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Summary 

Forests are estimated to sequester and emit respectively 15% and 20% of the CO2 

emissions. REDD+ aims at establishing a financial framework to compensate developing 
countries for reducing Green House Gasses emissions due to decreased deforestation and 
land degradation. An accurate Monitoring, Reporting and Verification (MRV) of the forest 
carbon pools is needed. The adoption of State-Of-The-Art remote sensing technologies, 
such as Lidar in combination with participatory approaches can potentially produce an 
accurate assessment of the forest resources, ensuring the sustainability of the process.  
The study aims at defining the feasibility of Lidar assisted Above Ground Biomass (AGB) 
assessment with a participatory approach. The study compares AGB regression models 
built with wall-to-wall, low density (0.8 points m-2) laser scanning data and two field 
datasets collected by professionals and Community Forest User Groups (CFUGs) teams.  
The models were built using ArboLiDAR©, a tool-box developed in ESRI environment by 
Arbonaut Oy, that uses a Sparse Bayesian approach to define a set of weights for each 
independent variable based on the variance of the field measured AGB and the Lidar 
metrics. Finally the models were validated with Leave-One-Out Cross Validation 
(LOOCV). The adjusted R2, relative RMSE and BIAS as well as the analyses of the 
residuals were used to compare the models. In addition the study also analyzed the 
reliability of the models across different forest structures. The professional model 
described a greater part of the variability of the AGB (adj.R2=0.75) compared the CFUG 
model (adj. R2=0.55), moreover the first was slightly more accurate (professional: rel. 
RMSE= 45.6 %; CFUG: rel. RMSE= 47.2 %). Although both of the models proved to have 
the mean of the error term not equal to zero and did not follow a normal distribution, the 
CUFG model showed heteroschedastic residuals. The accuracy improved when applying 
the models to forests characterized by a more uniform height distribution (rel. RMSE= 
32.1 – 45.2 %), whereas it drastically decreased for sparse forests (rel. RMSE= 91.4 -130.5 
%). The study concludes that with the limitation of having different sampling designs and 
measuring techniques the CFUGs models were slightly worst than the professional ones. 
However, it is likely that with a more accurate retrieval of the GPS plot center and increase 
of plot size the results can be as good as the ones obtained with professionally collected 
data.  
Keywords: Above Ground Biomass, remote sensing, forest inventory 
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1. Introduction 

1.1 Background 

During the past years, the role of forests in mitigating climate change has been increasingly 
acknowledged by the scientific and political community. It has been estimated, according 
to the IPCC (Intergovernmental Panel on Climate Change), that forests sequester 
approximately 15% of the total carbon emissions where tropical deforestation has been 
shown to account for approximately 20% of the total anthropogenic emissions (IPCC, 
2000). This led to the development of policies and processes aiming at reducing the carbon 
emissions from tropical forests. The UNFCCC started the policy negotiations for REDD 
(Reducing emissions from Deforestation and Land Degradation) in 2005 and continued in 
2009 at the Copenhagen conference (Zahabu, 2008). The negotiations continued in the 
Conference of  Parties (COP 16) in Cancun, in COP 17 in Durban and will be further 
developed in the future. This process aims at establishing a financial framework to 
compensate developing countries for the reduced deforestation and land degradation 
(Gibbs et al. 2007).  
 
The main limitations to the implementation of REDD have been institutional as well as 
financial regarding the transaction costs for carbon credits (Murdiyarso et al. 2006). The 
first issue relates to the fact that these policies have been developed only at a national level 
while they require to be implemented also at a local scale in order to be effective 
(UNFCCC, 2009). The second issue relates to the fact the actors involved in the 
monitoring have usually been expert teams, which are costly and scarcely available 
(Zahabu, 2008). To solve these two problems one of the key issues suggested has been to 
involve local communities in the monitoring and reporting of carbon resources (UNFCCC, 
2009; Zahabu, 2008). The involvement of local communities, would result in more 
equitable benefit-sharing, would enhance the capacity building and create employment, as 
well as create a reduction in transaction costs (Gautam and Kandel, 2010). Under the 
KTGAL project (Kyoto: Think Global Act Local) several studies have tested the reliability 
of data collected by local communities in order to utilize it for carbon monitoring (e.g. 
Zahabu, 2008; Tewari et al. 2008) and the results have shown that locals with a 4-7 year 
education can be trained to carry out forest inventories fulfilling the IPCC Good Practice 
Guidance criteria for carbon accounting (Skutsch et al. 2009). 
 
The monitoring and reporting of the present carbon resources can be achieved with many 
different approaches (Gibbs et al. 2007). Different methodologies reflect different quality 
of information which are described by the IPCC (2006) in three Tiers, each providing more 
reliable data and therefore higher financial return (Asner, 2009). Tier 1 represents the most 
general method, characterized by national level average estimates and therefore low 
resolution and high degree of uncertainty (Asner, 2009). Tier 2, represents an intermediate 
methodology which is characterized by country and species specific information but with 
coarser spatial resolution compared to Tier 3. Tier 3 is characterized by data produced with 
process based models allowing transparent and accurate reporting, providing reliable and 
valid information updated over time and site specific (IPCC, 2006).  
In order to achieve Tier 3 level information, there is the need to have a robust methodology 
that can be repeated over the years. Remote sensing techniques in combination with ground 
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truth data can be used to build statistical models in order to fulfil Tier 2-3 requirements 
(Gibbs et al. 2007). 
 
Laser scanning is one of the most promising technologies in Remote Sensing. The main 
advantage compared to other remote sensing data is the fact that it gives information about 
the height and vertical structure characteristics of the forest and produces accurate results 
taking into account the spatial variability of carbon stocks (Gibbs et al. 2007) allowing a 
fine retrieval of data over large areas otherwise inaccessible by standard data collection 
procedures.  Furthermore, this technology does not suffer the limitations that other remote 
sensing techniques encounter such as topographical shading in mountainous areas 
(Gautam, 2010). Many studies proved that it is possible to produce accurate estimates of 
forest variables in different areas of the world (Drake et al. 2000, 2002, 2003; Lefsky et al. 
2002; Næsset 2002, 2007; Holmgren 2004; Asner 2009, Gautam et al. 2010, Clark et al., 
2011, Kronseder et al., 2012). 
 
