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Abstract 
The goal of this project was to investigate the influence of a large inland lake on 

adjacent coastal freshwater peatlands. The specific aim was to determine the source of 

groundwater for three differently formed peatlands located on the southern shore of 

Lake Superior. The groundwater study was conducted at Bete Grise, a peatland 

complex in a dune-swale system; Pequaming, a peatland developed in the swale of a 

tombolo; and Lightfoot Bay, a peatland developed in a barrier beach wetland 

complex. 

To determine the source of groundwater in the peatlands, transects of six 

groundwater monitoring wells were established at each study site, covering distinctly 

different vegetation zones. At Pequaming and Lightfoot Bay the transects monitored 

two vegetation zones: transition zone from upland and open fen. At Bete Grise, the 

transects monitored dunes and swales. Additionally, at all three sites, upland 

groundwater was monitored using three wells that were installed into the adjacent 

upland forest. Biweekly measurements of well water pH and specific conductance 

were carried out from May to October of 2010. At each site, vegetation cover, peat 

depths and surface elevations were determined and compared to Lake Superior water 

levels. From June 14 – 17, July 20 – 21 and September 10 – 12, stable isotopes of 

oxygen (18O/16O) ratios were measured in all the wells and for Lake Superior water. A 

mixing model was used to estimate the percentage of lake water influencing each site 

based on the oxygen isotope ratios.  

During the sampling period, groundwater at all three sites was supported 

primarily by upland groundwater. Pequaming was approximately 80 % upland 

groundwater supported and up to 20 % Lake water supported in the uppermost 1 m 

layer of peat column of the transition zone and open fen. Bete Grise and Lightfoot 

Bay were 100 % upland groundwater supported throughout the season. The height of 

Lake Superior was near typical levels in 2010. In years when the lake level is higher, 

Lake water could intrude into the adjacent peatlands. However, under typical 

hydrologic conditions, these coastal peatlands are primarily supported by upland 

groundwater.  

Keywords: Peatland, hydrology, groundwater, Lake Superior, 18O/16O 
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Resümee 

 Antud magistritöö eesmärgiks oli uurida suure mageveejärve mõjutusi selle 

kaldapealsetele soostikele. Täpsem eesmärk oli kindlaks teha kolme Ülemjärve (Lake 

Superior) lõunakaldal Keweenaw poolsaare lähikonnas paikneva eri viisil tekkinud 

soostiku põhjavee päritolu ja selle mõjutused Ülemjärve poolt. Põhjavee 

uurimisprojekt viidi ellu Bete Grise liivaluitelises soostikus, Pequaming 

lainetekkelises luidetega piiratud nõgusas soostikus ning Lightfoot Bay liivaluite-

barjääriga järvest eraldatud soostikus. Kõik katsealad paiknevad laiuskraadidel 46-47° 

N ja pikkuskraadidel 87-88°W.  

Põhjavee päritolu kindlakstegemiseks rajati igale katsealale kuus põhjavee 

jälgimise kaevu, mis paiknesid erinevates taimestikutsoonides. Pequaming ja 

Lightfoot Bay soostikus kattis kaevude võrgustik siirdesoo ja madalsoo. Bete Grise 

soostikus kattis kaevude võrgustik pidevalt vahelduvaid liivaluiteid ning 

nendevahelisi nõgusid. Kõigil kolmel katsealal oli kontrollmõõtmiste tarbeks 

paigaldatud kolm kaevu madalsooga piirnevale mineraalmaasse. Igas kaevus mõõdeti 

põhjavee pH ning soolade sisaldus iga kahe nädala järel maist kuni oktoobrini 2010. 

aastal. Igal katsealal määrati 0.1 ha proovitükkidel taimkate, lisaks mõõdeti turba 

sügavus ning maapinna suhteline kõrgus, võrreldes seda Ülemjärve keskmise 

tasemega. 14-17 juunil, 20-21 juulil ning 10-12.septembril määrati kõikide kaevude, 

mineraalmaa ja järvevee stabiilsete hapniku isotoopide (18O/16O) suhtelised 

sisaldused. Lihtsa matemaatilise võrrandi abil arvutati järvevee protsentuaalne 

sisaldus soostike põhjavees.  

Terve välitööde hooaja vältel olid kõik soostikud põhjaveetoitelised, kuid 

Pequaming’u soostikus täheldati kuni 20%-list järvevee mõjutust pinnalähedases, 1 m 

sügavuses turbakihis siirdesoo taimestikuvööndis. Ülemjärve veetase oli 2010. aastal 

pika aja keskmise lähedal. Aastatel, kus järvevee tase kerkib, on võimalik, et järvevee 

mõjutused kaldapealsetel soostikes on suuremad. Tavatingimustes on uuritud 

soostikud aga peamiselt põhjaveetoitelised.  

Võtmesõnad: kaldapealsed sood, soode veerežiim, soode toitumine, põhjavesi 
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Introduction 

Peatlands are terrestrially occurring wetlands where ecosystem respiration 

rates are lower than the net primary production, thus creating favorable conditions for 

organic soil accumulation in the form of peat (Wieder and Vitt 2006). The anoxic 

environment caused by waterlogged conditions is the most important factor 

contributing to this unique habitat. Different criteria apply for the classification 

schemes, but the most common being organic soil depth of greater than 30 or 40 cm 

(Gorham 1991). 

Peatland development is the result of terrestrialization, paludification or 

primary peat formation. Terrestrialization is the slow process of peat development in 

open bodies of stagnant water, gradually closing in from the edges with a floating mat 

of vegetation.  Paludification is the most common form of peat formation, a process 

also known as swamping. In this process, peat accumulation begins directly over 

previous drier mineral soil. Primary peat production is a process described by peat 

formation directly on bare wet mineral soil, creation of which favored by the glacial 

retreat and the resulting land rise owing to the isostatic rebound (Wieder and Vitt 

2006). 

Peat accumulation speeds vary greatly depending on the decomposition 

(mineralization) rate, which is mainly driven by water saturation and ambient 

temperature, as well as aerobic or anaerobic conditions (Moore and Dalva 1993; 

Yavitt et al. 1997; Glatzel et al. 2004). In Ecuador, for example, Chimner and 

Karberg (2008) have determined the accumulation rate of 1.3 mm year-1. Several 

studies show the average height accumulation of 0.6 mm year-1 for Northern Europe 

(Aaby 1986) and 0.6 – 0.8 mm year-1for boreal areas of the Russian Federation (Botch 

and Masing 1983). Gorham and others (unpublished) have estimated the overall 

average peat accumulation of 0.48 mm year-1 for Canada.  
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Geographic range 

Peatlands are found in every ecoregion of the world, from arctic to tropical 

climates, (Gore 1983; Immirzi et al. 1992; Gignac and Vitt 1994; Lappalainen 1996; 

Charman 2002). Wetlands (marshes, mires, swamps and peatlands) cover about or 

between 4 to 6 %, or 4 × 106 km2 of land area on Earth in total (Mitch and Gosselink 

2000, Rosa 2008). Nearly 93% of them are found in six predominantly boreal 

countries (Gorham 1991, Mitsch and Gosselink 2000, Joosten and Clarke 2002, 

Wieder and Vitt 2006). The largest intact area of peatlands in the world is on the vast 

West Siberian Plain in the Russian Federation (Neishtadt 1977, Walter 1977, Neustadt 

1984, Gorham 1991). The second largest area is the Hudson Bay Lowland of Canada 

(Gorham 1991).  

The majority of peatlands are located in the boreal zone due to several factors, 

the most important of which being the positive water balance in the region during all 

or part of the growing season. The positive water balance allows local water tables to 

stabilize (Wieder and Vitt 2006).  

 

The importance of wetlands and their functions 

Global carbon cycle 

Peatlands are an important sink of carbon. CO2 fixed by plants, subsequently 

is deposited as dead plant material (Wieder and Vitt 2006). The fixation of carbon by 

plants is counterbalanced by the release of carbon via plant and soil respiration, the 

loss of dissolved organic carbon (DOC) through the groundwater and the release of 

CH4 because of methanogenesis (Wieder and Vitt 2006). The high water tables in 

peatlands create anaerobic conditions that prevent the decay of the dead plants, 

thereby causing the peatland to be a carbon sink. The ratio of net primary production 

(NPP) and peat accumulation is estimated to be between 1 to 20 % (Tolonen 1979; 

Tolonen et al. 1992; Warner et al. 1993; Francez and Vasander 1995; Moore et al. 

2002; Feng 2002, Wieder and Vitt 2006). Therefore, peatlands act as an important 

reservoir of carbon storage. 
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More than 1/3, or 455 petagrams (455 x 1015 grams), of the world’s soil 

carbon is stored in the organic soils of peatlands (Gorham 1991), while occupying 

only 3 – 4 % of global land area (Mitsch and Gosselink 2000). The carbon stored in 

these peatlands has been estimated to range between 50–150 kg C m-2 and the 

accumulation rates are estimated to range between 10 and 30 g C m-2 y-1 (Gorham 

1991; Turunen et al. 2001, Wieder and Vitt 2006). 

The large carbon stores may have several adverse effects on the global 

emissions to the atmosphere. For example, single large scale fire events can release 

vast quantities of carbon through peat combustion thereby altering the global 

atmospheric carbon balance. Page et al. (2002) estimated that the burning of 730 000 

ha of tropical peatlands in 1997 released approximately 0.19 – 0.23 Gigatonnes (109 

tons) to the atmosphere. The authors extrapolated the figures to the whole of 

Indonesia for one season of peat fires and concluded that between 0.81 – 2.57 Gt of 

carbon was released. Hence, peat fires in Indonesia represented one tenth to two fifths 

of the 6.4 Gt of carbon released globally by fossil fuels in 1957 (Page et al. 2002).  

In the light of increasing global temperatures of the atmosphere, peatlands that 

have been regarded as net carbon sinks are now being studied in great detail with 

regards to becoming potential net producers of carbon into the atmosphere. The shift 

of temperatures is expected to be most significant in boreal zone (Houghton et al. 

1992), where summers will likely have higher temperatures and, thus, along with the 

drawdown of the water table, the mineralization or decomposition of peat could occur 

at a higher speed.  

Peatlands not only store carbon dioxide, but also produce two other 

greenhouse gases, CH4 and nitrous oxide. According to Bartlett and Harriss (1993), 

peatlands contribute up to 9% of the Earth’s CH4 from natural sources due to anoxic 

conditions often found in peatlands. CH4 is 23 times better at absorbing ultraviolet 

radiation than carbon dioxide, but has a much shorter atmospheric residence time 

(14.4 years compared to 230 years of CO2) (Gorham 1991, Meehl et al. 2007, 

Watterson 2008). CH4 is produced by the splitting of acetate, which comes from the 

fermentation of organic matter (Kelley et al.1992). 

The answer to whether one third of world’s sequestered soil carbon will affect 

the climate as the temperatures rise is yet unclear. Complex processes within 
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peatlands – vegetation dynamics, water table fluctuations, biochemical processes 

within the peat and other factors have high variability, hence each eco-zone has to be 

studied independently and no broad conclusions have yet been made. Large biotic 

feedbacks are expected to occur in northern wetlands, as the global temperatures rise 

(Houghton et al. 1992). A comprehensive study conducted by Bridgham et al. (1998) 

of carbon, nitrogen and phosphorus mineralization rates in northern peatlands 

concluded that carbon mineralization rates were relatively constant over different 

sites, while methane production varied greatly. The authors suggested that the 

respiratory response of the soil to changes in climatic patterns will likely be very 

different for these two important greenhouse gases (Bridgham et al. 1996). 

 

Peatland types 

Peatlands are directly dependent on a long term water supply that is relatively 

constant, while the origin of the water determines the form and function of the 

peatland (Rydin and Jeglum 2006). Ground water and precipitation are the two main 

sources of water. Water and nutrient availability for the peatland flora is influenced by 

seasonal precipitation patterns and the height of the groundwater table. Seasonal 

variations in hydrology force the vegetation to adapt to constantly changing 

environments. Specific propagation strategies and differences in nutrients absorption 

have developed over time in many of the plant species that are found in these 

ecosystems. For example, carnivorous plants like sundew (Drosera spp) and pitcher 

plant (Sarracenia spp) have adapted to catch and digest bugs using enzymes to 

compensate for the lack of nutrients of the habitat (Bridgham et al. 1998). 

Northern peatlands are structured into two broad categories – fens and bogs. 

