTI,
WNT3A.

2): Cancer, Immunological Disease, DNA Replication, Recombination, and Repair

This network encompasses genes for cancer and immunological diseases, and DNA replication,
recombination and repair. Genes participating into above functions are illustrated below while the
network is shown in Figure 3.2.

Cancer
In this network there are 10 genes, which are known to participate in cancer development: BRD2,
COLI5A1, HBP1, MNI, PAWR, PDE4D, ROBOI, TRIBI, UPPI1, VAV3

Immunological Disease
In this network there are five genes, which have been implicated in Immunological disorders:
AKAP7, BRD2, PDE4D, ROBOI, VAV3

3): Cellular Growth and Proliferation, Tissue Development, Gene Expression

This network encompasses genes for cellular growth and proliferation, tissue development and
gene expression. Genes participating into above functions are illustrated below while network is
shown in Figure 3.3.
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Figure 3.1: A schematic diagram constructed by using IPA illustrating ZBEDG target gene networks.
In this network there are 33 ZBEDOG target genes, including 10 genes encoding for transcription
factors. This network illustrates genes for tissue development, cancer and embryonic development, of
which 15 have established roles in cancer development.
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Figure 3.2: A schematic diagram constructed by using IPA illustrating ZBEDG target gene networks.
In this Network there are 32 ZBEDOG target genes, including five genes encoding for transcription
factors. This network illustrates genes for cancer and immunological diseases, and DNA replication,
recombination and repair. Many of the genes (10) have established roles in cancer development.
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Cellular Growth and Proliferation

In this network there are 27 genes, which are participating into cellular growth and proliferation:
ADAM15, BCL2L11, BUBI, CADMI1, CDKN2C, CITED2, CLIP1, ENPPI, ESPLI, FDFTI, FLII,
FOXOl1, FOX0O3, HEYI, HIFIA, IGF2, INHBB, MAP3K7, MAP3K7IP2, MKI67, PAFAHIBI,
RUNX3, SKI, SMAD7, TGFBI1, TGFBR3, ZEB2

Tissue Development

In this network there are 16 genes, which are participating into tissue development: ADAM]IS,
BCL2L11, CITED2, ENPPI, FDFTI, FOXOI, HEYI, HIFIA, IGF2, INHBB, MAP3K7, SKI,
SMAD?7, TGFBI, TGFBR3, ZEB?2

Gene Expression

In this network there are 19 genes, which are participating in different aspects of gene expression:
CDKN2C, CITED2, FLIl, FOXOIl, FOX03, HEYI, HIFIA, IGF2, INHBB, KDM5B, KLF1I5,
MAP3K7, MAP3K7IP2, RORA, RUNX3, SKI, SMAD7, TGFBI, TGFBR3
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Figure 3.3: A schematic diagram constructed by using IPA illustrating ZBEDG target gene networks.
In this Network, 33 genes are ZBEDG target genes, including 12 genes that encode for transcription
factors. This network illustrates genes for cellular growth and proliferation, tissue development and
gene expression and the majority of these genes (27) have established functional roles in cellular
growth and proliferation.

4): Cell Cycle, Gene Expression, Connective Tissue Development and Function

This network encompasses genes for cell cycle, gene expression and connective tissue
development and functions. Genes participating into above functions are illustrated below while
network is shown in Figure 3.4.

Cell Cycle

In this network there are 12 genes, which are participating at different steps during the cell cycle:
CDKNIA, CEBPA, E2F1, E2F2, EP300, FGFY9, FLT1, MTOR, NASP, RBLI1, SMARCA2, TSG101
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Gene Expression

In this network there are 20 genes, which are participating in different aspects of gene expression:
CDKNI1A4, CEBPA, CITEDI, CREGI, CTNNBIPI1, DDX17, DUSP4, E2F1, E2F2, EGR2, EP300,
HEXIMI, LHCGR, NPAS2, RBLI1, SMARCA2, SMARCC?2 (includes EG:6601), SOCS3, TSG101,
ZMIZI.

Connective Tissue Development and Function
In this network there are four genes, which are participating into connective tissue development
and function: E2F1, EGR2, RBL1, SOCS3.
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Figure 3.4: A schematic diagram constructed by using IPA illustrating ZBEDG6 target gene networks.
In this Network 31 genes are ZBEDO target genes, including 12 genes that encode transcription factors.
This network illustrates genes for cell cycle, gene expression and connective tissue development and
function most of these (20) genes have functional roles in gene expression.

5): Cellular Development, Nervous System Development and Function, Cellular Movement

This network encompasses genes for cellular development, nervous system development and
functions and cellular movement. Genes participating into above functions are illustrated below
while network is shown in Figure 3.5.

Cellular Development

In this network there are 21 ZBEDG6 target genes, which are participating into cellular
development: ARRB2, BMP7, BMPR2, CCL2, CNRI, CXCLI2, FGFRI, GDNF, IGFIR, IGFBP3,
MMPI14, NR2EI (includes EG:7101), PLAU, PLCEI, POU4F1, POU4F2, RET, SIRTI, SRF,
TBX21, TGFB2
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Nervous System Development and Function

In this network there are 13 genes, which are participating into nervous system development and
function: ARRB2, BMP7, CNRI, CXCL12, FGFRI, GDNF, MAPK10, PLAU, POU4F1, POU4F2,
PPPIRIB, SIRTI, TGFB2

Cellular Movement

In this network there are nine genes, which are participating into cellular movement: BMP7, CCL2,
CXCL12, GDNF, POU4F1, POU4F2, RET, SRF, TGFB2
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Figure 3.5: A schematic diagram constructed by using IPA illustrating ZBEDG6 target gene networks.
In this Network 29 genes are ZBEDO target genes, including six genes encoding for transcription
factors. This network illustrates genes for cellular development, nervous system development and
functions and cellular movement but many of genes (21) are related to cellular development.