The REDD+ Monitoring, Reporting, and Verification (MRV) activity is mainly focused on 
tropical and sub-tropical forest. Even though Lidar forest inventories have been mostly 
applied with great success in boreal forests, there is a rich literature of studies that prove 
that the estimation of Above Ground Biomass (AGB) in more complex forest structures 
with Lidar assisted models is possible with a good level of accuracy (Drake et al., 2002).  
Drake et al. (2003) in tropical wet forests in Costa Rica, were able to describe the AGB 
with an R2 of 0.89 with large-footprint full waveform Lidar. In a more recent study Asner 
et al. (2009) estimated AGB in a tropical Rain Forest in Hawaii with an R2 of 0.78 and 
relative RMSE % of approximately 37.5-43.2 %. Equivalently, Clark et al. (2011), in the 
same Costa Rican site  estimated AGB on a wall-to-wall Lidar data with a coefficient of 
determination of 0.89 and relative RMSE of 32.3%. Another study by Kronseder et al. 
(2012) estimated the overall AGB in a tropical rainforest with an adjusted R2 of 0.7 and 
relative RMSE of 33.9%. 

 
In order to model forest variables with LiDAR data, there is a need to combine this data 
with a teaching ground-truth dataset. Up to now the experience is based on forest 
inventories modeled with teaching datasets that have been collected by professional teams. 
The utilization of data collected by Community Forest User Groups (CFUGs) in 
combination with LiDAR data has not yet been explored.  

1.2 Aim of the thesis 

The aim of this study was to test the possibility of integrating laser scanning data with 
ground truth data collected by local communities in Ludikhola watershed in Nepal to built 
models to estimate carbon stocks. This was achieved by comparing the AGB Lidar assisted 
models built with professional and CFUGs ground truth data, referred respectively in this 
report as Arbonaut and ICIMOD datasets. Consequently, after an overall evaluation of the 
models performances based on the comparison of statistical indexes presented in previous 
studies in tropical regions (e.g. adjusted R2, relative RMSE), the study focused on the 
comparison of the Arbonaut and ICIMOD AGB models. 
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In case the CFUGs AGB model would produce similar results as the professional one it 
would allow this technique to be implemented in other geographical areas. This would 
enhance the involvement of local communities in the REDD+ MRV process, reducing the 
transaction costs, developing a strong and reliable methodology to support the results, 
fulfilling the IPCC recommendations for Tier 3 inventories as well as enhancing the 
sustainable development of the communities that manage the forests. 
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2  Material and Methods  

2.1 Materials 

2.1.1  Study site 

The present study, considers Nepal as a typical example of a nation where REDD+ can be 
implemented. In fact, the conservation efforts started in 1978 in Nepal, created a solid base 
for improving the state of the forest resources by redefining the property rights of 
Community Forest Users Groups (CFUGs) (Gautam, 2005).  Since Nepal’s Ministry of 
Forests and Soil Conservation, has committed to objectives of conservation for the 
reduction of GHG emissions (Readiness Preparation Proposal, RPP, April 19th 2010), 
several REDD+ pilot projects started to be implemented to guide the development of 
participatory CO2 monitoring schemes and the establishment of payment schemes 
(ICIMOD, 2010). 
 
The study was carried out in a Nepalese watershed, included in the biomass sites projects 
developed by the cooperation of the International Centre for Integrated Mountain 
Development (ICIMOD) together with the Asian Network for Sustainable Agriculture and 
Bio-resources (ANSAB) and the Federation of community Forestry Users (FECOFUN) 
with the financial support of the Norwegian Agency for Development (NORAD).  
 
The Ludikhola  watershed (Gorkha district) is located in the Hill region characterized by 
sub-tropical broad leaved forests, ranging from 318 m to 1714 m above sea level, has a 
total area of 5750 ha, a forest area of 4869 ha, and includes 31 Community Forests that 
cover 1888 ha (Table 1). The dominant tree specie is Shorea robusta associated with 
Schima wallichii and Castanopsis indica (ANSAB, 2010). 
 
 
Table 1. Main abiotic and biotic site characteristics. The land use was derived from the Land cover 
analyses report (2010) 
 Watershed Ludikhola (Gorkha) 

S
it

e 
ch

ar
ac

te
ri

st
ic

s 
 

area (ha) 5750 
Altitude range (m a.s.l) 318 - 1714 

Average temp. (⁰C) 23.1 
Average rainfall (mm) 1972-2000 

   
   

  L
an

d 
us

e 
 

  

Close to open Broadleaved (dense) forest 
(ha) 

3873 (67,3%) 

Open Broadleved (sarse) forest (ha) 996 (17,3%) 

Natural water bodies (ha) 9 (0,2%) 
Bare soil (ha) 241 (4,2%) 
Grassland and degradated forest (ha) 0 
Clouds (ha) 0 
Agricultural land and build up areas (ha) 632 (10,9%) 

  Forest Area TOT (ha) 4869 (84,6%) 
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2.1.2 LiDAR data 

 
The laser scanning data was provided by the Forest Resource Assessment in Nepal, 
Ministry of Forests and Soil Conservation in the project developed by the joint venture of 
FRA (Forest Resource Assessment) Nepal project, WWF, Arbonaut Oy Ltd and ICIMOD. 
The data set was collected during the spring (March-April) 2011 with Helicopter (9N-
AIW) at a flight altitude of 2200 m above ground level using Leica ALS50-II Lidar-
scanner with footprint size of 50 cm, average laser beam density 0.8 points m-2 and scan 
frequency of 52.9 kHz. The Lidar block object of study was collected within the study 
(Lidar Assisted Multisource Program LAMP) of a larger area. With regard to this study 
case the Lidar data is characterized by a wall-to-wall coverage. 

