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Abstract

Stump biomass  is energy rich and stump harvesting for use as fuel become more and more

interesting in Sweden.  Swedish Forest Agency (2009) has estimated that stump harvesting in

Sweden would respond to an annual energy supply of 57 TWh/year. However, stump has not

been recognized as a bioenergy resource in Sweden. Suitable methods for pre-treatment of

stump are probably of great importance to make it accepted as fuel. It is therefore rewarding

to carry out an investigation in this area for stump.

This report represents results from a diploma project, which was aimed to develop a fixed bed

reactor for experimental study of biomass torrefaction, followed by TG analysis and kinetic

modelling employing Ozawa method and different kinetic models including one-step and

three-pseudo-component models. The focus was on Norway spruce stump. Two other types of

biomass, poplar and fuel tree chips were also included in the study for comparison.

The study has demonstrated that fuel properties, including heating values and grindability of

the investigated biomasses, were improved by torrefaction. The heating rate affects the

thermal decomposition process. In addition, SEM analysis indicated that the wood surface

structure was broken and destroyed by torrefaction process. Activation energy of untreated

and torrefied biomass were determined, being in good agreement with data in the literature.

Among the kinetic models tested, three-pseudo-components model with reaction order n ≠ 1

appears to be the best for simulating pyrolysis of untreated and torrefied biomass.





Sammanfattning 

Biomassa, som är en förnyelsebar energikälla, är CO2-neutral. Till en viss del kan 

fossila bränslen ersättas med denna energikälla och därmed minska CO2-utsläppen. 

Bränslen från biomassa har dock, jämfört med fossila bränslen, lägre 

bränslekvalitetsegenskaper såsom t.ex. högre fukthalt, lägre värmevärde och sämre 

sönderdelningsbarhet. För att förbättra kvalitetsegenskaperna på rå biomassa kan 

torrefiering användas som en förbehandlingsteknik. Torrefiering är en termisk 

nedbrytningsprocess och kallas också för en mild pyrolysprocess, vilket innebär att 

reaktionstemperaturen är relativt låg (från 200oC till 300oC) under den ca 30 minuter 

långa reaktionstiden, som sker under inert atmosfär. Torrefieringsprocessen förbättrar 

den råa biomassans kvalitet, minskar kostnaderna för transporter av biomassa samt gör 

det enklare att lagra biomassa under längre tidsperioder.  

 

Stubbar är energirika och intresset för att använda dessa som bränsle har ökat under 

senare år. Skogsstyrelsen (2009) har uppskattat att stubbskörd skulle kunna ge en årlig 

energitillförsel på 20,7 TWh då hänsyn även tas för gällande miljörestriktionen och 

ekonomiska intressen. Tyvärr har stubbar ännu inte erkänts som en bioenergiresurs pga 

att miljökonsekvenserna med storskalig stubbskörd inte är fastställda. Ur ett 

bränslekvalitetsperspektiv är lämpliga metoder för förbehandling av stubbar av stor 

betydelse för att öka acceptansen, då kvaliteten på detta sortiment är mycket varierande. 

På grund av detta är det givande att genomföra en undersökning inom detta område för 

stubbar. 
 

I detta examensarbete presenteras resultat som syftar till utveckling av en 

fastbäddsreaktor för experimentell studie av torrefiering av biomassa. Den torrefierade 

biomassan har därefter även studerats genom, termogravimetrisk (TG) analys, kinetisk 

modellering med Ozawa metod och olika kinetiska modeller såsom one-step och 

three-pseudo-component modeller. Huvuddelen av biomassaproverna utgjordes av 

granstubbar (Norway spruce), men även två andra typer av biomassa, stamved av 

poppel och bränsle av träflis har studerats.  



 

Studien har visat att bränslets egenskaper, inklusive värmevärde och 

sönderdelningsbarhet, hos de undersökta biomassorna har förbättrats genom 

torrefieringsprocessen. Det visades också att uppvärmningshastigeten påverkar den 

termiska nedbrytningsprocessen. Dessutom visade SEM-analys att ytstrukturen på trä 

bröts och förstördes av torrefieringsprocessen. Aktiveringsenergi av obehandlad och 

torrefierad biomassa bestämdes vilken väl stämde överens med data från litteraturen. 

Efter tester med olika kinetiska modeller, visade det sig att three-pesudo-components 

modellen med reaktionsordning n≠1 ger bäst resultat för simulering av pyrolys av 

obehandlad och torrefierad biomassa. 



Nomenclature

P      Poplar FTC Fuel Tree Chips

S      spruce stump MC  Moister content (%)

AC Ash content (%) HV  Heating Value (MJ/kg)

Etorrefied the Energy of torrefied biomass Euntreated Energy of untreated biomass

mtorrefied the mass of torrefied biomass muntreated the initial mass of untreated
biomass

Ed Energy desification

TGA Thermogravimetric analyzer SEM scanning electric microscope

TGA-curve: the thermogravimetric analysis which presents the change of conversion with
temperature

DTG-curve: the derivative thermogravimetic analysis which presents the decomposition rate
during pyrolysis

Ea    activation energy (kJ/mol)                                         A      pre-exponential factor (s-1)

α      conversion β       heating rate(K/s)

Mi the initial mass M∞ the residual mass

Mt the mass of the sample at time t n      reaction order

R     gas constant (8.314 J/mol/K) T     temperature (K or oC)

t       time (s) C    dimensionless factor
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1 Introduction

The use of biomass for heat and power generation contribute is CO2-neutral, considering that

CO2 emission from combustion of biomass is just equal to that taken up by the plant during its

growing. However, biomass fuel has inferior fuel properties, including for example low bulk

density, high moisture content and low heating value compared to fossil fuels. These make

bioenergy alternative technically difficult and economically less competitive. It is therefore a

common practice to apply pre-treatment for biomass fuel.