The two main peatland types are delineated based on the physiochemical properties of 

the groundwater supporting them. Fens have inputs of groundwater or surface runoff 

enriched in bases and nutrients, that originate from surrounding uplands and thus are 

termed minerotrophic fens. Fens can be further divided into rich and poor. Rich fens 

have greater quantities of nutrients in the ground water, mostly calcium, relative to 

poor fens, which are more nutrient limited. There is no uniform set limit for pH that 

can help classify fens only by their surface water pH, but according to Malmer (1986) 

poor and rich fens can differentiated by the acidity-alkalinity gradient of pH 5.5 in 
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northwestern Europe. In contrast to fens, bogs are termed ombrotophic, which is 

explained by the domed shape above the surrounding landscape which disconnects 

them from the groundwater supply, and thus bogs rely on atmospheric inputs of 

nutrients and bases to the peat surface (Gorham 1991, Bridgham et al.1998). As a 

result, bogs are more acidic, with the pH of the surface water ranging approximately 

from 3.5 to 4.5 (Malmer et al.1992). Bog surface waters have low pH, because of the 

water input from the atmosphere lacks the alkalinity to neutralize the strong acids that 

are released from decomposing peat (Hemond 1980; Gorham et al. 1985; Reeve 1996; 

Glaser et al. 2004; Siegel et al. 2006). The difference in available nutrients affects the 

vegetation communities.  

Vegetation of the boreal peatlands ground layer was first classified according 

to the rich or poor fen gradient by DuReitz (1954). Wieder and Vitt (2006) described 

the minerotrophic, acidophilous Sphagnum-dominated plant communities with rather 

low species diversity were termed as poor fens, while species with high fidelity for 

nearly neutral soil pH or calcareous conditions were found in rich fens. Rich fens 

usually do not have a significant cover of Sphagnum peat mosses, rather they have a 

number of true mosses. Sphagnum mosses dominate only in precipitation fed bogs 

and precipitation and groundwater fed poor fens, however, this rule does not always 

apply, since Sphagnum mosses are also found in some rich fens. The type of the 

ground covering layer retains a critical difference for classification between bogs and 

poor fens, as several authors have suggested (Gorham and Janssens 1992; Vitt 2000; 

Wheeler and Proctor 2002). 
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Peatland Hydrology 

Peatland formation and function is determined by the origin of the constant, 

long-term water supply. The link between peatland biota and hydrology has been 

known for more than a century. Dau (1823) was one of the first scientists to recognize 

and document three types of peatlands, according to the origin of water. Weber (1902) 

developed the concept of a raised bog, which is fed only by atmospheric precipitation. 

The movement of water in peatlands with the water table height fluctuations 

influences plant growth, resulting in the distinct vegetation patterns of hummocks, 

hollows, and pools (Gorham 1953; Iversen 1973; Sjörs 1963, Siegel and Glaser 2006).  

Groundwater is defined as “subsurface water that flows through any saturated 

porous media regardless of its composition (mineral or organic), degree of 

consolidation (rock or sediment), or location (terrestrial or marine)” (Siegel and 

Glaser 2006). The rate of groundwater flow is determined by the physical properties 

of the porous media. Not all pores are connected and, thus, groundwater movement is 

limited to the connected pores, which is termed as effective porosity (connected pores 

which are 0.5 mm or greater).  

Siegel and Glaser (2006) have summarized the basic principles of groundwater 

hydrology regarding petlands:  

“Primary porosity develops when a rock or soil is formed. Although 

the total porosity of any rock or mineral soil is spatially variable, it remains 

relatively constant over decadal or century time scales. In contrast, the 

effective porosity of peat continually changes both spatially and temporally 

because of biological processes. Microbial decomposition, for example, 

continually breaks down the solid-phase peat skeleton, reducing the size of the 

pores and increasing the bulk density of the peat. As the pores become smaller 

the capillary tension between the pore waters and peat walls increases 

exponentially, thereby restricting the movement of water under the force of 

gravity or pressure.” Additionally, it is of crucial importance to consider the 

multi-directional factors that affect the flow of groundwater. “The hydraulic 

conductivity of all porous media usually changes with direction. In the event 

of no formation of secondary porosity, hydraulic conductivity will decline 
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exponentially with depth as various biological and physical processes reduce 

the volume of interconnected pore space” (Siegel and Glaser 2006).   

Different peats have different hydraulic properties, for example a 100 to a 

1000 fold discrepancy can occur in the hydraulic conductivity of well-humified 

Sphagnum peat (10-6 cm s-1) compared to fibric sedge peat (10-4 cm s-1) (Podniesinski 

and Leopold 1998). Such variation can draw a difference in the ground water flow 

paths through the site. 

Ingram (1978) proposed the concept of the uppermost surface layer of 

acrotelm, consisting of poorly to well decomposed organic material, where water 

levels fluctuate throughout the year, and underneath, the permanently saturated zone 

made of well decomposed peat – the catotelm (Rosa 2008). Hydraulic conductivity is 

higher near surface of the acrotelm, while it is much lower in the catotelm (Ingram 

1978, Fraser et al 2001, Drexler et al 1999). However, the acrotelm-catotelm concept 

has been considered ambiguous, because it is vaguely described and mostly site 

dependent (Amon et al. 2002).  

 

Coastal wetlands 

 Coastal wetlands usually lie in the bordering and transition of terrestrial 

ecosystem zone into aquatic ecosystem and thus, are directly affected by both. Several 

categories of coastal wetlands occur, some of which border the oceans while others 

occur in freshwater systems.  

Coastal Great Lakes peatlands 

The Great Lakes region of the United States was shaped by glaciation. The 

lake levels have shifted by tens of meters as the geological processes evolved in post-

glacial periods as the ice retreated, and have been more stable and at levels as we 

know them today for less than 5 000 years (Herdendorf 1992, Booth et al. 2002). Four 

types of stream and shoreline processes provided favorable sites for wetlands as the 

lakes became established: (1) delta formation, (2) estuary formation, (3) sandbar and 

dune formation creating coastal lagoons, and (4) solution lagoons (Herdendorf 1992).  
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The coastal wetlands in the Great Lakes region today hold a diversity of 

functions which are a mix of ecological and social uses can be categorized as (1) 

wetlands as habitats (fish production, spawning and nursery; waterfowl migration, 

wintering, and nesting; invertebrate and mammal habitat), (2) economical values 

(agricultural use, peat, blueberries, wild rice, etc.; commercial and sport fishing; 

waterfowl hunting; non-consumptive recreation (bird watching, canoeing, hiking, 

etc.)), (3) physical functions of wetlands (groundwater recharge and flood storage; 

sedimentation basins; pollution control (waste assimilation, toxic substance 

absorption, nutrient uptake, etc.; coastal protection (attenuate wave attack) (adopted 

from Herdendorf 1992, Jaworski et al. 1978).  

Coastal peatlands are a specific type of peatlands that have been formed by the 

combination of high energy waves occurring at the shoreline, the fluctuations of the 

water level and the land forms created by the retreat of the Pleistocene ice sheets 

(Herdendorf 1992). These factors contribute to sediment build-up over time, resulting 

in a variety of differently formed and functioning wetlands. For example, in peatlands 

of the northern Great Lakes region, trees are often stunted in growth, or do not appear 

at all, due to saturated growing conditions of the open fen or the seasonally dry 

conditions of an ombrotrophic bog. In some instances trees can thrive in mineral rich 

fens, often forming cedar swamps. Albert et al. (2005) developed a classification 

scheme for Great Lakes coastal wetlands, based on their specific hydrological and 

geomorphological conditions. According to their hydrogeomorphic (HGM) model, 

three main types of wetlands – lacustrine system, riverine system and barrier-enclosed 

systems occur in the Great Lakes Region.  

Lacustrine, riverine and barrier-enclosed wetlands form under different 

conditions. Lacustrine systems are exposed, having little or no protection from the 

near-shore processes such as seiches, lake-level fluctuations, near-shore currents and 

ice scour of the lake, thus restricting vegetation development. Riverine systems occur 

along and within rivers, but are less affected by coastal processes. Barrier-protected 

systems are formed by either coastal or fluvial processes, but are separated from the 

lake by a barrier feature, often a barrier beach. The isolation from lake creates a 

suitable environment for wetland initiation, which usually occur in the swales behind 

the sand barrier. If several sand ridges parallel to the shoreline have formed over the 

course of the time, a distinguished form of wetlands emerge in the swales between the 
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dunes – thus called the ridge and swale or dune and swale complexes. These usually 

occur in embayments, where enough supply of sediment is available. In the upper 

Great Lakes region alone, more than 100 of these complexes have been determined 

(Cromer and Albert 1991, Cromer and Albert 1993, Baedke et al. 2004).  

Additionally, if an island is attached to the mainland by barrier beaches, a 

deposition landform called tombolo emerges (Hsu and Silvester 1990). The sediment 

accretion, also known as a salient, is developed by waves diffracting around the 

offshore barrier (an island), thereby slowing down and depositing sediment along the 

centerline, over time connecting the offshore barrier to the mainland. The resulting 

barrier enclosed system within a tombolo with more isolated and stable hydrologic 

conditions usually sustains a suitable environment for a wetland in the swale of a 

tombolo (Albert et al. 2005).  

 

Stable isotopes of oxygen 

Stable isotopes have emerged during the recent decades in ecological studies, 

providing previously unavailable opportunities to utilize them as geochemical tracers 

to determine the function or a process within a large frame of different applications 

(Hoffmann et al. 2000). The isotopes of any given element are characterized by their 

number of neutrons. Stable isotopes of oxygen 16O, 17O and 18O are components of 

naturally occurring oxygen. The most abundant is 16O, comprising for more than 99% 

of all oxygen isotopes. The stable isotopes of water molecules of lighter atomic mass 

are more likely to evaporate and fall as precipitation, thus building up concentrations 

of heavier isotopes in different hydrologic cycles. Mass spectrometry enables us to 

quantify the isotope ratio (16O/18O) or the relationship between atomic number and 

mass of a given example of water and express the values in an internationally 

recognized standard. For water samples, the VSMOW or Vienna Standard Mean 

Ocean Water scale is often used (Hoffmann et al. 2000).  

Stable isotopes can applied to a broad scale of hydrologic questions. Past 

research have used stable isotopes to determine the source of water used by plants 

(e.g. Dawson and Ehleringer, 1991; Dawson, 1993). For example, Chimner and 

Cooper (2004) studied a site in Colorado to determine the water source for native 
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shrubs in San Luis Valley. The root system of the endemic shrubs is adapted to 

different water table heights, changing their water uptake source according to the 

seasonal monsoon rains. Additionally, the movement of water can be traced. For 

example, Ronkanen et al. (2007) determined the flow patterns of water in a 

constructed wetland treating municipal wastewater in Finland. The isotope study 

helped to determine both active flow volume and preferential pathways, which turned 

out to be in the top 40 cm layer in the peatland. A study of this type helped to 

determine the area-efficiency of the wastewater treatment and potential 

improvements. Lastly, Wilcox et al. (2004) quantified the flows of groundwater using 

isotopes in the North-East Everglades in Florida to determine whether groundwater 

pumping for human use affected the aquifer underlying the Everglades. Isotopic 

analysis helped them determine that up to 60% of water beneath the Everglades was 

removed by pumping water for municipal use. Hence, environmental isotopes can be 

used in a variety of ways to better understand the hydrology of peatlands. 
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Study questions  

The hydrologic conditions of each of the coastal wetland type in the Great 

Lakes region have been characterized only in general terms by Albert et al. 2005, but 

the influence of lake water to these differently formed peatlands has not been 

partitioned. This project uses stable isotopes to determine the source of groundwater 

for three barrier-enclosed coastal freshwater systems in Lake Superior. The three 

peatlands are described as a dune and swale complex, a barrier beach lagoon and a 

tombolo. 

The hypotheses of this study were: (1) groundwater dominates the dune and 

swale complex and the barrier beach lagoon peatland, (2) while the more exposed 

tombolo at Pequaming is supplied primarily by lake water.  
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Methods  

Study sites  

The study occurred in three coastal peatlands, Bete Grise, Pequaming and 

Lightfoot Bay that are located in the Upper Peninsula of Michigan, United States ( 

Figure 1). All three peatlands are located on the southern shore of Lake Superior and 

were formed under its geomorphic conditions (Boisvert 2009). The bedrock in all 

study sites is mostly Jacobsville sandstone of Precambrian origin (Doonan and 

Byerlay 1973). 

 
Figure 1. Study sites in the vicinity of the Keweenaw Peninsula in Upper Michigan of 

the United States 
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Bete Grise 

Bete Grise is a dune and swale wetland complex (latitude 47°21'53.51" N 

longitude 87°57'56.15" W, Figure 2). The dunes primarily support conifers (e.g. 

balsam fir (Abies balsamea), paper birch (Betula papyrifera), black spruce (Picea 

mariana) and northen white cedar (Thuja occidentalis) and swales supporting poor 

fen communities (Boisvert 2009). The poor fen consists primarily of bryophytes 

(Sphagnum spp), three-seeded sedge (Carex trisperma), labrador tea (Ledum 

groenlandicum), tag alder (Alnus incana), willows (Salix spp), black spruce (Picea 

mariana) and tamarack (Larix laricina). Boisvert (2009) determined that at Bete Grise 

the basal zone of the shallow peat layer consisted of very humic, granular peat, which 

had a poorly humic Sphagum peat atop. 

