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ABSTRACT

The mountain birch ecosystem forms the northern treeline in subarctic Europe. Since the treeline is
extremely sensitive to temperature, stress in mountain birch can be used as an indicator of stress on
the ecosystem as a whole, and in predictions of how climate change factors will influence the
subalpine-tundra ecotone and treeline dynamics. Fluctuating asymmetry (FA) is a common
technique for assessing stress in mountain birch. While no previous research has studied within-
tree variations of FA in mountain birch, other species have shown significant variation depending
on location of the leaf within the crown, and thus leaf collection location is important to consider
when sampling. The objective of this study is to determine if a relationship exists between leaf FA
and location within the tree crown of mountain birch leaves across three elevation zones in
subarctic Sweden. Leaves were collected from various locations within the crown with regards to
height (bottom, middle, top), direction (north, east, south, west), and position (inner, outer), and at
3 elevation sites (valley, forest-limit, treeline). A nested ANOVA was used to analyze the data.
The treeline site showed a higher amount of FA than the valley or forest-limit sites (P = 0.0228),
but no significant difference was found between any of the within-tree leaf locations. This suggests
that there is no influence from crown location on FA in the leaves of mountain birch, and therefore

future studies involving FA can freely sample leaves from any location within the crown.

Keywords: Mountain Birch, Betula pubescens ssp. Czerepanovii,, fluctuating asymmetry, treeline,

subartic, developmental stability, Abisko,
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1. INTRODUCTION

The mean annual temperature has been rising globally over the last century, with the
most pronounced and accelerated warming recorded at higher elevations and in the polar
regions (Huntington & Weller 2005). Future climate models also predict warming to
continue being greatest at high latitudes (Skre 2001). As the location of the northern
treeline is mainly determined by temperature (Harsch et al. 2009), the greatest impact of
climate change is expected to be seen within these ecosystems (Truong et al. 2007).
Therefore, monitoring changes in the treeline can be a major indicator of global climate
change (Neilson 1993; Hofgaard 1996).

Factors controlling the treeline are highly scale and location dependent, so
individual and short-term responses may vary greatly from what would be predicted on a
larger level (Sveinbjornsson et al. 2002). In order to create accurate models and understand
processes behind the large-scale changes, evaluation of short-term and individual responses
is critical (Holtmeier & Broll 2005).

In these subarctic areas that are extremely vulnerable to climate change, knowledge
of factors affecting the establishment and growth of a forest-forming species is essential
(Erdnen & Kozlov 2008). This study contributes to knowledge of the forest forming species
mountain birch (Betula pubescens ssp. czerepanovii) by examining fluctuating asymmetry,
a common indicator of stress, within the crown of trees located along three elevation zones
in subarctic Sweden.

The objective of this study is to determine if a relationship exists between leaf
fluctuating asymmetry and location within the tree crown of mountain birch leaves across

three elevation zones in subarctic Sweden.



2. CONTEXT AND DEFINITIONS

The mountain birch ecosystem

The mountain birch forest ecosystem represents the northern tree limit for much of
Europe and Russia, and forms the subalpine belt that separates the treeless tundra from the
more southerly coniferous-boreal zone (Dahl 1975). Mountain birch (Betula pubescens ssp.
czerepanovii) is the only forest-forming species within this subalpine zone and has the most
northern range of any deciduous tree in the world (Wielgolaski 2005).

The mountain birch ecosystem belt extends from southern Greenland, across
Iceland, and through northern Fennoscandia (Norway, Sweden, Finland, and the Kola
Peninsula in Russia) (Wielgolaski 2001). Palynology and radiocarbon dating show birch
present in Fennoscandia as early as 12,000 B.P., and historic evidence suggests that the
mountain birch forest represents a relatively stable final state of vegetative development,
and not just a stage of succession or a cultural product (Aas & Faarlund 2001).

Mountain birch forests in the Fennoscandia area are generally classified into six
vegetational community types: crowberry birch forest (Empetro-Betuletum pubescentis,
Nordhagen 1943), lingonberry birch forest (Vaccinio vitis-idaeae-Betuletum, prov.),
bilberry birch forest (Vaccinio myrtilli-Betuletum, prov.), dwarf cornel birch forest (Corno-
Betuletum, Aune 1973), meadow birch forest (Geranio-Betuletum, Nordhagen 1928, 1943
emend. Dierflen and Dierflen 1982), and cloudberry birch forest (Rubo chamaemorei-
Betuletum, prov.) (Wehberg et al. 2005). The main determiner of forest type is soil fertility,
precipitation, and temperature (Temmervik et al. 2005). Eutrophic sites in oceanic sections
are floristically most luxuriant, and oligotrophic sites in continental sections are the poorest

in vascular plants and bryophytes (Vire 2001).

Betula pubescens ssp. czerepenovii

The taxonomy of the Betula genus is quite complex and controversial, largely due

to the high level of hybridization between the different species (Truong et al. 2007), and the



taxonomy of the European birches has long been in dispute (Atkinson 1992). Most notably
the relationship between the tree like tetraploid (2n=56) downy birch (Betula pubescens
Ehrh), the diploid (2n=28) silver birch (B. pendula Roth.), and the more shrub like diploid
(2n=28) dwarf birch (B. nana L.) (Thorsson, et al 2007). Although at one time Laestadius
(1860) described 40 different birch taxa in Fennoscandia alone, only these three species are
generally recognized today (Vére 2001).

The Nordic mountain birch, which is predominantly believed to be a subspecies of
B. pubescens, varies widely in its morphology and readily hybridizes with downy birch and
dwarf birch where they overlap in range (Vare 2001). Although there is evidence that the
transition from downy birch to mountain birch is purely clinal, and therefore should not be
considered a coherent taxon, the common trend in the nomenclature today is the name B.
pubenscens ssp. czerepanovii (Orlova) Himet-Ahti as the form found in most of
Fennoscandia (Vire 2001).

The morphology and growth habit of mountain birch varies greatly, but in general it
can be said to be a fairly light demanding and drought intolerant species (Atkinson 1992)
that prefers a cool, humid, and maritime climate with a reliable snowpack (Hamet-Ahti
1963; Kallio & Mikinen 1978; Kjéllgren & Kullman 1998). The typical height is between
4-10 meters (Atkinson 1992), and the form varies from a single stem erect form, to multi-
stem with more shrub-like characteristics (Kjillgren & Kullman 1998). Sexual reproduction
is episodic, and rare at higher elevations due to low production of viable seed and poor
seedling survival (Kullman 1984). Vegetative sprouting is the most common form of
reproduction in poor environments, and is possibly the only type of reproduction found
along the treeline (Karlsson et al. 2005). Leaves of B. pubescens are morphologically
described as being cordate with dentate margins (Walters 1964); however, leaf size has

been shown to vary significantly among trees (Senn 1992).

Stresses on mountain birch

Growing in an extreme environment, mountain birch is exposed to many biotic and

abiotic stresses. One of the main hazards to the mountain birch is herbivory, in the form of



reindeer browsing and defoliation by caterpillars (Tenow 1996). Reindeer have been semi-
domesticated by the Sami people for many thousands of years, and every year they migrate
through the subalpine mountain zone, feeding on birch as their preferred food source (Aikio
& Miiller-Wille 2005). Browsing from reindeer causes reduced growth and the formation of
multiple raments; however, this rarely causes the tree to die (Helle 2001).

Insect defoliations are one of the most important disturbances in the dynamics of
mountain birch forests (Neuvonen et al. 2001). Periodic outbreaks of the autumnal moth
(Epirrita autumnata) and the less coincidental winter moth (Operophtera brumata) cause
severe damage to the mountain birch forest (Tenow et al. 2005). The moths can cause
complete defoliation and, with repeated attacks, mortality to the trees (Tenow et al. 2000).
Another biotic threat is the birch rust (Melampsoridium betulinum), which in severe
outbreaks can cause reduction in photosynthesis and early abscission (Lappalainen et al.
1995).

Although the mountain birch is adapted to harsh environments and a short growing
season, shifts in weather in the subarctic may be rapid and radical in all seasons (Tenow
1996). Extremely cold late spring temperatures can kill buds that have already begun to
deharden (Tenow et al. 1992). The snow depth has an impact on birch survival as well, and
years with little snowpack accumulation subject the trees to exposure to wind and cold

temperatures and can kill the tree, even in a dormant state (Bogaert et al. 2011).

Mountain birch and climate change

The sensitive position of the treeline environment is a balance between the treeless
tundra and the boreal forest. Most of the species here are living at the very limit of their
range. This balance makes the mountain birch treeline extremely sensitive to slight changes
in the climate (Hasch et al. 2009). The ecosystem is also structurally simple with low
productivity, making it less resilient and highly susceptible to disturbance (Sonesson et al.
200).