According to the report made by Erik A. (2010) [8] the use of Norway spruce stump as fuel

resource become more and more interesting in Sweden. It was reported that stump is energy

rich and the Swedish Forest Agency (2009) has estimated that stump harvesting would

respond to an annual energy supply of 57 TWh/year in Sweden. However, stump has not been

recognized as a bioenergy resource. Suitable methods for pre-treatment of stump are probably

of great importance to make it accepted as fuel. It is therefore rewarding to carry out an

investigation in this area for stump.

This project was aimed to develop a fixed bed reactor for experimental study of biomass

torrefaction, followed by thermogravity analysis and kinetic modelling. The focus was on

Norway spruce stump. Two other types of biomass, poplar and Fuel Tree Chips (logging

residues) were also included in the study for comparison. Poplar sample was taken from

Helendala in southern Sweden [10]. Fuel Tree Chips (FTC) were received from Vattenfall AB

which collected from the local Swedish sawmill industry and paper industry. The FTC was

fresh and consisted of different types of clean chips with dimension of 20x40x3 (mm)

approximately. [11]
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2. Background

2.1 Biomass fuel

Using renewable energy resources is increasingly necessary to solve the world energy demand

and reduce the greenhouse emission. Biomass as one of the renewable energy resources can

be utilized as fuel for energy production. Currently, the definition of biomass fuel is very

broad, but usually the major type of biomass fuel could consider as forest biomass, residues of

the forest industries, recycled wood, energy crops.

Hemicelluloses, celluloses and lignin are the main components of lignocellulosic plant

biomass. Hemicelluloses are formed by chain of mono-sugars, mainly xylose and comprise 25%

to 35% of the dry weight of plant biomass [8,12]. Cellulose is a polymer composed of glucose

chain and constitutes about 40% to 50% of woody plant mass [8,12]. Lignin is a

phenylpropane polymer that gives a very strong strength to hold together the cellulose and

hemicelluloses components of woody biomass. It makes up 15% to 25% of the weight of

wood biomass. [8,12]

Compared with coal, untreated biomass fuels have high moisture contents, relatively low

heating values, inhomogeneous and relatively low bulk density, and poor grindability. Due to

these inferior fuel properties, using raw woody biomass material as a fuel entails many

problems for combustion and gasification. During gasification for example hemicelluloses in

biomass produces tar which may consequently poison catalyst used for Fischer-Tropsch (FT)

synthesis of liquid fuel. In addition, the low bulk density of biomass makes it expensive to

transport and difficult to feed into utilisation system, considering the level of atomization of

the hydraulic feeding systems. For these reasons, pre-treatments are usually applied for

biomass in order to improve its fuel properties for combustion and co-firing with coal.

Torrefaction is one of emerging technology for this purpose, which is believed to have a high

level of feasibility, both technically and economically.[14-17]

2.2 Biomass torrefaction for energy application

Torrefaction is a thermochemical treatment of biomass and may be defined as a mild

pyrolysis process, which involves heating of the feedstock at moderate temperatures under an
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inert atmosphere [2,3]. Figure 1 shows a typical torrefaction batch process. The total

torrefaction process consists of drying, torrefaction and cooling. At beginning of the process

the moisture in the biomass is released by drying. When the temperature of biomass ranges

between 200oC to 300oC, only in this temperature range, the torrefaction decomposition

reactions occur.

Three time temperature phases are recognised in torrefaction window. The reaction time of

torrefaction is defined as the sum of heating time from 200oC to desired temperature plus

reaction time /holding time at desired torrefaction temperature (ttor,h + ttor ) and the duration of

the torrefaction stage is around 30 minutes. After torrefaction, the last stage is cooling the

biomass from 200oC to the ambient temperature.

Figure 1: Heating stage of drying biomass during a typical torrefaction batch process.[2]
Explanation: Ttor: Torrefaction temperature. th: heating time to drying. tdry: drying time. th.int: intermediate heating

time to torrefaction. ttor : Reaction time/holding time at desired torrefaction temperature (Ttor). ttor.h: Heating time

from 200oC to desired temperature Ttor. ttor.c: Cooling time from Ttor to 200oC. tc: cooling time to ambient

temperature.

Figure 2 shows a decomposition regime of biomass torrefaction [2,3]. During torrefaction of

lignocellulosic biomass, mainly hemicelluloses are decomposed, corresponding to the scarlet

colour and orange colour regions. Lignin and cellulose may also be partly decomposed at
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relatively higher temperatures within the temperature range for biomass torrefaction, but to a

less degree as showed in Figure 2.

Figure 2: Decomposition regimes are based on Koukios et, Al. 1982 [4]. The Scarlet colour

region (E): carbonisation and extensive devolatilization. The orange colour region (D): limited devolatilization

and carbonisation. The yellow colour region(C): depolymerisation commences

Similar to pyrolysis, the chemical structure of plant biomass is changed during the

torrefaction. Biomass torrefaction results in products found in three phases: solid, liquid, and

gas. The solid is the main product of biomass torrefaction and also called torrefied biomass

which has very low moisture contents and high caloric values. By cooling the exhaust gas

from biomass torrefaction, liquid of yellowish colour is obtained from condensable gases.

Non-condensable gases leave the process in the gas phase, which include carbon monoxide,

carbon dioxide and little amount of methane.[2-4]

Figure 3 explains the concept of energy densification of biomass fuel by torrefaction. [2]

Typically, 70% of the feed mass is retained after torrefaction as solid products (torrefied

biomass) which contained 90% of initial energy. The rest of 30% of the feed mass is

converted to the gas products, but the energy contains only 10% of the initial energy. The

energy densification Ed could be used to prove the energy density of torrefied solid product is
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increased by torrefaction; in this case the energy density of torrefied biomass increases by

factor 1.3.