2: Canonical Pathways Analysis
ChIP sequence data canonical pathway analysis contains:
I. Top five canonical pathways table
I. Canonical pathways figures
Canonical pathway table and figures are illustrated and shown below.

I. Top five canonical pathways table

Top five canonical pathways table from ChIP sequence data contains name of canonical pathway,
p-value and ratio, which are shown in table 2.

16



Table 2: ZBEDG6 ChIP sequence data canonical pathway table. Canonical pathways names, p-value
and ratio are shown below. Lower p-value and higher ratio indicates the significance of pathway.

Name p-value Ratio
Whnt/f-catenin Signaling 2.14E-09 37/167 (0.222)
Human Embryonic Stem Cell Pluripotency 4.93E-07 27/142 (0.19)
Axonal Guidance Signaling 6.92E-07 56/396 (0.141)
TGF-p Signaling 1.37E-06 20/83 (0.241)
Role of Osteoblasts, Osteoclasts and Chondrocytes in 2.61E-05 34/218 (0.156)
Rheumatoid Arthritis

ll. Canonical pathways figures
Top 3 canonical pathway figures are shown in Figure 3.6
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Human Embryonic Stem Cell Pluripotency
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TGF-f Signaling
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Figure 3.6: In all canonical pathway figures ZBEDG target genes are shown with grey colored
symbols. Wnt/[-catenin signaling cascade includes 37 ZBEDG target genes while human embryonic

stem cell pluripotency contains 27 ZBEDG target genes and TGF-p Signaling covers 20 ZBEDG6 target

genes.
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To elucidate how many ZBEDG6 targeted genes are shared between these cascades, IPA was used to
get common genes between these three signaling cascades (Figure 3.7).
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Figure 3.7: Genes from ChIP sequence data that are common in Wnt, TGFf and Human Embryonic
Stem Cell Pluripotency signaling cascades. Genes depicted in red are playing role in all three
pathways.

ChIP sequence Gene Network for Skeletal Muscles
Data from ChIP sequencing of C2C12 cells were used to indicate genes participating into skeletal
muscle development and used to construct a network (Figure 3.8).

Microarray data Analysis

Microarray data analysis, performed by using IPA, is divided into three parts:
1. Networks
2. Canonical pathways

These components are discussed below.

1: Networks
Microarray data networks analysis includes:
I. Top five networks table
I. Top five network figures
Network table and figures are illustrated below.

I: Top five networks table

Top five networks table from microarray data includes associated network functions and scores,
which are shown in Table 4.
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Figure 3.8: A schematic diagram constructed by using IPA illustrating ZBEDG6 target genes
participating into skeletal muscle development. Different colors are depicting different pathways.
Green color molecule outlines and interactions are indicating SRF, NKX2-5, BARX2 and SKI network.
Molecule outlines and interactions colored cyan are depicting EP300, NOTCHI, E2F1 network.
Network including purple color molecule outlines and interactions are portraying SMAD7, ACVR24,
ACVR2B and TGFBR3. IGF2, MTOR, IGFIR molecule outline and interaction are shown with gray
color. Molecules that are not ZBEDG direct target are filled with red color and their interaction are
shown with black color.

Table 4: ZBEDG6 microarray data networks table. Network associated functions and scores are
described below. Higher score is based on lower p-value and indicates the significance of network.

Network Associated Functions Score
Cellular Movement, Cell-To-Cell Signaling and Interaction, Tissue 39
Development

Cardiovascular System Development and Function, Organismal 25

Development, Cell-To-Cell Signaling and Interaction

Organismal Development, Cancer, DNA Replication, Recombination, and | 18
Repair

Cardiovascular System Development and Function, Organismal 16
Development, Cell Death

Organismal Development, Antigen Presentation, Cellular Development 16

II: Top five network figures
Top five network figures constructed by using microarray data are illustrated and shown below.
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1): Cellular Movement, Cell-To-Cell Signaling and Interaction, Tissue Development:

This network includes genes for cellular movement, cell-to-cell signaling and interaction, tissue
development. Genes playing role into above functions are illustrated below while network is shown
in Figure 3.9.

Cellular Movement:
In this network there are 13 genes, which are participating into cellular movement. AGT, BMP4,
BSG, CCNDI, CDH2, CHI3LI, COLI18A41, EPHBI, F2R, GAS6, LOX, TNFRSF21.

Cell-to-Cell Signaling and Interaction:
In this network there are 13 genes, which has a functional role in cell-to-cell signaling and
interaction. AGT, BMP4, BSG, CCNDI, CDH2, CHI3LI, COLI8A41, EPHBI, F2R, GAS6, LOX,

TFRC.

Tissue Development:
In this network there are 16 genes, which are important for tissue development. AGT, BMP4, BSG,
CCNDI, CCND2, COLI16A41, COLI8Al, DAB2, EPHBI, F2R, GAS6, LOX, PKRG2, RSAP2,

TNFRSF2.
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Figure 3.9: A schematic diagram constructed by using IPA depicting network of ZBED6 upregulated
and downregulated genes. In this network 28 genes are regulated by ZBEDG, of which 20 are
downregulated and 8 are upregulated. This network illustrates genes for cellular movement, cell-to-cell
signaling and interaction, tissue development, of which 16 have established roles in tissue development.
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2): Cardiovascular System Development and Function, Organismal Development, Cell-To-Cell Signaling
and Interaction

This network portrays genes for cardiovascular system development and function, organismal
development, cell-to-cell signaling and interaction. Genes playing role into above functions are
described below while network is shown in Figure 3.10.