Many of the plant species located in these arctic environments are extremely reliant

on small, protected micro-climates for their survival (Carlsson & Callaghan 1991). For
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example small depressions in the land, or shelter around rocky outcrops where a deeper
snowpack can form, will provide the shelter needed for many species that would not
otherwise survive. Glacial till and peat create a wide range of soil types and depths, even
over a relatively small area (Karlén 1973). These microclimates determine the species
composition, and are necessary for individual survival (Carlsson & Callaghan 1991).

It is predicted that it is these sensitive subarctic ecosystems that will suffer the
greatest effects from global climate change (Harsch et al. 2009). Small degrees of
temperature differences define the varied community composition in these extreme
environments (Truong et al. 2007). Climate change can also cause increases in
pest/pathogen outbreaks which can further weaken an already stressed system (Walther et
al. 2002). Slight changes in the little precipitation that is received can create a drought
environment and reduce snowpack protection from harsh winter conditions (Dalen &
Hofgaard 2005).

It has been shown that summer temperatures are the main determinant of the arctic
treeline, and changes to these summer temperatures could greatly affect the position and
composition of the treeline (Tranquillini 1979). As mountain birch forms the treeline, is the
dominant tree species, and is essential for the survival of the mountain birch ecosystem, its
response and reaction to climate change will be a determining factor in the future of these

subalpine ecotones (Truong et al. 2007).

Fluctuating asymmetry

Fluctuating asymmetry (FA), or random, non-directional deviations from
anticipated perfect bilateral or radial symmetry, is often used as an indicator of stress in
many different organisms (VanValen 1962; Palmer & Strobeck 1986; Parsons 1990).
During cellular development, factors that interfere with normal developmental processes
(developmental noise) are minimized by a suite of processes known as developmental
“buffers.” This ability to buffer the development process from noise, and continue to
develop along a predetermined path, is called developmental stability. Developmental

instability (stress) occurs when noise in not properly buffered (Palmer 1994). Fluctuating
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asymmetry is a result of this inability to maintain developmental stability (Parsons 1990).
Since one set of genes controls for both sides of a character trait, under normal
development, the two sides are symmetrical (Mather 1953). But when developmental noise
is greater than an organism’s ability of buffer, errors occur and the result is random
deviations from symmetry (Palmer 1994).

Since it can be difficult to judge the level of stress an organism is under and often
our assumptions of what constitutes as stress is not always accurate, FA can be a useful
indicator in evaluating the actual stress experienced by an individual or a population
(Freeman et al. 1996). Asymmetry is a particularly useful measure of developmental
stability because for bilaterally or radially symmetrical traits the optimal phenotype is
known (Mpller 1999). By simply measuring each side of an ideally symmetrical character
trait, an indication of stress at the cellular level can be obtained (Parsons 1990). In the field
of ecology most indicators are lagging indicators of stress, but developmental instability is
a leading indicator and can identify a problem before it reaches the point of apparent
demographic consequences (Freeman et al. 1996).

There are instances in nature, however, when symmetry is not the desired outcome.
Fluctuating asymmetry, which is random and caused by developmental noise, is just one
type of asymmetry that can be found. In FA the difference between the right (R) and the left
(L) sides of the measured trait (R-L) has a mean of zero and a normal distribution (Palmer
1996). The other two types of asymmetry that can occur are directional asymmetry and
anti-symmetry, and both can happen during normal development (Graham et al. 2003a).

Directional asymmetry occurs when one side of a character trait is always larger
than the other, and the side that is larger is consistent. An example of this is the human
heart, where the left side is always bigger than the right. In the case of directional
asymmetry the mean of R-L departs from zero, but the distribution is normal (Palmer
1994).

Anti-symmetry occurs when one side of a character trait is always larger than the
other; however, it is not predictable which side will be larger. This is the case for fiddler

crabs, in which either the left or right claw is larger than the other. Anti-symmetry has a

12



platykurtosis or bimodal distribution with a mean centered around zero (VanValen 1962). It
is generally thought that, unlike FA, these types of asymmetry are genetically determined

and are not indicators of developmental stability (Parsons 1990).

Fluctuating asymmetry and stress

The implications of FA as a tool for measuring developmental stability began in
the1950’s with the pioneering work of Mathers (1953), Thoday (1958), and others (see
Graham et al. 2003a for a complete overview). Since then, FA has been widely adapted
into many fields of natural science. FA has been used to study a variety of traits, from wing
length in honeybees (Briickner 1976) and ridge counts in human fingerprints (Martin et al.
1982), to fossilized horse teeth (VanValen 1962 ) and branching in algae (Tracy et al.
1995).

FA is commonly used to measure stress in plants, both in controlled greenhouse
studies and field ecology studies (Mgller 1999). Plants lend themselves well to FA analysis,
as they have many symmetrical structures that are easy to collect or measure in the field
(Freeman et al. 1993). The FA method is inexpensive, requires little equipment, and can
detect a large range of stresses (Moller & Pomiankowski 1993). It is also unique as it can
look at stress in an individual plant, the population as a whole, or the entire ecosystem
(Freeman et al. 1996). And since plants grow as modules it is also possible to examine
within-plant variation (Freeman et al. 1993). Some previous plant studies have found FA
to be a useful tool to monitor effects from herbivory (Zvereva et al. 1997), light (Roy &
Stanton 1999), CO, concentration (Cornelissen et al. 2004), inbreeding (Sherry & Lord
1996), parasitism (Shykoff & Kaltz 1998), slope aspect (Alados et al. 2001), drought
(Hodar 2002), nutrients (Otronen & Rosenlund 2001; Meller 1995), soil quality (Huether
1968), radiation (Meller 1998), salinity (Anne et al. 1998), temperature (Griffing &
Langridge 1963), and competition (Rettig et al. 1997).

Within the past few years multiple studies have used FA to monitor stress in
mountain birch. FA in mountain birch has been found to increase in the presence of

hybridization (Wilsey et al. 1998), pollution (Kozlov et al. 1996; Erdnen et al. 2009),
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herbivory (Martel et al. 1999), elevation (Wilsey et al. 1998; Hagen et al. 2008), moisture
(Martel et al. 1999), and temperature (Valkama & Kozlov 2001).

Despite the overall acceptance of FA as a way to monitor stress in plants, it is still
poorly understood (Wilsey & Saloniemi 1999) and it has evoked some skepticism.
Swaddle et al. (1994) argue that the relatively small measurement values needed in most
research for FA require high levels of precision, and measurement errors are often much
greater than the variation caused by fluctuating asymmetry. Kozlov (2003) demonstrates
that the types of analysis used can greatly affect the outcome, and that these tests are not
always formed in the appropriate manner. A number of authors have also found a
difference in asymmetry between floral verses foliar parts in plants, and have found the
floral parts to generally be more stable (Jennions 1996; Evans & Marshall 1996; Paxman
1956; and Sakai & Shimamoto 1965). There is much debate as well over the genetic bases
of directional asymmetry and anti-symmetry, and whether they should be included in
studies of developmental stability; and many articles have been written recently which
support including all types of asymmetry in measurements of stress in plants (Graham et al.

1993; 1998; 2003b; Kozlov 2003; Palmer 1996).
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3. METHODS

Study area
This study was carried out near Abisko, northern Sweden (68°36’N 18°77’°E). The

Abisko valley is situated approximately 200 km north of the Arctic Circle, on the southern
shore of Lake Tornetrdsk, in the Scandes mountain range. The mountains here are
topographically and geologically very heterogeneous (Sonesson et al. 1980).

When deglaciation occurred more than 9000 years ago (Sonesson 1974) dead-ice
created a hummocky landscape, with many kettle and moraine features. The soils are
predominantly glacial till, with peat occurring in local depressions (Berglund et al. 1996).

The north-south extension of the mountains to the west creates a pronounced rain-
shadow effect on the Abisko valley (Bigler et al. 2006). The mean annual precipitation in
the valley is only around 300 mm, while areas to the west receive as much as 1000 mm a
year. The temperature ranges from a mean of +11° C in July, to a mean of -12° C in
January (Abisko Research Station, unpubl.).

Due to the presence of the Abisko Research Station, the Abisko area has an
exceptionally long record of climatic data available. Through this, it has been shown that
the mean annual temperature has increase by 2.5° C between the years 1913 and 2006. The
average annual temperature has now crossed the critical 0° mean to an annual mean of
+0.6° C at some elevations, which has many cryospheric and ecological impacts (Callaghan

etal. 2010).

The Lake Tornetrisk region falls within the tundra-subalpine ecotone, and
approximately 60% of the area is below the treeline (Sonesson et al. 1980) which forms
between 600-700 m a.s.l. The vegetation is mosaic, with patches of birch forest, alpine
heath, and oligotrophic mires. The majority the forests here are of the Crowberry Birch
Forest (Empetro-Betuletum pubescentis, Nordhagen 1943) type, populated by shrubs
(Empetrum hermaphroditum Hagerup and Vaccinium myrtillus L.), grasses (Deschampsia
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flexuosa (L.) Trin.), mosses (Pleurozum schreberi (Brid.) Mitt., Dicranum majus coll,
Polytrichum spp.), and lichens (Nephroma arcticum (L.) Forss., Cladonia rangiferina (L.)
Web., C. sylvatica (L.) Rab.) (Sonesson et al 1980).