Figure 3: Typical mass and energy balance of torrefaction process [2]

Energy densification could be expressed as Equation (1)

torr

torr
d M

E 
 (1)

whereηtorr: energy of the torrefied biomass in percentage of initial energy

Mtorr : mass of torrefied biomass in percentage of feed biomass

Energy of the torrefied biomass in percentage of initial energy could express as Equation (2)

untreated

torrified
torr E

E
 (2)

where Etorrefied is the energy of torrefied biomass and Euntreated is the energy of feed biomass

which could be calculated by Equations (3) and (4)

torrefiedtorrefiedtorrefied mHHVE * (3)

untreateduntreateduntreated mHHVE * (4)

where HHVuntreated is high heating value of untreated biomass and HHVtorrefied is high heating

value of torrefied biomass. Both are determined by bomb calorimeter 6300 Oxygen.

The mass of torrefied biomass in percentage of initial mass could express as Equation (5):
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untreated

torrefied
torr m

m
M  (5)
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2.3 Determination of activation energy (Ozawa method)

Ozawa method is one of the several methods for extraction of the kinetic parameters from

TGA data. The advantage is that it is a very simple method to calculate the activation energy

without knowing the information about the reaction mechanism, but it can be only used for

one-step reaction. [31]

Basically, the function of the rate of decomposition during a reaction can be expressed as

following as equation (6), which depends on the temperature and conversion [31-34]: e.

= ( , ) (6)

where t is the time. T is absolute temperature and α is conversion.

The iso-conversional method [18-21,23,24] is used and assumed that the function in equation

(6) can be rewrite by two functions, which are independent of each other.

= ( ) ∗ ( ) (7)

where the first function ( ) is dependent on the absolute temperature and the second

function ( ) is dependent on the conversion α.

The first function ( ) in equation (7) can be expressed by Arrhenius equation:

( ) = (8)

where Ea is the activation energy. A is the pre-exponential factor. R stands for the gas

constant and T is the absolute temperature.

The second function ( ) in equation (7) can be expressed by various possibilities. For this

study the form in ( ) is used as following Equation (9)

( ) = (1 − ) (9)



14

where f (α) is conversion function and depends on the reaction mechanism, n is reaction

order and α is the conversion, define as

= ( )( ) (10)

Combining (7) and (8) gives

= ∗ ( ) (11)

Equation (11) can be rewritten as

( ) = ∗ (12)

Equation (12) can be solved by integrating its both sides

∫ ( ) = ∫ (− ) (13)

where α0 is the value of α at t = t0

If the heating rate β is constant, the relation between temperature and time could be written as

= + → = → = (14)

The change in α is given by equation (14)

∫ ( ) = ∫ − (15)

where T0 is the value of T at t=t0

The left side in equation (13) can be rewritten
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( ) = ∫ ( ) = ∫ − (16)

The rate of reaction is very low at low temperature which means the lower limit of the

temperature may be ignored if T0 is well below the temperature at which the rate of reaction

becomes measurable. [31,35,36]

The right side in equation (13) can be rewritten as

∫ − = ∫ − (17)

The value of the right side in Equation (17) can be expressed by C. Dolye’s linear

approximations [36] as the following function (18)

= ∫ − (18)

So if the Ea/RT is bigger than 20[36], the can be approximated by the following

formulalog p ≅ −2,315 − 0,4567 (19)

Combining Equations (16) and (18) gives

( ) = ∫ ( ) = ∫ − = (20)

By the integral iso-conversional method and Dolye’s linear approximations Equation (20) can

be rewritten

log F( ) ≅ log − log −2,315 − 0,4567 (21)

The Ozawa proved if the value of α and single value of f(α) are given, the left side of equation

(21)  which is F(α) will give a constant value which does not depend on the heating rate. [27]
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Thus from Equation (16) gives

( ) = ∫ ( ) = ∫ − => ( ) = ∫ ( ) = ∫ − = 1
log F( ) ≅ 0

Then Equation (21) can be rewritten to obtain Equation (22)

log β ≅ log −2,315 − 0,4567 (22)

It has been proved that for a constant degree of conversion α. Ea is related to the heating rate

β and the temperature by Equation (23): [31]

− log − 0,4567 = − log − 0,4567 (23)

According to Equation (23), a plot of log versus T −1 gives a straight line, whose slope and

intercept can be used to determine Ea at any given conversion α. Then it can calculate the pre-

exponential factor A from the equation (22).

2.4 Single reaction one step model

In order to calculate the reaction order n for one step model the rate of conversion can be

described by Equation (24) which is resulted from combination of Equation (7) (8) and (9).

= ∗ ( ) = ∗ (1 − ) (24)

If the activation energy Ea is determined using Ozawa method, the reaction order n and pre-

exponential factor A can be calculated by non-linear least square fitting. [19]
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2.5 Model with independent parallel reactions (Three-pseudo-

components model)

Alternatively, three-pseudo-components models developed by Varhegyi and co-workers

[18,38,39], can be used to extract kinetic parameters from TGA data. This model may offer

better fit to the experimental data, considering that plant biomass is composed of three main

components. Hemicelluloses, lignin and cellulose, with different reactivity for pyrolysis and

thus more than one reaction may be involved. According this model the pyrolysis rate can be

determined by Equation (25).

)()exp(
3

1

3

1
i

i

i i
ii

i f
RT
EaAc

dt
d

dt
d


 

 

(25)

Depend on the reaction order n. the following kinetic equations can be used for each pseudo- -

-component

   
)27(1,1)exp(1*)exp(*

)1(*)exp(
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The unknown parameters of the model such as activation energy Eai, pre-exponential factor Ai,

reaction order ni and dimensionless factor Ci are determined by the evaluation of the

experimental data by non-linear least square fitting.
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3 Experimental

3.1 Equipment setup for biomass torrefaction
Fig 4 represents the experimental setup used for biomass torrefaction in this study, which

includes a tubular reactor placed in an electric muffle furnace, a nitrogen gas supply system

with a heating element for gas preheating, and a condenser connected to outlet of the reactor.