Cardiovascular System Development and Function:

In this network there are 14 genes, which are known to participate into cardiovascular system
development and function. AKTI, ANPEP, HGF, IGFI, IGF2, ILI1S8, ILIB, MET, MMP2,
PDGFRA, SPARC, SPPI1, THBSI, VCAMI.

Organismal Development:
In this network there are 13 genes, which have been implicated into Organismal development.
AKTI, ANPEP, HGF, IGF1, IGF2, IL18, IL1B, MET, MMP2, PDGFRA, SPARC, THBS1, VCAM1

Cell-To-Cell Signaling and Interaction:

In this network there are 16 genes, which are participating into cell to cell signaling and
interaction. AKTI, ANXA9, CCL5, CD28, HGF, IGFI, IGF2, IL7, IL1S8, ILIB, LBP, MMP2,
SPARC, SPP1, THBSI1, VCAM1
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Figure 3.10: A schematic diagram constructed by using IPA illustrating network of ZBEDG6
upregulated and downregulated genes. In this network, 21 genes expression is regulated by ZBEDG, of
which 15 are downregulated and 6 are upregulated. This network encompasses genes for
cardiovascular system development and function, organismal development, cell-to-cell signaling and
interaction. Many of genes (16) have established roles in cell-to-cell signaling and interaction.
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3): Organismal Development, Cancer, DNA Replication, Recombination, and Repair

This network encompasses genes for organismal development, cancer, DNA replication,
recombination, and repair. Genes participating into above functions are illustrated below while
network is shown in Figure 3.11.

Organismal Development:
In this network there are 9 genes, which have role into Organismal development. BMP4, CCND],
CCND2, DBH, EPHB3, FGFR4, HGF, MMP2, STIM1.

Cancer:

In this network there are 8 genes, which are known to participate into Cancer. CCND1, CCND2,
DPEPI, FGFR4, HGF, HTRA1, MMP2, STIM1.

DNA Replication, Recombination, and Repair
In this network there are 4 genes, which are taking part into DNA Replication, Recombination, and
Repair. BMP4, HGF, CCND1, MMP?2.

Cytokine/Growth Factor

) SﬁMi_ADS ﬁ—T_;_Lli_!\&/ ! J o Enzyme
SMAD2 ,-/ ) e Y 4 r A MS>“,. T——mMPa Grawth factor
e . T LD M S ;A b/ﬁ
\‘(/// '\ﬁ <~ “\‘lﬂ \|L //‘; k } ,'f "//// /\\ /’ Kinase
CHST12 _rz\‘:\ f}( - ﬁ._:;—“iﬁi:Bgr > \ \\\{4;// i Lgand-dependent Nuclear Recentor
i /IJl.E i = :’/ 7’“\\\: :tCT,NNB1 ==~ *FG';TG Peptidase
| 7 J_*-\” - /‘/ A\ AN . % Transcription Regulator
A;” W S {1\ N HTRAL
S100, 1 AN ’,‘ /' 1 1LY ! \ ¢ {' & Transmembrane Receptor
Tt I 1\ [N Y FGFR4 Unknowti
¥ & ”QCNDQ/"J ;f | ¥, 4 \]L ! b ! \1\ | Relationshij
-_— y ~ - — an:
o3 e N - PRl fscady : i
2 =t _TheCN ] A NV > | == Relationship
\ ! ) . .
\ / i o i INHBB ‘ \ MMP3. ! Colors:
A\ T A | i UpReguakied
V:i( GYF// ! b, SERPINAT v | W Down Requated
W\PPARG BCRAT
i 1
sop* / \ =
STIM1 PRIC

Figure 3.11: A schematic diagram constructed by using IPA illustrating network of genes that are
regulated by ZBEDG. In this network, 17 genes are regulated by ZBEDG, containing 11 downregulated
and 6 upregulated genes. These genes are associated with cardiovascular system development and
function, organismal development, cell-to-cell signaling and interaction. Majority of genes (9) have
established functional role in organismal development.

4): Cardiovascular System Development and Function, Organismal Development, Cell Death

This network includes genes for cardiovascular system development and function, organismal
development, cell death. Genes playing role in above functions are illustrated below while network
is shown in Figure 3.12.
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Cardiovascular System Development and Function:
In this network there are 7 genes, which are known to be involved in cardiovascular system
development and function. ACTG2, ACTNI, CASQ2, COL1841, MMP2, THBSI, THBS2.

Organismal Development:
In this network there are 4 genes, which are participating into different stages of organismal

development. COLI18A41, MMP2, THBS1, THBS?.

Cell Death:
In this network there are 7 genes, which are participating into cell death. COLI841, EIF2AK?2,

MMP2, NEU2, TGFB3, THBSI, THBS2.
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Figure 3.12: A schematic diagram of genes regulated by ZBEDG, IPA was used to construct this
network. In this network, 16 genes are regulated by ZBEDG, containing 9 downregulated and 10
upregulated genes. These genes are associated with cardiovascular system development and function,

organismal development, cell death.

5): Organismal Development, Antigen Presentation, Cellular Development
This network portrays genes for organismal development, antigen presentation, and cellular
development. Genes playing role into above functions are described below while network is shown

in Figure 3.13.