  

Figure 2. Transect of existing and installed wells at Bete Grise 
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Pequaming 

Pequaming is a wetland complex formed in the swale of a tombolo (latitude 

46°51'9.72" N longitude 88°22'35.41" W, Figure 3), consisting of a large expanse of 

island mixed mire (Rydin and Jeglum 2006) with large expanses of floating sedge and 

Sphagnum mat interspersed with small bog-like treed islands (Boisvert 2009). 

 

 

Boisvert (2009) showed that the basal zone of peat consisted of very humic 

peat, with partly humic peat with traces of Sphagnum moss atop, the uppermost zone 

poorly decomposed peat of Carex ssp and Sphagnum ssp. The transition zone from 

upland into open fen at Pequaming is a thick cedar swamp with distinct 

microtopography of hummocks covered mainly by northern white cedar (Thuja 

occidentalis), tag alder (Alnus incana), bryophytes (Sphagnum spp), horsetail 

(Equisetum spp), labrador tea (Ledum groenlandicum), royal fern (Osmunda regalis) 

and bluejoint (Calamagrostis canadensis). The open fen has sparsely spaced tree 

islands populated by stunted tamarack and northern white cedar and that were less 

Figure 3. Transect of ground water monitoring wells at the tombolo peatland, 
Pequaming. The star marks the position of the permanent study site with the water 
table logger 
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than 2 m in height. Both the hummocks and lawns were covered by bryophytes 

(Sphagnum spp), bog-rosemary (Andromeda polifolia), bog golden rod (Solidago 

uliginosa), pitcher plant (Sarracenia purpurea), horsetail (Equisetum spp), wiresedge 

(Carex lasiocarpa), royal fern (Osmunda regalis), northern white cedar and sweetgale 

(Myrica gale).  

 

Lightfoot Bay 

Lightfoot Bay is a barrier beach peatland, with a sand ridge separating the 

wetland from the lake (latitude 46°54'6.47" N longitude 88°10'42.81" W, Figure 4). 

  

 
Figure 4. Transect of ground water monitoring wells at Lightfoot Bay peatland 

complex 

 

The peat cores have fine granular peat, likely a gyttja, in the basal zone, partly 

humic sedge remains in the second zone, poorly decomposed brown moss in the third 

zone and near-surface zone consisted mainly of poorly decomposed Sphagnum, roots 
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of Carex ssp and leatherleaf (Boisvert 2009). The upland at Lightfoot Bay supports 

mixed forest of trees. The upland transitions to a treed wetland that has sparse 

tamarack, northern white cedar and black spruce underlain by bryophytes (Sphagnum 

spp), small cranberry (Vaccinium oxycoccus), royal fern (Osmunda regalis) sweet 

gale and leatherleaf (Chamaedaphne calyculata). In the center of the wetland and 

open floating mat section contains only sparse clumps of northern white cedar 

seedlings. The herbaceous layer is dominated by bryophytes (Sphagnum spp) and 

narrow-panicle rush (Juncus brevicaudatus) with quite densely distributed pitcher 

plant (Sarracenia purpurea).  
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Sampling protocol and well placement 

For sampling purposes, we divided the sites into distinctly differing vegetation 

zones at each of the peatlands. At each of the three peatlands six wells were installed 

along a transect. In addition to the wells located in the peatland, three wells were 

installed in the adjacent upland forest (Figures 2 – 4). All wells inserted into the 

peatlands were made of 150 cm long, 5.08 cm (2”) outer diameter polyvinyl chloride 

pipe. The upland wells were 3.175 cm (1 ¼”) in diameter and with pointed tips, to 

make inserting them into hand-augered holes as easy as possible. Slits were cut along 

the bottom 3/5 (90 cm) of the length of the pipes and covered with geotextile to 

prevent fine peat matter from seeping into the wells. The tops of the wells were 

capped to prevent precipitation from directly entering the wells. Due to the different 

formation patters of the three sites, the wells had to be inserted into different depths to 

sample ground water throughout the relatively dry 

summer season. At Pequaming and Lightfoot Bay the 

wells were inserted approximately 1 m into the soil, 

while the existing groundwater monitoring wells and 

pizeometers (BG4, BG9) reached up to 363 cm below 

ground elevation at Bete Grise.  

The peatland at Bete Grise has shallow peat that 

overlays a sandy mineral soil (Figure 14). At Bete Grise 

we took advantage of an existing network of ground 

water monitoring wells and piezometers. At Bete Grise, the continuously altering 

dunes and swales resulted in the locations of wells being evenly spread across the 

peatland. At Bete Grise, the dune and swale complex (groundwater monitoring wells 

4 – 9, Figure 2) was pooled as one vegetation zone because of the locations of the 

wells altering between sand ridges and peat covered swales, while the upland (wells 1, 

2 and 3) was used a reference for groundwater. At Pequaming and Lightfoot Bay, 

three wells were inserted in the open fen and three were inserted in a transition zone 

consisting of tag alder and cedar. 

Figure 5. Installing the 
groundwater monitoring 
wells, recording the GPS 
coordinates 
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Ground elevation and peat depth survey 

Trimble® GNSS 

To obtain precise elevation values of the ground water monitoring wells and 

ground elevations across the sites, a Trimble® Global Navigation Satellite System 

(GNSS) rover equipped the R8 receiver with the TSC2™ data controller was used. A 

temporary reference station, with an additional R8 receiver, was set up at each field 

site before beginning the GIS survey to obtain Real Time Kinetic (RTK) GIS data 

with the highest possible precision. The normalized Root Mean Squared values for 

elevation precision were 0.255 m for Lightfoot Bay, 0.011 m for Pequaming and 

0.267 m for Bete Grise. The WGS84 datum was used as the standard reference. For 

coordinate calculations between two points in the landscape in order to construct the 

cross sections of study sites, an online tool available from 

http://boulter.com/gps/distance/ was used. 

To map the peat depths, a 3 meter long, 1 

cm diameter metal probe was used to penetrate 

through the peat until reaching the underlying 

mineral soil. Mineral soil was sand for all of the 

sites and was distinctively harder to push the rod 

into. Peat depth, ground elevation and GPS 

coordinates were recorded at each probing location 

throughout the sampling transect.  

The maps of the locations of the 

groundwater wells were created based on the 

recorded GPS coordinates using ArcMap ver. 

9.3.1. from ESRI Inc., Redlands, California, 

U.S.A. Aerial photos date from the 2005 National 

Agricultural Inventory Program (NAIP) and were obtained from the Michigan 

Geographic Data Library (http://www.mcgi.state.mi.us/mgdl/).  

Figure 6. Probing peat depths 
along the well transects. Photo 
by Stephen Curelli 
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Specific conductance and pH measurements 

From 28 May to 27 October 2010, specific conductance was measured on a at 

least a bi-weekly basis Specific conductance and pH of each well was measured with 

handheld pH, conductivity, salinity and temperature system (YSI model 63, YSI 

incorporated, Yellow Springs, Ohio, U.S.A.). The specific conductance errors are 

made of instrument accuracy and cell-constant errors, which both account for .5% 

maximum (YSI 63 manual). To measure specific conductance, water samples from 

the wells were collected by first discharging it with a Jack Rabbit™ hand pump and 

then, after 5 to15 minutes, when the groundwater had gradually recharged the well, 

water was pumped into an open polyvinyl chloride container approximately 4 liters in 

volume. The container was rinsed thoroughly using distilled water at each well. Lake 

Superior water was also sampled in a similar manner from the closest beach to the 

well transect. 

Figure 7. Purging the wells before the pH and 
specific conductance measurements 
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Automatic water table monitoring 

The year round water table data was available only for one site of the three. 

The automatically recorded water table levels were obtained from the permanent 

study plot located at the northeast corner of the Pequaming complex (Figure 3). Water 

table height was measured in a well using a level logger (model 3001 Levelogger® 

Junior, Solinst®, Georgtown, Ont. Canada). The water table data was air pressure 

corrected from the recorded dataset using barologger ( model 3001 Levelogger® 

Gold, Solinst®).  

 

Water samples for stable isotope ratios of oxygen (18O/16O) 

Water samples were collected on 15 June, 7 July and 10 September at Bete 

Grise, from Pequaming and Lightfoot Bay on 17 June, 21 July and 12 September, 

using a similar collection method as described for the specific conductance 

measurements of the water in groundwater monitoring wells.   

Water samples from groundwater monitoring wells and Lake Superior were stored in 

Nalgene® scientific 125 ml 

plastic bottles and kept on 

ice on the way back to the 

laboratory where they were 

frozen until running them in 

the mass spectrometer. 

Freezing of the samples 

was carried out to prevent 

the potential diffusive 

fractionation of water 

isotopes during evaporation 

(Merlivat and Jouzel 1979). 

The water samples were analy

Stable Isotope Ratio Mass Spectrome ted in Sam Horner Hall of the School of 

Forest Resources and Environmental Science of Michigan Technological University. 

Internationally recognized reference water samples were used to calibrate the 

Figure 8. Pipetting the water unfrozen water samples 
into vials before 18O/16O mass spectrometry 

zed on a ThermoFinnigan Deltaplus Continuous Flow-

ter loca
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equipment before running the field specimens. VSMOW (Vienna Standard Mean 

Ocean Water), SLAP (Standard Light Arctic Precipitation), and GISP (Greenland Ice 

Sheet Project) certified isotopic standards were run at the beginning of each analysis. 

Values were reported on the VSMOW scale. The standard deviation of repeated 

measurements of a laboratory reference water is 0.2 ‰. 

To estimate the amount of ground water present at each vegetation zone of the 

site a mixing model was used to calculate the percentage from the 18O/16O results 

from the mass spectrometry:  

ݎ݁ݐܽݓ ݀݊ݑ݋ݎ݃ % ൌ  
݁ݑ݈ܽݒ ݈݁݌݉ܽݏ െ ݎ݁ݐܽݓ ݈݁݇ܽ

െ݈ܽ݇݁ ݎ݁ݐܽݓ ൅  ݁ܿ݊݁ݎ݂݁݁ݎ ݈݀݊ܽ݌ݑ

This method assumes there are only two end members affecting the isotopic signature 

of the 18O isotopes in the peatland groundwater. However, this signature will also be 

affected by evaporation and precipitation water. Therefore, when interpreting the 

results, this must be considered.  
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Statistical inferences 

One-way analysis of variance (ANOVA) tests were run in SigmaPlot (version 

11.0 from Systat Software, Inc., Chicago, IL, U.S.A.) to compare the specific 

conductance values of each vegetation zone at each site against each other and lake 

water using pairwise multiple comparison procedures (Tukey Test). Additionally, 

pairwise T-tests for means were run in SigmaPlot to compare the 18O/16O ratios for 

each vegetation zone (three pooled sampling dates, 3 values per each zone, 6 for Bete 

Grise pooled dune and swale) against each other and against the Lake water values. 

For the significance level of the test, a commonly used p-value of 0.05 was used as 

the criterion. Additionally, 95% confidence intervals were built around the isotopic 

signature means for each vegetation zone and Lake water to show the differences 

amongst groups.  

 

Meteorological data 

 Monthly average temperature and precipitation data was obtained from the 

United States of America’s National Oceanic and Atmospheric Administration’s 

(NOAA) National Climatic Data Center (NCDC) Station number 14858, Houghton 

County Memorial Airport (CMX) at latitude 47°10'8.40" N and longitude 

88°30'21.60" W, with an elevation of 314 meters ASL. Controlled data dates back to 

December of 1889 to present day. All of the study sites, Bete Grise, Pequaming and 

Lightfoot Bay, are located less than 50 km in a straight line from the weather station.  

Lake Superior levels were summarized from the verified data of the National 

Oceanic and Atmospheric Administration’s (NOAA) Center for Operational 

Oceanographic Products and Services, Great Lakes station number 9099018 in 

Marquette, Michigan, at latitude 46° 32.7' N and longitude 87° 22.7' W. Lake level 

readings date from 1918 to 2010.  
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Results 

Weather conditions and the water table height 

The weather patterns of the first half of 2010 deviated from those recorded 

over the long term. In 2010 the precipitation summed 650 mm, 184 mm less than the 

121 year mean of 834 mm. The accumulated precipitation for the spring months was 

76 mm in 2010, substantially lower than the long-term mean of 173 mm. In 2010, 

June and September received the greatest precipitation, 126 mm and 179 mm, 

respectively. 

