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Abstract  
Genomic imprinting is a genetic phenomenon by which some of the genes go through several 
processes that restrict them from biallelic expression. To date, many investigations have been focused 
on mechanism of genomic imprinting in gene clusters. Though, there have been several attempts to 
uncover the mechanisms behind this complex phenomenon, but it is not fully yet understood. 

Kcnq1 is a genomic imprinting domain in mammalian genomes that is located on chromosome 7 in 
mouse and on chromosome 11p15.5 in human; consists of 8-10 paternally imprinted genes and a 
maternally imprinted non-coding gene known as Kcnq1ot1 that encodes for a long non-coding RNA. 
Additionally, a number of non-imprinted genes are also localized between these genes in this locus. 
These imprinted genes are classified into two distinct groups including placenta specific genes, which 
are expressed only from embryonic tissue and ubiquitously imprinted genes, which expression is  
repressed in both placenta and embryo’s tissues.  

A growing body of evidence indicates several roles for long non-coding RNA Kcnq1ot1 in imprinting 
of these genes in a tissue and cell type specific manner. It has been shown that this long non-coding 
RNA regulates the imprinting via DNA and chromatin modification at the Kcnq1 domain. 

This thesis aimed to investigate the effect of promoter strength on imprinting. The Promoter strength 
differences among these genes could be one of the possible factors involving differential patterns of 
imprinting within Kcnq1 locus. The promoter activities of five genes including two ubiquitously 
(Kcnq1 and Slc22a18), two placenta specific (Ascl2 and Tssc4) and a non-imprinted genes (Nap1l4) 
were assayed. We showed that the non-imprinted gene and placenta specific imprinted genes have 
higher promoter activities than ubiquitously imprinted genes. Our data indicate that degree of 
promoter strength is involved in imprinting of these genes in the locus and those genes with stronger 
promoter can escape silencing. However, further investigations are needed to be done to define the 
role for promoter strength in tissue-specific imprinting. 

Keywords: Kcnq1 domain, Imprinting, Long non RNA, Epigenetic regulation, Promoter strength 
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1 INTRODUCTION 

In organisms, genetic information is stored as DNA. Though in multicellular organisms, DNA 

sequence is essentially the same in all the cells of one individual, cells are different in their function 

due to the way genes are regulated. Regulation of gene expression is an essential process and 

enhances the flexibility that living organisms need to cope with their own environment. 

The mechanisms involved in gene regulation are complex and have been in the center of attention for 

decades. Several mechanisms related to gene expression have been described and categorize in 

different stages including chromatin core, transcription, post-transcriptional modification, RNA 

transport, and translation and mRNA degradation [1].  

In mammals, DNA and chromatin modifications are responsible for gene regulation in DNA level and 

this regulation is under influence of different biological processes and signals such as transcription 

factor and epigenetic machinery including DNA methylation, histone modification and non-coding 

RNA (ncRNA) based mechanism [2]. Though, transcription factors are key regulators of gene 

expression, a growing body of evidences suggests the role of multilayer epigenetic mechanisms in 

gene expression [2]. In addition, it has been shown that the expression patterns of genes are different 

in male and female. Usually, most of the genes are expressed from both alleles but there are genes that 

are expressed just from one allele (i.e. monoalleleic expression) in a sex–specific manner, which has 

been described as gene imprinting [3]. 

The work presented in this thesis describes our attempt to understand the role of promoter strength in 

expression of imprinting genes. 

1.1 Epigenetic modification 

For the first time, the term “Epigenetics” was employed by Conrad Waddington in 1939, when he 

proposed the idea of epigenetic landscape to describe the process of cell differentiation and how 

different undifferentiated cell types have potential to develop along many paths to become a particular 

tissue during the multicellular organismal develop-ment [4, 5]. 

Currently, the term of ‘Epigenetics’ applies to study heritable mechanism of gene function without 

any DNA sequence’s changes [5]. 

Epigenetics possess very complicated mechanisms to organize different processes and signals to start 

and maintain the epigenetic marks [2]. 

Epigenetic has always been all the weird and wonderful things that 
 
can not be explained by genetics. Denise Barlow (Vienna, Austria) 
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However, we do not know much about epigenetic initiatory such as non-coding RNA and different 

proteins that bind to the DNA, epigenetic maintainers such as DNA methylation, histone modification 

have been well-studied [2]. 

1.1.1 DNA Methylation 

In majority of mammals, DNA methylation is the most important epigenetic modification that is 

involved in regulating the imprinting. In 1948, even before discovery of DNA structure, 5-

methylcytosine (5Mc) was discovered by Rollin Hotchkiss [6]. In 1975, methyltransferase has been 

characterized and three different families of the DNA (cytosine-5) methyltransferase (DNMT) have 

been identified. These families include a maintenance methyltransferase DNMT1, which causes the 

methylation maintenance by methylation of unmethylated DNA strand during DNA replication and de 

novo methyltransferases DNMT3 (DNMT3a & DNMT3b) that set up de novo methylation patterns of 

DNA in the early embryonic development through newly methylation of DNA [7]. Moreover, 

DNMT3L and DNMT2 have been discovered, though the catalytic motifs needed for 

methyltransferase activity have not been identified yet [7, 8]. 

DNA methylation generally takes place in CpG dinucleotide in CpG islands, which is initiated and 

maintained by different families of methyltransferases [9]. CpG islands are stretches of CpG 

nucleotide that normally possess three criteria including the GC content of more than 50%, more than 

0.6 observed/expected ratio of CpG dinucleotide and finally they should be more than 400 base pairs 

in length. They are usually linked to a regulatory element. For example, 50% to 60% of the promoter 

regions of human genes contain CpG islands [9]. 

The CpG island methylation plays an essential role in gene regulation and subsequently mammalian 

development. The majority of CpG Islands are unmethylated in promoter regions of mammalian 

genome except in imprinted genes, female inactive X chromosome and de novo methylation during 

cell differentiation [9].  

Several studies revealed that deletion of methyltransferases like DNMT1 and/or DNMT3a/DNMT3b 

and aberration of CpG island methylation in imprinting gene are associated with embryonic fatality in 

mice and many human diseases [7, 9]. 

1.1.2  Histone modification  

In eukaryotes, very large genomic DNA is compressed to form chromatin. The central unit of 

chromatin is known as nucleosome, composed of 147 base pairs of nucleotides wrapped around an 

octamer core histone including dimers of H2A, H2B, H3 and H4 histone proteins. Usually the N-

terminal domains of these proteins are protruded and they are subjected to different post 

transcriptional modification processes such as phosphorylation, ubiquitylation, methylation, 

acetylation and sumoylation [10]. 