The birch forest is formed by the Nordic mountain birch (today most often called
Betula pubescens ssp. czerepanovii (Orlova) Hamet-Ahti, but also known as B. pubescens
ssp. tortuosa Ledeb. (Sonesson et al. 2001)). Most of the birch have a krummholz
formation with multiple ramets, but monocormous (single-stem) trees can be found on
more favorable sites (Verwijst 1988). The birch in the Tornetrdsk area form an open
canopy, and reach a maximum height of 5-8 m, although individuals located near the
treeline rarely grow above 2 m (Sveinbjornsson et al. 1992). Due to a severe outbreak of
the autumnal moth in 1955 which killed 90% of the stems, the current population of stems

are predominantly the same age (Tenow 1996).

Site description

For this study birch trees were sampled from 3 different evaluation zones: valley,
forest-limit, and treeline (Fig. 1). These site selections were adapted from previous studies
by Sveinbjornsson et al. (1992 and 1996). Topographical maps were used to verify
elevation (Alvsby-Tryck, AB).
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Fig. 1. Location of study sites (map adapted from Akerman and Malmstrom 1986). Valley site = V,

forest-limit = F, and treeline = T.

The valley site was located just north of the Abisko Research Station, within the
station’s 46-hector nature reserve. The valley site was approximately 150 m from the shore
of Lake Tornetrésk, at an elevation of 350-360 m a.s.l. The area was generally flat,
although strewn with large boulders, and had a relatively homogeneous tree density.

The forest-limit site was located on the southeast slope of Mt Slattatjakka near Mt
Njulla, at an elevation of 640-660 m a.s.l. The trees here were at a similar density to the
valley site, and formed the upper limit to the continuous forest below.

The forest creates a fairly well defined border around 680 m a.s.l., and above this is
the kampfzone, with birch trees existing as scattered individuals or in small clumps. The
trees here were noticeably smaller in stature, and often twisted or bent. In this zone, directly

above the forest-limit site, the treeline site was located (700-720 m a.s.l.).
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Due to the variation in tree density and land topography in each site, measured plots
were not established, but sampling was replicated laterally across each site. As the nature of
this study was not to evaluate stress in the population as a whole, but rather to look at
individual within-tree variation, care was taken to select trees that were representative of
the area, without visible influences from micro-climate variation (e.g. a large boulder

restricting growth on one side). Ten trees were sampled within each elevation zone site.

Leaf collection

Birch produce two types of shoots: long shoots (auxiblasts) and short shoots
(brachiblasts) (Kozlov et al. 1996). Short shoots flush early in the growing season and
develop with resources from the previous year. This is often the only type of shoot present
at high elevations (Lempa et al. 2000). Long shoots emerge from the short shoots, and grow
with resources obtained during the current year (Kozlowski and Clausen 1966). To insure
that all sample leaves had developed during the same period, only leaves from short shoots
were collected.

All sample leaves were collected between 8 and 20 of August, 2010. All samples
were collected by the same individual (K.S.), and the trees were short enough to allow
collection by hand.

On each of the ten trees selected from each site, 24 leaves were collected. Leaves
were collected based on relative location within the crown of the tree. Three location
variables were established: Height (Bottom, Middle, Top); Direction (North, East, South,
West); and Position (Outer, Inner) (Fig. 2).
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Fig. 2. Schematic diagram of leaf collection locations within the crown of an individual tree

Height treatments were selected by sampling the second branch from the bottom
(Bottom), the second branch from the top (Top), and visually estimating the middle section
of the crown (Middle). A compass was used to select the branches within each height zone
that most closely faced the cardinal directions (North, East, South, West). Within each of
these branches the second leaf from the tip (Outer), and the second leaf from the base of the
branch (Inner) was collected. This created 24 location combinations within each tree. One
leaf was collected from each location, on each of the 10 trees, within each elevation zone
(720 leaves total).

If a leaf was damaged to the extent that measurement would not be possible, it was
rejected and the next closest leaf to the location was selected. Each leaf was given a
specific location code and was pressed in the field between filter paper. The dried leaves
were mounted on sheets of paper and scanned into a computer as image files for

measurement.
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Measurement

Digital measurements (to the nearest 0.1 mm) using ImageJ 1.45 were taken of the
scanned leaf images at 400% of original size. All measurements were performed by the
same individual (K.S.).

For each leaf, the length was measured along the midrib from the base of the blade
to the apex, and the half-way point was noted. The left (L) and right (R) widths were
measured using the angle finder tool to create a 90-degree angle from the midrib. The
distance from the midrib to the leaf margin was measured on the left and the right sides at

the mid-point of the blade length (Fig. 3).

Fig. 3. Scanned Betula pudescens ssp. czerepanovii leaf showing left width (L)
and right width (R).

To check the reliability of the measurements, leaves from one tree in each elevation
zone (n=72) were remeasured 2 weeks after the original measurement date, without
reference to prior measurement. The images from this same subset of leaves were then
digitally flipped horizontally (mirror image) and measured a third time, to check for any

directional bias measurement errors. The signed difference between the right and the left
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side (L-R) was compared among the three measurements (original, remeasure, and mirror)
with a paired t-test. For all of the paired t-test combinations (remeasure vs. original (P =
0.4328), mirror vs. original (P = 0.6118), mirror vs. remeasure (P = 0.1707)) the results
were not significant. This suggests that measurement error is trivial, and can be ignored for

the purpose of this study.

Data Analysis

Since leaves grow under the active tissue model, which generates multiplicative
errors, the data must be log transformed before statistical analysis of fluctuating asymmetry
can be performed (Cowart & Graham 1999; Graham et al. 2003b). Log transformation also
corrects possible size-scaling (the variance of |L-R| increasing with increasing leaf size) that
can be problematic (Graham et al. 1998). Even though measurement errors appear to be
insignificant in this study, small measurement errors are normally distributed, and when
superimposed on the lognormal leaf growth values, can create a mixed distribution
(Graham et al. 2003b). However, averaging the replicates will diminish measurement error

by a predictable amount:

where 62 is the measurement error and n is the number of replicates (Wilsey et al. 1998;
Graham et al. 2003). By averaging the 10 replicates for each leaf location in this study, the

measurement error will decrease by 90%.

After log transformation, the data were normally distributed. A Shapiro-Wilk test
showed that the data are from the normal distribution (P = 0.6899).
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4. RESULTS

A nested ANOVA with the effects position within direction, direction within height,
and height within site was performed on the log-transformed FA data (|L-R|), followed by a
Tukey’s multiple range test. The following table (Table 1.) shows the results of the nested
ANOVA among the treatments.

Table 1. Results of ANOVAs of leaf fluctuating asymmetry (FA) among elevation site and within-
tree leaf position for B. pubescens spp. czerepanovii growing at the northern distribution limit.

Source of variation d.f. S.S. F P
Site 2 0.00134985 4.2057 0.0228*
Height(Site) 6 0.00105471 1.0954 0.3839
Direction(Height([Site]) 27 0.00401388 0.9264 0.5766
Position(Direction[Height{Site}]) 36 0.00577727 0.6611 0.7392

A significant difference was found between the elevation sites, but no significant
difference was found among the within-tree leaf locations. A Tukey HSD connected letters
report showed that the treeline site is significantly different (P <0.05) than the valley and
forest-limit sites. The following figures show the means for each variable with the P value

from a single level analysis.
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Fig. 4. Leaf fluctuating asymmetry (FA) at three different elevation sites for B. pubescens spp.
czerepanovii growing at the northern distribution limit.
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Fig. 5. Within- tree leaf fluctuating asymmetry (FA) with respect to height within the crown for B.
pubescens spp. czerepanovii growing at the northern distribution limit.
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Fig. 6. Within- tree leaf fluctuating asymmetry (FA) with respect to direction within the crown for
B. pubescens spp. czerepanovii growing at the northern distribution limit.
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Fig. 7. Within- tree leaf fluctuating asymmetry (FA) with respect to position within the crown for B.
pubescens spp. czerepanovii growing at the northern distribution limit.

The treeline site had significantly higher FA than the valley or the forest-limit site
(Fig. 4). A higher amount of FA was also found in leaves in the middle position (Fig. 5)
and in the west direction (Fig.6), although these values were not significant. Very little

variation was found between the outer and inner crown leaves (Fig. 7).
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5. DISCUSSION

Since plant growth is by accretion, and plants exhibit a relativity fixed orientation,
slight differences in the environment on one side can become magnified over time
(Freeman et al. 1993). Leaves in different parts of the crown of large plants experience
different environments, and it follows that leaves on different parts of a plant may vary in
developmental stability (Cowart & Graham 1999). In addition, the inherent plasticity that is
a characteristic of plants can cause asymmetry that has little to do with developmental noise
(Palmer 1996). For example, it is normal for trees to develop sun and shade leaves which,
although genetically identical, can vary widely in their phenotype (Freeman et al. 1993).
Thus, it is important in studies of fluctuating asymmetry (FA) in plants to ensure that such
microsite variation is not incorporated into the variance component attributed to
developmental stability (Freeman et al. 1993). If leaves are not selected carefully from
different parts of a plant, then differences among individual plants may reflect sampling

bias caused by within-plant variations in asymmetry (Cowart & Graham 1999).