2.1.3 Field data  

The field data was composed by the Arbonaut and the ICIMOD datasets. The Arbonaut 
data collection was also done within the project cited above by DFRS/FRA and WWF 
personnel during spring 2011. The ICIMOD data was collected during the ICIMOD REDD 
Pilot Project during spring 2011. MENRIS (Mountain and Natural Resources Information) 
section of ICIMOD was in charge of the field campaign and a total of 118 representatives 
of local communities participated actively in the measurements.  
 
These two field datasets presented differences and similarities that were highly relevant to 
the purpose of the study. 
 
The differences are represented by: 

- Sampling design: for the Arbonaut dataset the field plots were generated using a 
systematic clustered random sampling within the LiDAR coverage.  Each cluster 
was composed by a maximum of 8 plots (Figure 2), located in two parallel columns 
distant 300 m from each other and with a distance of 300 m between rows. The 
original sampling design included 15 clusters for a total of 115 plots in the 
Ludikhola watershed. The actual number of plots available for the purpose of the 
study was less due to the fact that some plots were either inaccessible or in non 
forested areas (water, agricultural and bare soil areas). The total number of plots 
available for the study is therefore 92 (Table 2). Differently the ICIMOD sampling 
design was based on a stratified random plot generation. The stratification was 
carried out using high resolution satellite images (Geo-eye). The area was divided 
into two strata: dense (canopy cover >70%) and sparse forest (canopy cover<70%). 
Secondly, the plots were randomly generated using Hawt´s Analysis Tool for 
ArcGIS. The number of measured plots was 191. 
 

- Plot size: The Arbonaut plots were fixed circular plots with area= 500 m2 and 
radius = 12.62 m, whereas the ICIMOD plots were fixed circular plots with area= 
250 m2 and radius = 8.92 m. 

 
- DGPS: The Arbonaut´s GPS plot center points were geometrically corrected with a 

real-time Differential GPS (DGPS) station (Promark 3, Magellan) located in the 
watershed, while this was not available for the ICIMOD dataset. 

 
The similarities are represented by: 
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- Plot quantitative measures: Stem count, species composition, Diameter at Breast 
Height (DBH) >5cm (caliper or measuring tape), height (clinometer or VertexIV 
and Transponder T3), GPS plot center (Map 60CSx or 62s, Garmin). 
 

- Sampled area: regardless the difference in plot number between the two datasets the 
total sampled area was similar: Arbonaut = 4.6 ha; ICIMOD= 4.8 ha (Table 2). 

 
‐ Above Ground Tree Biomass (AGTB) model: similarly to other studies in tropical 

areas (Asner et al., 2009; Kronseder et al., 2012), was estimated using the 
allometric equation described by Chave (2005): 

AGTB= 0.0509 * ρD2H 
Where: ρ is the wood specific density (Kg m-3) (MPFS, 1988), D is the DBH (cm) 
and H is equal to the tree height (m). Moreover the biomass value was converted to 
t ha-1. 
 

‐ Quality assurance (QA) and quality control (QC) was carried out for both datasets.  
 
 
 
 
 
Table 2. Comparison of the professional and community plot data in the two watersheds object of 
study 

Watershed Ludikhola (Gorkha) 

Source Arbonaut ICIMOD 

n_plots 92 191 
sample plot size (m2) 500 250 

sampled area (ha; % of forest area) 4.6 (0.1%) 4.8 (0.1%) 

Tree_AGB mean (t/ha) 126 189.9 
AGB_stdev (t/ha) 111.4 131.8 

Tree_AGB max (t/ha) 478.3 625 
Tree_AGB min (t/ha) 4.11 0 
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Figure 1. Tree biomass (t ha-1) frequency distributions from Arbonaut and ICIMOD field data in 
Ludikhola watershed. The blue bars represent the Professional data while the white ones the 
Community data. Even though the distributions follow similar patterns, the professional dataset 
presents a narrower range. 
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Figure 2. Location of the Ludikhola watershed and sampling design differences between the 
Arbonaut plot data (squares) and ICIMOD plot data (circles). 
 

2.2 Methods  

The two plot datasets were used as the training datasets, together with the Lidar data for 
two different inventory calculations. The modeling was done using ArboLiDAR©, a forest 
inventory process and tool package developed in ESRI environment by Arbonaut Oy Ltd.  

2.2.1 LiDAR derived metrics 

Initially, a number of Lidar metrics were extracted from the Lidar data (Table 3) 
correspondingly to the area of each plot (Junttila et al. 2010). Afterwards, the plot dataset 
with the correspondent Lidar variables was used as the input for the statistical models. 
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Table 3. Lidar Variables (Junttila et al. 2010) 
X1,…10 = Hfpr, height for which the cumulative sum of ordered first pulse heights is closest to k% of the 
total height sum, k _ 10, 20, …, 100 (m). 
X11,…20 = Hlpr, height for which the cumulative sum of ordered last pulse heights is closest to k% of 
the total height sum, k _ 10, 20, …, 100 (m). 
X21,…23 = Ifpr, Intensity for which the cumulative sum of ordered first pulse intensities is closed to 
30%, 60% and 90% of the total intensity sum.
X24,…26 = Ilpr, Intensity for which the cumulative sum of ordered last pulse intensities is closed to 30%, 
60% and 90% of the total intensity sum.
X27 = Hf,m5, Mean height of first pulse high vegetation points (points over highveg_threshold= 5m). 
X28 = Hf,std, Standard deviation of first pulse heights 
X29 = Hf,empty, The ratio of the below vegetation first pulse points (points under ground_threshold= 1 
m) and all first pulse points. 
X30 = Hl,empty,The ratio of the below vegetation last pulse points (points under ground_threshold= 1 m) 
and all last pulse points. 
X31,…38 = Ratio of last pulse points with height lower than lpdensity_class + i * lpdensity_cllssize for i = 
0..7 and the total number of last pulse points. Where: lpdensity_start="1.5"; lpdensity_clssize="3". 
X39,...41 = Ratio of first pulse points with intensity I ≤ 0.5+i for i = intensity_classes and the total number 
of first pulse points. Where: intensity_classes="10;30;50"
X42,…44 = Ratio of last pulse points with intensity I ≤ 0.5+i for i = intensity_classes and the total number 
of first pulse points. Where: intensity_classes="10;30;50"
X46 = Logarithm of the ratio of the number of first pulse points below "highveg_treshold" (5 m) and the 
total number of first pulse points. 
X47 = Mean of the largest three heights within first pulse points. 
 