In mammals, histone methylation occurs in histone H3 and H4, which is mediated by five histone 

methyltransferases (HMTs) including G9a, Suv39h1, Suv39h2, Eset and Eu-HMTase. All of these 

HMTs transfer the methyl group to lysine (k) residues of histone H3 [11]. 

Histone modifications mediate formation of specific structures of chromatin i.e., euchromatin and 

heterochromatin. These histone changes in euchromatin regions are methylations at lysine 4, 36, 79 of 
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H3 whereas in heterochromatin region methylations take place at lysine 9, 27 of H3 and 20 of H4 [11, 

12]. 

1.1.3 Non-coding RNA  

It was commonly believed that complex organisms had larger genomes than the simple ones. 

However, the term of genome paradox was introduced to explain that the relative biological 

complexity of the higher organisms do not correlate with the DNA content and the number of the 

protein coding genes [13]. For example, Human has been estimated about 30000 gene. In 

comparison, Caenorhabditis elegans (C- elegans ) genome codes for approximately 19000 genes 

(http:/ /www.ensemble.org). Though, the C- elegans comprises only 1000 cells but the number of 

the protein-coding genes is close to the one from human with millions of cells. Thus, it is obvious that 

the existence of protein-coding RNA alone is not enough to explain complexity of higher organisms 

[13]. 

In the multicellular organisms, about 98 % of the transcripts are intronic and intergenic non-coding 

RNA. These biomolecules that were thought to be junk in earlier studies are essential for various vital 

and regulatory processes. In higher organism such as mammals, regulation of the genes are mediated 

by non-coding RNA rather than having more number of genes as believed earlier being the reason for 

their complex regulation. Thus, non-coding RNA is one of the key answers for the genome paradox 

[14]. 

Non-coding RNAs have been classified based on either the function or number of their nucleotides 

[14]. Based on their function, they are classified into two distinct groups of housekeeping ncRNAs 

and regulatory ncRNAs. The housekeeping ncRNAs are expressed always in all the stages of 

development such as ribosomal RNAs (rRNAs), small nuclear (snRNAs), transfer RNAs (tRNAs), 

snoRNAs whereas, regulatory RNAs are expressed irregularly at particular stages of development 

[14] such as short regulatory ncRNA (e.g., microRNAs, small interfering RNAs and Piwi ncRNA) 

and long regulatory ncRNA [15]. Besides, they also have been divided to three classes based on their 

number of nucleotides including microRNAs with 21 –25 nucleotides, small RNAs with 100 – 200 

nucleotides and large RNAs up to over 10,000 nucleotides. They possess specific characteristics 

including a high number of stop codons, absence of an open reading frame and regulation of gene 

expression using special mechanisms such as imprinting, gene silencing, RNA interference and 

demethylation of DNA [16]. 

1.2 Genomic imprinting 

To date, few model systems have been described to investigate role of epigenetics in gene expression 

including genomic imprinting, X-inactivation and metastable epialleles. Among them genomic 

imprinting is an interesting model to study some of these processes and signals including DNA 

methylation, histone modification, non-coding RNA and nucleosome location [17]. 

1.2.1  Imprinted genes 

In the early 1980, for the first time, a specific gene regulation-gene imprinting- was described in 

mouse embryo by which in the early stages of development some of the genes were expressed from 
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one of the two parental chromosomes [18]. This achievement was due to creation of two mouse 

models (gynogenetic—‘GG’) and (androgenetic—‘AG’). These two models show lethal phenotypes 

due to shortage or overexpression of imprinted genes [18]. Consequently, Insulin-like growth factor-2 

receptor (Igf2r) was the first gene that was found to be imprinted [19]. To date, in mouse genome 144 

genes have been identified that undergo imprinting and some of them are conserved in human genome 

too. The summaries of mouse imprinted genes are accessible in following website; Medical Research 

Council (MRC), (http://www.mousebook.org/catalog.php?catalog =imprinting). 

These imprinted genes are including both protein coding and non-coding genes. Most of these 

imprinted genes are organized in a cluster that contains imprinted and non-imprinted genes, and some 

genes encoding non-transcribed RNAs [20]. 

The imprinted genes have common characteristics in the DNA level. They contain few introns, a 

greater number of CpG islands, a higher number of direct repeats within /near CpG islands, low 

compactness of SIN-Alu and SIN- MIR elements compared to non- imprinted genes, mono parental 

methylation of CpG islands and asymmetric replication timing of two alleles of imprintinted genes 

[21]. 

1.2.2 Aberration of imprinting associated with human disease 

Several studies revealed the fact that imprinting genes are important in fetal and placental growth and 

developments. Additionally, many of imprinting genes are also involved in other processes such as 

energy homeostatic, neurological pathways, endocrine/paracrine pathways and cancer formation [17]. 

Human congenital disorders such as Silver–Russell, Beckwith–Wiedemann (BW) and Prader–Willi 

and Angelman syndromes, different forms of neoplasia and tumorigenesis, metabolic syndrome 

(MetS) [17], endocrine/metabolic disorders such as 6q24 transient neonatal diabetes (TND) [22] and 

Pseudohypoparathyoridism type Ib (PHP-Ib) are a few examples of imprinting disruption that 

associated with human disorders [23].  

1.2.3 The life cycle of imprint  

In early embryo, epigenetic machinery and reprogramming influence the various developmental 

stages. In mouse embryo, primordial germ cells (PGC) can be distinguished from other cell types at 

7.25 day post coitum (d.p.c) and migrate into the genital cord between 10.5 and 11.5 d.p.c. It has been 

shown that epigenetic changes display between days 10.5 and 12.5 d.p.c [24]. The epigenetic 

modifications are started with genome wide DNA de-methylation and then continue with re-

establishment of new sex-specific imprint marks i.e., histone modification and DNA methylation 

which finally should be maintained in somatic cells throughout the course of development [25].  

 In conclusion, the life cycle of the imprint can be divided to three different steps including erasure, 

establishment and maintenance. 

1.2.4 Erasure  

The first step of imprint life cycle is erasure of the earlier pattern of DNA methylation on the maternal 

and paternal alleles in the gametes. Several Studies revealed that the demethylation is completed by 

12.5 d.p.c, whereas other researchers showed some of the primordial germ cells losing their 
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methylation in 10.5 or 11.5 d.p.c [24]. Thus, in mouse normally, this erasing process occurs after 

entering of primordial germ cells (PGCs) to the genital cord about days 10.5 to 13.5 of gestation [24]. 