Within plant variations in leaf FA have previously been found in a number of
different species. Both tobacco (Paxman 1956; Sakai & Shimamoto 1965) and the herb
Clarkia (Sherry & Lord 1996) have been shown to vary in FA values depending on the
height of the node within the plant from which the leaf sample was collected. Leaf FA
variation within trees has been studied in teak (Bagchi et al. 1989) and fig (Cowart &
Graham 1999). In both cases, it was found that leaf FA varied with regard to position

within the crown of the tree.

Although no research has previously been done on within tree variation of leaf FA
in mountain birch, differences in leaf tissue composition and leaf morphology have been
reported (Thorsson et al. 2007). Suomela & Ayres (1994) found a high degree of variation
in water content, specific weight, toughness, and nitrogen content in mountain birch leaves;

and for each of the traits measured, the within-tree variation was greater than the among-
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tree variation. Within-tree leaf variation has also been shown in many studies on herbivore
preferences for mountain birch foliage (Haukioja & Hanhiméki 1985; Ayres & Maclean
1987; Ayres et al. 1987; Karlsson & Nordell 1988; Haukioja et al. 1990; Senn et al. 1992;
Suomela et al. 1995; Elamo et al. 1999). It is clear that environmental heterogeneity
represents an extrinsic source of within-tree variation in mountain birch (Suomela & Ayres

1994).

In previous studies dealing with FA in mountain birch, leaves have either been
collected haphazardly from random locations in the crown of the tree (Kozlov et al 1996;
Wilsey et al. 1998; Martel et al 1999; Erdnen et al. 2009), or else selected from an arbitrary
location (e.g. second leaf from the base) (Valkama & Kozlov 2001; Kozlov 2003; Hagen et
al. 2008). No study previously has examined whether variation for FA exists within the

crown of the mountain birch.

This study did not find any variation in leaf FA at different locations within the tree
crown. Height, direction, or proximity to the stem does not seem to affect leaf FA in
mountain birch at the northern tree limit. There was a slightly higher amount of FA in the
leaves at the middle height position and in the western direction, but these differences were

not significant.

It could also be noted that previous studies of FA in mountain have used methods
that involve great assumptions as to the consistency of leaves within a tree. Some studies
have had sample sizes as small as two (Erdnen et al. 2009) or three (Wilsey & Saloniemi
1999) leaves per tree, and none of the previous studies sampled more than ten leaves per
tree. Some studies collected leaves from a combination of long and short shoots (Kozlov et
al 1996; Rautio et al. 2002), which means that the leaves developed during different periods
of growth (Kozlowski and Clausen 1966). I am also not aware of any other study that has
used digital measurements instead of a handheld ruler for the right (R) and left (L) leaf
width values. In addition to the ability to enlarge a digital image of a leaf, this technology
also allows error check for directional bias in measurement, which I do not believe has ever

been done in a FA analysis before.
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It is possible that within tree FA variation in birch may be more pronounced in trees
with more uniform crown formation. Many of the trees in this study, especially at the
treeline, did not have very well defined crowns. Branching was sporadic and often sparse.
With such a small range of possible leaf positions, all of the leaves within the tree were
probably exposed to similar environmental factors. This may not have induced enough
location specific stress influences to create variance in FA. In trees which lacked a well-
defined crown, there was also very little shelter provided by outer leaves to reduce the
stress on inner leaves, as was found in the study with fig trees (Cowart & Graham 1999).
Most of the trees also had many ramets, and Suomela & Ayrres (1994) found variations in
multiple leaf characteristics among ramets within mountain birch trees. It is possible that
leaf FA could also vary among ramets within a tree. Further research could be done to see

if variation in ramets affects FA in birch trees.

When comparing FA between birch growing at different elevation belts, this study
found the treeline site had significantly higher FA than either the forest-limit or the valley
site. This is consistent with previous studies (Wilsey et al. 1998; Hagen et al. 2008), which
also found that leaf FA increased with elevation in mountain birch. The present study did
not find a continuous increase in FA with elevation however, as the valley site was not

significantly different from the forest-limit site.

It is possible that the valley site, although lower in elevation, was still a relatively
high stress environment. The composition of the forest was similar at both the valley and
the forest-limit site, and trees were relatively the same size and at the same density. The
slight variation in elevation may not have been enough to cause a significant difference in
FA values. If the valley site had been located in a more protected, lower elevation area, it is
possible that a more clinal FA pattern would have emerged. However, this study was only
attempting to determine if a relationship exists between leaf location and FA within the

crown of mountain, and not comparing the possible effects of local environments.
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6. CONCLUSION

The treeline site had significantly higher fluctuating asymmetry (FA) than either the
forest-limit or the valley site. However, height, direction, or position within the crown had
no effect on leaf FA at any of the elevational levels. There was no variation in leaf FA with
respect to location within the crown of an individual tree. Therefore, for future studies of
FA in mountain birch, it does not seem to matter where the leaves are collected from within

the tree.
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APPENDIX

Fig. 8. Examples of typical birch trees (Betula
pubescens spp. czerepanovii ) from each
elevation zone location: A) Valley site, B)
Forest-limit site, C) Treeline site. Abisko,
Sweden. August, 2010.
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Fig. 9. Transition zone from forest-limit to treeline. Southeast slope of Mt Slattatjdkka,
Abisko, Sweden. August, 2010.

1

Fig. 10. Sample of birch (B. pubescens spp. czerepanovii ) leaves
collected from the Valley site. Abisko, Sweden. August, 2010.
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Table 2. Raw data of left and right leaf width