 

 

Figure 9. The long-term climatic data describes an even distribution of precipitation 
throughout the year, with none of the values showing more than 100 mm per month.

The mean daily air temperatures from 1889 to 2009 for the spring months of 

March, April and May in nearby Houghton, Michigan (46 km from the furthest 

peatland), were -4.4 °C, 3.0 °C and 9.8 °C, respectively. In contrast, in 2010, the 

mean air temperatures were 1.9 °C, 7.3 °C and 12.4 °C, respectively. The early and 

quick melting of the snow pack in March resulted in the presence of surface water at 

all vegetation zones of the study sites, including the upland areas. Hence the height of 
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the water table peaked from the middle of March to early April, at the permanent 

study site of Pequaming complex (Figure 10). The summer of 2010 showed higher air 

temperatures than usual, with the mean for June, July and August being 18.4 °C, in 

contrast with the 17.0 °C for the long-term mean. The warmest months of the summer 

were July and August (Figure 9). The accumulated precipitation for the summer 

period was within 40 mm of the long-term average. 

 

  

Figure 10. Water table height and precipitation at Pequaming  
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Lake Superior levels 

In 2010, the annual level of Lake Superior was 0.25 m lower than the average 

recorded annual mean of 183.41 m ASL. Lake levels declined from January to May, 

which contrast with the long-term trend of gradual increase of the level starting from 

April. Lake levels of 2010 rose until mid-September and then began to decline. This 

fluctuation cycle matches with the long-term trend, but the overall lake level remained 

below the average for the entire year (Figure 11). 

 

  

Figure 11. Lake Superior monthly levels of 2010, average monthly 
levels from 1918 to 2009, and annual average level 
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Isotope and specific conductance measurements 

The results demonstrate that the source of water for all three sites was 

primarily from upland groundwater. Results from the stable oxygen isotope ratios 

from the three sampling dates showed distinctly different signatures to that of the lake 

water for all of the sites and vegetation zones (Tables 1, 2). 

 

Figure 12. Specific conductance at all sites (A) Pequaming,  
(B) Lightfoot Bay, (C) Bete Grise  
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Figure 13. Delta 18O/16O isotope ratios showing the amount of ground water 
supporting each site. Note that Pequaming (PQ) is missing the third 

sampling date due to potential sampling error from surface water 
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Table 1. 18O stable oxygen isotope ratios of all sites with 95% confidence intervals 
Site Vegetation 14 – 17.06.2010 20 – 21.07.2010 10 – 12.09.2010 

Bete Grise 

Upland -13.44 ±  0.16 -13.47 ± 0.2 -13.97 ± 0.13 

Dune and swale -13.46 ± 0.91 -13.39 ± 0.92 -13.99 ± 0.82 

Lake water -9.00 -8.87 -8.65 

Pequaming 

Upland -13.18 ± 0.45 -13.39 ± 1.54 -12.21 ± 0.9 

Transition -12.27 ± 0.62 -12.57 ± 0.12 -12.34 ± 0.2 

Open fen -12.33 ± 0.98 -12.46 ± 0.53 -12.31 ± 1.21 

Lake water -8.55 -8.99 -8.82 

Lightfoot Bay 

Upland -12.29 ± 0.48 -12.46 ± 0.75 -12.76 ± 0.58 

Transition -12.54 ± 0.64 -12.56 ± 1.17 -12.72 ± 1.91 

Open fen -12.29 ± 1.23 -12.46 ± 1.34 -12.66 ± 1.79 

Lake water -8.45 -8.94 -8.94 

 

Table 2. 
Student's pairwise comparison of 18O isotope ratios  

between vegetation zones and lake water 
PEQUAMING 

UPLAND vs LAKE  P = 0.008 

TRANSITION vs LAKE P = <0.001 

OPEN FEN vs LAKE P = <0.001 

LIGHTFOOT BAY 

UPLAND vs LAKE  P = <0.001 

TRANSITION vs LAKE P = 0.001 

OPEN FEN vs LAKE P = <0.001 

BETE GRISE 

UPLAND vs LAKE P = 0.003 

DUNE AND SWALE vs LAKE P = 0.003 
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Table 3. 
One-way ANOVA of specific conductance for each  

vegetation zone compared to lake water 

Comparison P <0.05 

PQ lake vs PQ open fen Yes 

PQ lake vs PQ transition Yes 

PQ lake vs PQ upland No 

PQ upland vs PQ open fen Yes 

PQ upland vs PQ transition No 

PQ transition vs PQ open fen No 

LB upland vs LB open fen Yes 

LB upland vs LB transition No 

LB upland vs LB lake No 

LB lake vs LB open fen Yes 

LB lake vs LB transition No 

LB transition vs LB open fen Yes 

BG lake vs BG upland Yes 

BG lake vs BG dune&swale No 

BG dune&swale vs BG upland No 
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Bete Grise 

The isotopic analysis for the three measurement dates suggests that 100% of 

the groundwater in the peatland originated from the upland (Figure 13). The isotopic 

signature over the measurement period averaged -13.4‰ ± 0.2 (95% CI) to -14.0‰ ± 

0.1 (95% CI) for the upland and from -13.4‰ ± 0.9 (95% CI) to -14.0‰ ± 0.8 (95% 

CI) for the dune and swale complex (Table 1). The 18O/16O isotope ratios of the lake 

water at Bete Grise Bay averaged (-8.84‰ ± 0.43 (95% CI)) and were statistically 

different from the peatland water (upland p-value = 0.003, dune and swale complex p-

value = 0.003) water (Table 2). The upland and dune and swale complex water 

isotope ratios did not show a statistical difference (p-value >0.05).  

The specific conductance of the lake averaged 89.4 µS/cm, 76.9 µS/cm for the 

dune and swale complex and 59.9 µS/cm for the upland (Figure 12 C). The specific 

conductance of the upland was statistically different from lake water (p-value <0.05), 

however, there was no statistical difference between the dune and swale complex 

compared to both upland and the lake water (Table 3). For the measurement period, 

the pH in the upland and the dune swale complex averaged 4.9 and 4.72, respectively.

Figure 14. Cross section of probed peat depths of Bete Grise dune and 
swale complex 
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Pequaming 

The transition zone from upland and the open fen had up to 20% lake water in 

the uppermost 1 m of the peat column (Figure 13). Over the measurement period, the 

isotopic signatures averaged -12.21‰ ± 0.9 (95% CI) to -13.39‰ ± 1.54 (95% CI) for 

upland, -12.27‰ ± 0.62 (95% CI) to -12.57‰ ± 0.12 (95% CI) for the transition zone 

and -12.31‰ ± 1.21 (95% CI) to -12.46‰ ± 0.53 (95% CI) for the open fen (Table 1). 

Lake water 18O/16O isotope ratio averaged -8.79 ± 0.54 (95% CI) and was statistically 

different from the peatland (upland p-value = 0.008, transition zone p-value <0.001, 

open fen p-value <0.001) water (Table 2). The vegetation zones within the peatland 

did not show statistical difference in the isotope ratios (p-values > 0.05).  

The specific conductance of the lake water averaged 87.5 µS/cm, 93.5 µS/cm 

for upland, 68.7 µS/cm for the transition zone and 55.3 µS/cm for the open fen 

(Figure 12 A). The specific conductance of the upland differed from open fen (p-value 

<0.05), lake water differed from transition zone (p-value <0.05) and open fen (p-value 

<0.05) (Table 3). The pH for upland, transition zone and open fen averaged 5.92, 5.67 

and 5.25, respectively. 

 

 

 

 

 

 

Figure 15. Cross section of probed peat depths of the Pequaming 
peatland complex 
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Lightfoot Bay 

Over the course of the sampling season, the isotopic signatures averaged -

12.29 ± 0.48 (95% CI) to -12.76‰ ± 0.58 (95% CI) for upland, -12.54‰ ± 0.64 (95% 

I) to -12.72‰ ± 1.91 (95% CI) for the transition zone, and -12.29‰ ± 1.23 (95% CI) 

.79 (95% CI) for the open fen. Lake water 18O/16O isotope ratios at 

Lightfoot Bay averaged -8.78 ± 0.7 (95% CI) and were statistically different from the 

peatland (u  <0.001) 

water (Table 2). The vegetation eatland did not show statistical 

differen

C

to -12.66‰ ± 1

pland p-value <0.001, transition p-value = 0.001, open fen p-value

zones within the p

ce in the isotope ratios (p-values >0.05). 

Specific conductance averaged 91.3 µS/cm for the lake, 95.13 µS/cm for the 

upland, 86.6 µS/cm for the transition zone and 60.1 µS/cm for the open fen (Figure 12 

B). Open fen specific conductance differed from the upland (p-value <0.05), lake 

water (p-value <0.05) and transition zone (p-value <0.05) (Table 3). The pH for the 

upland, transition zone and open fen averaged 5.79, 5.37 and 5.42, respectively. 

Figure 16. Cross section of probed pea
peatland complex 

t depths of Lightfoot Bay 
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Discussion 

Peatland hydrology  

The combination of isotope data and specific conductance shed light on the 

source water for these poor fens. The isotope data clearly demonstrates that most of 

the water in all three fens is not from Lake water for the study period (Figure 13). Of 

three wetlands, only the fen complex at Pequaming may have derived a portion of its 

groundwater from Lake Superior during the measurement period. Therefore, the water 

present in each of the peatlands came from upland groundwater or rainwater. 

The results of this study support past research which demonstrated that barrier 

enclosed coastal peatlands in the Great Lakes region are not primarily supported by 

lake water (Albert et al. 2005). For example, a similar study conducted in a protected 

barrier dune system coastal peatland of Lake Ontario showed ground water movement 

towards the lake despite the correlation between water-table elevation and the 

condition of the barrier beach (breaches in the barrier opening and closing) (Bailey 

and Bedford 2003).  

The data does not support past work that suggested that first couple of swales 

closest to the beach in a dune and swale complex can have direct hydrological 

connection to the lake, which can continue for hundreds of meters inland (Comer and 

Albert 1991, Albert et al. 2005). However, this connection could be mainly dependent 

on the surface water from the lake that inundates the peatland. The closest ground 

water well to the lake, BG9, was located on the first ridge, 43 meters from the 

shoreline (distance calculated from GPS coordinates). The depth of well BG9 was 363 

cm below ground elevation of the sand ridge at 185.43 m ASL, which is a greater 

depth than that of other wells in the site. The well reaches 1.6 meters below the annual 

average lake levels since 1918. Oxygen isotope measurements do not support 

increasing influence of lake water with proximity to the lake for the Bete Grise dune 

and swale complex. When the pooled isotopic signatures from BG9 were compared to 

lake water in the mixing model, the source was 100% upland groundwater. The 

average isotopic signature of 18O/16O in well BG9 was -14.27‰ (N=3) throughout the 

season, while Lake Superior water at Bete Grise Bay averaged -8.87‰ (N=3) 18O/16O 

ratios. The hydraulic head at BG, as measured by piezometric data, has shown that 
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water is moving downward; thereby indicating that water is not moving into the area, 

but away from the peatland (Chimner, personal communication). Hence, it is not 

oving into the peatland. 

The isotopic data provides conclusive data that these sites are supported 

results indicate that most of the water at all sites in 2010 was from upland 

ground

m the Lake. However, if the peatland groundwater originated 

entirely from the lake, the isotopic signature would be less negative than the lake 

because

likely that lake water is m

primarily by upland groundwater. At all three sites rainwater and evapotranspiration 

will further influence the isotopic composition of the fen water. Evapotranspiration 

will cause the peatland groundwater to become less negative. Hence, one would 

expect the peatland water to be heavier than its source. Since the peatland water is 

much lighter than the lake and, in general, heavier than the upland groundwater, the 

water. At Pequaming, the up to 20% of the peatland ground water may come 

from the Lake. This value is based on the mixing model and likely represents the 

upper bound of the amount of lake water in the system because a portion of the 

isotopic change may result from instrument error and evapotranspiration. 

Evapotranspiration ration would result in the isotopic signature being less negative. 

Hence, evapotranspiration would make the groundwater in the peatland appear to be 

partially derived fro

 of evapotranspiration. However, this was not the case as the peatland 

groundwater more closely represents the upland groundwater. Furthermore, rainwater 

is not likely to be the main contributor to the water found in any of these fens. If these 

fens were rainwater dominated, their pH would consistently reflect that of a bog, 

rather than a fen. Except for one sampling date on Oct 26, the pH at these fens 

remained above 5, with values typically ranging between 5.1 and 5.5 (Appendix table 

pH). These pH values are more indicative of a groundwater fed system (Mitch and 

Grosselink 2006).  