1.2.5 Establishment and maintenance of imprint 

When the DNA methylation has been erased from the former generation (i.e., the first step of the 

imprint life cycle has accomplished) the imprint life cycle is continued by second step (i.e., regaining 

monoallelic expression of imprinted genes) by re-establishment of DNA methylation in germline 

DMRs and somatic DMRs at both gametes and embryos of male and female [24]. In female and male 

germline DMRs, establishment of the genomic imprints take place at different phases of development. 

In mouse male germline, establishment of methylation marks in the paternal imprint begins about 14.5 

d.p.c and is completed in perinatal. However, it is remained throughout haploid phase. In contrast, 

maternal imprinting in female is obtained asynchronously at different loci after birth during oocyte 

growth. Though, it is maintained in somatic cells throughout the course of development [26]. 

The imprinting life cycle is very complex and there are some other examples from DNA methylation 

that are also involved in establishment and maintenance of the imprinting. 

1.2.6 Factors involved in establishment of imprint 

Various factors have been observed to be important in establishment of female germline methylation, 

but not in the male germline. For instance, interaction between DNMT3L as a non-functional de novo 

methyltransferase and DNMT3a and/ DMNT3b is essential for establishment of methylation in female 

oocyte, whereas in male, such interaction is non-functional due to low CpG content of promoter 

region in paternal DMR and CpG spacing compared to its counterpart (i.e., maternal DMR) [26] . 

In addition to histone modification of DMR in somatic cells such as H3K4 methylation, which seems 

to be necessary for recruiting the DNMT3A/DNMT3L complex [27]. Transcription through DMR 

(i.e., transcription in Gnas imprinting locus) is involved in establishment of germline DNA 

methylation. Gnas locus contains imprinting Gnas, Nesp, Gnasxl and non-coding exon1A and Nespas 

genes. This locus also comprises two DMRs in maternal allele including DMR1 and DMR2, which 

cover the promoter regions of Nespas, Gnasxl and 1A genes, respectively. These two DMRs are 

methylated in maternal allele [28]. Deletion of the promoter region of Nesp and truncation of its 

transcript have been associated to interruption of methylation at the imprinting GNASXL and non-

coding exon 1A genes DMRs of human’s maternal germline [26]. 

There are also indications that the non-histone proteins such as KRAB zinc finger ZFP57 and CTCFL 

play an essential role in establishment of methylation at the Snrpn and H19 DMR in maternal and 

paternal germ cells respectively [26]. 

The role of non-coding RNA in establishment of imprinting has been well studied and will be 

explained in detail in this thesis later. 

1.2.7 Factors involved in maintenance of imprints 

After establishment of methylation imprints, the imprints have to be maintained and transferred to all 

somatic cells. One of the important factors that mediates the maintenance of imprints is DNMT1 

maintenance methyltransferase. Intriguingly, methylated DMRs of both paternal and maternal alleles 
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can escape from genome wide demethylation as a result of DNMT1 expression from both oocyte and 

pre implanted embryo [29]. 

In addition to DNMT1, there are proteins such as ZFP57 a recruiter of KAP-1/TIF1bc repressor 

complex, methyl CpG-binding domain protein three (MBD3) and CTCF proteins are other examples 

of molecular participation in DNA methylation maintenance [30]. Besides, RBBP1 and RBBP1-like1 

are also involved in maintenance of H4K20me3 and H3K9me3 in nucleosome and DNA methylation 

in snrpn ICR [30]. 

1.3 Mechanism of genomic imprinting in cluster  

Most of the imprinting genes are found to be in clusters and their expression are usually regulated by 

one or few differentially methylated regions (DMRs) known as imprinting control region (ICR) [20]. 

Mainly, two different models of regulation including insulator and long non-coding RNA models 

have been described to explain the role of ICR in imprinting locus [20]. 

 

1.3.1 Differentially methylated regions (DMRs)  

Differentially methylated regions (DMRs) are cis acting elements that are essential for allele-specific 

expression of imprinted gene. The methylation of these DMRs is a significant mark for almost all the 

imprinted genes. They are methylated differentially in a sex -specific manner and limited to promoter 

regions; however few of them are in intronic region such as Kcnq1 and Igf2r DMR2 [26, 30]. 

To date in mouse genome, 21 germline DMRs have been identified [26].  

1.3.2 Insulator model of regulation 

In the imprinted loci, some of the imprinted genes share same regulatory elements such as enhancers. 

In this model, insulator controls expressions of such imprinted genes through blocking the enhancer 

activity [31]. 

In the mouse H19/Igf2 locus, imprinted genes (i.e., H19 and Igf2) are regulated according to such a 

model. H19 is maternally expressed and codes for a 2.2-kb ncRNA, which is a precursor for a micro 

RNA known as miR-675, whereas Igf2 is paternally expressed and encodes a fetal growth factor. The 

H19 and Igf2 genes share common enhancers. The expressions of these two imprinted genes are under 

control of a DMD /ICR at 5’ end of H19 and CTCF (CCCTC-binding factor) proteins [30].  

On the maternal alleles, CTCF binds to the unmethylated alleles of ICR1 and as a result, an insulator 

is formed. The insulator blocks the common enhancers to activate Igf2 gene at 3’end of H19. 

Consequently, the enhancers have opportunity to interact with H19 promoter and activate it. In 

contrast, on the paternal alleles, insulator is not formed due to DMD/ICR methylation, subsequently 

CTCF cannot bind and Igf2 gene is expressed (Fig.1) [30, 32].  

In addition to H19/Igf2, there are some other loci in the genome that may be regulated according to 

the insulator model for the regulation of gene expression, such as the Kcnq1 and Rasgrf1 loci [30]. 
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Figure 1. Mechanism of imprinting at the mouse H19/Igf2 locus. Paternally imprinted H19 gene encodes for an ncRNA and the 
maternally imprinted Igf2 encodes a fetal growth factor that share common enhancers. On the maternal chromosome, a zinc 
finger protein CTCF can bind to unmethylated DMD/ICR and forms an insulator. Consequently, common enhancers are 
prevented to activate the Igf2. While enhancers are free near the H19 promoter, as a result H19 is expressed. On the paternal 
allele insulator does not form due to methylation of DMD/ICR and subsequently CTCF cannot bind and Igf2 gene is expressed. 
Adopted from Bartolomei M.S. (2009). 

1.3.3 Long non coding RNA model of regulation 

As I mentioned above, insulator model of imprinting regulation implies for few loci, but most 

imprinting loci are documented for long non-coding RNA model of regulation, for example 

Igf2r/Airn, Kcnq1 and Gnas locus [30]. 

The Igf2r/Airn imprinting locus has been used as a simplest model to explain this type of regulation. 