2.2.2 Above Ground Biomass models – Sparse Bayesian approach 

The regression was based on a sparse Bayesian approach (Tipping 2001; Bishop & Tipping 
2003; Junttila et al. 2008) that integrates LiDAR and field measurements to estimate forest 
variables. The Sparse Bayesian approach relies on a non-parametric, locally linear 
Bayesian method (Junttila, 2008) that ranks the regression models based on the variance in 
the variable of interest (e.g. , basal area, biomass) and the variable’s correlation with 
another dataset, in this case the LiDAR metrics. 
The strength of the method is the ability to weigh the relevance of each variable in the 
prediction with a high degree of automation (Junttila, 2008).  
The input data and parameters in the model were constituted by the plot data with the 
correspondent Lidar metrics, the stand data for the output calculation and by the value of 
the hyperparameter α (Junttila, 2008). Finally the inventory results were calculated for the 
same plots used to train the models.  

2.2.3  Models validation  

The models’ evaluation and comparison was done based on the most common statistical 
indexes found in the literature. First, the RMSE % and BIAS % of the mean AGB were 
calculated with Leave One Out Cross Validation (LOOCV). Secondly, as  previous studies 
have reported (Drake et al., 2002; Asner et al, 2009; Clark et al., 2011; Kronseder et al., 
2012) the adjusted R2 was used to determine how well the models can describe the 
variation in the sample population. The adjusted R2 was used since the model relies on 
more than one independent variable. Finally the analyses of the observance of the 
assumptions of a linear regression model were tested. The mean of error term and its 
normality were tested analytically and respectively with a t-student test and a Shapiro-Wilk 
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test using the R functions (R-project) found in the base package. Additionally, the 
normality, linearity and homoschedasticity of the error term were analyzed graphically.  
 
The comparison of the models was affected by several factors, such as differences in plot 
size, sampling design and DPGS plot center geometric correction. In fact the ICIMOD 
field data presented several outlier plots that had exceptionally high biomass that skewed 
the AGB distribution to the right and significantly affected the model’s RMSE. The RMSE 
was then calculated also for a narrower AGB range, spanning from 0 to 350 t ha-1.  
Furthermore, in order to produce more comparable results the model’s accuracy was also 
tested for both datasets based on the real-time GPS measure, without a post geometric 
correction. 
 
In addition to the analyses of the statistical indexes, further investigation included the 
analyses of AGB models constructed using a stratification of the original field data, in 
order to describe the uncertainty of the AGB estimates within different forest structures. 
A fundamental aspect that needs to be taken into account when modeling biomass in a 
tropical/subtropical context is the heterogeneity of forest structures and its variation within 
a landscape (Clark and Clark, 200; Chave, 2004). As other studies previously reported, 
different forest structures corresponded different uncertainties of the AGB models. Clark et 
al. (2011), in a tropical context in Costa Rica (mean annual precipitation= 4244 mm) 
demonstrated that the R2 and relative RMSE are highly variable between different forest 
types, the overall results of the research (n=83; R2 =0.90; RMSE rel= 32.77%) 
significantly improved when the modeling was restricted to plantations plots (n=32; R2 
=0.95), alternatively when the model was built on the old-growth forest plots (n=51; R2 
=0.43) the results worsened. Similarly, in a recent study Kronseder et al. (2012) estimated 
AGB using Lidar data in Borneo across forests at different degrees of degradation. Also in 
this study the overall model performance (n=142; adj. R2 =0.70; RMSE rel= 33.85%), 
improved significantly when the models were restricted to lowland dipterocarp forests 
(n=70; adj. R2 =0.82; RMSE rel= 21.37%) and worsened when modeling peat swamp 
forests (n=72; adj. R2 =0.31; RMSE rel= 41.02%). 
 
In this study case the two field data sets available did not contain common information 
about the forest structures, thus the plots have been stratified based on the Coefficient of 
Variation (HCV) of the Lidar height raster, described by Evans et al. (2009) with 4m x 4 m 
pixels, a resolution at which it is possible to identify even small gaps due to tree fall in the 
canopy (Clark and Clark, 2000).  
 
In order to produce strata that are relevant at a landscape scale, a grid of 500 m2 (Arbonaut 
plot size) was created over the watershed, the Height CV was calculated for each cell and 
the median value (0.6587) was used to define the two strata (Figure 3). 
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Figure 3. Frequency and geographical distribution of the Height Coefficient of Variation (HCV) 
within the Ludikhola watershed. The two strata are defined by the median HCV value (0.6587), in 
black the first strata representing the denser and uniform forests, while in grey are the more sparse 
forests and trees outside forests. 
 
This metric provided information on how uniform the forest structure are, figures 4 and 5  
show the range for the Height CV for the Arbonaut and ICIMOD dataset. The first strata 
represents forests that are more uniform in the distribution of heights and  where the forest 
cover is more homogeneous, while the second strata represents more open woodland areas 
and trees outside forest (Figures 4 and 5). Trees outside forest are important in the 
determination of the AGB in developing countries due to widespread agricultural land use 
and the importance of trees in rural landscapes, yet it has been proven to be difficult to 
estimate such category due to the lack of official statistics (FAO, 2011).  
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Figure 4. Range (minimum, 1st quartile, median, 3rd quartile, maximum values) of height 
Coefficient of Variation (CV) for the Arbonaut plots. No data values are pixels where there is no 
vegetation laser hit. 
 