Site Height | Direction | Position | Left (cm) | Right (cm)
Forest-limit | Bottom | East Inner 1.62 1.28
Forest-limit | Bottom | East Inner 141 1.33
Forest-limit | Bottom | East Inner 1.43 1.43
Forest-limit | Bottom | East Inner 1.68 1.89
Forest-limit | Bottom | East Inner 1.68 1.52
Forest-limit | Bottom | East Inner 1.61 1.61
Forest-limit | Bottom | East Inner 1.68 2.12
Forest-limit | Bottom | East Inner 1.25 1.47
Forest-limit | Bottom | East Inner 1.77 1.56
Forest-limit | Bottom | East Inner 1.07 1.17
Forest-limit | Bottom | East Outer 2.11 1.95
Forest-limit | Bottom | East Outer 1.20 1.17
Forest-limit | Bottom | East Outer 1.47 1.56
Forest-limit | Bottom | East Outer 1.79 1.75
Forest-limit | Bottom | East Outer 1.77 1.70
Forest-limit | Bottom | East Outer 1.85 1.66
Forest-limit | Bottom | East Outer 2.05 2.19
Forest-limit | Bottom | East Outer 1.44 1.27
Forest-limit | Bottom | East Outer 2.05 2.09
Forest-limit | Bottom | East Outer 1.65 1.72
Forest-limit | Bottom | North Inner 1.72 1.74
Forest-limit | Bottom | North Inner 1.58 1.55
Forest-limit | Bottom | North Inner 1.57 1.50
Forest-limit | Bottom | North Inner 1.69 1.66
Forest-limit | Bottom | North Inner 1.48 1.35
Forest-limit | Bottom | North Inner 2.01 1.80
Forest-limit | Bottom | North Inner 1.45 1.29
Forest-limit | Bottom | North Inner 1.28 1.05
Forest-limit | Bottom | North Inner 1.81 1.65
Forest-limit | Bottom | North Inner 1.62 1.37
Forest-limit | Bottom | North Outer 1.61 1.58
Forest-limit | Bottom | North Outer 1.56 1.54
Forest-limit | Bottom | North Outer 1.86 1.60
Forest-limit | Bottom | North Outer 1.90 2.27
Forest-limit | Bottom | North Outer 1.85 1.73
Forest-limit | Bottom | North Outer 2.18 1.92
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Forest-limit | Bottom | North Outer 1.33 1.63
Forest-limit | Bottom | North Outer 1.72 1.56
Forest-limit | Bottom | North Outer 2.05 191
Forest-limit | Bottom | North Outer 1.63 1.76
Forest-limit | Bottom | South Inner 1.82 1.62
Forest-limit | Bottom | South Inner 1.29 1.30
Forest-limit | Bottom | South Inner 1.56 1.80
Forest-limit | Bottom | South Inner 1.26 1.42
Forest-limit | Bottom | South Inner 1.22 1.10
Forest-limit | Bottom | South Inner 1.96 2.06
Forest-limit | Bottom | South Inner 1.52 1.48
Forest-limit | Bottom | South Inner 1.58 1.50
Forest-limit | Bottom | South Inner 1.54 1.70
Forest-limit | Bottom | South Inner 1.37 1.34
Forest-limit | Bottom | South Outer 1.76 1.87
Forest-limit | Bottom | South Outer 0.86 0.84
Forest-limit | Bottom | South Outer 1.69 1.51
Forest-limit | Bottom | South Outer 2.05 1.75
Forest-limit | Bottom | South Outer 1.43 1.33
Forest-limit | Bottom | South Outer 1.89 1.97
Forest-limit | Bottom | South Outer 1.42 1.79
Forest-limit | Bottom | South Outer 1.42 1.46
Forest-limit | Bottom | South Outer 1.66 1.85
Forest-limit | Bottom | South Outer 1.63 1.64
Forest-limit | Bottom | West Inner 1.76 1.65
Forest-limit | Bottom | West Inner 1.15 1.06
Forest-limit | Bottom | West Inner 131 1.45
Forest-limit | Bottom | West Inner 1.79 1.78
Forest-limit | Bottom | West Inner 0.91 1.28
Forest-limit | Bottom | West Inner 1.65 1.33
Forest-limit | Bottom | West Inner 2.13 2.05
Forest-limit | Bottom | West Inner 1.37 1.27
Forest-limit | Bottom | West Inner 1.14 1.15
Forest-limit | Bottom | West Inner 1.93 1.78
Forest-limit | Bottom | West Outer 1.50 1.60
Forest-limit | Bottom | West Outer 1.14 0.83
Forest-limit | Bottom | West Outer 2.18 2.26
Forest-limit | Bottom | West Outer 1.09 1.14
Forest-limit | Bottom | West Outer 1.55 1.60
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Forest-limit | Bottom | West Outer 1.50 1.33
Forest-limit | Bottom | West Outer 1.46 1.53
Forest-limit | Bottom | West Outer 1.12 1.09
Forest-limit | Bottom | West Outer 1.83 1.83
Forest-limit | Bottom | West Outer 1.13 1.06
Forest-limit | Middle | East Inner 1.52 1.55
Forest-limit | Middle | East Inner 1.19 1.13
Forest-limit | Middle | East Inner 1.58 1.61
Forest-limit | Middle | East Inner 2.11 2.12
Forest-limit | Middle | East Inner 2.04 1.92
Forest-limit | Middle | East Inner 1.91 2.02
Forest-limit | Middle | East Inner 1.69 1.49
Forest-limit | Middle | East Inner 1.35 1.25
Forest-limit | Middle | East Inner 1.96 1.93
Forest-limit | Middle | East Inner 1.74 1.87
Forest-limit | Middle | East Outer 1.87 2.05
Forest-limit | Middle | East Outer 1.04 1.22
Forest-limit | Middle | East Outer 1.25 1.18
Forest-limit | Middle | East Outer 1.67 1.72
Forest-limit | Middle | East Outer 1.43 1.43
Forest-limit | Middle | East Outer 1.72 1.87
Forest-limit | Middle | East Outer 1.40 1.35
Forest-limit | Middle | East Outer 1.43 1.69
Forest-limit | Middle | East Outer 1.17 1.11
Forest-limit | Middle | East Outer 1.06 1.09
Forest-limit | Middle | North Inner 1.66 1.64
Forest-limit | Middle | North Inner 1.39 1.39
Forest-limit | Middle | North Inner 0.97 0.82
Forest-limit | Middle | North Inner 1.27 1.45
Forest-limit | Middle | North Inner 1.38 1.47
Forest-limit | Middle | North Inner 1.43 1.36
Forest-limit | Middle | North Inner 1.38 1.33
Forest-limit | Middle | North Inner 1.15 1.38
Forest-limit | Middle | North Inner 1.64 1.58
Forest-limit | Middle | North Inner 1.08 1.08
Forest-limit | Middle | North Outer 2.27 2.30
Forest-limit | Middle | North Outer 1.31 1.61
Forest-limit | Middle | North Outer 1.35 1.55
Forest-limit | Middle | North Outer 1.96 1.91
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Forest-limit | Middle | North Outer 1.22 1.55
Forest-limit | Middle | North Outer 2.37 2.12
Forest-limit | Middle | North Outer 1.18 1.13
Forest-limit | Middle | North Outer 0.78 0.73
Forest-limit | Middle | North Outer 1.19 1.04
Forest-limit | Middle | North Outer 1.62 1.43
Forest-limit | Middle | South Inner 2.24 1.92
Forest-limit | Middle | South Inner 1.47 1.54
Forest-limit | Middle | South Inner 1.78 1.84
Forest-limit | Middle | South Inner 2.06 1.73
Forest-limit | Middle | South Inner 1.07 1.01
Forest-limit | Middle | South Inner 2.02 1.88
Forest-limit | Middle | South Inner 1.47 1.74
Forest-limit | Middle | South Inner 1.64 1.45
Forest-limit | Middle | South Inner 1.40 1.41
Forest-limit | Middle | South Inner 1.67 1.45
Forest-limit | Middle | South Outer 1.95 2.02
Forest-limit | Middle | South Outer 1.04 1.33
Forest-limit | Middle | South Outer 1.20 1.26
Forest-limit | Middle | South Outer 1.55 1.44
Forest-limit | Middle | South Outer 1.30 1.36
Forest-limit | Middle | South Outer 1.17 1.24
Forest-limit | Middle | South Outer 1.16 1.33
Forest-limit | Middle | South Outer 1.37 1.22
Forest-limit | Middle | South Outer 1.42 1.37
Forest-limit | Middle | South Outer 1.23 1.36
Forest-limit | Middle | West Inner 1.20 1.65
Forest-limit | Middle | West Inner 1.41 1.57
Forest-limit | Middle | West Inner 1.50 1.71
Forest-limit | Middle | West Inner 1.56 1.35
Forest-limit | Middle | West Inner 1.73 1.56
Forest-limit | Middle | West Inner 1.26 1.54
Forest-limit | Middle | West Inner 1.81 1.94
Forest-limit | Middle | West Inner 1.37 1.39
Forest-limit | Middle | West Inner 1.24 1.51
Forest-limit | Middle | West Inner 1.85 1.67
Forest-limit | Middle | West Outer 2.05 1.72
Forest-limit | Middle | West Outer 1.08 0.90
Forest-limit | Middle | West Outer 1.31 1.40