Organismal Development:
In this network there are six genes, which are known to be involved into organismal
development. ATPIBI, CCND2, GRB10, SERPINFI, SLCI12A42, THBS?2
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Cellular Development:

In this network there are three genes, which have role in cellular development. CCND2, TCF?7,
THBS?2.

Antigen presentation:
This network contains seven genes, which are involved in antigen presentation. AGT, CCNDI,
CCLS5, HGF, IL18, JAM3, LBP.
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Figure 3.13: A schematic diagram constructed by using IPA illustrating network of genes that are
regulated by ZBEDG. In this network, 16 genes are regulated by ZBEDG, containing 10 downregulated
and 6 upregulated genes. These genes are associated with organismal development, antigen
presentation, and cellular development.

2: Canonical Pathways Analysis
Microarray data canonical pathway analysis contains:
I. Top five canonical pathways table
II. Canonical pathways figures
Canonical pathway table and figures are illustrated and shown below.

I: Top five canonical pathways

Top five canonical pathways table from microarray data contains name of canonical pathway, p-
value and ratio, which are shown in Table 5.
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Table 5: ZBEDG6 Microarray data canonical pathway table. Canonical pathway names, p-values and
ratios are shown below. Lower p-value and higher ratio shows the significance of pathway.

Name p-value Ratio

Hepatic Fibrosis / Hepatic Stellate Cell Activation 2.86E-05 12/131 (0.092)
Clathrin-mediated Endocytosis Signaling 2.95E-03 10/164 (0.061)
Tight Junction Signaling 7.03E-03 9/164 (0.055)
p-alanine Metabolism 8.17E-03 5/53 (0.094)
Human Embryonic Stem Cell Pluripotency 8.44E-03 8/142 (0.056)

Ill: Canonical Pathways Figures
Canonical pathway figure are shown in Figure 3.15.
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Clathrin-mediated Endocytosis Signaling
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Tight Junction Signaling
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Figure 3.15: In all canonical pathway figures ZBEDG6 regulated genes are shown with colored
symbols, green for downregulated and red for upregulated. Hepatic Fibrosis / Hepatic Stellate Cell
Activation contains 12 genes which are regulated by ZBEDG; of which four are upregulated and six are
downregulated. Clathrin-mediated Endocytosis Signaling includes 12 genes regulated by ZBEDG,
contains five upregulated and five downregulated while Tight Junction Signaling encompass nine
ZBEDG regulated genes, including eight upregulated and one downregulated.
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To elucidate which genes are targeted or regulated by ZBED6 in figure 1.2, ZBED6 target and
regulated genes are bring to light in figure 3.16.
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Figure 3.16: This figure is a reflection of figure 1.2, but it highlights those factors, which are targeted
or regulated by ZBEDG6. Colored genes are targeted by ZBEDG while green and red colors are
indicating genes, which are negatively and positively regulated by ZBEDG6 respectively. White color
genes are not targeted or regulated by ZBEDG.

Table 6: Comparison of IPA with Other tools for Network Building

Attributes 1PA Cytoscape Osprey
Interface 1t is a commercial service and provides user | It is an open source 1t is a public
friendly interface, and consists of project software but is difficult | software and
manager, project workspace and quick start | to use due to different | provides
screen. Data can be shared through user plug-in. friendly
account. interface.
Data Data is represented in form of nodes, Data is represented in | Data is
representation | Relationships (connectors) and attributes. form of nodes and represented in
Nodes have different form for each type of connector but no Jorm of nodes
molecules likewise connectors have different | different forms for and connector
types for direct, indirect, catalysis, inhibitor | nodes and connecters | but no different
etc. Different colors and gradients are are available to Jorms for nodes
available that can be applied on nodes and differentiate nodes and | and connecters
relationships. connecters. are available to
differentiate
nodes and
connecters.
Input Excel files and tab delimited text files can be | SIF, SMBL, GML It accepts tab
loaded. excel and tab delimited | delimited text
file can be loaded. files.
Output Local (Excel or tab delimited text) files, Local file and image OSP file and
image export and printing printing image printing
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Search 1t provides search facility for genes and 1t provides search 1t provides
chemicals, function and diseases, pathway facility to find only search facility to
and tox list and also provide advance search | node name on graph. | find only node
options. It provides comprehensive gene name on graph.
ontology. Build and design pathway, add
neighbours, and explores all published data
about a gene interaction or pathway.

Data 1t integrates huge number of databases 1t integrates GO, 1t integrate GO

integration KEGG, RefSeq, UniGene, BIND, BIOGRID, Pathway Commons, database.
Cognia, DIP, INTACT, MINT, MIPs, IntAct, BioMart, NCBI
Argonaute 2, TARBase, Gene Ontology, GVK | Entrez Gene, and
Biosciences, Obesity Gene Map Database PICR databases.
etc. and also provides various microarray
platforms like illumina, applied biosystems,
and affaymatrix.

Filtering IPA is equipped with two type of filters Flexible filtering is Network and
stringent and relaxed which can be applied | provided connection
on data sources, species, tissue and cell filters are
lines, relationship types, molecule types, available.
diseases, biofluids etc.

Network It provides different network operation like: | It provides different It provides

operations overlap networks, Network comparisons, network layouts; different
build and design, grow, connect, trim, keep, | various plug-ins are network layouts
add molecule/relationship to network, auto available for network | like
layout and sub cellular layout. operation. circumlunar,

dual ring,
global etc.