The reactor (figure 5) made of stainless steel has been designed to fit the existing furnace,

Nabertherm LH 30/12, which can be operated within a temperature range of 30-3000oC, the

main body of the reactor about 400mm long, consisting of two cylinders which are assembled

together by a sealed mechanism on the top end as shown in Fig. 5a. The diameter of outer

cylinder tube (red colour part with a closed end at the bottom) is 70mm and the inner cylinder

tube (Fig. 5a green colour part with an opened end at the bottom) diameter is 50mm. A

removable sample cup (Fig. 5a. blue colour part) with a fixed bed (stainless steel grind) at the

bottom is mounted to the lower end of the inner cylinder as can also be seen in Fig. 2b. A

thermocouple (Type K) equipped with a digital thermometer was used to monitor the samples

temperature during torrefaction process, which is controlled by the furnace temperature

through the control panel unit integrated to the furnace. The thermocouple is introduced into

the reactor from the top as shown in Figure 4 and Fig 5, and measures temperature in the

middle of the sample cup.
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(a)

(b)

Figure 4: The experimental set-up for biomass torrefaction (a: schematic view; b: lab view)

Cooling water
in

Cooling water
out

Exhaust
gas

K- Type Thermocouple
and Digital Thermometer

Control panel of the
furnace, Tf

Electric furnace

N2 gas
bottle
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(a) (b)

Figure 5: the reactor design (a: schematic reactor view; b: lab view)

3.2. Torrefaction procedure

About 8 grams of biomass sample (pre-dried at 105oC for 24 hours) was used for each

torrefaction experiment.  The weight of sample was first balanced and placed in the sample

cup. Then the cup was mounted to the inner cylinder of the reactor. The reactor assembly

completed with the outer cylinder was then connected to the inlet nitrogen gas and the

condenser. Nitrogen gas (Nitrogen 4.5 from Strandmollen) was blown through the reactor at a

flow rate of 5 l/min. For one hour in order to purge oxygen out of the system. Then the

nitrogen flow was reduced to 0.5 l/min before placing the reactor into the furnace, which has

been preheated to a set temperature. The recorded heating rate of the sample in the reactor

was about 5oC/min.  The torrefaction reaction time of 30-35 minutes was counted from the

point the reaction (sample) temperature reached 200oC to the end point when the reactor was

removed from the furnace for cooling in the ambient air.
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During torrefaction process, volatile compounds were released from the samples, following

the stream and collected in the condenser system. Non-condensable gases were released into a

safe exhaust ventilation system. The solid product left in the sample cup after the torrefaction

was collected and saved in an excicator for further analyses.

3.3 Instruments and analytical methods

The moisture content and ash content were determined by Swedish standard methods [5-7].

The heating value of samples was obtained by a bomb calorimeter from Parr Instrument

model 6300 Oxygen, according to the Swedish standard method [8]

Untreated biomass samples was ground by a cutting-knife mill (Retsch SM 2000), integrated

with a mesh sieve allowing particles smaller than 25 µm through it.

A burr grinder machine Krup’s GVX2 was used for grindability analysis of torrefied biomass.

After grinding, the powder of samples was sieved by sieve shaker machine (Retch SV001)

with four size fraction: <0.8 mm, 0.8~1 mm, 1~1.4 mm and >1.4 mm.

A thermogravimetric analyzer (TGA) from Perkin Elmer (Pyris 1) was employed for studying

thermal decomposition of torrefied biomass in nitrogen. The function of TGA was to measure

and record the dynamics of samples weight loss with increasing temperature or time. The

volume flow of nitrogen was set up 40 ml/min for each running. The initial mass of sample

was used in a range of 6-8 mg and the temperature decomposition ranged in TGA from 25oC

to 600oC with the heating rate at 10 K/min. 20 K/min and 40 K/min.

3.4 Material

Three types of biomass were used as feedstock for torrefaction in this study. They were

Norway spruce stump (hereafter called stump – S), poplar (P) and Fuel Tree Chips (FTC)

from Vattenfall AB. Some fuel properties of the three samples are presented in Table 1, as

results of an approximate analysis using Swedish standard method [5-7]. The poplar sample

and stump had been dried in ambient air and stored indoor for 26 months. So the moisture
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contents of these samples were very low compared with the fresh Fuel Tree Chips as can be

seen in Table 1.

Table 1: Approximate analysis of the material investigated

Sample Moisture content (%) Ash content (%) HHV(MJ/kg)

Poplar 8.91 1.10 19.25

Fuel Tree Chips 37.86 2.49 19.39

Spruce Stump 7.06 8.14 20.55

Method SS 187170 SS 187171 SS 187182

HHV= Higher heating value

3.5 Torrefaction conditions

Different torrefaction conditions were designed for the present study and presented in Table 2.

The reaction temperature was at 200oC. 250oC and 300oC and the holding time at each

reaction temperature were 5 and 10 minutes, giving two values (30 and 35 minutes.

respectively) of the total reaction time for each reaction temperature.

Nitrogen gas with a constant gas flow of 0.5 l/min was introduced and maintained in the

reactor during the experiments.

Table 2: Different treatments of the investigated biomass at different torrefaction conditions

Temprature(oC) 200 250 300

Holding time 5min 10min 5min 10min 5min 10min

Sample

Poplar P_A5 P_A10 P_B5 P_B10 P_C5 P_C10

Fuel Tree Chips FTC_C5 FTC_10

Stump S_A5 S_A10 S_B5 S_B10 S_C5 S_C10
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4 Results

4.1 Torrefaction solid products

Figure 6 shows solid products collected from biomass torrefaction in different conditions

presented in Table 2. It is clear that torrefaction temperature had very strongly effect on the

colour of the solid products. The higher the temperature, the darker the product colour was.

However, the reaction time seemed to have less pronounced effect on the colour of the

products. The colour of biomass torrefied at 200oC was light brown. At 250oC the colour

became brown. At 300oC the colour was dark brown. In addition, the solid product collected

from biomass torrefaction at 300oC was every brittle.