The specific conductances in the peatlands differed from the upland 

groundwater. It is possible that the specific conductances were more similar in the 

spring after snow melt and then diverged because of differences in evapotranspiration 

driven by changing vegetation. Alternatively, groundwater with lower specific 

conductance may upwell into the peatland. This might be possible as both Lightfoot 

Bay and Pequaming have extensive floating mats that would not impede the flow of 

groundwater up from below (Boisvert 2009). For this to be true, however, the isotopic 

44 
 



 

composition of the deeper groundwater would have to be nearly identical to the 

upland groundwater measured in this study. Therefore, this study demonstrates that 

groundwater is the likely the main source of water for these fens, but the mechanisms 

are still not entirely clear. 

the Lake Superior region has been influenced by altering climatic 

conditi

 

Temporal changes in the stable isotope data 

The relatively stable readings for oxygen isotopes of groundwater and Lake 

Superior water samples of this study can reflect the temporal scale limitation of three 

sampling dates over the course of four months. An extensive groundwater study 

conducted by Huddart et al. (1998) of a transient barrier sand-bar that separates a 

coastal freshwater marsh from Lake Erie, Canada, showed high spatial and temporal 

variability in the marsh water (δ 18O -8.4 ‰ to -0.1 ‰) compared to relatively stable 

Lake water (δ 18O = -7.5 ‰ to -6.7 ‰ VSMOW) over the period of 21 months. The 

benefit of extensive sampling helped determine that groundwater flowed from the 

marsh to the lake during winter months, but the flow reversed the following spring, 

and again the following autumn. The effect of spring-melt recharge was noticeable as 

the head reversed and the total distance of groundwater travelling back and forth was 

determined to be at least 96 meters per year (Huddart et al. 1998). Similarly with the 

Lake Erie study (Huddart et al. 1998) the isotopic signature of precipitation fell within 

the brackets of local meteoric water lines of δ 18O = -10 ‰ to -15 ‰, suggested by 

Dansgaard (1964) and Hoffmann et al. (2000). A flow reversal could occur in the 

peatlands in the present study if Lake Superior levels were higher. 

Potential influence of fluctuating lake levels 

In the past, 

ons. About 5,000 years B.P. the Upper Midwest region of North America 

shifted from a warm and dry climate to cooler and wetter conditions (Delcourt et al. 

2002). The shift occurred because previously dominated dry North Pacific air gave 

way to increased transport of warm and moist air from the Gulf Coast during summer, 

and a combination of Pacific and Gulf air masses during winter (Delcourt et al. 2002). 

This has resulted in an increase in the precipitation events that could affect the source 

water for coastal peatlands in Lake Superior.  
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The absolute recorded lake level minimums for August and September 

occurred in 2007, when Lake Superior levels reached 183.01 m ASL and 183.02 m 

ASL, respectively. The minimums for all the other months occurred in the 1920s 

(NOAA, NWS Marquette, MI 2011). Lake Superior minimum monthly mean levels 

usually occur at the end of the winter season, because during winter months, the 

dominating western winds carry dry air masses through the area, which then obtain 

tly results in exceptionally heavy, lake 

effect snowfalls along the southern and eastern shore of Lake Superior. According to 

Delcou

 that isolate the 

central portion of Pequaming peatland 

complex up to 20% of the ground water in the open fen and transitional vegetation 

zones m

m levels, lake levels could be higher 

moisture from the lake surface. This subsequen

rt et al. (2002) the lake effect precipitation events driven by the midwinter 

(from November to March) frigid air from Canada reach up to 100 km inland in the 

western Great Lakes region. 

In 2010, Lake Superior levels averaged to an annual level 183.16 m ASL, 

which is only slightly lower than the long term average of 183.41 m. Higher lake 

levels could result in a greater Lake water influence on groundwater at these 

peatlands. In particular, the groundwater at Pequaming could experience the greatest 

lake water influence, because it is the closest to the lake elevation (Figure 15) and is 

exposed to the lake from two sides (Figure 3).  

The lake level influence observed in the open fen and transition zone of 

Pequaming, however, does not extrapolate to the whole open fen section. The limiting 

factor is that the transect of ground water monitoring wells was in the middle of the 

peatland, which is approximately 800 meters from the closest shoreline of Lake 

Superior. Additionally, there was no isotope water sample collected from the more 

hydraulically conductive and thus semi-transient sand barrier regions

peatland complex from the lake (Figure 3). In 

ay come from lake water (Figure 13). However, there was no data collected 

from proximity of the barriers that border the peatland in the northeast and southwest. 

The potential lake water intrusion to the site would occur after a very dry summer 

which draws down the groundwater at the peatland, while Lake Superior reaches its 

annual maximum in August and September (Figure 11). This is further supported by 

the fact that the open floating mat portion of Pequaming is roughly only 31 cm (183.7 

m ASL) higher from Lake Superior long term recorded mean of 183.41 m ASL. 

According to the long term monthly maximu
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during 

 water for exceptionally high water levels in the open 

floating fen mat after spring-melt, or provide direct inlet into the peatland in the event 

of high

 

8 months of the year and, thus, inundate the Pequaming floating mat portion 

(Figure 15).  

Other coastal freshwater wetlands in the Great Lakes region are occasionally 

inundated by lake water. For example, a coastal freshwater marsh study conducted by 

Huddart et al. (1999) at Lake Erie, Canada, determined two sources of water inputs: 

precipitation and groundwater discharge. However, in a decadal time scale Lake Erie 

occasionally inundates the marsh, when a portion of the isolating coastal sand barrier 

disintegrates because of wave action (Huddart et al. 1999). The southwestern barrier 

of Pequaming complex has a culvert beneath the road that runs along the barrier that 

could be an outlet of surface

er Lake Superior levels.  

It is assumed, that the large ground water dominance at Pequaming is solely 

driven by the hydraulic head of adjacent upland bordering the southern edge. To 

determine exact interactions with the lake, an extensive network of piezometers and 

water level monitoring systems would have to be established.  
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Conclusion 

This study demonstrates that despite Lake Superior contributing to the 

formation of these sites, they are mostly supported by groundwater input s from 

adjacent upland areas. The hypothesis that groundwater at Pequaming was primarily 

lake water dominated because the peatland was the most exposed to the lake was 

refuted. However, it is the only site that was moderately influenced by Lake and had 

partial presence of lake water in the groundwater mix. It is likely that the proportion 

of lake water present in the subsurface areas of transition zone and open fen at 

Pequaming are affected by snowmelt during springtime, and in longer temporal scale, 

Lake Superior water level fluctuations. Since records begin in 1918, Lake Superior 

water levels have reached higher levels than the open floating mat fen at Pequaming 

during 8 months of the year, suggesting that the open fen at Pequaming is periodically 

inundated with lake water.  
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Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Layout of the 
0.1 ha circular vegetation survey plots. The circle was divided into four quarters 

according to cardinal directions. 3x3 m plots were used for shrub layer sampling and 
1x1m plots for the herbaceous layer, all placed randomly within the quarters. 
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Figure 18. Monthly air and groundwater temperatures at Pequaming 
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Table 4.  
Seasonal summary table of specific conductance (µS/cm) at Pequaming 

Date 
May 

28 

Jun 

17 

Jun 

23 
Jul 5 Jul 21 Aug 7 

Aug 

27 

Sep 

12 

Sep 

30 
Oct 26 

Up-

land 
77.90 81.83 113.37 102.27 111.03 109.07 95.37 80.33 79.43 79.17 

Tran-

sition 
70.47 65.40 70.40 67.50 71.60 77.13 70.90 64.37 64.77 64.47 

Open 

fen 
54.93 62.77 61.27 57.83 54.53 56.80 55.47 50.33 50.20 49.13 

 

Table 5.  
Seasonal summary table of specific conductance (µS/cm) at Lightfoot Bay 

Date Jun 1 
Jun 

17 

Jun 

23 
Jul 5 Jul 21 Aug 7 

Aug 

27 

Sep 

12 
Oct 3 

Oct 

26 

Upland 
128.0

7 
73.63 83.37 

87.1

3 

105.6

0 

123.1

3 
96.37 84.80 88.17 81.07 

Tran-

sition 3 
71.00 75.00 77.83 80.13 

74.6
73.63 98.73 82.23 79.90 96.40 

Open 

fen 
52.27 55.57 58.87 

60.4

0 
62.93 64.70 63.90 59.33 59.80 63.70 
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Table 6.  
Seasonal summary table of specific conductance (µS/cm) at Bete Grise 

Date 
May 

28 

Jun 

14 

Jun 

24 
Jul 6 Jul 20 Aug 6 

Aug 

26 
Sep 10 Oct 3 

Oct 

27 

Up-

land 
38.17 34.53 53.93 59.83 61.40 84.43 84.37 67.80 67.10 47.83 

Dune 

and 

swale 

80.00 71.13 72.05 79.17 79.30 83.40 75.85 70.78 80.48 77.30 

 

Table 7.  
Seasonal summary table of pH at Pequaming 

Date
May Jun Jun Sep Oct 

26 
 

28 17 23 
Jul 5 Jul 21 Aug 7 Aug 27 Sep 12 

30 

Up-

land 
5.97 5. 6.09 5.90 5.88 6.03   5.75 5.  96  6.11 5.76 96

Tran-

sition 
5.57 5.77 5.70 5.69 5.  5.  5.75 5.63 5.67 5.80 70 76

Open 

fen 
5.02 5.37 5.38 5.45 5.41 5.29 5.16 5.35 5.29 5.35 
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Table 8.  
Seasonal summary table of pH at Lightfoot Bay 

Date Jun 1 
 

 

 

 

Jun

17

Jun

23
Jul 5 Jul 21 Aug 7 

Aug 

27 

Sep 

12 
Oct 3 

Oct 

26 

Upland  5.  5.87 65 5.85 6.06 6.12 5.90 5.93 6.11 5.93 5.92 

Tran- 

 
5.26 5.49 5.45 5.59 5.50 5.25 5.50 5.45 5.24 5.43 

sition

Open 

fen 
5.04 5.51 5.35 5.57 5.48 5.57 5.57 5.47 5.30 5.47 

 

Table 9.  
as summary table of pH at Bete Grise 

Date 
y 

28 
Jun 14 

 

24 
Jul 6 Jul 20 Aug 6 

Aug 

26 
Sep 10 Oct 3 Oct 27 

Se onal 

JunMa

Upla  4.86 4.64 4.68 5.07 5.82 5.96 5.94 5.49 4.38 4.49 nd

Dune

and 

 

swale 

5.49 5.53 5.09 5.34 5.52 5.43 5.22 5.37 5.03 4.88 
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Table 10.  
ean daily temperatures and monthly accumulatedM   
precipitation from 1889 to 2009 and for 2010 

ver om  t 10 A age fr  1889 o 2009 20  

Pre n (mm) tem
°C Preci ion (m  e  

temp °C cipitatio Average daily p pitat m) Averag daily

January 80.37 -9.58 12.45 -7.33 
Febru .00 -  7.28 ary 47 9.36 0.51 -

March 46.96 -4.42 5.84 1.94 
April 50.69 3.03 45.97 7.33 
May .39 3 .475  9.80 24.1 12 4 
J .67 1 5.17 une 77 5.27 125.73 1
July 74.32 18.34 43.43 20.06 

August 73.34 17.49 96.27 20.11 
Septem 1.19 1 56 0.78 ber 9 3.09 178. 1

Octo .59 5 8.17ber 72  7.02 47.7  
November 68.84 -0.48 56.13 0.56 
December 75.56 -6.53 12.95 -6.72 

SUM 
precipitation 833.91  649.73  

Annual mean air  
temperature °C 6.27  4.47  
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Table 11.  
ake Superior levels of 2010 and long-term recorded 

ly minimum and maximum levels at Marquette
L  

month , MI 

 

ters above sea level me

2010 1918-2009 MIN MAX 

J 3.24 33 .83 anuary 18 183. 182 183.7 

February 183.17 27 76 1183. 182. 83.63 

M 3.10 24 74 1arch 18 183. 182. 83.61 

A 3.09 3.26 .72 1pril 18 18 182 83.68 

M 3.09 37 76 ay 18 183. 182. 183.74 

Ju 3.14 45 .85 ne 18 183. 182 183.76 

July 183.20 51 .96 183. 182 183.82 

August 183.22 54 01 183. 183. 183.86 

September 3.24 3.54 .02 118 18 183 83.86 

October 183.20 51 1 1183. 183. 83.91 

Nov 3.15 183.47 01 183.89 ember 18 183.