48




Forest-limit | Middle | West Outer 1.81 1.70
Forest-limit | Middle | West Outer 1.29 0.98
Forest-limit | Middle | West Outer 1.26 1.08
Forest-limit | Middle | West Outer 1.26 1.35
Forest-limit | Middle | West Outer 1.28 1.31
Forest-limit | Middle | West Outer 1.21 1.12
Forest-limit | Middle | West Outer 1.58 1.77
Forest-limit | Top East Inner 1.54 1.38
Forest-limit | Top East Inner 1.68 1.75
Forest-limit | Top East Inner 1.75 1.73
Forest-limit | Top East Inner 1.98 1.75
Forest-limit | Top East Inner 1.64 1.43
Forest-limit | Top East Inner 1.73 1.77
Forest-limit | Top East Inner 1.46 1.43
Forest-limit | Top East Inner 1.43 1.41
Forest-limit | Top East Inner 1.33 1.29
Forest-limit | Top East Inner 1.64 1.62
Forest-limit | Top East Outer 1.33 1.38
Forest-limit | Top East Outer 0.99 0.84
Forest-limit | Top East Outer 1.13 1.38
Forest-limit | Top East Outer 1.97 1.75
Forest-limit | Top East Outer 1.38 1.35
Forest-limit | Top East Outer 1.00 1.11
Forest-limit | Top East Outer 1.47 1.38
Forest-limit | Top East Outer 1.13 1.07
Forest-limit | Top East Outer 1.41 1.37
Forest-limit | Top East Outer 1.49 1.48
Forest-limit | Top North Inner 1.73 1.71
Forest-limit | Top North Inner 1.18 1.06
Forest-limit | Top North Inner 1.53 1.52
Forest-limit | Top North Inner 2.23 2.00
Forest-limit | Top North Inner 0.77 0.93
Forest-limit | Top North Inner 1.58 1.73
Forest-limit | Top North Inner 1.28 1.21
Forest-limit | Top North Inner 1.64 1.53
Forest-limit | Top North Inner 1.70 1.35
Forest-limit | Top North Inner 1.81 1.79
Forest-limit | Top North Outer 1.14 1.14
Forest-limit | Top North Outer 1.50 1.47
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Forest-limit | Top North Outer 1.34 1.30
Forest-limit | Top North Outer 1.95 1.93
Forest-limit | Top North Outer 1.24 1.28
Forest-limit | Top North Outer 1.35 1.39
Forest-limit | Top North Outer 1.13 1.01
Forest-limit | Top North Outer 1.57 1.43
Forest-limit | Top North Outer 1.24 1.26
Forest-limit | Top North Outer 1.25 1.26
Forest-limit | Top South Inner 1.51 1.50
Forest-limit | Top South Inner 1.48 1.57
Forest-limit | Top South Inner 1.56 1.53
Forest-limit | Top South Inner 2.08 2.19
Forest-limit | Top South Inner 1.70 1.51
Forest-limit | Top South Inner 1.83 1.45
Forest-limit | Top South Inner 0.99 1.21
Forest-limit | Top South Inner 1.35 1.27
Forest-limit | Top South Inner 1.55 1.42
Forest-limit | Top South Inner 1.41 1.50
Forest-limit | Top South Outer 1.42 1.34
Forest-limit | Top South Outer 1.32 1.18
Forest-limit | Top South Outer 1.22 1.20
Forest-limit | Top South Outer 1.89 2.15
Forest-limit | Top South Outer 1.53 1.55
Forest-limit | Top South Outer 1.45 1.52
Forest-limit | Top South Outer 1.36 1.18
Forest-limit | Top South Outer 1.38 1.40
Forest-limit | Top South Outer 1.20 1.23
Forest-limit | Top South Outer 1.48 1.50
Forest-limit | Top West Inner 1.26 134
Forest-limit | Top West Inner 1.28 1.16
Forest-limit | Top West Inner 1.65 1.61
Forest-limit | Top West Inner 1.80 1.54
Forest-limit | Top West Inner 1.63 1.63
Forest-limit | Top West Inner 1.42 1.54
Forest-limit | Top West Inner 1.07 0.92
Forest-limit | Top West Inner 1.40 1.37
Forest-limit | Top West Inner 1.77 1.96
Forest-limit | Top West Inner 1.40 1.49
Forest-limit | Top West Outer 1.44 1.38
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Forest-limit | Top West Outer 1.22 1.16
Forest-limit | Top West Outer 1.50 1.59
Forest-limit | Top West Outer 1.74 2.08
Forest-limit | Top West Outer 1.47 1.39
Forest-limit | Top West Outer 2.05 1.82
Forest-limit | Top West Outer 1.37 1.51
Forest-limit | Top West Outer 0.81 0.94
Forest-limit | Top West Outer 1.17 1.36
Forest-limit | Top West Outer 0.89 1.13
Tree-line Bottom | East Inner 1.89 1.95
Tree-line Bottom | East Inner 1.15 1.14
Tree-line Bottom | East Inner 1.77 1.71
Tree-line Bottom | East Inner 1.47 1.34
Tree-line Bottom | East Inner 1.12 1.05
Tree-line Bottom | East Inner 1.07 0.94
Tree-line Bottom | East Inner 1.08 0.88
Tree-line Bottom | East Inner 1.29 1.26
Tree-line Bottom | East Inner 1.78 1.34
Tree-line Bottom | East Inner 1.23 1.17
Tree-line Bottom | East Outer 1.97 1.84
Tree-line Bottom | East Outer 0.85 1.02
Tree-line Bottom | East Outer 1.66 1.22
Tree-line Bottom | East Outer 1.98 1.98
Tree-line Bottom | East Outer 1.35 1.54
Tree-line Bottom | East Outer 1.35 1.65
Tree-line Bottom | East Outer 1.44 1.65
Tree-line Bottom | East Outer 1.52 1.44
Tree-line Bottom | East Outer 2.60 2.58
Tree-line Bottom | East Outer 0.90 1.02
Tree-line Bottom | North Inner 1.30 1.60
Tree-line Bottom | North Inner 1.28 1.23
Tree-line Bottom [ North Inner 1.34 1.41
Tree-line Bottom [ North Inner 1.32 1.79
Tree-line Bottom [ North Inner 1.21 1.14
Tree-line Bottom | North Inner 1.55 1.52
Tree-line Bottom [ North Inner 1.55 1.55
Tree-line Bottom [ North Inner 1.28 1.36
Tree-line Bottom | North Inner 1.71 1.61
Tree-line Bottom | North Inner 1.22 1.25
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Tree-line Bottom [ North Outer 2.34 2.32
Tree-line Bottom [ North Outer 1.66 1.65
Tree-line Bottom | North Outer 1.81 1.81
Tree-line Bottom [ North Outer 1.87 1.93
Tree-line Bottom [ North Outer 1.19 1.19
Tree-line Bottom [ North Outer 1.81 1.40
Tree-line Bottom | North Outer 1.50 1.42
Tree-line Bottom [ North Outer 1.17 1.21
Tree-line Bottom [ North Outer 1.76 1.36
Tree-line Bottom | North Outer 1.61 1.66
Tree-line Bottom | South Inner 1.95 1.80
Tree-line Bottom | South Inner 1.34 1.35
Tree-line Bottom | South Inner 1.32 1.32
Tree-line Bottom | South Inner 0.93 1.06
Tree-line Bottom | South Inner 1.85 141
Tree-line Bottom | South Inner 1.48 1.47
Tree-line Bottom | South Inner 1.49 1.51
Tree-line Bottom | South Inner 1.23 0.99
Tree-line Bottom | South Inner 0.89 0.87
Tree-line Bottom | South Inner 1.36 1.31
Tree-line Bottom [ South Outer 1.78 1.84
Tree-line Bottom | South Outer 1.26 1.10
Tree-line Bottom | South Outer 1.75 1.58
Tree-line Bottom | South Outer 2.04 2.12
Tree-line Bottom | South Outer 1.35 1.20
Tree-line Bottom | South Outer 1.52 1.77
Tree-line Bottom | South Outer 1.45 1.71
Tree-line Bottom | South Outer 1.61 1.47
Tree-line Bottom | South Outer 1.50 1.68
Tree-line Bottom | South Outer 1.27 1.19
Tree-line Bottom | West Inner 1.33 1.06
Tree-line Bottom | West Inner 1.78 1.67
Tree-line Bottom | West Inner 1.04 1.07
Tree-line Bottom | West Inner 0.88 1.13
Tree-line Bottom | West Inner 1.45 0.99