(a) Torrefied poplar samples
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(b) Torrefied FTC samples

(c) Torrefied stump samples

Figure 6: Solid products collected from torrefaction of biomass in different conditions
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4.2 Mass and energy balance

Table 3 presents the mass of solid biomass before and after torrefaction process, and the

heating value of the solid products collected from the torrefaction processes. It was calculated

that the mass loss of the solid by torrefaction was about 34% for the torrefaction in conditions

of the highest temperature (300oC) and the longest reaction time (35 minutes. corresponding

to the holding time at this temperature of 10 minutes). In addition, the mass loss increased

with reaction temperature and/or time. At the same reaction temperatures longer holding times

resulted in more mass losses. For the same reaction time, higher reaction temperatures also

resulted in more mass losses.

Table 3: Collected data for mass and energy balance calculation
Temprature(oC) 200 250 300

Reaction time 30min 35min 30min 35min 30min 35min

Mass of biomass sample before torrefaction (g)

Poplar 7.99 8.04 8.02 8.03 8.01 7.99
Fuel Tree Chips 8.00 8.02

Stump 7.99 8.02 7.98 7.99 8.01 8.02
Mass of biomass sample after torrefaction (g)

Poplar 7.57 7.45 7.04 6.95 4.99 4.56
Fuel Tree Chips 5.65 5.11
Stump 7.68 7.55 7.19 6.95 5.52 5.24

HHV(MJ/kg)

Poplar 19.05 19.10 19.72 19.82 21.65 22.12

Fuel Tree Chips 21.11 21.64

Stump 20.15 20.30 21.07 21.08 22.70 23.01

Diemnsionless energy densification factor

Poplar 0.98 0.99 1.02 1.03 1.12 1.15
Fuel Tree Chips 1.09 1.12

Stump 0.98 0.99 1.025 1.026 1.10 1.12

As can be seen in Table 3, the heating values of torrefied biomass increased with increasing

reaction time and/or temperature. The solid collected from biomass samples torrefied at 300oC

for 10 minutes had the highest heating value and the heating value increases with 14% for

poplar and 12% for both Fuel Tree Chips and stump comparing with the untreated biomass.

The energy densification of the torrefaction processes was calculated and the results are

presented in Figure 7, which shows that the energy density of solid product (torrefied biomass)
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increased with both increasing reaction time and torrefaction temperature as shown in Figure

7. The energy densification of poplar torrefied at 300oC for 35 minutes increases by a factor

of 1.15 and 1.12 for both FTC and stump. At the same torrefaction temperature the longer

reaction time resulted in a high energy density. Comparing the energy densification of poplar

with stump torrefied at the same conditions, the earlier had a higher energy density than the

later.

Figure 7: Energy densification of torrefied biomass against reaction temperature

4.3 Grindability

A coffee burr grinder machine, Krup’s GVX2, was used to study the grindability of solid

products collected from the biomass torrefaction experiments. The grinder was set at an

unchanged power level for grinding the same amount, 4g, of every sample. Table 4 presents

data obtained from the grindability tests, which shows that either increases reaction

temperature or reaction time resulted in reduce grinding time or energy in other words.

However, the effect of reaction temperature was much more pronounced than that of the
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reaction time. In addition, among the three biomass types (torrefied at 300oC), the grinding

time of the stump was the longest, followed by poplar then the fuel tree chip. This observation

can be probably explained by the higher lignin content in the stump than in poplar and the fact

that the Fuel Tree Chips might contain softwood with relatively low lignin content.

Table 4: Time/energy saving during comminution of torrefied biomass

Sample ID Grinding time. S

P_B5 (250oC. 30min) 75

P_B10 (250oC. 35min) 72

P_C5 (300oC. 30min) 15

P_C10 (300oC. 35min) 12

FTC_C5 (300oC. 30min) 18

FTC_C10 (300oC. 35min) 15

S_B5 (250oC. 30min) 92

S_B10 (250oC. 35min) 90

S_C5 (300oC. 30min) 40
S_C10 (300oC. 35min) 30

For further evaluation of the grindability for the solid products, the powder samples collected

from the grinding step were sieved and classified in four size fractions: <0.8 mm. 0.8~1 mm.

1~1.4 mm and >1.4 mm. Figure 8 shows the particle size distribution by mass fraction for the

tests.
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Figure 8: Particle size distributions of torrefied biomass ground by a coffee grinder

From Figure 8 it can be seen that more than 70% of the mass for all biomasses torrefied at

300oC with different reaction time were gone through the 0.8 mm sieve. Less than 60% of the

stump torrefied at 250oC and 40% of the poplar torrefied at 250oC pass through the 0.8 mm

sieve. At the same reaction temperature, the longer the reaction time, the more improved

grindability of the torrefied biomass was.

4.4 Non-isothermal decomposition of biomass in nitrogen

4.4.1 TGA and DTG curves of untreated biomass

Non-isothermal decomposition of the three untreated biomass samples was investigated in

nitrogen of a mass flow rate of 40 ml/min and at three heating rates of 10, 20, and 40 K/min,

using the TGA described earlier. Data collected from this investigation is shown in Figure 9

in the form of weight loss plotted against temperature, TGA curves, from which the weight

loss rates can be extracted and presented as DTG (differential thermogravimetry) curves.
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Figure 9: TGA and DTG curves of three different untreated biomasses at different heating rate
with nitrogen gas flow 40ml/min (a: 10K/min; b: 20K/min; c: 40K/min)

As can be seen in Figure 9, there are two peaks for each DTG curve. The first tiny peak

occurred at 400 K, corresponding to the drying step. The second peak, being the main weight

loss step, started at temperature of around 500 K, responsible for the thermal decomposition

of biomass. The shoulder at the lower temperature side of the main peak is believed to

represent the decomposition of hemicelluloses [27,28,29]. This shoulder seemed missing for

the stump, which indicates that stump biomass contained less hemicelluloses than the other

biomass fuel types under investigation.

At the heating rate of 10 K/min, Figure 9(a), the maximum decomposition rates was about

0.79 mg/s. 0.56 mg/s and 0.70 mg/s, which were observed to occur at 651 K, 661 K and 649

K for poplar, FTC and stump, respectively. Comparing the DTG curves of the three biomasses

one can see that poplar had relatively higher values of maximum pyrolysis rate and FTC had

relatively lower values of maximum pyrolysis rate.