Microarray It can perform various operations on Several plug-in are Not available

Data microarray data: available
Import and Export microarray data,

Building networks from microarray data,
visually display of gene expression in
Network, identifying canonical pathways
harboring microarray data, ldentifying bio
functions (disease and disorders, molecular
and cellular functions, physiological system
development and function), tox function
related to microarray data, also show
statistical significance for each result.

Significance IPA finds maximum possible interaction and | Limited interactions Only finds direct
references. IPA is cited by almost 2651 and references. interaction and
scientific studies to this date. limited

references
DISCUSSION

To elucidate the interactome of ZBED6, IPA was used which is a sophisticated and state-of-the-art
tool for constructing and visualizing networks and pathways. At present it has been cited in 2651

scientific studies, and after comparison with other network building tools, it was found that IPA is
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an outstanding network for constructing and analyzing tool due to its wide range of services and
integrated databases, it is also clear from Table 6 where IPA is compared with Osprey and
Cytoscape.

ChIP Sequence Data

ZBEDG6 targeted top five networks with significant score are shown in results. Network one
encompasses ZBED6 targeted genes participating into tissue development, cancer and embryonic
development, in mentioned functions number of ZBED6 targeted genes is 15, 16 and 14
respectively. CDH2, CREEBP, FGF3, MSXI, PITX2, RELN, VEGFA, WNTI are common in
cancer, tissue development and embryonic development. This Network contains 10 ZBEDG6
targeted transcription factors. Network two indicates that 10 and 5 ZBEDG6 targeted genes are
involved in cancer and immunological disorders, respectively while no ZBEDG6 targeted gene are
involved in DNA repair, recombination and replication. In cancer and immunological disorders
BRD?2, PDE4D, ROBOI, VAV3 are common. This network embraces five transcription factors.
Network three indicates 27, 16 and 19 ZBED6 targeted genes take part into cellular growth and
proliferation, tissue development and gene expression respectively. CITED3, FOXOI, HEYI,
IGF2, INHBB, MAP3K7, SKI, SMAD7, TGFf1 are common in cellular growth and proliferation,
tissue development and gene expression. This network contains 10 transcription factors. Network
four shows 12, 20 and 4 ZBEDG6 targeted genes which have role in cell cycle, gene expression, and
connected tissue development and function respectively. This network contains E2F1 and RBLI
common for cell cycle, gene expression and connected tissue development and function and also
encompasses 12 transcription factors. Network 5 reflects 21, 13 and 9 ZBEDG6 targeted genes
contribute for cellular development, nervous system development and function and cellular
movement respectively. BMP7, CXCL2, GDNE, POU4F2, and TGFf2 are common in cellular
development, nervous system development and function and cellular movement. This network
contains 6 transcription factors.

From these networks it is revealed that ZBEDG6 targeted genes are involved in tissue development
and cancer with tremendous number of genes: 31 and 26 respectively. In these networks CDH?2,
CTNND2, PITX2, TRIO, WNT3a, WNTI1, MSXI, PAX7, VEGFA, ACTNI, SMAD7, HEY1, IGF?2,
SKI, E2F1, EP300, FGF9, MTOR, IGFIR, FGFRI, SRF, BMP7, TGFf2 has establish role in
myogenesis (Figure 3.8) and it is discussed below.

Analysis to elucidate the role of ZBEDG6 target genes in muscle showed that ZBEDG6 is targeting
various genes that are playing pivotal roles in muscle differentiation (Figure 3.8). Most mitogens
are taking part into myoblasts proliferation but act as antagonist for myoblasts differentiation
whereas IGFs are participating into both processes. IGF2 is playing an important role in muscle
myogenesis. IGF2 is targeted by ZBED6 and regulates many other ZBED6 targeted genes
downstream. IGF2 activates IGFIR and mediates activation of AKT signaling (Figure 3.8)
subsequently induces myogenesis (Yoon & Chen 2008). AKT activates MTOR and SRF (Figure
3.8). MTOR participates into myogenesis by controlling IGF2 production (Yoon & Chen 2008).
SRF plays a decisive role to initiate muscle differentiation by regulating transcriptional activation
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of muscle specific genes (Kim et al., 2009). SRF induces expression of MRFs (MYODI and
MYOG) and also interacts with many other muscle differentiation-mediating factors like BARX2,
SKI, NKX2-5 and SMAD7 (Figure 3.8). BARX2 promotes skeletal myotube differentiation; its
overexpression accelerates the onset of myotubes. In C2C12 during myotube formation expression
of BARX2 is accelerated (Meech at al., 2003). SKI induces terminal muscle cell differentiation.
SKI knockdown in C2CI12 cells showed impaired differentiation. SKI induces transcription of
MYOG by associating with SIX1 and EYA3 (Zhang & Stavnezer 2009). During C2C12 myoblasts
differentiation and myotube formation NKX2-5 expression level is critical (Riazi et al., 2005) and
it is activating expression of PITX2, which further upregulates TRIO. PITX2 contributes in
morphogenesis and also ensures proper proliferation and differentiation of C2C12 (Gherzi et al.,
2009). TRIO controls fetal skeletal muscle formation by mediating myoblasts localization or fusion
(O’Brien et al., 2000). SMAD7 plays Pivotal role in muscle myogenesis by interacting with
various important factors like VEGFA, CDH2, MAP3K7, ACVR2A, ACVR2B and EP300 (Figure
3.8). VEGFA increases angiogenesis and telomerase activity in skeletal muscles, endothelial and
satellite cells (Zaccagnini et al., 2005). VEGFA induces increase myogenic differentiation in
differentiating C2C12. Cadherins are important to exit cell cycle and to mediate differentiation of
skeletal muscles. CDH2 named as N-cadherin makes a complex with p120 catenin and regulates
activity of RHOA, which subsequently positively regulates MYOD expression and induces skeletal
muscle myogenesis (Taulet et al., 2009). MAP3K7 is an upstream regulator of P38 signaling
cascade, P38 MAP kinase regulates activation of MRFs thus controlling skeletal muscle
differentiation (Lluis et al., 2005). Myostatin is a negative regulator of muscle myogenesis; it binds
with ACVR2B and to lesser extent ACVR2A and mediates signals (Lee & McPherron 2001).
Myostatin through SMADs regulates expression of MYOD. TGFf1 induces myostatin expression,
which conversely stimulates secretion of TGFB1 in C2C12 myoblasts (Zhu et al., 2007). TGFp
inhibits expression of muscle-specific genes, thus myostatin and TGFp acts as negative regulator of
skeletal muscle myogenesis. EP300 named, as P300 is important for muscle myogenesis. Mouse
embryos harboring mutation in p300 alluded to impaired MRFs expression and myogenesis (Roth
et al., 2005). EP300 further interacts with NOTCHI1 and E2F1 (Figure 3.8). NOTCHI signaling
leads to inhibition of myogenesis by suppressing P38 MAPK activity in C2C12 cells (Kondoh et
al., 2007). NOTCHI1 interacts with HEY1; HEY1 named CHF2 forms an inactive complex with
MYOD and represses myogenesis transcriptionally (Sun et al.,, 2001). Thus, NOTCHI1 either
directly or through HEY1 can inhibit myogenesis. E2F1 also acts as negative mediator for
inhibition of MYOD through retinoblastoma protein and cathepsin B complex (Li et al., 2000).
These results unveil that ZBEDG6, by targeting the above mentioned factors, is an indispensable
mediator for skeletal muscle myogenesis and is controlling both positive and negative regulator of
muscle development simultaneously.