December 183.10 3.41 182.92 183.81 18

AVG 183.16 3.41 18
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Table 12.  
led seasonal average specific conductance with respect 
distance from upland at Lightfoot Bay and Pequaming 

Poo to  

well distance µS/cm stance µS/cm well di

L
ig

ht
fo

ot
 B

ay
 

1 0 60.8 1 41.6 27

Pe
qu

am
in

g 

470 

2  58.5 2 64.3 200 340 

3  61.1 3 60.1120 230  

4 .7 4 54.487 68 150  

5 .1 5 60.250 72 110  

6 5 6 91.525 10 66  

UPLAND 95.1 UPLAND 93.50 0  

 

 

 

Table
Air an dwater tem es at Pequa

ir temperature Groundwater 
e °C 

 13.  
d groun peratur ming 

A s 
 2009/10 °C temperatur

Oct 4.28 10.73 

Nov 3.66 9.53 

Dec -7.16 7.76 

Jan -7.33 6.79 

Feb -7.28 5.93 

Mar 1.94 5.07 

Apr 7.33 5.06 

May 12.44 5.98 

Jun 15.17 7.42 

Jul 20.06 9.17 

Aug 20.11 10.87 

Sep 10.78 11.80 
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Table 14.  
Ground elevation and peat depth survey, Lightfoot Bay 

dist (m) elevation subsurface 

LB8 46.900 88 183.65 183  01 - .178196 0 7 .403 upland

203 46.90011 -88.1   183.367 182.878269 12 84 

tra
ns

iti
on

 

LB6 46.90024 -88.1   183.521 182.8 78206 25 60 

205 46.90033 -88.1   183.571 182.778207 36 84 

LB5 46.90046 -88.17 2  183.539 182.8 822 50 41 

207 46.90056 -88.1   183.445 181.97826 61 46 

208 46.90069 -88.17 8  183.499 182.1834 76 78 

LB4 46.9 8.17 8  183. 2.630079 -8 828 87 595 18 0 

210 46.9009 -88.178331 100 183.423 182.051 

op
en

 fe
n 

LB3 46.90111 -88.178377 120 183.394 181.692 

212 46.90128 -88.178431 140 183.324 181.063 

213 46.90152 -88.178477 170 183.271 181.595 

LB2 46.9018 -88.178559 3.277 179.924 200 18

97 -88.178614 220 183.253 180.154 215 46.901

217 46.90219 -88.178 183. 36 694 250 271 181.0

LB1 46.90241 -88.17881 183. 03 1 270 324 182.0

219 46.90254 88.178875 90 183.229 182.061 - 2

220 46.90281 8.179017 20 183.226 181.727 -8 3

221 46.90302 8.179206 40 183.341 183.036 sand barrier -8 3

LAKE 46.90475 8.182656 183.158 183.158 Lake 
Superior -8 630 
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Table 15.  
Ground elevation and peat depth survey, Pequaming 

dist (m) elevation subsurface 

PQ 42   upl8 46.849  -88.3709 0 184.219 183.508 and 

30 65   

tra
ns

iti
on

 

3 46.849  -88.3715 57 183.925 183.442

PQ 66   6 46.849  -88.3716 66 183.880 183.449

30 85   5 46.849  -88.3716 72 183.852 183.141

PQ 89   5 46.849  -88.3721 110 183.882 182.790

30 98   7 46.849 -88.3723 130 183.907 183.069

PQ 12   4 46.850  -88.3725 150 183.779 182.839

30 28   9 46.850  -88.3729 190 183.798 182.757

PQ3 506   

op
en

 fe
n 

w
ith

 h
um

m
oc

ks
  46.8  -88.3733 230 183.751 182.456

31 82   1 46.850  -88.3737 270 183.733 182.692

31 04   2 46.851  -88.3742 310 183.723 182.682

PQ 19   2 46.851  -88.3744 340 183.761 182.593

314 159    46.85  -88.3751 400 183.681 182.513

31 96   5 46.851  -88.3755 450 183.850 182.809

PQ 09   1 46.852  -88.3756 470 183.708 182.717

31 42   

op
en

 fl
oa

tin
 fe

7 46.852  -88.376 510 183.676 180.882

g 
m

at
n 

31 27   8 46.85  -88.3765 560 183.654 181.089

31 08   9 46.853  -88.3772 630 183.591 181.229

32 28   1 46.853  -88.3775 660 184.074 180.975

32 29   3 46.853  -88.3775 670 183.750 181.261

324 46.85349 -88.3778 700 183.699 181.235 

325 46.8538 -88.3783 750 183.963 181.169 

326 46.85426 -88.3792 830 183.673 181.184 

327 46.85474 -88.3802 930 183.593 181.104 

328 46.85499 -88.3808 980 183.679 181.215 

329 46.85502 -88.3808 985 183.767 180.668 

330 46.85537 -88.3818 1060 183.613 182.114 

331 46.85567 -88.3826 1130 183.610 182.391 

tra
ns

iti
on

 

333 46.85608 -88.383 1190 183.573 182.760 

334 46.85639 -88.3835 1230 183.679 182.434 

335 46.85653 -88.3836 1250 183.581 182.692 
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Table 16.  
Ground elevation and peat depth survey, Bete Grise 

dist ( ti face 
BG2 4 9 0 52 18  d 

m) eleva on subsur
7.360769 -87.96864 187.2 7.100 uplan

4 01 49 83 
treed fen 

05 47.361017 -87.9681 187.3 186.519 
40 17 80 99 7 47.361117 -87.9677 187.3 186.713 
B 89 160 94 

ne
 a

nd
 sw

al

G5 47.361436 -87.9667 185.9 185.283 

du
e 

co
m

pl
ex

 

41 67 170 58 0 47.361576 -87.9666 186.4 186.433 
4 11 200 02 11 47.361825 -87.9665 185.6 184.891 
412 4 2 210 52 18  7.361919 -87.96638 186.3 6.276
41 89 230 12 3 47.362053 -87.9661 185.3 185.007 
4 09 270 16 14 47.362183 -87.9658 185.2 184.530 
41 7 300 14 6 47.362592 -87.965 185.1 184.784 
4 4 19 350 94 17 7.363153 -87.9657 184.9 184.308 
BG 68 370 54 7 47.363361 -87.965 185.0 184.140 
419 4 9 400 33 18  

n 
7.363692 -87.96563 185.0 4.779

open fe
42 67 420 59 0 47.363928 -87.9655 184.9 184.349 
4 18 440 71 ne 21 47.364022 -87.9653 185.3 185.269 du
BG 97 510 53 ale 8 47.364864 -87.9655 184.7 184.651 sw
42 36 520 19 

ne 
3 47.364933 -87.9655 185.3 185.319 

du
BG9 4 7 580 38 18  7.365347 -87.96488 185.4 5.438

LA 14 600 6  KE 47.365342 -87.9643 183. 183.6 

 

Table 17.  
Specific conductance (SE  seas min en

 op

w ell avera E E 
en 

) all on Pequa g open f  

S
op

 μS en fen 

Date well 1 ell 2 w  3 ge S AVG 
open 

2  66.7 54.9 32  8-May 41.5 56.6  3 7. 55.33 2.18
1  75.7 62.7 56 7-Jun 44.1 68.5  7 9.
2  72.8 61.2 .04 3-Jun 37.2 73.8  7 12
5-J  40 60.3 57.83 15 ul .9 72.3  9.

2  57.6 54.5 57 1-Jul 38.4 67.6  3 8.
7  58 56.8 10 -Aug 43.9 68.4 .1 0 7.
2  54 55.4 73 7-Aug 44.5 67.7 .2 7 6.
1  5 51 50.3 96 2-Sep 41.3 8.4 .3 3 4.
30  42 52.5 50.20 73 -Sep .9 55.2  3.
2  51 49.1 01 6-Oct 41.3 54.5 .6 3 4.
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Table 18.  
fic conductance (SE) all season Pequaming transitionSpeci  zone 

 μS transition 

ate w  6 average trans 

 

D  well 4 ell 5 well SE AVG 
trans 

SE 

28-Ma 8 .47 y 56.4 47.2 107. 70 18.86 68.7 3.27 
17-Jun   50.2 60.9 85.1 65.40 10.32 
23-Jun   54.7 60.1 96.4 70.40 13.09 
5-Jul  .50 48.8 64.4 89.3 67 11.79 

21-Jul 1  54 60.7 100. 71.60 14.38 
7-Aug 1  57.5 69.8 104. 77.13 13.94 
27-Au  g 58.1 63.5 91.1 70.90 10.22 
12-Se  p 56.8 60 76.3 64.37 6.04 
30-Se 5 .9 p 56.1 6.3 81 64.77 8.57 
26-Oct   51.7 58.8 82.9 64.47 9.44 

 

able  
fic ce ason uam n ke  
S u ate

we    
U μS erage SE 

T  19. 
Speci  conductan  (SE) all se  Peq ing upla d and la  water

 μ pland  Lake w r 

well 7 ll 8 well 9 AVG SE AVG
UP 

SE 
P av

69.4   86.4 77.90 8.50 93.50 4.83 90.3 91.34 0.679 
49.2 89.2 107 81.83 17.12 90.4 
79 154.9 106 113.37 22.20 87.8 

70.3 132.7 104 102.27 18 88.8 .03 
72.6 144.8 116 111.03 20.97 94 
72.1 138.1 117 109.07 19.46 94.5 
72.2 111.6 102 95.37 92.7  11.89 
82 3.5   91.8 .3 7  85.2 80.33 3.52 
7 .2  3 .43.1 79 86 79.4 3.73 92  
66 .4 .5 7 .7 .6 74 96 79.1 8.95 90
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Table 20.  
Specific conductance (SE) all season Lightfoot Bay open fen 

 

Da we w w a S n 

μS open fen 

te ll 1 ell 2 ell 3 verage E AVG 
open SE ope

1 41 5 5 6  -Jun .2 8.1 57.5 2.27 5.54 0.15 1.24
17 58 5 5 5-Jun .2 6.9 1.6 5.57 2.02 
23 63 5 5 5-Jun .3 6.4 6.9 8.87 2.22 
5-J 66 5 6ul .2 7 58 0.40 2.91 

21 68. 6 6-Jul 2 1.1 59.5 2.93 2.67 
7-A 72 6 6ug .4 0.1 61.6 4.70 3.87 

27 69 6 6 6-Aug .4 2 0.3 3.90 2.79 
12 6 59 5 5 0-Sep 0 .8 8.2 9.33 .57 
3- 5 5 7 5 6Oct 0 6.6 2.8 9.80 .77 

26 59 5 7 6 5-Oct .3 7.4 4.4 3.70 .38 

 

 

Table 21.  
e o n ) ea gh t Ba ns ne

 tr n 

ate we w w average SE AVG 
trans 

SE 
trans 

Sp cific c nducta ce (SE all s son Li tfoo y tra ition zo  

 μS ansitio

D  ll 4 ell 5 ell 6 

1-Ju 72 75.00 56.75 .16 4.07 n .5 77.5    81
17-Ju 60 1 77.83 21.50 n .4 52.5 20.6 
23-Ju 66 80.13 13.94 n .8 65.6 108 
5-Ju 63 74.63 8.63 l .4 68.9 91.6 

21-J 58 6 73.63 12.64 ul .9 3.2 98.8 
7-Aug 6 7 1 98.73 27.22 7 6.3 52.9 
27-Au 67 7 1 82.23 12.21 g .7 2.5 06.5 
12-Se 70 8 79.90 5.51 p .3 80 9.4 
3-Oct 90.2 91.2 107.8 96.40 5.71 

26-Oct 69.4 73.6 70 71.00 1.31 
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Table 22.  
Specific conductance (SE) all season Lightfoot Bay upland 

 μS upland

Date  w a S A
upl uwell 7 well 8 ell 9 verage E VG 

and 
SE 

pland 
1-Jun  1 12 14 9 4.156.6 111.5 16 8.07 .33 5.13 95 

17-Jun  9 7 1161.9 62.4 6.6 3.63 .48 
23-Jun  1 8 1273.7 69.1 07 3.37 .04 
5-Jul  7 96 8 7.93.1 1.8 .5 7.13 73 

21-Jul  1 10 11120.7 82.9 13 5.60 .55 
7-Aug  1 12 27173.4 79.6 16 3.13 .29 
27-Aug 7 1 9 11106 3.8 09 6.37 .32 
12-Sep  9 8 8.85.1 70.5 8.8 4.80 17 
3-Oct  1 8 1290.1 65.5 09 8.17 .57 

26-Oct  1 8 1659.3 69.5 14 1.07 .92 

 

Table 23.  
Specific conductance (SE) all season Bete Grise upland 

 μS upland 

upland upland Date well 1 well 2 well 3 average SE AVG SE 

28-May 42.3  38.17 2.34 59 4.34.2 38 .94 04 
14-Jun 2.031.5 33.6 38.5 34.53 74 
24-Jun 48 55 58. 5 3.8 3.93 163 
6-Jul 53.5 4 8 5 114.4 1.6 9.83 .196 