 

 
Figure 5. Range (minimum, 1st quartile, median, 3rd quartile, maximum values) of height 
Coefficient of Variation (CV) for the ICMOD plots. No data values are pixels where there is no 
vegetation laser hit. 
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3 Results 

3.1 Above Ground Biomass Models: Sparse Bayesian approach 

The biomass modeling was performed with all the plots available from both datasets 
(Arbonaut: n=92; ICIMOD: n= 191). However, it is important to mention that these had 
substantial differences with regard to the forest structures that they described. The best 
results were achieved with multiple independent variables, these varied in number between 
the two field datasets, for Arbonaut four and for ICIMOD six independent variables were 
selected. The different field data produced also different results in the variable selection 
process. In fact, the Arbonaut model was more parsimonious, including only one height 
percentile (first return 60th percentile), two intensity metrics and one vegetation ratio 
measure.  On the other hand, the variable selection for the ICIMOD model included three 
height percentiles, including the first pulse 100th percentile, the ratio of below vegetation 
points, the ratio of vegetation points and another ratio of points with intensity under a 
threshold. Furthermore, the transformation of the independent variables has shown to 
improve the results. In the Arbonaut models the logarithmic and power transformations 
were preferred. The square root and power produced better results for ICIMOD dataset. 
Table 4 summarizes the variables that showed the best correlation with the AGB with the 
correspondent transformations. 
 
Table 4. Variables used as predictors in the Biomass models. For the description of each variable 
see Table 3 in section 2.2.1 
 

Plot Data set Arbonaut ICIMOD 
 
Independent 
Variables 
 
 
 

log(X6) sqrt(X10) 
log(X23) sqrt(X14) 
X34 sqrt(X16) 
X42^2 X30^2 
  X34 
  X41^2 

 
The results of the regression analyses (Table 5) showed that the Arbonaut AGB model 
better describes the variability of the sample (adjusted R2= 0.75) compared to the ICIMOD 
model (adjusted R2= 0.55). Regardless of the lower adjusted R2 in the ICIMOD model, the 
overall model accuracy and bias calculated with a Leave-One-Out cross validation (rel. 
RMSE = 47.2%; rel. BIAS= 0.04 %) is similar to the one of the Arbonaut model (rel. 
RMSE = 45.58%; rel. BIAS= -0.28 %). It is however important to mention that the 
absolute RMSE is notably higher for the ICIMOD model (RMSE=89.7 t ha-1) compared to 
the Arbonaut’s one (RMSE= 57.4 t ha-1). Additionally, Figure 6 shows that for both 
datasets there was a tendency of underestimating high AGB values, even though this was 
more prominent in the ICIMOD AGB model. 
 
The accuracy assessment conducted on a narrower measured AGB range, showed that 
when few of the exceptionally higher values from the ICIMOD dataset were removed the 
relative RMSE (35.3%) was smaller than the one for the Arbonaut model (46.1%), even 
though the absolute RMSE was still higher (Arbonaut= 53.5 t ha-1; ICIMOD= 72.3 t ha-1). 
Similarly, the Arbonaut’s non-differentially corrected relative RMSE was higher (51.3%) 
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than the ICIMOD’s one (47.2%) despite the fact that also in this case the absolute RMSE 
was higher for the ICIMOD dataset (Table 5). 
 
Table 5. Main statistical indexes used to compare the Biomass models from Arbonaut and 
ICIMOD. The indexes were calculated with the functions below 
 Arbonaut ICIMOD 
n plots 92 191 
R2* 0.77 0.57 
adjR2** 0.75 0.55 
RMSE (t ha-1)   57.4 89.7 
RMSE (%)*** 45.58 47.2 
BIAS   (%)**** -0.28 0.04 

RMSE AGB range 0-350  (t ha-1)  53.5 72.3 
RMSE AGB range 0-350 (%)   46.1 35.3 

RMSE no DGPS correction  (t ha-1) 64.7 89.7 
RMSE no DGPS correction (%)   51.3 47.2 

 
 
* cal.r2 <- function(obs, pred) 1-(sum((obs-pred)^2) / sum((obs-mean(obs))^2)) 
** adjR2<- 1 - (1-R2)* ((n-1) / (n-p-1))    where: n=sample size; p= number of predictors 
*** cal.rmse <- function(obs, pred) sqrt(mean((obs-pred)^2)) 
**** Bias= (mean (obs - predict)) / mean (obs) *100 
 
     

 
Figure 6. Lidar estimated AGB (T ha-1) using the previously mentioned variables (Table 1) plotted 
against field measured AGB for Arbonaut and ICIMOD AGB models. 
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The analyses of the assumptions of the linear regression showed that according to the T-
student test, both of the models had a mean of the residuals not equal to 0 (Arbonaut: t= -
0.0011, p-value= 0.99; ICIMOD: t= 0,  p-value= 1). Additionally, the Shapiro-Wilk test the 
null hypothesis was rejected (p-values < 0.05), resulting in a non-normal distribution of the 
residuals. The graphical analysis of the assumption of normality is shown in figures 8 and 
9 with a histogram of the distribution of the standardized residuals and a QQ plot. The 
graphical analyses (Figure 7) of the assumptions of linearity and homoschedasticity 
showed that neither one of the models is seriously affected by non-linearity of the residuals 
(figure 7), whereas it is important to notice the variance in the error term is not constant for 
the ICIMOD model (Figure 7 b). Another aspect worth mentioning is that both of the 
models had potential outliers. The investigation of these plots revealed that many were the 
potential causes, including high biomass and density values which could explain a greater 
displacement of GPS plot center due to thicker canopies. 
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Figure 7. AGB residuals plotted against the predicted values for Arbonaut (A) and ICIMOD (B) 
AGB models. The red line represents the locally-weighted polynomial regression (lowess function, 
R project). 
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Figure 8. Standardized AGB residuals frequency distribution for Arbonaut (A) and ICIMOD (B) 
models. 
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Figure 9. QQ plot of the residuals for Arbonaut (A) and ICIMOD (B) models. The graph shows 
that neither one of the models produced residuals that are normally distributed.  
 

3.2 Above Ground Biomass Models based on Lidar height stratified field 
data  

The AGB models stratified according to the median Coefficient of Variation of the Lidar 
height (HCV) in the watershed were built with the same variables described in section 3.1 
(Table 4). The performance of the stratified models is described in Table 6. Regardless the 
fact that the R2 remained stable between the original model (Table 5) and the first strata 
models (Table 6) the relative RMSE decreased significantly for the Arbonaut with a 
decrease of 13.46% dataset and by only a 2% for the ICIMOD dataset (Table 6).  
 