ZBED6 ChIP sequence data analysis by IPA revealed its role in various canonical pathways.
ZBED6 targeted genes participate significantly in Wnt/B-catenin signaling, human embryonic stem
(ES) cell pluripotency and TGFp signaling. All of these pathways are very important and
performing a vast array of functions. Wnt/B-catenin signaling is a an evolutionary conserved
signaling cascade and plays a key role in stem cell maintenance, cell-cell adhesion, cell
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differentiation and tissue development. Core components of this signaling cascade are the
wingless-type mouse mammary tumor virus (MMTYV) integration site family (WNT), disheveled
(Dvl), axin, adenomatous polyposis coli (APC), glycogen synthase kinase 3beta (GSK3f), beta-
catenin (CTNN-B) and T-Cell Factor (TCF) (Lee at al., 2003). WNT proteins bind with frizzled
receptors and controls location and concentration of CTNN-B. CTNN-B and TCF complex is
responsible for regulation of transcription of many genes. Absence of destruction complex leads to
interaction of destruction complex (APC-axin- GSK3f) and CTNN-f. This interaction results in
phosphorylation of CTNN-f§ which is further degraded by proteosomes (Mirams et al., 2010). Wnt
is a complex, comprising many proteins of which ZBEDG6 targets are Wntl, 2, 6, 16, 2B, 3A, 7A,
7B, 9A. In frizzled receptor complex ZBED6 target SMO whereas ZBED6 targets TCF4 in TCF
complex. Secreted frizzled related proteins (SFRP) inhibit binding of Wnt with frizzled receptors.
Among these SFRPs, SFRP2 and SFRPS are targeted by ZBEDG6. In addition to these, some other
Wnt signaling factors are targeted by ZBEDG6 like CDH2, ACVR2A, 2B, CREBP, SOXs, TGFf and
LPRs (Figure 3.6). These findings suggest that ZBED6 plays an important role in Wnt signaling by
targeting various key factors.

Other important signaling cascade targeted by ZBED6 is human ES cell pluripotency. Studies of
human ES cell pluripotency holds promise to provide knowledge about early development in
humans and pluripotent ES cells could have high therapeutic potential. ES cells are derived from
inner cell mass of blastocysts and can be differentiated into any cell type (Boyer et al., 2005).
Human ES cell pluripotency signaling cascade includes different signaling pathways like WNT,
Transforming growth factor beta (TGF[), bone morphogenetic protein 2 (BMP), fibroblast growth
factor 2 (FGF2) and platelet derived growth factor (PDGF) signaling which are responsible for
gene expression, development, differentiation and self-renewal, respectively. ZBEDG6 targets many
genes participating into human embryonic stem cell pluripotency like Wnt (1, 2, 6, 16, 2B, 34, 74,
7B, 94), SMO, BMP7, BMPR2, Noggin, TGFp1, TGFp2, SMAD6, SMAD7, PDGFRA, and SPHK
(Figure 3.6). It proposes that ZBED6 is imperative for human ES cell pluripotency.