When the heating rate increased to 40 K/min, Figure 9(c), the value of maximum pyrolysis

rate of all three samples increased to 2.61mg/s, 2.38 mg/s and 2.62 mg/s and the maximum

point rates of decomposition occurred at 675 K, 690 K and 685 K for poplar, FTC and stump

respectively. Again, comparing the DTG curves of the three biomasses at heating 40K/min

one can see that the FTC had relatively higher values of maximum pyrolysis rate and stump
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has relatively lower values. The maximum pyrolysis rate of FTC increased significant by

increasing the heating rate.

4.4.2 Influence of heating rate on the data collected from TGA

The data presented in the previous section was rearranged, Figure 10, for an analysis of

effects of heating rate on the data collected from the TGA. As can be seen in Figure 10, TGA-

and DTG-curves of individual untreated biomass at different heating rates look quite similar

with some common features. In general, higher heating rates gave higher conversion or

weight loss rates.  In addition, when the heating rate increases, the TGA-curves shifted toward

the right and the peaks of DTG curves are slightly shifted towards higher temperatures.
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Figure 10: TGA and DTG curves of different untreated biomasses at heating rates 10K/min,

20K/min and 40K/min with nitrogen gas flow 40ml/min (a: poplar; b: FTC; c: stump)

4.4.3 Effect of torrefaction temperature

TGA and DTG curves collected at the heating rate of 40 K/min. for untreated and torrefied

stump samples are showed in Figure 11. Clearly, untreated biomass was more reactive than its

torrefaction products. In addition, the TGA curves of torrefied samples shifted towards the

right with increasing torrefaction temperature, giving the DTG peaks shifting slightly away
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from the left to the right as well, but the peak height decreases with increasing torrefaction

temperature, except for the sample torrefied at 300 C.

Figure 11: TGA and DTG curves of untreated and torrefied stump samples at the heating rate

of 40 K/min in nitrogen of a gas flow rate of 40 ml/min

In order to have a better understanding of physical changes of biomass sample during

torrefaction samples of untreated stump and stump torrefied at different temperatures were

examined by means of a scanning electro-microscopy (SEM). Figure 12 presents SEM

pictures of untreated (a) and torrefied (b and c) stump samples. Increasing number of the

openings on the surface of the examined samples (Fig. 12a and 12b) can be attributed to the

way gas products released during torrefaction broke the biomass structure in order to escape

outward. In addition, the biomass structure was broken more severely with increasing

torrefaction temperature (Fig. 12b and 12c)

0

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 400 500 600 700 800 900

di
m

en
si

on
le

ss
 c

on
ve

rs
io

n 
(1

-α
)

temperature (K)

TGA and DTG curves of untreated and torrefied Stump at  heating rate

40K/min

Untreated stump sample

torrefied stump 200oC

torrefied stump 250oC

torrefied stump 300oC

D
TG

,m
g/

S



34

(a)

(b)

(c)
Figure 12. SEM pictures of untreated stump sample and torrefied stump samples (a:
Untreated stump sample; b: Stump torrefied at 250oC for 10min; c: Stump torrefied at 300oC
for 10min)
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4.5 Kinetic parameters determination by Ozawa method

Ozawa method allows determining kinetic parameters such as activation energy (Ea), utilizing

Arrhenius equation. By constructing plots of log versus T −1, which give straight lines,

whose slopes and intercepts can be used to calculate Ea at different conversion α. The

exponential factor A at different conversion α could also be calculated using Equation (7).

Figure 13 represents graphically the determination of activation energy and pre-exponential

factor by Ozawa method for untreated biomass samples under investigation. The same range

of the conversion α from 0.14 to 0.81 was used for all the samples.

For the poplar, the activation energy was found to be in between 127 and 167 kJ/mol, and pre-

exponential factor varied between 1.82E+11 and 1.45E+13. The average activation energy

and pre-exponential factor are 153kJ/mol and 6.06E+12.

For the FTC the activation energy was observed to be within the range between 154 and 173

kJ/mol, and the pre- exponential factor varies was from 3.07E+12 to 7.33E+13. The average

activation energy was 166kJ/mol and the average pre-exponential factor was 3.69E+13.

For the stump the activation energy varied from 125 to 133kJ/mol and the average value of

activation energy was 129kJ/mol. The pre-exponential factor was found in between 1.39E+10

and 2.39E+11 and the average value was 6.59E+10.
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Figure 13: Determination of activation energy by Ozawa method for untreated biomass

samples (a: poplar; b: FTC; c: stump)

Results from the determination of activation energy and pre-exponential factors by Ozawa

method are numerically summarized in Table 5. From this table, one can see that the FTC had

relative higher values of activation energy and pre-exponential factor than the others. Among

the three types of biomass, stump had lowest values of activation energy and pre-exponential

factor.
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Table 5: Numerical summary of activation energy and pre-exponential factor - Ozawa

method

Poplar FTC Stump

α Ea A Ea A Ea A

0.14 127 1.82E+11 154 4.80E+13 125 2.39E+11
0.22 138 7.71E+11 158 3.51E+13 128 1.48E+11
0.31 147 2.39E+12 167 6.79E+13 128 7.02E+10
0.39 154 4.67E+12 171 7.33E+13 128 4.24E+10
0.47 157 5.05E+12 173 6.48E+13 128 2.67E+10
0.56 163 1.05E+13 171 2.73E+13 129 2.10E+10
0.64 166 1.45E+13 168 1.08E+13 129 1.56E+10
0.72 167 1.24E+13 166 5.50E+12 130 1.39E+10
0.81 163 3.99E+12 166 3.07E+12 133 1.47E+10

4.6 Kinetic models for non-isothermal decomposition of biomass

4.6.1 One-step model

At the fist instance, one-step model was employed for simulation of non-isothermal

decomposition of biomass, from which the reaction order n and pre-exponential factor A were

determined by searching for the best fit between the experimental data and simulated results

using non-linear regression analysis. Table 6 represents results from this simulation study,

including the value of σ2 (least square).