On the other hand, the results from the second strata showed a significant worsening of all 
the indexes, in the worst case the mean root square errors were higher than the mean AGB 
value producing results of relative RMSE of 130% for Arbonaut (Table 6). Also the Bias 
significantly increased in the second strata. It is important to highlight that due to different 
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sampling designs the number of plots between the two strata in the ICIMOD dataset are 
highly different (n strata1= 164; n strata 2= 27), therefore affecting the models. Figure 10 
shows that for both strata the models tend to underestimate the higher values within their 
ranges, this applies both to the Arbonaut and to the ICIMOD models. 
 
The analyses of the residuals show that the distribution of the residuals is linear for both 
datasets for the first strata, even though for the ICIMOD models there are still problems of 
heteroschedascticity (Figure 11). The second strata show in both cases that it is possible to 
identify problems of non linearity and heteroschedasticity. 
 
Table 6. Statistical indexes for the Lidar height CV stratified models 

 Arbonaut ICIMOD 
 strata 1 strata 2 strata 1 strata 2 
% of tot forest 
area 

50 50 50 50 

n plots 47 45 164 27 
R2* 0.75 0.32 0.52 0.27 
adjR2** 0.73 0.25 0.5 0.05 
RMSE (t ha-1) 61 77.3 93.7 69.2 
RMSE (%)*** 32.12 130.5 45.2 91.39 
BIAS   (%)**** -0.32 -10.01 -0.18 1.15 
     
* cal.r2 <- function(obs, pred) 1-(sum((obs-pred)^2) / sum((obs-mean(obs))^2)) 
** adjR2<- 1 - (1-R2)* ((n-1) / (n-p-1))    where: n=sample size; p= number of predictors 
*** cal.rmse <- function(obs, pred) sqrt(mean((obs-pred)^2)) 
**** Bias= (mean (obs - predict)) / mean (obs) *100 

 
 
 
 

 
Figure 10. Lidar estimated AGB (T ha-1) plotted against field measured AGB for Arbonaut and 
ICIMOD AGB stratified models. 
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Figure 11. AGB residuals plotted against the predicted values for Arbonaut (A) and ICIMOD (B) 
AGB models and for strata 1 (dots) and strata 2 (crosses) representing respectively dense and 
sparse forests. The red continuous line represents the locally-weighted polynomial regression for 
the strata 1 while the dashed line represents the locally-weighted polynomial regression for the 
strata 2 (lowess function, R project). 
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4 Discussion and Conclusion 

4.1 AGB model accuracy  

Recently,  Nguyet (2012) conducted a study in the Ludikhola watershed using a single tree 
method to predict AGB (Dalponte et al., 2011), obtaining for other species and for the 
main specie (Shorea robusta) respectively values of adjusted R2 of 0.65-0.75 and relative 
RMSE of 23.8% and 36%. Other studies were successfully conducted in other Tropical and 
temperate areas. Comparing the results from this study with previous experiences, it is 
possible to determine that Arbonaut model´s adjusted R2 (0.75) is comparable to previous 
studies (Drake et al. 2000, 2002, 2003; Lefsky et al. 2002; Næsset 2002, 2007; Gautam et 
al. 2010, Clark et al., 2011, Kronseder et al., 2012) where they obtained values of R2 
ranging from 0.89 to 0.7. On the other hand, the ICIMOD model showed a low ability in 
describing the variability of AGB in the sample (adjusted R2= 0.55). The relative RMSE 
(Arbonaut= 45.58 %; ICIMOD=47.2 %) was higher than most of the previous studies, 
which ranged between 32.3 and 43.2 %, proved to be acceptable for the more dense and 
uniform first strata forests (Arbonaut=32.12 %; ICIMOD=45.2 %).   
 
The investigation of the residuals and of the assumptions of the linear regression was not 
present in any of the studies found in the literature, therefore was not possible to compare 
the results from the present study. 
 
The analyses of the stratified models showed some important figures regarding the 
available data and building know how for further studies. The  results from the first strata 
models showed a relatively good ability to predict AGB in areas where the forest cover and 
structure is more uniform (Arbonaut: adj.R2= 0.73, RMSE= 61 t ha-1; rel.rmse=32.12 %, 
rel.bias = -0.32 ; ICIMOD: adj.R2= 0.5, RMSE= 93.7 t ha-1; rel.rmse=45.2 %, rel.bias= -
0.18), whereas produced unreliable and biased results for the strata representing sparse, 
open forest or other wooded areas (Arbonaut: adj.R2= 0.25, RMSE= 77.3 t ha-1; 
rel.rmse=130.5 %, rel.bias= -10.01 ; ICIMOD: adj.R2= 0.05, RMSE= 69.2 t ha-1; 
rel.rmse=91.39 %, rel.bias= 1.15). The effect of the stratification was more evident for the 
Arbonaut model since the field data was relying on a stricter sampling design and some 
plots that were located in open areas were measured, whereas the ICIMOD data was 
describing only forested areas. This aspect needs to be carefully considered when 
generating the sampling design, since the inclusion of plots that lie in sparse forests will 
reduce the overall accuracy of the model’s predictions unless some other metric is found to 
describe these types of forests. One of the main issues with these forest types and their 
estimation with Lidar assisted models is the fact that when the Lidar data is summarized in 
Lidar metrics (e.g. height percentiles) the three dimensional information is simplified into a 
two dimension type of data. Therefore to describe the vertical and horizontal distribution of 
forests, would be useful to extract several Lidar metrics able to describe the spatial 
variation of the forest and therefore within the sample plot. 
 