Tree-line Bottom | West Inner 2.17 1.94
Tree-line Bottom | West Inner 2.17 191
Tree-line Bottom | West Inner 1.43 1.36
Tree-line Bottom | West Inner 2.15 1.99
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Tree-line Bottom | West Inner 1.75 1.69
Tree-line Bottom [ West Outer 1.60 1.79
Tree-line Bottom | West Outer 1.18 1.13
Tree-line Bottom | West Outer 1.34 1.05
Tree-line Bottom | West Outer 2.20 2.19
Tree-line Bottom [ West Outer 1.45 1.56
Tree-line Bottom | West Outer 1.34 1.54
Tree-line Bottom | West Outer 1.33 1.57
Tree-line Bottom | West Outer 1.49 1.35
Tree-line Bottom [ West Outer 1.57 1.71
Tree-line Bottom | West Outer 1.21 1.14
Tree-line Middle [ East Inner 1.94 2.07
Tree-line Middle | East Inner 1.65 1.56
Tree-line Middle | East Inner 1.04 1.30
Tree-line Middle | East Inner 1.29 1.39
Tree-line Middle | East Inner 1.21 1.10
Tree-line Middle [ East Inner 1.68 1.68
Tree-line Middle | East Inner 1.59 1.61
Tree-line Middle | East Inner 1.34 1.38
Tree-line Middle | East Inner 0.95 1.40
Tree-line Middle [ East Inner 1.41 1.68
Tree-line Middle [ East Outer 2.20 2.47
Tree-line Middle [ East Outer 0.97 0.95
Tree-line Middle [ East Outer 1.13 1.39
Tree-line Middle [ East Outer 1.27 1.18
Tree-line Middle [ East Outer 1.36 1.44
Tree-line Middle | East Outer 1.71 1.68
Tree-line Middle | East Outer 1.41 1.70
Tree-line Middle [ East Outer 1.31 1.33
Tree-line Middle [ East Outer 1.00 1.02
Tree-line Middle [ East Outer 1.16 1.12
Tree-line Middle [ North Inner 2.19 2.16
Tree-line Middle [ North Inner 1.52 1.52
Tree-line Middle | North Inner 1.31 1.35
Tree-line Middle [ North Inner 2.25 2.27
Tree-line Middle [ North Inner 1.41 1.41
Tree-line Middle [ North Inner 1.72 1.58
Tree-line Middle | North Inner 1.74 1.54
Tree-line Middle [ North Inner 1.42 1.22
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Tree-line Middle [ North Inner 1.96 1.96
Tree-line Middle | North Inner 1.47 1.45
Tree-line Middle [ North Outer 1.75 1.81
Tree-line Middle [ North Outer 1.20 1.05
Tree-line Middle [ North Outer 1.31 1.54
Tree-line Middle | North Outer 2.27 2.25
Tree-line Middle [ North Outer 1.57 1.27
Tree-line Middle [ North Outer 1.87 2.01
Tree-line Middle [ North Outer 191 2.01
Tree-line Middle | North Outer 1.50 1.26
Tree-line Middle [ North Outer 1.60 1.84
Tree-line Middle [ North Outer 1.18 1.11
Tree-line Middle [ South Inner 1.59 1.63
Tree-line Middle [ South Inner 1.22 1.14
Tree-line Middle [ South Inner 1.44 1.23
Tree-line Middle [ South Inner 0.90 0.99
Tree-line Middle [ South Inner 0.91 0.99
Tree-line Middle | South Inner 1.24 1.19
Tree-line Middle [ South Inner 1.82 1.67
Tree-line Middle [ South Inner 1.11 1.09
Tree-line Middle [ South Inner 1.73 1.79
Tree-line Middle | South Inner 1.30 1.13
Tree-line Middle [ South Outer 1.84 1.65
Tree-line Middle [ South Outer 0.77 0.76
Tree-line Middle [ South Outer 1.67 1.59
Tree-line Middle [ South Outer 1.84 1.88
Tree-line Middle [ South Outer 1.54 1.25
Tree-line Middle [ South Outer 1.70 1.33
Tree-line Middle [ South Outer 1.34 1.61
Tree-line Middle [ South Outer 1.28 1.36
Tree-line Middle [ South Outer 1.64 1.72
Tree-line Middle [ South Outer 0.86 0.86
Tree-line Middle [ West Inner 1.86 1.69
Tree-line Middle | West Inner 1.72 1.71
Tree-line Middle [ West Inner 1.56 1.59
Tree-line Middle [ West Inner 1.56 1.39
Tree-line Middle [ West Inner 1.39 1.29
Tree-line Middle | West Inner 1.88 1.40
Tree-line Middle [ West Inner 1.87 1.39
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Tree-line Middle [ West Inner 1.39 1.29
Tree-line Middle | West Inner 1.41 1.44
Tree-line Middle [ West Inner 1.66 1.74
Tree-line Middle [ West Outer 1.41 1.41
Tree-line Middle [ West Outer 0.87 0.87
Tree-line Middle [ West Outer 1.61 1.55
Tree-line Middle [ West Outer 244 2.12
Tree-line Middle [ West Outer 1.34 1.43
Tree-line Middle [ West Outer 1.95 1.49
Tree-line Middle [ West Outer 1.88 1.43
Tree-line Middle [ West Outer 1.53 1.33
Tree-line Middle [ West Outer 1.68 1.62
Tree-line Middle [ West Outer 0.86 0.87
Tree-line Top East Inner 1.72 1.68
Tree-line Top East Inner 1.30 1.42
Tree-line Top East Inner 1.24 1.34
Tree-line Top East Inner 1.52 1.35
Tree-line Top East Inner 1.50 1.25
Tree-line Top East Inner 1.81 1.67
Tree-line Top East Inner 1.94 1.91
Tree-line Top East Inner 1.07 1.25
Tree-line Top East Inner 2.10 2.10
Tree-line Top East Inner 1.38 1.10
Tree-line Top East Outer 1.30 1.17
Tree-line Top East Outer 1.11 1.04
Tree-line Top East Outer 1.35 1.34
Tree-line Top East Outer 131 1.14
Tree-line Top East Outer 0.92 0.92
Tree-line Top East Outer 1.20 0.91
Tree-line Top East Outer 1.68 1.70
Tree-line Top East Outer 1.24 1.35
Tree-line Top East Outer 1.24 1.19
Tree-line Top East Outer 1.10 1.13
Tree-line Top North Inner 1.77 1.72
Tree-line Top North Inner 1.06 1.09
Tree-line Top North Inner 0.89 1.01
Tree-line Top North Inner 1.99 1.85
Tree-line Top North Inner 1.04 0.98
Tree-line Top North Inner 1.05 1.24
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Tree-line Top North Inner 1.64 1.72
Tree-line Top North Inner 1.15 1.11
Tree-line Top North Inner 1.07 1.17
Tree-line Top North Inner 0.95 0.84
Tree-line Top North Outer 1.52 1.45
Tree-line Top North Outer 134 1.32
Tree-line Top North Outer 1.11 1.12
Tree-line Top North Outer 1.62 1.34
Tree-line Top North Outer 0.96 0.91
Tree-line Top North Outer 1.20 1.17
Tree-line Top North Outer 1.67 1.29
Tree-line Top North Outer 1.12 1.05
Tree-line Top North Outer 1.37 1.40
Tree-line Top North Outer 1.04 0.88
Tree-line Top South Inner 1.75 1.68
Tree-line Top South Inner 1.46 1.52
Tree-line Top South Inner 1.16 1.01
Tree-line Top South Inner 1.86 2.04
Tree-line Top South Inner 1.17 1.45
Tree-line Top South Inner 1.50 1.31
Tree-line Top South Inner 1.42 1.35
Tree-line Top South Inner 1.37 1.39
Tree-line Top South Inner 1.76 1.65
Tree-line Top South Inner 1.75 1.40
Tree-line Top South Outer 1.69 1.48
Tree-line Top South Outer 1.11 1.07
Tree-line Top South Outer 1.48 1.26
Tree-line Top South Outer 1.51 1.30
Tree-line Top South Outer 1.15 1.03
Tree-line Top South Outer 1.26 1.25
Tree-line Top South Outer 1.68 1.35
Tree-line Top South Outer 1.09 0.97
Tree-line Top South Outer 1.26 1.16
Tree-line Top South Outer 1.21 1.15
Tree-line Top West Inner 1.68 1.66
Tree-line Top West Inner 0.94 0.91
Tree-line Top West Inner 0.92 0.93
Tree-line Top West Inner 1.64 1.51
Tree-line Top West Inner 1.14 1.00