Igf2r/Airn locus located on mouse chromosome 17, contains three protein coding/imprinted genes 

(Slc22a2, Slc22a3, Igf2r) and one non-coding gene (Airn) [30]. All three protein coding genes are 

paternally imprinted, whereas Airn is maternally imprinted. In the mouse Igf2r locus, there are two 

DMRs including DMR1 and DMR2 that are located in the Igf2r promoter and the second intron of 

Igf2r, respectively. The promoter of Airn ncRNA is located in DMR2. The Airn antisense non-coding 

RNA represses the expression of the Igf2r as well as Slc22a2 and Slc22a3 from the paternal allele 

(Fig.2) [32, 33].The silencing role of this long non-coding RNA is due to function of RNA itself, the 

process of its own transcription and recruiting repressive histone marks [30]. 

 
Figure 2. Imprinting mechanism across the Igf2r/Air locus. The Igf2r, Slc22a2 and Slc22a3 genes are paternally imprinted as a 
result of unmethylated ICR that is located at promoter region of Airn non-coding RNA. Airn and Igf2r are imprinted, maternally 
and paternally, respectively due to methylation of their promoters in an ICR. Mas1 and Slc22a1 are non-imprinted genes. 
Adopted from Bartolomei. M.S (2009). 
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1.4 Mechanism of long non-coding RNA in gene regulation  

Long non-coding RNAs are groups of non-translated transcripts that differ from housekeeping and 

other regulatory non-coding RNAs [15]. To date, there is no suitable definition for ncRNAs yet. 

However, they are similar to mRNA, but do not code for a protein and are longer than 200bp in 

length. They generally have a short ORF compared to protein coding genes [34]. 

Long non-coding RNA is involved in gene regulation through many biological processes such as 

DNA methylation, chromatin remodeling, nuclear architecture and subnuclear compartments 

formations [35]. 

1.4.1 LncRNA and chromatin remodeling 

As I mentioned above, long non-coding RNAs are involved in gene expression by recruiting different 

factors. For example, during the process of X- inactivation, RepA long noncoding RNA along with 

other non-coding RNA i.e., Xist, Tsix, Xite are thought to be involved in establishment and 

maintenance of X–chromosome inactivation (XCI). RepA is believed to recruit the Polycomb 

Repressive Complex 2 (PRC2) directly and activates the Xist transcription. Consequently, 

maintenance of X–chromosome inactivation is due to interaction among Xist-PRC2-RepA, which is 

required for H3K27 trimethylation. This kind of mechanism has been seen in other imprinted loci 

such as Kcnq1 or Igf2/Airn [34, 35]. 

Another non-coding RNA is 108 kb Air non-coding RNA that mediates the chromatin remodeling by 

recruiting the G9a histone methyltransferase at chromatin of Slc22a3's promoter to initiate the H3K9 

methylation and consequently silencing of Slc22a3 gene in mouse placenta. [35] In the same way, 

Kcnq1ot1 long non-coding RNA recruits the G9a histone methyltransferase and PRC2 in a linage 

specific manner [35]. HOTAIR ncRNA also recruits PRC2, which is necessary for H3 lysine-27 

trimethylation and chromatin silencing at HOXC locus [34, 36]. 

1.4.2 LncRNAs and nuclear architecture and subnuclear compartments 

The eukaryotic nucleus is well-organized, there are sub nuclear compartments including Cajal bodies, 

nucleoli, paraspeckles, and nuclear speckles. They are involved in several biological processes, for 

example paraspeckle is a ribonucleoprotein body which is associated with long non-coding RNA and 

involved in nuclear retention of RNA to perform particular gene regulation [37]. 

For instance, mouse Ctn RNA is an 8 kb nuclear poly (A) + RNA and was discovered as first 

Paraspeckle RNA involved in gene regulation [38]. The 3’UTR of Ctn RNA with specific inverted 

repetitive elements makes a RNA hairpin loop which undergoes adenosine to inosine hyper editing. 

Under stress conditions, the hairpin loop of the Ctn RNA is cleaved by a cleavage factor (CFIm) to 

form and regulate a shorter product mCAT2 mRNA [37]. Another localized long non-coding RNA is 

NEAT1 (Men ε/βin mouse) which is also involved in paraspeckle formation. It has been shown that 

deletion or in vitro overexpression of this gene interrupts or increases the paraspeckle formation in 

nucleus, respectively [35]. 

Some of the lnRNA have their distinct space in the nucleus such as Xist and Kcnq1ot1, which are 

involved in chromatin modification [35]. 
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1.4.3 Kcnq1 locus and Kcnq1ot1 RNA 

Kcnq1 imprinted locus is located at mouse chromosome 7 or on human chromosome 11p15.5, 

respectively. It contains 8-10 paternally imprinted genes including Kcnq1, Cdkn1c, Slc22a18, Tssc4, 

Phlda2, Osbpl5, Ascl2, Cd81 and one maternally imprinted gene known as kcnq1ot1 (Fig.3) [39]. 

These genes have been classified into two main categories, the ubiquitously imprinted genes Kcnq1, 

Cdkn1c, Phlda2 and Slc22a18, which are repressed in both embryonic and placental tissues, whereas 

the expression of second group, the placental-specific imprinted genes is limited to embryo tissue. 

These include Cd81, Osbpl5, Ascl2 and Tssc4 [40]. In addition, there are non-imprinted genes that are 

located among imprinted genes in the locus [39]. 

The allele-specific expression of imprinted genes in the kcnq1 locus is controlled by a differentially 

methylated region known as KvDMR/ ICR2, which is located in intron 10 of kcnq1 gene [41]. The 

Kcnq1 ICR contains the promoter of kcnq1ot1 antisense RNA. When the ICR is methylated on the 

maternal allele, expression of Kcnq1ot1 is repressed, whereas on the paternal allele ICR is not 

methylated, subsequently Kcnq1ot1 is expressed and triggers the bidirectional silencing of the genes 

within the locus [41]. 

Kcnq1ot1 non-coding RNA is a product of RNA polymerase II with 91.5 kb length. Kcnq1ot1 owns 

an 890 bp silencing domain at its 5’ end. A study based on an episomal system demonstrated that 

deletion of this silencing domain reactivates the flanking reporter genes. The Kcnq1 ICR contains 

several conserved repeated motifs including A, A1, A2 and MD1. Among them A1 and A2 are 

located in the 890 kb silencing domain of Kcnq1ot1 non-coding RNA and point mutation of A2 motif 

decline the silencing function of Kcnq1ot1 RNA on transcriptional level [41]. 

In addition, several conserved elements CCAAT have been identified in the Kcnq1ot1 promoter. The 

CCAAT elements in the Kcnq1ot1 promoter interact with NFY transcription factors to mediate 

transcription of this promoter. Mutation of these elements, obliterate the bidirectional activity of this 

promoter [42]. 