The process of AGB estimation is characterized by a stepwise process where each step has 
different level of uncertainty (Chave et al., 2004, Asner et al., 2009). Initially, each tree is 
measured in each plot, then the diameter and height measures from each tree are used to 
estimate the AGB through allometric relationships, moreover the plot AGB estimates are 
converted to per ha values. Finally the AGB is modeled with the Lidar data in order to 
produce the estimates over a landscape. Regarding the field measurements, Chave et al. 
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(2004) notes that the diameter measurement error is proportional to the trunk diameter, 
reporting errors of 0.27 cm on trees with 30 cm diameter (95% probability), height and 
wood density errors are estimated to be ca. 10%. In this case study, the errors due to 
diameter and height measurements are different between datasets due to subjectivity 
between different measuring teams and differences in the instruments used.  The ground 
truth height measurements were available only for the Arbonaut plots and  resulted in 25 
plots with field measured mean height basal area Weighted (HGW) higher than Lidar 
100th percentile (maximum height) with a maximum difference of 12 m. The cause of the 
mismatching of field and Lidar heights lies either in a displacement of the plot GPS center 
or in a difficulty in visualizing the tree top when measuring height for dense broadleaved 
forests. It is also likely also that these two factors could occur at the same time since in 
dense canopies the GPS signal is lower. 
 
In addition, allometric models are affected by errors, especially in tropical areas where 
they are constructed from limited samples and are often applied beyond their original 
diameter range (Chave et al., 2004). In the same study Chave et al. (2004) report an 
average uncertainty of the estimate of 20% of the mean AGB, with a minor relevance of 
the measurement error and a bigger fraction due to allometric equation errors (10%) and 
sampling errors (10%). With regards to the intrinsic errors due to the Biomass conversion 
model used in the present study, Chave et al. (2005) estimated a standard error of 12.5% 
and an R2 of 0.97. 
 
Another important factor affecting the accuracy of AGB estimates in tropical, sub-tropical 
forests is the plot size chosen for field data collection. In fact, the overall accuracy and 
ability of the model to describe the variability of AGB are closely related to the sampling 
size (Drake, 2002). This is referable to the degree of variation in forest structures (Clark 
and Clark, 200; Drake, 2002) at different spatial scales and to errors from displaced Lidar 
metrics extraction due of GPS plot center point errors. With regard to the first point, Clark 
and Clark (2000) as well as Drake et al. (2002) found that the inter-sample coefficient of 
variation (CV) for forest structural characteristics is two to three times higher at a scale of 
0.05 ha compared to 0.5 ha, due to distribution and size (average size= 0.01-0.02 ha) of 
treefall gaps in old growth Tropical Rain Forest. Concluding that the estimation of forest 
variables in a tropical context it is necessary to sample forest characteristics at a scale of 
0.35-0.5 ha (Clark and Clark, 200). Chave et al. (2004) also produced a similar figure, 
suggesting a minimum plot size of 0.25 ha. The plot size highly affects the strength of the 
relationship between Lidar metrics and the field measured forest characteristics. More 
precisely, with bigger plot size, the error derived from the displacement of the GPS plot 
position is attenuated by the fact that a significant part of the Lidar metrics are still 
extracted from the actual measured plot, while for small plots the metrics could be 
extracted from an adjacent forest patch with different structural characteristics, therefore 
reducing the correlation between AGB and Lidar data. Differing from the Nepalese study 
case where the plot sizes were in the order of 0.025 - 0.05 ha, most of the previous studies 
(Drake, 2002; Drake, 2003; Asner, 2009; Clark, 2011) in tropical areas utilized plot sizes 
greater than 0.2 ha and mostly of 0.5 ha. This partly explains the lower adjusted R2 and 
higher RMSE of the Nepalese study compared to previous studies (see section 1.1). 
 
More importantly, in case of Lidar assisted forest inventories are the errors of geolocation 
of the plot centers that cause a mismatching between the ground truth data and the 
remotely sensed Lidar data (Asner, 2009), especially in a sub-tropical mountainous 



 

25 
 

context. This type of error is believed to have a high influence on the overall accuracy 
especially when the plot size is reduced. In this case study, the differential GPS (DGPS) 
correction was available for the Arbonaut dataset. The errors measured in the Arbonaut 
dataset can give an idea of average errors in the studied area also for the ICIMOD dataset. 
The DGPS correction was not available for 7 out of 92 plots due to the absence of records 
in the SD card, in the GPS or in the absence of the base station. Figure 12 shows the 
plotted easting (x) and northing (y) errors calculated as the difference between the real-
time field measured GPS position minus the Differentially corrected GPS position. The 
vendor´s accuracy assessment for the Promark 3 DGPS base station reports accuracies 
below 10 mm for the differentially corrected measures. The easting error had minimum, 
mean and maximum values of respectively: -7.95 m, 0.66 m and 13.02 m. The northing 
had minimum, mean and maximum values of respectively: -6.18 m, 2.15 m and 12.46 m. 
This mostly agrees with the vendor´s accuracy assessment, which reports 95% typical 
errors less than 10 m and less than 5 m for the differentially corrected positions for the 
GPS Map 60CSx Garmin and Garmin 62s. Only two plots showed errors bigger than 10 m.  
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Figure 12. scatter plot of the easting (x) and northing (y) GPS errors (m) calculated by subtracting 
the differentially corrected GPS position from the real time GPS position measured in the field 
(Arbonaut dataset). The red circumference represents the Arbonaut´s plot area in order to give an 
idea of the relevance of the GPS displacement across the dataset. 
 
Another source of error is derived from an incorrect Digital Elevation Model generation. 
Hyyppä et al. (2000) quantified this error for boreal forests to 15 cm in flat areas while it 
increased to 40 cm when the slope was 40%. The fact that the error is positively related to 
the slope added to the steep terrain conditions encountered in the Ludikhola watershed 
(e.g. mean watershed slope ~ 29.7 %; maximum ~ 57.3 %) are likely to be increase 
significantly this type of error. The 85th Lidar height percentile showed maximum 
vegetation heights in the order of 60 meters while the maximum height for these forests 
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types is exceptionally 45 m. This produces errors in Lidar vegetation height measurements 
that are not easily quantifiable that propagate into the model and decrease the correlation 
between the Lidar and field data because it is likely that the error is not systematic over the 
all area due to different slope gradients in different plots. 
The investigation and quantification of such errors is extremely relevant to improve the 
model’s overall accuracy, therefore further studies should dedicate particular attention in 
the DEM generation. 