ZBEDG6 also takes part into TGFp signaling. TGF signaling is involved in multiple different
cellular activities including cell proliferation, differentiation, recognition, apoptosis, and
specification of developmental fate both in embryonic and adult tissue (Shi & Massague, 2003).
TGFp signaling is mediated by interaction of TGFf or BMP with type I and type II receptors.
Receptor II phosphorylates receptor I which in turn phosphorylate sma and mad related proteins
(SMADs) which are transcriptional regulators. There are different types of SMADS like receptor-
regulated SMAD (R-SMAD), the Co-mediator SMAD (Co- SMAD), and inhibitory SMAD (I-
SMAD). R-SMADs are SMAD, 2, 3, 5, and 8; Co- SMAD is SMAD4 while I-SMADs are SMAD6
and 7. R-SMADs are activated and make complex with co-SMAD and regulates transcription of
genes, whereas I-SMADs compete with R-SMADs so [-SMAD act as antagonist for TGFf
signaling. Thus, SMAD proteins function either as transcriptional activators or repressors and their
function as transcriptional regulators depend on their interaction with associated factors (Shi &
Massague, 2003). BMP7, BMPR2, TGFp1, TGFp2, I-SMAD:s are targeted by ZBED6 (Figure 3.6).
ZBEDG6 also targets some other factors which are known to implicate with TGFp signaling like
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EP300, VDR, RUNX3, ACVR2A4, ACVR2B, MAP3K7, CREBBP, NKX2-5 and PITX2 (Figure 3.6).
These results reflect that ZBED6 plays a significant role in TGFf signaling.

In these three signaling cascades there are many genes that are shared. Analysis for common genes
revealed that TGFB1 and TGFB2 are common among these three cascades (Figure 3.7). This is an
important finding as ZBED6 by targeting these two genes can regulate both these signaling
cascades. There are many genes shared between Wnt signaling and TGFf signaling, TGFf
signaling and human embryonic stem cell pluripotency, and Wnt signaling and human ES cell
pluripotency (Figure 3.7) These findings suggest that by regulating genes of one signaling cascade
ZBEDG can also influence the other cascade.

Microarray data

ZBED6 regulated top five networks are showed in results. Network one includes total 28 ZBED6-
regulated genes. 13, 13 and 16 genes are contributing for cellular movement, cell-to-cell
interaction, and tissue development respectively, among these genes AGT, BMP4, BSG, CCNDI,
COLI16A41, COLI8Al, DAB2, EPHBI, F2R, GAS6, and LOX are common. 20 genes are
upregulated while eight are downregulated by ZBED6 after silencing. Network two encompasses
total 21 ZBEDG6-regulated genes. 14, 13 and 16 ZBEDG6-regulated genes are participating into
cardiovascular system development and function, organismal development and cell-to-cell
signaling and interaction respectively, and AKT1, HGF, IGF1, IGF2, IL18, IL1B are common
ZBED6-regulated genes for these functions. 15 downregulated and six upregulated genes are
present in this network. Network three contains a total of 17 ZBED6 regulated genes. In this
network nine, eight and four ZBED6-regulated genes are playing role in organismal development,
cancer and DNA replication, recombination and repair respectively, while HGF, CCND1, MMP2
are common ZBEDG6-regulated genes for these functions. This network shows ZBED6
downregulates 11 genes and upregulates 11 genes. Network four reflects total 16 ZBED6-regulated
genes. This network includes seven, four and seven ZBED6-regulated genes which are known to
be involved in cardiovascular development and function, organismal development, and cell death
respectively, while Coll8A1, MMP2, THBS1, THSB2 are common ZBEDG6-regulated genes
among them. Nine genes are downregulated while seven are upregulated by ZBED6 in this
network. In network 5, 16 genes are regulated by ZBEDG6 of which nine are downregulated while
six are upregulated and; six, three and seven ZBED6 regulated genes are participating into
organismal development, cellular development and antigen presentation respectively.

These networks illustrates that ZBED6 regulated genes are involved in organismal development
and cell to cell signaling and interactions with highest number of genes 32 and 29 respectively. In
these networks, BMP4, DBP, CDH2, AGT, IGF1, IGF2, THBS1, PDGFRA, MPP2, AKT1, HGF,
MET, FGF4, TGFB3, ACTNI1, F2R, VCAMI are playing role in muscle proliferation, myogenesis
and contraction.

ZBED6 microarray data analysis by IPA divulged it as a key regulator in various canonical

pathways. ZBED6-regulated genes are contributing significantly in Hepatic Fibrosis / Hepatic
Stellate Cell Activation, Clathrin-mediated Endocytosis Signaling and Tight Junction Signaling.
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These signaling cascades are executing many important functions. Hepatic fibrosis is a chronic
liver disease that is caused by hepatotoxins including excessive ethanol, glucose, bile acids, free
fatty acids and viruses. Hepatotoxins initiate a pro-inflammatory events cascade that leads to
activation of Hepatic stellate cells (HSCs) followed by cytokine secretions that disseminate their
activated state. Liver injury leads to accumulation of activated HSCs and myofibroblasts, which
stimulate synthesis of large amount of extra cellular matrix (ECM) proteins, mainly collagen which
conducts tissue fibrosis and eventually liver fibrosis. Imbalance between synthesis and degradation
of ECMs causes liver fibrosis (Zou et al., 2007). ZBED6 positively regulates TGFB3 and MYL6B,
which are part of TGFB and Myosin complex respectively; and ZBED6 negatively regulates
PDGFRa, IGF1, LBP and MMP?2 during early stage in hepatic stellate cells (Figure 3.15). During
signaling events in myofibroblasts, ZBED6 positively regulates AGT, IL-1§ while negatively
regulates HGF, C-Met, RANETS (CCLS5), LBP, VCAM. 1t implies that ZBED6 may be a crucial
factor for hepatic fibrosis either as positively or negatively regulator.