It has been demonstrated that Kcnq1ot1 long non-coding RNA is involved in imprinting gene 

regulation through both chromatin and DNA modification. Kcnq1ot1 interacts with G9a histone 

methyltransferase and PRC2 in a lineage-specific manner and recruits DNA methylation machinery to 

regulate ubiquitously imprinted genes [40]. Pandy et.al revealed that Kcnq1ot1 does not interact 

likewise along the Kcnq1 domain. Kcnq1ot1 specifically is attracted to particular regions within the 

locus and has more affinity to the chromatin in placenta, but not in liver tissue [43]. 
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Figure 3. Kcnq1 locus. The physical map showing 91.5 kb Kcnq1ot1 RNA, placental-specific and ubiquitously imprinted genes. 
Adopted from Kanduri, C. 2011. 
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2 AIM AND HYPOTHESIS OF THE PROJECT 

The aim of this project is to investigate the effect of promoter strength on imprinting. We expected to 

discriminate promoter strength differences that could explain and may uncover one of the multilayer 

molecular mechanisms that are involved in regulation of imprinting in Kcnq1 locus.  

In the other word, to find any link between the promoter activity and imprinting that could explain the 

mechanism how some genes in the Kcnq1 imprinting domain maintain the imprinting where as others 

are able to escape.  
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3 RESULTS 

3.1 Cloning of Promoter and Plasmid constructs 

The research here focuses on Kcnq1 imprinted locus, which contains eight protein coding genes 

/imprinted genes and a non-coding gene/imprinted gene and few non-imprinted genes. The Kcnq1ot1 

gene encodes for a 91.5 kb length long non-coding RNA, which is an antisense transcript that acts as a 

bi-directional silencer of neighboring genes in order to suppress their expression [41]. 

In this study, we have cloned the promoter region of five different genes from the Kcnq1 imprinting 

locus including two placenta specific imprinted genes (Ascl2 and Tscc4), two ubiquitously imprinted 

genes (Kcnq1 and Slc22a 18) and a non-imprinted gene (Nap1l4) that allowed us further evaluation of 

the promoter activity of both imprinted and non imprinted genes in the imprinted locus (Fig 3.1).  
 

 
Figure 3.1. Kcnq1 locus. The physical map showing non-imprinted, placental-specific and ubiquitously imprinted genes in 
Kcnq1 imprinted domain. 

To be able to perform the study of these promoters, specific PCRs were performed to amplify the 

DNA sequence of interest with primer binding sites using DNA extracted from mice liver and primers 

containing Kpn I (in forward primer) and Bgl II (in reverse primer) sites at their 5’ ends. We were able 

to obtain PCR products for all the designed primers for the promoters. In addition, we have designed 

two distinct primers for one of the imprinted gene's promoter Kcnq1 to obtain two different product 

sizes. The size of shorter product was 1.2 kb and longer product’s size was 1.9 kb. We studied affect 

of the different sizes of the promoter region on gene’s promoter activity and expression of reporter 

gene from the vectors (Fig 3.2 A, B and C).  
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Figure 3. 2. Representative results of PCR for promoter region of five different genes including Kcnq1 and Tssc4 (A), Ascl2, 
Nap1l4 and Slc22a18 (B), and Kcnq1a genes (C), loaded next to the 1kb ladder. The two different sets of primer are used for 
Kcnq1 gene in order to obtain two different product sizes: 1.2 and 1.9 kb. 
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The PCR products were extracted from the gel and cloned into the pGEM‐T Easy Vector. After 

ligation reaction of each promoter in pGEM- T easy vector, to make sure ligation has occurred, XL-

Blue strain of Escherichia coli cells were transformed with the ligation mixture. Afterward, 

transformed E. coli cells were selected by Ampicilin‐supplemented Luria‐Bertani medium, then 

restriction digestion reactions were performed using Bgl II and Kpn I restriction enzymes to identify 

the right clones (Fig 3.3 A). 

We also constructed promoter containing pGL3-basic and pGL3-enhancer vectors for six different 

promoter sequences of five different genes (Fig 3.3 B &C). 

After screening of the right clone in pGEM-T easy vector using restriction digestion method, digested 

inserts were extracted from the gel and then inserted into the pGL3-basic and pGL3-enhancer vectors 

at restriction sites Bgl II and Kpn I of both vectors. In order to make sure ligation has occurred, XL-

Blue cells were transformed with the ligation mixture and the ligation mixture was used for 

transformation in XL-Blue Ecoli strain, then the right clones were selected on 

Ampicillin‐supplemented medium and digested with Bgl II & Kpn I restriction enzymes to check the 

positive clones and whether they cloned the correct inserts.  

     

     

    

1.1kb ladder 
2.pGEM-T- Kcnq1 
3. pGEM-T-Nap1l4 
4.pGEM-T- Tssc4 
5.pGEM-T- Slc22a18 
6.pGEM-T- Ascl2 
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Figure 3.3. Representative results of restriction digestion of three different vectors including pGEM –T easy, pGL3- basic and 
pGL3-Enhancer with different promoters from Kcnq1, Kcnq1a, Ascl2, Tssc4, Slc22a18, Nap1l4 and genes which have been 
loaded next to a 1 kb ladder: A) representative result for promoter regions inserted into pGEM-T easy vector. B) Restriction 
digestion reaction result for promoters including Kcnq1, Ascl2, Tssc4 and Nap1l4, which have been cloned into the pGL3, 
pGL3-basic and pGL3-Enhancer vectors. C) Result for screening of Kcnq1a clones using pGEM‐T easy, pGL3-basic and pGL3 
Enhancer vectors. 

3.2 Identification of the different degree of promoter activities 

To perform the Luciferase reporter and β-galactosidase enzyme assays, the promoters + luciferase and 

β-galactosidase reporter constructs were used to assay promoter activities of six promoter sequences 

from five different genes in Kcnq1 imprinted locus. Six different promoter fragments were cloned in 

pGL3-basic and pGL3 –enhancer vector, to drive luciferase and β-galactosidase expression, then the 

human placental Choriocarcinoma cells JEG3 were transfected with each of these plasmids along with 

a constant amount of a carrier plasmid PCDNA3 expression vector and pCMV- β-gal vector. The 

pCMV- β-gal vector was used for normalization of transfection efficiency .  

After 48 h, the cell extracts of two identical transfections were analyzed for both luciferase and β-

galactosidase enzyme activities using a luminometer and spectrophotometer device, respectively. The 

measurements were performed in duplicate for each experiment. In addition, the experiment was 

repeated at least 4 times with two different sets of DNA mini and midi preparations. 