20-Jul 42.6 44 9 6 187.6 1.40 .105 
6-Aug 82.8 5 11 8 15.8.6 4.43 1.9 408 

26-Aug 74.9 6 11 8 137.3 0.9 4.37 .447 
10-Sep 6 8 6 7.2.9 58 2.5 7.80 485 
3-Oct 58.8 7 6 6 5.7.1 5.4 7.10 351 

3 6 4 9.26.2 7.83 27-Oct 40.8 6.5 67 
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Table 24.  
Spe o n so ris ne ale c plex 

μ an le

Date   w w w wel VG SE   
d & s 

SE  
d & s 

cific c nducta ce (SE) all sea n Bete G e du and sw om

 S dune d swa

well 4 well 5 ell 6 ell 7 ell 8 AVGl 9 A

28-May 1 50 0.00 24.14 76.95 5.87    847.5   72 50.5 
14-Jun  4 44.5 1.13 15.72 61.1 76.2 145.3 0.6  759.1
24-Jun 1 52 2.05 17.03 52.7 56 88.2 49.2 33.7 .5 7
6-Jul 1 51 9.17 22.61 .5 752.7 51.8 108.1 79.3 31.6 

20-Jul 1 4 44 9.30 20.32 60.6 47 126 57.3 0.3 .6 7
6-Aug 4 41.2 3.40 25.53 54.3 39.8 142.1 182.2 0.8  8

26-Aug 1 49 5.85 18.11 .9 750.1 46.6 125.8 39.7 43 
10-Sep 3 51 0.78 18.93 52.4 75.3 141.6 3.1 .5 7
3-Oct 50.2 118.3 95.1 148.1 30.9 40.3 80.48 19.33 

27-Oct 67.6 86.9 85.6 156 22.8 44.9 77.30 18.68 
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Table 25.  
Vegetation survey Bete Grise upland 

Cover class  BG upland 1x1m 
Species name Latin name NE SE SW NW 

Tawny Cotton-grass icum 5       Eriophorum virgin
T a o   ussock Cotton-gr ss Erioph rum vaginatum     25 
Tag alder Al  innus cana 20       
Labrador te  nda Ledum groenla icum 5   7 50 
Small cranb ni oc     erry Vacci um oxyc cus 95   
B el a a     og-laur Kalmi polifoli 30   

Bryo s 50 90 phyte 100 5 
C  ru s     anadian sh Juncu canadensis 5   
Three-leaf S th trifo     olomon's-seal Maian emum lium 20   
Cinnamon f da cinnam     ern Osmun omea 10   
B t a ca sis     luejoin Calam grostis naden  <5   
Boreal bog  m nic 3   sedge Carex agella a 7   
Bunch berry Cornus canadensis   1 3   
Canada mayflower Maianthemum canadense   2 3   
Bracken fern Pteridium aquilinum   20     
Common lake sedge Carex lacustris       15 
Softleaf sedge Carex disperma       2 
Oval leaved bilberry Vaccinium ovalifolium   40 25 10 
Starflower Borealis trientalis   1     
Red maple Acer rubrum   1     
Balsam fir Abies balsamea   1 1   
Leatherleaf Chamaedaphne calyculata       50 
Mountain Ash Sorbus americana   1     

Forest floor 60   85   
Three-leaf goldthread Coptis trifolia     1   
Creeping snowberry Gaultheria hispidula     5   
Lowbush blueberry Vaccinium angustifolium     10 10 
Northern Whitecedar Thuja occidentalis     20   

3X3 m NE SE SW NW 
Labrador tea Ledum groenlandicum 75 3 15 25 
Mountain Holly Nemopanthus mucronata <5       
Lowbush blueberry Vaccinium angustifolium 5       
Tag alder Alnus incana <5       
Northern white cedar Thuja occidentalis <5 20 40   
Black spruce Picea mariana <5     30 

 

Table 25 (continued) 

BG upland 1x1m Cover class  

Species name Latin name NE SE SW NW 
Balsam fir Abies balsamea   15 5   
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Common bilberry Vaccinium my   1     rtillus 
Serviceberry 1     Amelanchier   
Eastern Leatherwood tris     Dirca palus   25 
Paper Betula pa birch pyrifera       5 
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Table 26.  
Vegetation survey, Bete Grise upland tree dat

 N SW W 

a 
Trees BG  
Upland E SE N

Species 
name 

Latin 
name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H st per 
ha 

Pa
pe

r b
irc

h 

Be
tu

la
 p

ap
y-

ri
fe

ra
 

 17 5 4 770 3 <5 1.5 21 10 12 36 9 9
  1   8 6   <5 3   5 6 
  1   10 15   11 14   <5 3 
      12 14   34 17   3 
      10 9   10 9   2 
      10 12   7 8     
      <5 5   8 9     
        6 6   <5 3       

B
al

sa
m

 fi
r 

Ab
ie

s b
al

sa
m

ea
 15 5 2 94 18 12 56 19 17 15 5 3 1800 

  <5 1.5   <5 6   7 5   <5 2 
  <5 1.3   <5 4   5 5   5 2.5 
  <5 1   7 5   <5 3   5 5 
      <5 2   12 11   6 5 
          2   <5 2       

Ea
st

er
n 

w
hi

te
 

pi
ne

 

Pi
nu

s 
st

ro
bu

s 5 <5 1       1 35 17 3 11 6 90 
  1           <5 3 

    1               5 7 

B
la

ck
 sp

ru
ce

 

Pi
ce

a 
m

ar
ia

na
 15 <5 1 13 9 9 9 18 15 25 <5 2 620 

  6 1.5   6 5   15 16   7 4 
  9 6   12 16   10 9   12 9 
  <5 2       14 13   5 3 
  11 8               5 4 

N
or

th
er

n 
w

hi
te

 
ce

da
r 

Th
uj

a 
oc

ci
de

nt
al

is
 5 11 8 12 27 13 18 24 14 18 <5 2 530 

  <5 2   24 14   14 13   2 
  <5 2   14 7   16 8   13 8 
  <5 2   23 14   5 5   24 17 
  <5 2   34 15   29 16   <5 2 

Ta
m

ar
ac

k 

La
ri

x 
la

ri
ci

na
 5 12 5             3 9 10 80 

  6 4           7 6 
  10 6           <5 4 
  <5 2             
    3.5                   
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Table 27.  
Vegetation survey Bete Grise swale 

Bete Grise dune and swale BG6  m Cov  1x1 er class 

Species name Latin e  SE NW nam NE SW 
Threeseede  C x p    d sedge are tris erma 50     
Rattlesnake-mannagrass Glyceria canadensis 1       
Labrador tea m d  45  Ledu  groenlan icum 5 75 15 
Clubmoss Lycopo um     di  spp 5   
Cr  sn rry Gaulth a h d 5     eeping owbe eri ispi ula   

Bryophy  85  95 95 tes  80
Ve  leave berr V cin  myrtillu 5 5 3   ac ium s lvet d bil y 
Balsam fir A s b sam 7     bie al ea   
Bluejoint C m ros anadensis 3  1 2 ala ag tis c  
Northern Blue Flag Iris versacol       or 35 
Three-leaf S on' al M if m     olom s-se  aianthemum tr oliu  1   
Bracken fern i  a nu   0    Pterid um quili m   5
M  as s ame   1   ountain h Sorbu ricana   
Bu berry d C us na s   7   orn  ca densi    nch dogwoo  
Softleaf sedg C ex pe   5   e ar dis rma   
Serviceberry A lan ier p   1   me ch  ss   
Cinnamon O un  cinnamo a   fern sm da me 15   20 
Starflower Trienta  borealis     5  lis   
Three-leaf goldthread C tis trifoli     7 op a    
Ha edge C x st 3   iry s  are  lacu ris     
Dw rch  nana     1 arf bi  Betula   
La or tea L m oe d     50 brad  edu  gr nlan icum 25 10 15
Black spruce Picea mariana 3    25   
Tag alder A s i ana 10  7 50 lnu nc  25
M tain Hol N op hu u a   0 oun ly em ant s m cron ta 7 1   
P rch Betula papy   7   aper bi  rifera 2 
V eav err V in  myrtillu   5 15 acc ium s   elvet l ed bilb y 
T rack Larix l cin     ama ari a < 1   
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Table 28.  
etation survey Bete Grise swale tree dVeg ata 

Trees 
dune SW 

per 
ha 

BG6 NE SE & swale NW 
st 

Co

D
B

H
 

D
B

H
 

H # 

D
B

H
 

H mmon Latin 
name name # H # 

D
B

H

H # 

 

B
la

ck
 sp

ru
ce

Pi
ce

a 
m

ar
ia

na
 3 7 42 1 16 0 11 00  

5 5 5 4 4 1 14 6

  15   9 6   8 7 9   6 4 

    6 5   1 16   20 18 6     

            1 9   1     

        6 7              

Ta
m

a-
ra

ck
 

a
La

ri
x 

l
ri

ci
na

 

3 21 16  <
5 3 6 1 9 530  14 7 5 30  1 

  15   8 7 1 14 14   5 3    6 

  18   <15   9 8  2   8 14 
5

  7   1 9   1 11     8 0 6 

      5 5   7 8   1 13 7 

        5 5              

Ta
g 

al

nu
s

de
r 

Al
 in

ca
na

72 < 5  2 87 < 
5

2 27 < 
5

2 42 < 3 280 5 2

  2   2   2 3       

  2     1.   3   2   
5

  2   2     2 4     

2     2.
5

      2 3       

B
al

sa
m

 fi
r 

sa
Ab

ie
s b

al

1.

m
e

11 5  

a 2 6 <
5

9 < 
5

2 11 < 2 370 5 
5

  < 5   1.2   
5

  2 2     

  12   2 3 6     3     

  7 5     1.
5

  3   2   

    4   4   3     6     

Pa
pe

r b
i

 

Be
tu

la
 p

a
er

a 9 < 5 3 10 <5 2 9 < 
5

rc
h

py
ri

f

2 11 < 5 2 390 

  2     2   2     2 

  3     2   2     3 

  3     3   4     2 

    4     4     3     3  
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Table 28 (continued) 

Trees BG6 
e NE SE SW NW 

st dune & swal
per 
ha Co  # H # H # H # H mmon Latin

name name D
B

H
 

D
B

H
 

D
B

H
 

D
B

H
 

M
ou

nt
ai

n 
H

ol
ly

 

hu
s 

a 
 5     

N
em

op
an

t
m

uc
ro

na
t

            6 < 2 11 < 5 2 
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Table 29.  
Vegetation survey Bete Grise dune 

ise dune and swale well 8 1x1 m Cover cl  Bete Gr ass 

Speci  Latin n  SE  NWes name ame NE SW  
Mayflower gae ep    25 Epi a r ens 20   
Lowbush blueberry Vaccinium angustifolium 25     15 
V Vaccinium myrtillus 60     25 elvet leaved bilberry 

Bryophytes 50 50 10 55 
Labrador te Ledum oen ndi m   35 a  gr la cu 35   
Bracken fer Pteridium aquilinium 25     40 n 
Bu hberry dogwood Cornus canadensis     1 5 nc
Willow Salix spp     25   
Leatherleaf Chamaedaphne calyculata   25 25   
Few-seeded sedge Carex oligosperma   75 60   
Blue joint Calamagrostis canadensis     20   
Bog-laurel Kalmia polifolia   2 5   
Bog-rosemary Andromeda polifolia   7     
Small cranberry Vaccinium oxycoccus   5     
Bog birch Betula pumila   < 1     

3X3 m NE SE SW NW 
Labrador tea Ledum groenlandicum 25     30 
Black spruce Picea mariana 3 1 1   
Leatherleaf Chamaedaphne calyculata 4 5 16   
Mountain Holly Nemopanthus mucronata       10 
Willow Salix spp   40 20   
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Table 30.  
Vegetation survey Bete Grise dune tree data 

Tree
Du  SW  st 

ha 

s BG8 NE SEne & swale NW

per 
Co atin name #  

D
B

H

H #  # Hmmon Lname D
B

H
 

H #

 

 

D
B

H
 

H

D
B

H
 

 
Ta

m
ar

ac
k

La
ri

x 
la

ri
ci

na
 2 5 2 15 6 1 7 4 240  <5 1.5 6 <  5 

  2   6 9   5     6   

   3            < 5 11 10   

        8              8

B
la

ck
 sp

ru
ce

 

Pi
ce

a 
m

ar
ia

na
 18 .5 20 < 5 3 7 7 5 10 2 10 550  <5 1  1  

  1   9   7 13 8   12 1 9 9 

  7 13   < 5       10 6   3 

  10         13 9   14   

   5 15           12 10   <   

W
ill

ow
 

lix
 

Sa sp
p 2       1 < 5       30 <5 5 2 

Pa
pe

r 

pa
py

ri
-

fe
ra

 