Table 6:  Results from one-step modelling
Poplar

heating rate K/min Ea(KJ/mol) A(1/s) one single step (n≠1) σ^2

10 153 3.19E+12 2.61 4.39E-04
20 153 3.20E+12 2.55 1.69E-03
40 153 5.21E+12 3.33 7.01E-03

Stump

heating rate K/min Ea(KJ/mol) A(1/s) one single step (n≠1) σ^2

10 129 3.01E+10 2.93 3.28E-04
20 129 5.56E+10 3.34 1.55E-03
40 129 3.64E+10 3.27 3.22E-03

4.6.2 Three-pseudo-components model

Three-pseudo-components model with reaction order n=1 and n≠1 was also used to for the

simulation study in the present work and the graphical presentation of the fitting between the
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simulated results and the experimental data is given in Appendix 7.8.9.10. Tables 7 and 8

represent a numerical summary of the kinetic data (A in s-1, Ea in kJ/mol-1) extracted from the

simulation for poplar and stump, respectively. The dimensionless fitting value C is also

calculated by least square fitting method.

Table 7: Kinetic parameters extracted from three-pseudo-component modelling for poplar (A

in s-1. Ea in kJ/mol-1)
Heating rate 10K/min

n=1 Ea A C n≠1 Ea A C n

hemicelluloses 107 1.98E+09 0.14 hemicelluloses 114 1.74E+09 0.73 8.78
cellulose 199 8.27E+15 0.35 cellulose 198 8.27E+15 0.36 1.21

lignin 51 1.17E+04 0.02 lignin 85 2.01E+07 0.07 2.68
Heating rate 20K/min

n=1 Ea A C n≠1 Ea A C n

hemicelluloses 107 2.49E+09 0.15 hemicelluloses 112 1.71E+09 0.61 6.61
cellulose 185 5.49E+14 0.34 cellulose 171 5.09E+13 0.34 1.08

lignin 48 9.91E+03 0.02 lignin 82 2.15E+07 0.09 2.30
Heating rate 40K/min

n=1 Ea A C n≠1 Ea A C n

hemicelluloses 108 9.32E+08 0.56 hemicelluloses 105 1.01E+09 0.30 2.85
cellulose 181 3.17E+14 0.33 cellulose 176 1.28E+14 0.33 1.00

lignin 52 3.69E+04 0.02 lignin 80 2.86E+07 0.06 3.62
Table 8: the Kinetic parameters extracted from three-pseudo-component modelling for stump

(A in s-1. Ea in kJ/mol-1)
Heating rate 10K/min

n=1 Ea A C n≠1 Ea A C n

hemicelluloses 77 1.23E+06 0.26 hemicelluloses 77 1.27E+06 0.26 1.04
cellulose 181 2.86E+14 0.27 cellulose 185 5.59E+14 0.27 1.02

lignin 50 6.67E+03 0.02 lignin 83 1.82E+07 0.08 3.97
Heating rate 20K/min

n=1 Ea A C n≠1 Ea A C n

hemicelluloses 84 6.38E+06 0.27 hemicelluloses 81 4.04E+06 0.28 1.01
cellulose 170 5.38E+13 0.27 cellulose 173 8.91E+13 0.27 1.02

lignin 42 2.18E+03 0.02 lignin 84 1.65E+07 0.12 8.07
Heating rate 40K/min

n=1 Ea A C n≠1 Ea A C n

hemicelluloses 78 2.31E+06 0.27 hemicelluloses 77 1.98E+06 0.27 1.01
cellulose 172 5.38E+13 0.25 cellulose 180 1.98E+14 0.27 1.19

lignin 50 2.03E+04 0.03 lignin 84 2.78E+07 0.08 2.61
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4.6.3 Comparison of simulation of thermal decomposition of different

biomasses by different models

Figure 14 presents a comparison of results from simulation of thermal decomposition of

different biomass using different models. In all cases, the single-step model appears to be

poorly predicting the process. Whereas, the thermal decomposition of the untreated poplar

and stump, as well as torrefied stump are well described by three-pseudo-component model

with both n=1 or n≠1. In general, three-pseudo-component model with n≠1 resulted in

better fits that n=1 but the difference is small.
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Figure 14: comparison of simulation of pyrolysis of untreated and torrefied biomass by
different models at heating rate 40K/min (a: untreated poplar; b: untreated stump; c: 300oC
torrefied stump)
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Table 9 summarizes results of best fitting value for unknown model parameters by non least

square fitting method. The result of σ2 also presents the one-step model is not appropriate to

simulate the biomass thermal decomposition, even if for torrefied biomass. The three-pseudo-

components model with n≠1 gives the better simulated curve than n=1.

Table 9: Kinetic data obtained by different models
Poplar at heating rate 40K/min Stump at heating rate 40K/min 300oC torrefied Stump at heating rate

40K/min

one-step model one-step model one-step model

Ea A n σ^2 Ea A n σ^2 Ea A n σ^2153 5.21E+12 3.33 7.01E-03 129 3.64E+10 3.27 3.22E-03 136 8.32E+10 3.6 1.00E-02
three-pseudo-model n=1 three-pseudo-model n=1 three-pseudo-model n=1

Ea A C σ^2 Ea A C σ^2 Ea A C σ^2108 9.32E+08 0.56 2.27E-05 78 2.31E+06 0.27 5.74E-06 199 5.80E+15 0.38 1.85E-04181 3.17E+14 0.33 172 5.38E+13 0.25 58 7.94E+04 0.0652 3.69E+04 0.02 50 2.03E+04 0.03
three-pseudo-model n≠1 three-pseudo-model n≠1 three-pseudo-model n≠1

Ea A C n σ^2 Ea A C n σ^2 Ea A C n σ^2105 1.01E+09 0.30 2.85 1.49E-05 77 1.98E+06 0.27 1.01 3.90E-06 205 1.56E+16 0.40 1.01 1.59E-04176 1.28E+14 0.33 1.00 180 1.98E+14 0.27 1.19 184 6.77E+14 0.21 3.980 2.86E+07 0.06 3.62 84 2.78E+07 0.08 2.61
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5 Concluding remarks

A reactor has been developed to use with the existing muffle furnace for studying the process

of biomass torrefaction for fuel upgrading. It has been demonstrated that the reactor can be

used for torrefying of biomass in nitrogen. The produced solid torrefied biomass, collected

from the torrefaction of stump, poplar and Fuel tree chips have been characterized to

investigate improvements in energy density, grindability, and thermal reactivity.