1. 1kb Ladder 
2.pGL3- basic -Kcnq1a 
3.pGL3- Enhancer -
Kcnq1a 
4. pGEM-T easy -Kcnq1a

1.1kb Ladder 
2. PGL3- basic -Kcnq1 
3. PGL3- Enhancer -Kcnq1 
4. PGL3- basic –Tssc4 
5. pGL3- Enhancer –Tssc4 
6. pGL3- basic –Slc22a18 
7. pGL3-Enhancer –Slc22a18 
8. pGL3-basic –Ascl2 
9. pGL3-Enhancer –Ascl2 
10.pGL3-basic –Nap1l4 
11. pGL3-Enhancer –Nap1l4 
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All the data from luciferase assay were normalized to the values obtained from β-galactosidase 

enzyme assay system and plotted in the bar charts. The promoter activities were compared to one 

obtained using the basic vector and one using pGL3-enhancer vector.  

Results of enzymatic assays were evidences for various degrees of promoter activity of the imprinted 

and non-imprinted genes in the Kcnq1 locus.  

Our data from enzymatic assays indicate that in the absence of enhancer (i.e., when the backbone 

vector was pGL3-Basic for all six constructs), promoter activities were low compared to one of using 

pGL3-enhancer vector in JEG-3 cells (Fig 3.4). In addition, promoter strengths of the Kcnq1 (1.2 kb), 

Kcnq1a (1.9 kb), Slc22a18, Ascl2, Tssc4 and Nap1l4 were compared to Kcnq1ot1 promoter strength 

as positive control (PC) and a PGL3-basic empty vector (i.e., mock vector) as negative control (NC). 

The strong promoter activities were observed with Tssc4 placental-specific imprinted gene and 

Nap1l4 non-imprinted gene, whereas Kcnq1, Slc22a18 and Ascl2 showed lower promoter activities. 

Besides, the highest activity was seen with Tssc4 and 1.2 kb Kcnq1 (ubiquitously imprinted gene) 

showed lowest activity (Fig 3.4). In addition, the Kcnq1 Promoter activity was found to be low in both 

short 1.2kb and long 1.9 kb promoter constructs. However, the later construct showed a major 

promoter activity in presence of enhancer in PGL3-enhancer vector compared to its counterpart (Fig 

3.5). Additionally Slc22a18 promoter showed almost the same activity as the Kcnq1 promoter (Fig 

3.4). 

 
Figure 3.4. Normalized data for promoter activity of the imprinted and non-imprinted genes in the mouse Kcnq1 locus in the 
absence of enhancer. Strength of the Kcnq1 1.2 kb, Kcnq1a 1.9 kb, Slc22a18, Ascl2, Tssc4 and Nap1l4 promoters were 
compared to Kcnq1ot1 promoter strength as a positive control (PC) and pGL3 –basic empty vector (Mock vector) as negative 
control. The backbone vector was pGL3-Basic for all 6 constructs. The highest activity was observed with Tssc4 and lowest 
activity was showed by 1.2 kb Kcnq1. 

In the other hand, our data from enzymatic assays indicate that in the presence of enhancer 
(i.e., when the backbone vector was pGL3-enhancer for all six constructs), the promoter 
activity was found to be higher compared to that of in pGL3-basic vector (Fig 3.5).  

Additionally, the highest activity was found with Nap1l4 (non-imprinted gene) and 1.2 kb 
Kcnq1 showed lowest activity. For the rest of constructs different degrees of promoter 
activities were observed. The promoter strength of Slc22a18 was very low. Intriguingly, 1.9 
kb Kcnq1a construct (i.e., longer promoter sequence) showed higher promoter activity 
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compared to 1.2 kb kcnq1 (shorter promoter sequence). The placental-specific gene Ascl2 
was found to have a higher promoter activity compared to weaker promoters (i.e., Kcnq1 and 
Slc22a18) (Fig 3.5). 

In conclusion, the promoter activity of all six different constructs including Kcnq1, Kcnq1a, 
Ascl2, Slc22a18,Tssc4 and Nap1l4 using pGL3-enhancer vector showed a major increase 
compared to one of the Basic vector (Fig 3.5). Additionally, the promoter activity of 
placenta–specific imprinting genes including Ascl2, Tssc4 and Nap1l4 non-imprinted genes 
were observed to be higher than ubiquitously imprinted genes (Fig 3.5). 

 

 

 
 

 

 

 
Figure 3.5. Normalized data for promoter activity of the imprinted and non-imprinted genes in the mouse Kcnq1 locus in the 
presence of enhancer (i.e., the backbone vector was pGL3-Enhancer for all six different constructs). The promoter strength of 
the Kcnq1 1.2 kb, Kcnq1a 1.9kb, Slc22a18, Ascl2, Tssc4 and Nap1l4 were compared to Kcnq1ot11 promoter strength as 
positive control (PC). The six different constructs including Kcnq1, Kcnq1a, Tssc4, Ascl2, Nap1l4 and Slc22a18 showed a 
major improvement in their activities in presence of enhancer. The highest activity was belong to Nap1l4 and lowest activity was 
observed by 1.2 kb Kcnq1. 
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4 DISCUSSION 

Several studies have been focused on mechanism of imprinting and in particular silencing of the 

imprinted genes by Kcnq1ot1.These studies revealed the fact that this long non-coding RNA can 

recruit different chromatin modification factors including polycomb repressor complexes and DNA 

methylases. In addition, it can interact with chromatin region of the promoters in a lineage-specific 

manner [41]. 

In this project, we expected to discriminate promoter strength differences that could explain and may 

uncover one of the multilayer molecular mechanism involved in the regulation of imprinting in Kcnq1 

locus and to find any link between the promoter activity and imprinting. We were also interested to 

compare promoter activity of the imprinted and non-imprinted genes in Kcnq1 locus. We were 

specifically focused on studying the promoter activity of the two ubiquitously imprinted Kcnq1, 

Slc22a18 and two placental-specific Ascl2, Tssc4 genes as well as a non-imprinted Nap1l4 gene 

which is located downstream of these imprinted genes in the locus. 

It has been shown that, apart from chromosomal organization and nuclear context, other regulatory 

elements including promoters, enhancers, silencers, locus control regions (LCRs) are key players in 

transcription initiation and reinitiating. For example, Promoters are involved in initiating transcription 

[44]. 

In this project, we found that each individual promoter varies in strength and some of the promoters 

were enhancer-independent, the promoter activities of placenta specific genes (Ascl2 and Tssc4) either 

without enhancer or in the absence of this regulatory element were higher than ubiquitously imprinted 

genes (Slc22a18 and Kcnq1). The Kcnq1 and Slc22a18 genes seemed to have weaker promoters. 