ZBED6 also regulates genes in clathrin-mediated endocytosis signaling cascade. Clathrin-mediated
endocytosis signaling is also called receptor-mediated endocytosis. It is responsible for
internalization of cargo, which may be hormones, nutrients or other signaling molecules from
plasma membrane to interacellular organelles. Clathrin and adopter proteins help in internalization
of cargo (Henne et al., 20101). Clathrin lattice is assembled at the plasma membrane by Adaptor
protein 2 (AP2), which is connected to predominant phosphoinositide at plasma membrane. Cargo
binds to respective receptor and Ap2 interact with various proteins including EPS15, epsin, HIP1,
DAB2 and leads to formation of clathrin coated pits (CCP), Dynamin along with various proteins
is recruited, activated and directs to release of clathrin coated vesicle. Vesicles fuse with early
endosome after internalization and coat disassembly. During clathrin and adopter recruitment, and
formation of clathrin coated membrane invagination, ZBED6 positively regulates TFRC (TFR),
EPSI5, and HIPI, and negatively regulates, /IGF1, DAB2, PARI (F2R), C-Met (member of Met
complex) (Figure 3.15). During clathrin coated pit formation and coat dissociation ZBED6
positively regulates ACTCI and ACTG2 (member of F-Actin complex) while negatively regulates
DAB2 and HSPAS (member of HSC70 complex), and during early endosome ZBED6 positively
regulates Epsl5 (Figure 3.15). These results indicate that ZBEDG6 regulates clathrin-mediated
endocytosis by influencing sufficient number of genes contributing in this signaling cascade.

ZBED6 regulated genes are involved in tight junction signaling. Tight junction signaling is
important for cell-to-cell signaling, cellular assembly and organization and cell morphology. Tight
junctions are composed of transmembrane proteins (claudins (CLDN), occludins (OCLN) and
JAMs (JAM)), adaptors proteins (ZO1,2,3, PAR3,6, PATJ and MUPPI), regulatory proteins
(aPKC, RABI13,3b, PP2A and PTEN) and transcriptional and post-transcriptional regulators
(ZONAB, SYMPK and HSF1) (Matter & Balda 2003).In this signaling, CLDNs, OCLNs and
JAMs are major players. These transmembrane proteins interact with other proteins and forms tight
junction complexes that are involved in actin remodeling, cytoskeleton organization and epithelial
polarization and ultimately mediate cellular assembly, cell-to-cell signaling, and organization and
cell morphology. ZBEDG6 positively regulates CLDN (CLDN2), JAM (JAM3), TGFp (TGFJ3), F-
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actin (ACTC1, ACTG2s) and myosin (MYL6B) while negatively regulates 7/AM1. It concludes that
ZBEDG plays an important role in tight junction signaling by regulating important factors.
According to previous studies Wnt, Bmp and Shh signaling are involved in regulation of
embryonic regulations similarly these cascades may consign adult stem cell to myogenesis.
ZBEDS6 is targeting and regulating various molecules in these cascades (3.16). ZBEDG6 also targets
and regulates cadherins, and FGFs, which have role in myoblasts multiplication and fusion. These
findings suggest that ZBED6 has a major role in skeletal muscle myogenesis.

CONCLUSION

ZBEDS6 is a recently identified transcription factor that is targeting and regulating a plethora of
molecular factors. The interactome of ZBED6 was constructed by using ChIP sequence and
microarray data through IPA. The ZBED6-targeted genes interactome elucidates that ZBED6
targeted genes are overrepresented in tissue development and cancer networks. ZBED6-targeted
genes are engaged significantly into Wnt, human embryonic stem cell pluripotency and TGFf
canonical pathways. ZBED6 binds to many regulatory regions of genes, which have established
roles in skeletal muscle myogenesis including: IGF2, IGFIR, SRF, SMAD7, CDH2, CTNND2,
PITX2, TRIO, WNT3a, WNTI1, MSX1, PAX7, VEGFA, ACTNI, HEYI, SKI, E2F 1, EP300, FGF9,
MTOR, FGFRI, BMP7, and TGFp2. 1t is revealed from the interactome of ZBED6 differentially
regulated genes that it is mainly involved in organismal development and cell to cell interaction
and signaling. ZBED6 differentially regulated genes are contributing significantly in hepatic
fibrosis, clathrin-mediated endocytosis and tight junction signaling cascades. ZBED6-regulated
genes including BMP4, DBP, CDH?2, AGT, IGF1, IGF2, THBSI, PDGFRA, MPP2, AKTI, HGF,
MET, FGF4, TGFp3, ACTNI, F2R, and VCAM1 have established roles in muscle proliferation,
myogenesis and contraction. Wnt, Bmp and Shh signaling are controlling regulation of MYOD and
MYF5 which are important myogenic transcription factors for skeletal muscle differentiation;
ZBEDS6 targets and regulates many factors in these signaling cascades. These findings suggest that
ZBEDS6 is a crucial factor for many cellular functions and canonical pathways either by directing
or differentially regulating the molecular factors.

FUTURE PERSPECTIVES

e ZBEDG6 networks will be elucidated and constructed in other cell lines like HepG2, it will
facilitate in understanding the interactome of ZBEDG6 in other cell lines besides C2C12
myoblasts.

e The ZBED6 interactome will be identified and built from human tumor samples to
elucidate the role of ZBEDG6 in human cancer as our results suggested that ZBED6 targeted
genes are involved profoundly in cancer networks.

e Some of the ZBED6 targeted or regulated key pathways will be validate by employing

functional assays. These wet lab experiment will provide us a base to accept our
computational results.
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