4.1.1 Comparison between Arbonaut and ICIMOD models 

The aim of the thesis was to compare the two models in order to determine whether the 
model built with the data collected by Community Forest User Groups (ICIMOD) was as 
good as the model built with professionally collected data. As mentioned in section 1.1 the 
only study found in literature that studied the feasibility of participatory REDD+ MRV 
processes was conducted in Tanzania and in the Himalaya by Skutsch et al. (2009). This 
study compared the measurements from the CFUGs and professional teams and showed 
that the mean AGB values differed no more than 7 % and mostly 5 %. Moreover, the same 
study reports that the variance was higher in the CFUGs measurements, therefore 
indicating that even though the accuracy was as good as professional measurements the 
precision was weaker. This was also due to the fact that the two datasets were collected 
with different sampling designs. The use of these measurements in combination with wall-
to-wall Lidar data is an aspect that has not been investigated yet. Lidar assisted AGB 
models have the advantage of producing estimates at relevant spatial scale (in this case 
study = 0.05 – 0.025ha) for the implementation of REDD+. Therefore, a clearer picture for 
the feasibility of participatory REDD+ MRV processes with higher Tier level (IPCC, 
2006) will be produced by a comparison between the two Lidar assisted AGB models. 
Within the present case study, the difference of the mean AGB between the two datasets 
was of 63.9 t ha-1, which represents an overestimate of 50.7 % of the ICIMOD dataset 
compared to the Arbonaut dataset (Figure 13). This figure does not agree with the previous 
experience (Skutsch et al., 2009), yet it is important to mention that the sampling design 
was different and therefore the sample plots did not match. Similarly to the study 
conducted by Skutsch et al. (2009), the standard deviation was greater for the ICIMOD 
dataset (131.79 t ha-1) indicating a weaker precision (Figure 13).  
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Figure 13.Above Ground Biomass (t ha-1) density distribution function for the Arbonaut and 
ICIMOD datasets. The vertical lines show the mean values. 
 
The comparison of the two AGB models (table 5) shows that even though the relative 
RMSE is similar (Arbonaut= 45.6%; ICIMOD= 47.2%), the Arbonaut model adjusted R2 
(0.75) is comparable with previous studies while the ICIMOD model could only explain 
the 55% of the variation of AGB in the sample, which  contradicts previous studies. It is 
important to note how the RMSE is greatly dependent of the mean and variance of the 
sample and therefore it can be a misleading index when comparing different datasets.  
 
When comparing the models’ accuracy based on an equal range of measured AGB and 
therefore leaving out exceptionally high biomass plots, the relative RMSE proved to be 
lower (35.3%) for the ICIMOD AGB model compared to the Arbonaut’s one (46.1%). 
Another result that favors the ICIMOD model is produced when calculating the RMSE on 
the Arbonaut model built without the DGPS correction, in fact the relative RMSE is lower 
also in this case (47.2%) compared to the Arbonaut model (51.3%). These two figures 
produce a more reliable basis for comparison of the two models since they are not affected 
as much as the original models by the different sampling designs and the DGPS correction, 
which are two of the main potential factors affecting the models’ performances. 
 
The analyses of the residuals (Figure 10 and 11) shows that even though both of the 
models had the mean of the error term not equal to zero and their distribution was not 
normal, the Arbonaut model did not show an increased variance of the residuals for higher 
values of AGB, while the ICIMOD model showed heteroschedastic residuals causing a 
greater under estimation errors for plots with bigger values of AGB.  
 
In conclusion, with the given datasets and the limitations intrinsic in the study lying in a 
different sampling design, plot sizes and different plot location accuracies it is not possible 
to state that the CUFGs dataset was worst than the professional one to build AGB models 
in combination with Lidar data. In fact, if on one side the Arbonaut model produced better 
results for the original models, the ICIMOD showed to be equally or even more accurate 
than the Arbonaut’s one when the AGB range was reduced to a maximum of 350 t ha-1 
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and when the differential correction was not applied. The study concludes that with small 
improvements (e.g. increase the plot size, DGPS correction), the CUFGs data could 
potentially produce results as good as the ones derived from models built on professionally 
collected data for Lidar assisted forest inventories.  

4.1.2 Suggestion for further studies 

Previous studies (Skutsch et al., 2009) concluded that it is possible to utilize data collected 
with participatory approaches for traditional forest inventories. These types of inventories 
are limited in the geographic representativeness (Asner, 2009), especially when the aim is 
the estimation of carbon resources for the remuneration of local communities, since the 
Community Forests are relatively small compared to the landscape scale. With regard to 
the spatial variation of Biomass, Lidar data is used to produce accurate results at a fine 
resolution with relatively low costs.  
 
This study was the first attempt to utilize field data collected by CFUGs in Lidar assisted 
Carbon inventories within a REDD+ context. The implementation of participatory methods 
for the Monitoring, Reporting and Verification (MRV) of the forest carbon resources with 
high quality standards is a fundamental step for the implementation of REDD+ projects. 
The results showed that in order to have a more reliable comparison the professional 
dataset needs to geographically matching the one collected by local communities. 
Moreover, despite the mismatching of the locations of the plots the community measures 
need to be improved in order to be used to build models in correlation with laser scanning 
data. The main improvement relates to increasing the accuracy of the GPS location of the 
plots. This could be directly improved by retrieving more accurate GPS measurements 
with the introduction of the DGPS correction in site during the field campaign. 
 
Another option to mitigate the effect of the displacement of the GPS location, as proved in 
previous studies (Clark and Clark 2000; Chave, 2004; Asner, 2009) would be, when 
defining the sampling, to reduce the number of plots and increase their size. This last 
option would be the one that would most likely produce the best results at a lower cost 
since it would reduce the time for the navigation from different plots without additional 
costs for equipment. 
 
In conclusion, in order to improve the accuracy of the AGB models, the field measures 
would need to accurately take into account the forest structures and eventually model 
separately those plots where the tree cover is less than a certain threshold since these are 
not representing forest but other wooded land which have been proven by the present study 
to produce errors that are bigger than the error of not including them in the estimation (rel. 
RMSE=130.5 %). 
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