These weak promoters usually have lower rates of transcription than the strong promoters such as 

Tssc4 and Nap1l4. The Kcnq1 and Slc22a18 promoters seem to be more active in the presence of 

enhancer and an enhancer as a regulatory element can recover these weak promoters. Additionally, 

the Nap1l4 and Tssc4 promoters had higher promoter activities in both conditions (in presence or 

absence of enhancer) and Ascl2 observed to have a high degree of promoter activity among the rest of 

the genes i.e., Kcnq1, Slc22a18. Consequently, obtained results may explain why placenta specific 

imprinted genes are expressed only in embryonic tissue and non-imprinted genes are expressed in 

both embryonic and extra embryonic tissues. 

Our data indicate that degree of promoter strength is involved in imprinting of these genes in the locus 

and those genes with stronger promoter may escape from imprinting.  

In addition, there could be a possible dominant role of strong promoters in regulating neighboring 

genes with the weak promoters.  
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It has been reported that promoter-promoter interactions can affect the transcription of mitochondrial 

genes in Saccharomyces Cerevisiae [45]. It has been shown that in a locus, promoters that are in close 

tandem array can interact and consequently influence the gene expression of one another. In this 

study, the strong promoters reduce the activity of the weak promoters either in trans or in cis by 

competing with the weak promoters for RNA polymerase and inhibitory effect of some nucleotides 

that separating the strong and weak promoter in tandem, respectively [45]. 

This evidence lets one speculate that in 1 Mb Kcnq1 locus [41] there is a possibility for a promoter–

promoter interaction and strong promoter regulates the weak promoter in the locus. However, further 

investigations are needed to be done to accept the same type of regulation in Kcnq1 locus.  

Previous studies demonstrated that in the Kcnq1 locus, those genes located within 200 kb of the 

Kcnq1 ICR are ubiquitously imprinted, whereas the placenta specific genes are positioned in a 

lengthier distance (450 kb) from the Kcnq1 ICR in a CpG methylation-independent manner [43]. In 

the other hand, It has been shown that the Kcnq1ot1 promoter maps to the Kcnq1 ICR [41]. 

These data from previous studies were a motivation to propose that, in the kcnq1 locus those genes 

located within 200 kb far from the Kcnq1 ICR/ Kcnq1ot1 promoter such as Kcnq1 and Slc22a18, 

which seem to be weaker promoters, are ubiquitously imprinted, whereas stronger promoters of Tssc4 

and Ascl2 located in 450 kb far from the Kcnq1 ICR / Kcnq1ot1 promoter, are able to express only in 

embryonic tissues.  

In the other hand, though Kcnq1 imprinting domain is a big domain and most of the genes are large, 

there are possible chances for weak and strong promoters to co close in the domain. To accomplish 

this cis acting effect in the locus, perhaps function of some unknown elements can facilitate this 

process.  

The data brings about this hypothesis that strong promoter activity of some of the genes and 

surrounding transcription machinery would be the reason why some of these genes escaping from 

imprinting. However, further investigations are needed to define a role of promoter strength in 

imprinting in a parental and tissue specific manners. 

                                                                                                                                                                              
 



26 

5 MATERIALS AND METHODS  

5.1 Polymerase chain reaction (PCR) 

PCR for 6 promoters was performed in a thermal cycler machine with following reagents: 1 Unit of 

Taq® DNA polymerase DyNAzyme II 2 U/μl, FINNZYMES, 100-150 ng of genomic DNA, 1x 

supplied DyNAzyme buffer (FINNZYMES), 1 μl (10 pmol) of both forward and reverse primers, 1 μl 

of 10 mM dNTPs in a final volume reaction of 25 μl.  

The DNA template was initially denaturized at 94º C for 5min, then DNA was amplified by 35-40 

cycles of (95º C for 30 s, Xº C for 40 s, 72º C for 90 s) and a final extension of 10 minutes at 72º C. The 

optimized PCR conditions are summarized in (Table 1). 

5.2 Gel electrophoresis 

In order to make sure that amplification was obtained, gel electrophoresis was performed in a gel unit 

by using 0.8% and 1% agarose gels in 1X TBE. In order to visualize the PCR products (DNA), 0.2 μg 

/ml Ethidium bromide was added on to the gels. Then PCR products were loaded into the gel and the 

electrophoresis was run at 70 ~ / 120 ~ V. Then, PCR products were extracted from the 

electrophoresis gel using Gel Purification Kit (promega kit) and finally the DNA concentration was 

measured by nanodrop machine. 
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Table 1. Primers used for PCR.  

Gene Primer sequence (PCR Conditions 5’ →3’) Band 

size 

(bp) 

Optimized PCR  

        conditions     

Temp. 

(°C) 

Cycle 

No. 

Kcnq1 Forward 5’ATATggtaccCAGCTGCACAAACCTTCTGA 1203   55°C 35 

Reverse 5’ATATagatctCGGTGAAGTGGTACACGAAA 

Kcnq1a 

 

Forward 5’ATATggtaccATCCTGTTTTCAGCCCACTC   1900 55°C 40 

Reverse 5’ATATagatctAGCTCCAGTGAGAAGGGACA 

Tssc4 Forward 5’ATATggtaccGGCAACCACCACTGTCTCTT 1199 55°C 35 

Reverse 5’ATATagatctCTCAGTAAAGCGCAGCCTCT 

ASCL2 Forward 5’ATATggtaccGGTGCAGTTCATGGCCTACT 1499 

 

57°C 40 

Reverse 5’ATATagatctCTAGCTGGCCTGGAAGTTTG 

Slc22a 

 

Forward 5’ATATggtaccGGGGAAATGGGAAGAGAAAG 1201 55°C 35 

Reverse 5’ATATagatctTTGGGGTAGATTCCACCTTG 

Nap1l4 Forward 5’ATATggtaccCCACATCCACTCCCCAAATA 1444 55°C 40 

Reverse 5’ATATagatctCAACAAAACCACCTGCCATT 

 

The Kpn I (forward primers) and Bgl II (reverse primers) restriction sites are in lowercase. The 

forward and reverse primers respectively contain Kpn I and Bgl II sites at 5’ ends, which were used 

for cloning in pGl3‐basic and pGl3‐enhancer vectors. 

5.3 pGEM-T easy vector cloning  

The cloning of PCR products (i.e., cloning of promoter regions of each gene) into pGEM‐T easy 

Vector was performed in a 10 μl reaction by mixing 5 μl of 2x Rapid ligation buffer (Promega), 1μl of 

pGEM‐T easy vector (50 ng/μl, Promega) and 1 μl of ligase (10 U/μl, Promega) and 6-25 ng of insert. 