56




Tree-line Top West Inner 1.44 1.40
Tree-line Top West Inner 1.05 1.16
Tree-line Top West Inner 1.34 1.18
Tree-line Top West Inner 1.79 1.59
Tree-line Top West Inner 0.99 1.11
Tree-line Top West Outer 1.95 1.77
Tree-line Top West Outer 1.18 1.13
Tree-line Top West Outer 0.78 0.97
Tree-line Top West Outer 2.09 2.09
Tree-line Top West Outer 1.40 1.44
Tree-line Top West Outer 1.30 1.28
Tree-line Top West Outer 1.69 1.29
Tree-line Top West Outer 1.35 1.26
Tree-line Top West Outer 1.75 1.44
Tree-line Top West Outer 0.89 0.85
Valley Bottom | East Inner 1.17 1.37
Valley Bottom | East Inner 1.34 1.25
Valley Bottom | East Inner 0.96 1.21
Valley Bottom | East Inner 1.50 1.66
Valley Bottom | East Inner 1.49 1.36
Valley Bottom | East Inner 1.61 1.64
Valley Bottom | East Inner 1.54 1.59
Valley Bottom | East Inner 1.59 1.42
Valley Bottom | East Inner 1.35 1.15
Valley Bottom | East Inner 1.79 2.13
Valley Bottom | East Outer 1.69 1.27
Valley Bottom | East Outer 1.31 1.40
Valley Bottom | East Outer 1.90 1.76
Valley Bottom | East Outer 1.63 1.61
Valley Bottom | East Outer 1.17 1.19
Valley Bottom | East Outer 1.66 1.64
Valley Bottom | East Outer 1.54 1.50
Valley Bottom | East Outer 1.37 1.40
Valley Bottom | East Outer 1.07 1.18
Valley Bottom | East Outer 0.93 0.83
Valley Bottom | North Inner 1.81 1.70
Valley Bottom | North Inner 1.26 1.33
Valley Bottom | North Inner 141 1.55
Valley Bottom | North Inner 1.56 1.85
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Valley Bottom | North Inner 2.09 1.96
Valley Bottom | North Inner 1.36 1.20
Valley Bottom | North Inner 0.95 0.89
Valley Bottom | North Inner 1.53 1.49
Valley Bottom | North Inner 1.29 1.37
Valley Bottom | North Inner 1.86 1.79
Valley Bottom | North Outer 1.39 1.41
Valley Bottom | North Outer 1.18 1.18
Valley Bottom | North Outer 1.39 1.79
Valley Bottom | North Outer 1.51 1.71
Valley Bottom | North Outer 1.46 1.41
Valley Bottom | North Outer 1.75 1.77
Valley Bottom | North Outer 1.45 1.33
Valley Bottom | North Outer 1.47 1.39
Valley Bottom | North Outer 1.70 1.56
Valley Bottom | North Outer 0.83 0.67
Valley Bottom | South Inner 1.44 1.47
Valley Bottom | South Inner 1.78 1.92
Valley Bottom | South Inner 1.25 1.17
Valley Bottom | South Inner 1.42 1.45
Valley Bottom | South Inner 1.68 1.63
Valley Bottom | South Inner 1.56 1.67
Valley Bottom | South Inner 0.98 0.87
Valley Bottom | South Inner 1.35 1.00
Valley Bottom | South Inner 1.67 1.43
Valley Bottom | South Inner 2.23 1.84
Valley Bottom | South Outer 0.96 1.38
Valley Bottom | South Outer 1.24 1.26
Valley Bottom | South Outer 1.56 1.65
Valley Bottom | South Outer 1.92 1.67
Valley Bottom | South Outer 1.57 1.30
Valley Bottom | South Outer 1.70 1.51
Valley Bottom | South Outer 1.29 1.17
Valley Bottom | South Outer 1.29 1.19
Valley Bottom | South Outer 1.62 1.54
Valley Bottom | South Outer 1.50 1.31
Valley Bottom | West Inner 1.44 1.43
Valley Bottom | West Inner 1.22 1.21
Valley Bottom | West Inner 1.42 1.39
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Valley Bottom | West Inner 1.26 1.21
Valley Bottom | West Inner 1.07 1.02
Valley Bottom | West Inner 1.52 1.41
Valley Bottom | West Inner 1.09 1.01
Valley Bottom | West Inner 1.45 1.56
Valley Bottom | West Inner 1.36 1.21
Valley Bottom | West Inner 1.39 1.43
Valley Bottom | West Outer 1.91 1.65
Valley Bottom | West Outer 1.44 1.51
Valley Bottom | West Outer 1.34 1.29
Valley Bottom | West Outer 1.68 1.79
Valley Bottom | West Outer 1.25 1.26
Valley Bottom | West Outer 1.08 1.08
Valley Bottom | West Outer 1.27 1.11
Valley Bottom | West Outer 1.09 1.14
Valley Bottom | West Outer 1.56 1.45
Valley Bottom | West Outer 0.98 1.01
Valley Middle | East Inner 1.95 1.68
Valley Middle | East Inner 1.25 1.06
Valley Middle | East Inner 1.85 1.70
Valley Middle | East Inner 1.45 1.71
Valley Middle | East Inner 1.83 1.80
Valley Middle | East Inner 1.04 1.10
Valley Middle | East Inner 1.36 1.33
Valley Middle | East Inner 1.05 1.19
Valley Middle | East Inner 1.56 1.54
Valley Middle | East Inner 1.80 1.68
Valley Middle | East Outer 1.45 1.22
Valley Middle | East Outer 1.31 1.31
Valley Middle | East Outer 1.94 1.96
Valley Middle | East Outer 1.35 1.41
Valley Middle | East Outer 0.83 0.86
Valley Middle | East Outer 1.40 1.33
Valley Middle | East Outer 1.27 1.20
Valley Middle | East Outer 1.21 1.33
Valley Middle | East Outer 1.51 1.55
Valley Middle | East Outer 1.47 1.46
Valley Middle | North Inner 2.04 1.96
Valley Middle | North Inner 1.55 1.46
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Valley Middle | North Inner 1.67 1.61
Valley Middle | North Inner 1.64 1.50
Valley Middle | North Inner 1.71 1.70
Valley Middle | North Inner 1.57 1.55
Valley Middle | North Inner 0.92 0.91
Valley Middle | North Inner 1.29 131
Valley Middle | North Inner 1.24 1.09
Valley Middle | North Inner 1.21 1.16
Valley Middle | North Outer 1.23 1.20
Valley Middle | North Outer 1.39 1.21
Valley Middle | North Outer 1.55 1.51
Valley Middle | North Outer 1.59 1.69
Valley Middle | North Outer 1.30 1.15
Valley Middle | North Outer 1.41 1.47
Valley Middle | North Outer 1.38 1.37
Valley Middle | North Outer 1.45 1.51
Valley Middle | North Outer 1.54 1.58
Valley Middle | North Outer 1.27 1.25
Valley Middle | South Inner 1.78 1.58
Valley Middle | South Inner 1.37 1.23
Valley Middle | South Inner 1.36 1.40
Valley Middle | South Inner 1.99 2.03
Valley Middle | South Inner 1.37 1.31
Valley Middle | South Inner 1.67 1.68
Valley Middle | South Inner 1.26 1.17
Valley Middle | South Inner 1.51 1.40
Valley Middle | South Inner 1.50 1.34
Valley Middle | South Inner 1.71 1.48
Valley Middle | South Outer 1.46 1.71
Valley Middle | South Outer 1.83 1.78
Valley Middle | South Outer 1.80 1.70
Valley Middle | South Outer 1.53 1.57
Valley Middle | South Outer 1.08 1.12
Valley Middle | South Outer 1.99 1.92
Valley Middle | South Outer 1.56 1.23
Valley Middle | South Outer 1.38 1.30
Valley Middle | South Outer 1.23 1.35
Valley Middle | South Outer 1.63 1.60
Valley Middle | West Inner 1.88 1.82
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Valley Middle | West Inner 1.44 1.72
Valley Middle | West Inner 1.19 1.19
Valley Middle | West Inner 1.90 1.86
Valley Middle | West Inner 1.38 1.27
Valley Middle | West Inner 1.66 1.81
Valley Middle | West Inner 1.21 1.13
Valley Middle | West Inner 1.66 1.80
Valley Middle | West Inner 1.04 1.32
Valley Middle | West Inner 1.12 1.09
Valley Middle | West Outer 1.31 1.31
Valley Middle | West Outer 1.33 1.08
Valley Middle | West Outer 1.60 1.49
Valley Middle | West Outer 1.61 1.69
Valley Middle | West Outer 1.40 1.34
Valley Middle | West Outer 1.30 1.17
Valley Middle | West Outer 1.40 1.29
Valley Middle | West Outer 1.27 1.33
Valley Middle | West Outer 1.54 1.44
Valley Middle | West Outer 1.31 1.34
Valley Top East Inner 1.31 1.14
Valley Top East Inner 1.41 1.43
Valley Top East Inner 1.29 1.37
Valley Top East Inner 1.34 1.53
Valley Top East Inner 1.60 1.54
Valley Top East Inner 1.31 1.07
Valley Top East Inner 0.93 1.13
Valley Top East Inner 1.78 1.46
Valley Top East Inner 1.56 1.41
Valley Top East Inner 1.75 1.76
Valley Top East Outer 1.29 1.30
Valley Top East Outer 1.35 1.31
Valley Top East Outer 1.66 1.64
Valley Top East Outer 1.28 1.45
Valley Top East Outer 1.21 1.24
Valley Top East Outer 1.48 1.57
Valley Top East Outer 1.17 1.11
Valley Top East Outer 1.50 1.43
Valley Top East Outer 1.20 0.92
Valley Top East Outer 1.55 1.59
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Valley Top North Inner 1.32 1.16
Valley Top North Inner 1.37 1.43
Valley Top North Inner 1.30 1.20
Valley Top North Inner 1.10 1.20
Valley Top North Inner 1.57 1.42
Valley Top North Inner 1.51 1.34
Valley Top North Inner 1.19 1.15
Valley Top North Inner 1.27 1.26
Valley Top North Inner 1.37 1.26
Valley Top North Inner 1.77 1.52
Valley Top North Outer 1.06 1.16
Valley Top North Outer 0.98 1.03
Valley Top North Outer 1.48 1.47
Valley Top North Outer 1.61 1.36
Valley Top North Outer 0.97 0.89
Valley Top North Outer 1.29 1.43
Valley Top North Outer 1.04 1.14
Valley Top North Outer 0.96 1.12
Valley Top North Outer 1.48 1.16
Valley Top North Outer 1.38 1.50
Valley Top South Inner 1.41 1.33
Valley Top South Inner 1.13 1.14
Valley Top South Inner 1.71 1.69
Valley Top South Inner 1.45 1.30
Valley Top South Inner 1.22 1.30
Valley Top South Inner 1.33 1.41
Valley Top South Inner 0.96 0.96
Valley Top South Inner 1.02 1.08
Valley Top South Inner 1.09 1.27
Valley Top South Inner 1.17 1.10
Valley Top South Outer 1.18 1.10
Valley Top South Outer 1.21 1.32
Valley Top South Outer 1.87 1.72
Valley Top South Outer 1.57 1.64
Valley Top South Outer 1.24 1.26
Valley Top South Outer 1.56 1.49
Valley Top South Outer 1.33 1.32
Valley Top South Outer 1.14 1.10
Valley Top South Outer 1.09 0.99
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Valley Top South Outer 1.31 1.36
Valley Top West Inner 1.37 1.48
Valley Top West Inner 1.13 1.21
Valley Top West Inner 1.24 1.37
Valley Top West Inner 1.07 1.19
Valley Top West Inner 1.26 1.33
Valley Top West Inner 1.03 1.24
Valley Top West Inner 1.03 0.89
Valley Top West Inner 1.23 1.25
Valley Top West Inner 1.23 1.33
Valley Top West Inner 1.52 1.46
Valley Top West Outer 1.40 1.39
Valley Top West Outer 1.54 1.32
Valley Top West Outer 1.37 1.41
Valley Top West Outer 1.39 1.31
Valley Top West Outer 1.44 1.56
Valley Top West Outer 1.52 1.60
Valley Top West Outer 1.21 1.10
Valley Top West Outer 0.95 0.99
Valley Top West Outer 1.08 1.20
Valley Top West Outer 1.75 1.71
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