The result showed that the biomass torrefied at 300oC for 35 minutes gave the highest heating

value. The heating value of poplar torrefied at this condition increases with 14% compared

with untreated poplar. For both stump and FTC the heating values increase was 12%.

Both torrefaction temperature and reaction time had strong effects on the torrefaction process.

At the same torrefaction temperature, the longer reaction time, the better fuel quality the solid

product had. Temperature had stronger effect in the same trend, giving higher fuel quality of

the solid product at higher temperatures for the same reaction time. However, too long

reaction time and/or too higher torrefaction temperature would decrease the amount of solid

products, which is the main product of the torrefaction process.

TG analyses of the three biomass types have been performed in nitrogen. The results showed

that the DTG curves of stump have a less pronounced shoulder compared with the other two

samples, which indicates that stump has less hemicelluloses than the two other biomass types.

Ozawa method was employed to determine activation energy of thermal decomposition of the

three biomasses in nitrogen. The results showed the FTC has a relatively higher average

activation energy (166kJ/mol) and pre-exponential factor (3.69E+13).  The average activation

energy for stump and poplar were 129kJ/mol and 153kJ/mol and the average pre-exponential

factor were 6.59E+10 for stump and 6.06E+12 for poplar. The activation energy and pre-

exponential factor varies at different conversions.

Different kinetic models, including one step and three-pseudo-component models, were tested

for the thermal decomposition of the biomasses. The first mentioned appears to be unsuitable

to simulate the pyrolysis of both untreated and torrefied biomass, considering the poor fittings

from the regression analysis and the resulted unrealistically high reaction order. The three-
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pseudo-component model (n=1 or n≠1) appears to be suitable for simulating the behaviour of

biomass during thermal decomposition. The best fittings were observed for the model with n

≠1.

This is a preliminary study of torrefaction of stump for use as fuel. Further research and

developments are needed to improve the operation of the reactor. Better gas flow controllers,

higher heating rates, possibilities to monitor oxygen concentration in the reactor and chemical

compositions of gas products released from process are recommended.
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8 Appendix

Appendix 1
Weight loss curves of poplar samples at heating rate 10K/min from TGA
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Weight loss curves of poplar samples at heating rate 20K/min from TGA
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Weight loss curves of poplar samples at heating rate 40K/min from TGA
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Appendix 2
Weight loss curves of FTC samples at heating rate 10K/min from TGA
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Weight loss curves of FTC samples at heating rate 20K/min from TGA
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Weight loss curves of FTC samples at heating rate 40K/min from TGA
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Appendix 3
Weight loss curves of stump samples at heating rate 10K/min from TGA
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Weight loss curves of stump samples at heating rate 20K/min from TGA
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Weight loss curves of stump samples at heating rate 40K/min from TGA
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Appendix 4
Weight loss curves of untreated stump samples at heating rate 40K/min from TGA
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Weight loss curves of torrefied stump samples at 200oC for 10min with heating rate
40K/min from TGA
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Weight loss curves of torrefied stump samples at 250oC for 10min with heating rate
40K/min from TGA
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Weight loss curves of torrefied stump samples at 300oC for 10min with heating rate
40K/min from TGA
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Appendix 5
Single reaction one step model for untreated poplar sample at heating rate 10K/min.
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Figure 15: DTG simulation results by a one-step model of poplar pyrolysis at different heating
rate (a: 10K/min; b: 20K/min; c: 40K/min)
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Appendix 6
Single reaction one step model for untreated stump sample at heating rate 10K/min.
20K/min and 40K/min
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Figure 16: DTG simulation results by a one-step model of stump pyrolysis at different heating
rate (a:10K/min; b: 20K/min; c: 40K/min)
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Appendix 7
Three-pseudo-components model (n=1) for untreated poplar sample at heating rate 10K/min.
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Figure 17: DTG simulation results by three-pseudo-component (n=1) of poplar pyrolysis at
different heating rate (a: 10K/min; b: 20K/min; c: 40K/min)
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Appendix 8
Three-pseudo-components model (n=1) for untreated stump sample at heating rate 10K/min.
20K/min and 40K/min
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Figure 18: DTG simulation results by three-pseudo-component (n=1) of stump pyrolysis at
different heating rate (a: 10K/min; b: 20K/min; c: 40K/min)
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Appendix 9
Three-pseudo-components model (n≠1) for untreated poplar sample at heating rate 10K/min.
20K/min and 40K/min
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Figure 19: DTG simulation results by three-pseudo-component (n≠1) of poplar pyrolysis at
different heating rate (a: 10K/min; b: 20K/min; c: 40K/min)
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Appendix 10
Three-pseudo-components model (n≠1) for untreated stump sample at heating rate 10K/min.
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Figure 20: DTG simulation results by three-pseudo-component (n≠1) of stump pyrolysis at
different heating rate (a:10K/min; b: 20K/min; c: 40K/min)
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Appendix 11
Single reaction one step model for torrefied stump samples at 300oC at heating rate
40K/min
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(c)

Figure 21:
(a) DTG simulation results by a one-step model of 300oC torrefied stump pyrolysis at heating

rate 40K/min
(b) DTG simulation results by three-pseudo-component (n=1) of 300oC torrefied stump

pyrolysis at heating rate 40K/min
(c) DTG simulation results by three-pseudo-component (n≠1) of 300oC torrefied stump

pyrolysis at heating rate 40K/min
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