The DNA concentrations of 6 to 25 ng were used for each PCR-products, based on the concentrations 

obtained from gel‐band purification. After preparation of ligation reaction mixtures, they were 

incubated at room temperature for 2 hours.  

5.4 Escherichia coli transformation 

The transformation reaction was prepared by adding 5 μl of ligation reaction to 50 μl of E.coli 

competent cells (XL- blue E-coli strain). The mixture was kept in ice for 30 min and then it was 

subjected to 42º C heat shock for 90 sec and immediately placed in ice for 3-5 min. After that, 600 μl 

of Luria‐Bertani medium (composition: 10 gm Trypton, 5 gm Yeast extract and 10 gm Sodium 

chloride in 1 liter sterile H2O, pH 7.0) was added and the culture was incubated in shaker at 37º C for 

1 hour. Later, the transformed reactions were centrifuged at 3000 g for 1 min and plated on to 

Luria‐Bertani (LB) medium containing Ampicillin (100 μg/ml) and incubated at 37º C over night.  
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5.5 Extraction of plasmid using mini/and midi preparation kit 

In order to perform a plasmid extraction, selected transformed bacterial colony was inoculated in 4 ml 

of LB containing Ampicillin (100 μg/ml) and incubated overnight at 37º C in a shaker with speed of 

180-200 rpm and Plasmid was extracted by using Plasmid Qiagen midi and mini DNA prep kit. 

5.6 Restriction digestion  

Three different digestion reactions were performed in order to digest pGL3‐600 basic vector (600 bp 

insert allow detection of vector digestion with both Kpn I and Bgl II enzymes), pGL3 –enhancer 

vector and pGEM‐T Easy vector. 20μl reactions were prepared by adding the following reagents: 300-

1000ng of the DNA (pGL3‐600 basic vector and pGEM‐T Easy Vector), 1X digestion buffer (10x 

concentrated buffer 2, New England Biolabs), 0.5 μl of both Kpn I and Bgl II enzymes (10 U/μl, New 

England Biolabs) and 20-(X-3) μl sterile H2O. These 20 μl reaction mixtures were incubated for 2 to 3 

hours at 37º C.  

 

5.7 pGL3‐vector (pGL3 basic and enhancer) cloning  

The digested inserts from pGEM‐T Easy Vectors were cloned into both pGL3 basic and enhancer 

vectors digested with Bgl II and Kpn I. The 10 μl ligation reactions were prepared by adding the 1X 

T4 ligase buffer NEB (10X buffer New England Biolabs), 50ng of pGL3 basic and enhancer Vectors 

(50 ng/μl promega) and 1 μl of T4 ligase (10 U/μl, NEB) and 30 to 60 ng of the inserts. The amounts 

of inserts were calculated based on the following formula: Concentration of vector in ng X insert 

size/vector size X 3 = amount of insert. Finally, all the reactions were incubated at room temperature 

for 2 hours.  

5.8 Cell culture, DNA transfection using calcium chloride (CaCl2) transfection 
method 

JEG-3 a human placental choriocarcinoma cell line was grown in medium containing Minimum 

essential medium (Eagle), 10% fetal bovine serum (FBS), 2 mM L-Glutamine ( 5 ml of 200Mm 

/100X stock solution per 500 ml medium) and 5ml of 100X Penicillin-Streptomycin stock solution per 

500 ml (100x stock solution = 10000 U/ml Penicillin G and 10 mg/ml Streptomycin) at 37º C in a 

sterile chamber with 5% CO2. After preparation of media, in order to prepare a cell density of 

1.5X106 per well, the medium, Trypsin and PBS were pre warmed up and cells were washed with 

PBS, then 1ml of trypsin was added to the cells in order to detaching the cells from T 75 -flask. Later 

on, 10 ml of the medium was added to the cell suspension and the cells were counted using a 

hemocytometer. The cell concentration was calculated according to the following formula: Cell 

concentration per ml = Average number of cells in one large squire (i.e., 1mm2) X dilution factor X 10 
4. After that, cells were divided into the 6 wells plates about 24 hours before transfection. The 250 μl 

transfection reactions were prepared by adding the following reagents: 15.5 μl of CaCl2 2.5M, 108 μl 

of 10 mM tris pH 7.6 and 250 ng DNA including pGL3-basic-Kcnq1, pGL3-basic-Kcnq1a, pGL3-

basic-Ascl2, pGL3-basic-Slc22a18, pGL3-basic-Tssc4, pGL3-basic-Nap1l4, pGL3-Enhancer-Kcnq1, 

pGL3-Enhancer-Kcnq1a, pGL3-Enhancer-Ascl2, pGL3-Enhancer-Slc22a18, pGL3-Enhancer-Tssc4, 
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pGL3-Enhancer-Nap1l4 (the 250 μl reaction was adapted to the size of the plates) were used for 

transfection. Additionally, 2.5 μg of a carrier DNA, PCDNA3 vector and 250 ng of pCMV-β-

galactosidase were added to all the reactions. 250 ng of pGL3 -742 (contains Kcnq1ot1 promoter 

region) and pGL3-Basic vectors (mock vector) as standard positive and negative controls were 

included. The tubes containing transfected solution were vortexed and 125 μl of 2 X HBS were added 

drop-wise. The tubes were left at room temperature for 10-20 minutes then the solutions were added 

drop-wise into the cell plates. Then, plates were incubated at 37º C in 5% CO2, overnight. After 16 

hours the cells were washed 3 times with phosphate-buffered saline (PBS) and again fresh medium 

was added into the plates and incubated.  

5.9 Luciferase reporter system and β-galactosidase enzyme assays  

At 48 h after transfection, Cells were lysed with 250 μl of 1X Reporter Lysis Buffer (RLB) 

(Promega). To accomplish the process of lysis, the cells were scraped from the plates and were lysed 

by a single freeze and thaw. The luciferase assays were performed using a mixture of 100 μl of 

luciferase reporter assay reagent (Promega) and 20 μl of cell extract. Then the mixture was vortexed 

and the luciferase readings were performed using a luminometer. Afterwards, Luciferase values were 

normalized against β-galactosidase enzymatic assay values. 

To perform the β-galactosidase enzyme assay, mixtures of 100 μl of cell lysate, 50 μl 1x RLB and 150 

μl of 2x β-galactosidase containing buffer were prepared, then the mixtures were vortexed and 

incubated at 37º C for 30 minutes to develop faint yellow color. Afterwards, the reactions were 

stopped by adding 500 μl of 1M NaCO3 and instantly the absorbance was read at 420 nm using a 

spectrophotometer. In each experiment, all the constructs were examined in duplicate. In addition, two 

different sets of plasmid DNA mini and midi preparations were used for transfection (Qiagen midi or 

mini DNA prep kit). 
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