1 6 1 9 1 < 
5 3 40 

bi
rc

Be
t

h ul
a 

10 9 1 < 5 9 

W
hi

t

nu
s s

tr
o

1 1.5 1 6 3 29 1 110 28 16 6 < 5 4 2 

e 
pi

ne
 

bu
s 

      6 2     2 10  2  

      < 5 4       30 11 

Pi         < 5 1.5             

R
ed

 m
ap

le
 

Ac
er

 
ru

br
um

 2 <5 3                   20 

  <5 2                    

M
ou

nt
ai

n 
H

ol
ly

 

N
em

o-
pa

nt
hu

s 
m

uc
ro

na
ta

 8 <5 2 3 < 5 2             110 

  2     1.5 9 < 5 2       

    1.5                    
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Table 30 (continued) 

Trees BG8 
D  NE SE SW NW st 

per 
une & swale

ha Com Latin name # H # H # H # H mon 
name D

B
H

 

D
B

H
 

D
B

H
 

D
B

H
 

D
w

ar
f

B
irc

h 

Be
tu

la
 

a       3 < 5 3             30  

na
n

          2             

Se
rv

ic
e-

Am
e-

l

< 5 < 5 20 

be
rr

y 

an
ch

ie
r 

sp
p       1 2 1 2       
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Table 31.  
Vegetation survey Pequaming open fen 

aming PQ2 open fen 1x1 m over class  Pequ C

Co L  name N E S  Wmmon name atin E S W N  
Surface water 25 0 1-5 20 3
Br ph 6 0    yo ytes  0 6 65

Bog-rose Andromeda polifolia 25 5-10 10-15 10-15 mary 
Leatherleaf Chamaedaphne calyc ata 5-10 1-5 5    ul -10
Cranberry Vaccinium oxycoccus 1-5 1-5 1-5   
Bog Go Solidago gin 5- 5 10 5 1-5 lden rod uli osa 10 1- -1
Pitcher pla Sarracenia purpurea 1-5 1-5 15-20   nt 
Violet Viola spp. 10-15       
Willow herb Epilobium palustre <1        
Marsh timothy Muhlenbergia glomerata <1       
Horsetail Equisetum spp <1   1-5 30 
Wiresedge Carex lasiocarpa 75 40 65 60 
Spikerush Eleocharis spp 1-5       
Bulrush Scripus spp 1-5 1-5 1-5   
Royal fern Osmunda regalis   10-15 10-15   
Tamarack Larix laricina   15     
Red maple Acer rubrum     <1   
Chokeberry Aronia melanocarpa     1-5   
Northern white cedar Thuja occidentalis     40   
Mountain Holly Nemopanthis mucronata       15 
Bog bean Menyanthes trifoliata       <1 
Bog birch Betula pumila       <1 

3X3 m NE SE SW NW 
Tamarack Larix laricina 1-5 1-5 <1 1-5 
Northern white cedar Thuja occidentalis 10-15 5-10 1-5 5-10 
Sweetgale Myrica gale 25   10-15   
Black spruce Picea mariana 1-5       
Black Chokeberry Aronia melanocarpa       <1 
Willow  Salix spp       <1 
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Table 32.  
etation survey Pequaming open fen tree dVeg ata 

Trees 
Open fen SE SW NW 

st 
per 
ha 

PQ2 NE   

Common 
name Latin nam

 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

e # 

D
B

H

H 

Norther
white c dentalis 5 2 < 5 5  40 n Thuja 

edar occi 1 <5 1.5 1 < 1 5 1. 1 <  1.5

Tamara rix 5 1.5 2 <5 .5 <5 .5 60 
ck laricina 

La 1 <5 1.5 2 <  1 1 1

      2 .5    1     

Paper bi  
papyrifera             10 Betula 1 <5 1.5       rch 
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Table 33.  
Vegetation survey Pequaming transition zone 

Pequaming PQ5 tra 1 m Cover classnsition 1x   

Common name Latin name NE SE SW NW   

Hairy sedge  la tr 5  Carex cus is     1-5 
Bristlystalked sedge Carex leptalea     20 1-5 
Horsetail q tu p 0 0-E uise m sp  5-1  30 4 50 40 
Labrador tea Led  gr a c   15  -2um oenl ndi um 10 -20 15 0 1-5 
Three-leaf s-seal th m f     Solomon' Maian emu  tri olium 1     
Few seede rex tri erma 0 1-5 d sedge Ca sp 5-1 1   

Bryo y  9 100 8ph tes 85 0 0 
Royal fern Osmunda regalis 25-30     25 
Starflower Trientalis borealis <1 1-5 <1   
Northern white cedar Thuja occidentalis 1 1-5   10-15 
White turtlehead Chleone glabra 1-5   <1   
Small cranberry Vaccinium oxycoccus <1   5-10 <1 
Michaux's sedge Carex michaux 1-5       
Liverleaf wintergreen Pyrola asarifolia <1 10-15   5-10 
Tag alder  Alnus incana   1 5-10   
Bluejoint Calamagrostis canadensis   1 1-5 30 
Sedge (orange roots) Carex limosa     1-5   
Canada mayflower Maianthemum canadense       1-5 

3X3 m NE SE SW NW 
Tag alder  Alnus incana 5-15 1-5 15 1-5 
Northern white cedar Thuja occidentalis 5-10 1-5 25-30 5-10 
Labrador tea Ledum groenlandicum 1-5 5-10 1-5 1-5 
Mountain Holly Ilex mucronata   1-5 <1   
Leatherleaf Chamaedaphne calyculata     1-5   
Tamarack Larix laricina     <1   
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Table 34.  
etation survey Pequaming transition zone tree dVeg ata 

Trees PQ
tran E SW  st 

per 
ha 

5 NE Ssition NW

Common 
na ame # 

D
B

H
 

H # H # 

H

me Latin n H # 

D
B

H
 

D
B

H
 

 

D
B

 

H 
Ta

g 
al

de
r na

 57 5 <5 2 67 0 1840 
Al

nu
s i

nc
a

7 20  <5 2 4  <5 2 
  < 3     5 4   2 2 
  <     15 4   5 5 1.5 .5 
  <   2   25 2   2   
  <5 3     3     1  3   .5 

N
or

th
er

n 
w

hi
te

 

nt
al

is
 1.5 76 94 9 2980 

ce
da

r 

uj
a 

Th de
oc

ci

61 <5 3 67 <5  6 4 5 
  7 12    2  5   29  8 4 1 8 
  1 3   0    7 11   <5 1 5 8 7 
  17 5    1.     12   6 <5 5 <5 1.5 
  31      5   6 13     12  7  

W
in

te
r-

be
rr

y 

Ile
x 

ve
rt

ic
ill

a

41 <5 3 3  1.  14  2 690 ta
  2.5 11 <5 <5 5 <5  

        1.1.5     5 
  3           1.5 
      1.1.5       5 
        2  2           .5 

B
al

sa
m

 fi
r 

s b
al

sa

 <       650 

Ab
ie

m
ea

 26 5 1.5 39 <5 3       
  2     .5 4   6 7     
  4   <5 1.5     4     
  < 2     5 1.5       
  <     5 2   13 10         

M
ou

nt
ai

n 

m
uc

r
na

t 1 <     1  1. 30 

ho N
em

o-
ntlly

 

hu
s o- a 

pa

5 1.5 1 <5 4   <5 5 

A
sh

 

us
 sp

Fr
ax

in
p 6 <5 1.5                   60 

  1.5             
  3             
  5 5             
  <5 4                   

Pa
pe

r 
bi

rc
h 

Be
tu

la
 

pa
py

ri
-fe

ra
 

      1 <5 5             10 

B
la

ck
 

sp
ru

ce
 

Pi
ce

a 
m

ar
ia

na
 1 6 6 3 <5 3             40 

      6 7         

        10 12             
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Table 35.  
Vegetation survey Pequaming upland 

Pequaming nd 1x1 m Cover class upla  

Common name Latin nam NE SE SW NW e 
labra um oe nd  -5  1dor tea Led  gr nla icum 7 1   -5 
Creeping snowberr ulth a id <1y Ga eri hisp ula 5  1-5   
Cinnamo rn  ci mom a    n fe Osmunda nna e   30   
Lowbush eberry m angustifolium   5  blu Vacciniu   1-   
Starflow ta o lis 1-5 1-5   er Trien lis b rea    
Mayflow gae pens 1 5 5-10   er Epi a re -   

Bryophytes 25 5 3 85  10-1 5 
Twinflowe ae orealis   r Linn a b  1-5     
Horseta is  s 1   1il Equ etum sp   -5 
Fowl m ass ce tri a 5  5 1anna gr Gly ria s at 1-  2 -5 
Northern w  ceda a occide alis  10-1 5 4Thuj nt  20 5 1- 0 hite r 
Red maple r m    Ace rubru  < 1     
Clubmos  < 1 5 s Lycopodium spp < 1 1-   
Three-se  sedge Carex trisperma  1-5 5-10 5-eded 30 10 
Balsam f Abies balsamea 5 -5 -5 ir -10 1 1   
Marsh m old Caltha palustris     <1 aryg   
White turtlehead eo la    <Chl ne g bra     1 
Royal fe u  re is   10-rn Osm nda gal     15 
Three-leaf goldthread tis trifolia <1   Cop   <1 
Wintergr lth a 1-5     een Gau eri   
Michaux' dge iana   5 10   s se Carex michaux   -

3x  NE SE W NW 3 m S
Mou Nemopanthis mucronata 5     <1 ntain Holly 
Nort da ja occide al 5 5 25  hern white ce r Thu nt is -2  75 
Balsam fir Abies balsamea 50   50 5-10 
Green As x e sylvanica    h Fra inus P nn  <1     
Tag alder Alnus na 5   1-  inca  1-   5 
Mountain lly Ilex mucronata 5  <5  Ho -10  1 
Red mapl r r um   <e Ace ubr      1 
Labrador tea um oen ndi m 1-5 <Led  gr la cu   1 1 
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Table 36.  
etation survey Pequaming upland tree dVeg ata 

Trees PQ 
Upland SE SW  

 
ha 

NE NW
st per

Commo
na  # 

D
B

H
 

# # Hn Latin 
me name H # 

D
B

H

H 

 

D
B

H
 

H 

D
B

H
 

 
N

or
th

er
n 

w
hi

te
 c

ed
ar

 

a 
6 97  67  12 2950 

Th
uj

oc
ci

de
nt

al
is

 
55  4 76 6 4 11 8 21
  7      6  4   11 4 <5 2 9

  1      112 6   11 6 8 6 13  

  7 3      5 2  5   6 22 13 <

  6 5   7 5     9   14 

          8 4         

 1         0 6         

 7            5         

Ta
g 

al
de

r 

<5 2 34  50  5 1310 

Al
nu

s i
nc

an
a 28  2 19 <5 <5 5 <5  

  3     2     3 6 <5 

   2     2 1.5   6 <5 

 2     3     5 7 8 

   2      4 3       7 <5

B
la

ck
 sp

ru
ce

 5 8  15 1      90 

Pi
ce

a 
m

ar
ia

na
  14 3 12 23 14   

 9 6        9   7     
 1 10     1 10   8       

 1       1 11           
  1             4 15       

M
ou

nt
ai

n 
lly

 

 < 2 19  41 2 1120 

H
o

Ile
x 

m
uc

ro
na

ta
 22 5 2 30 <5 <5 2  <5 

  2     3 2     1.5   
      2 2     2 2   
  1.5     2       2 1.5 
    2     2 2       3   

Ta
m

ar
ac

k 

6 6         190 

La
ri

x 
la

ri
ci

na
 7 13 8 9     

  6         6   8 8   
  17 7 7         10     
  9 14 10          8     
  2         1 10   7 7   
  12           7         
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Table 36 (continued) 
Trees PQ NE SE SW NW 

st per 
Upland 

ha Com  
 # H # H # H # H mon Latin

name name D
B

H
 

D
B

H
 

D
B

H
 

D
B

H
 

B
al

sa
m

 fi
r 

Ab
ie

s 
ba

ls
am

ea
 

        34 4 18 3 520     <5 <5 
            3     3 
            1  .5     2 
            2     3 
                3     2 

A
sh

 

Fr
ax

in
us

 
sp

p 

                1  40   4 <5 .5
                  3 
                     5 
                      6  

Pa
pe

r 

 

bi
rc

h 

Be
tu

la
 

pa
py

ri
fe

ra                   2 18 12 20 

                     15 10 
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Table 37.  
Vegetation survey Lightfoot Bay open fen 

htfoot Bay LB2 open fen 1x1 m Cover class  Lig

Com m a N S  mon na e L tin name E E SW NW
Bog-rose ndromeda po  1 2   1 mary A lifolia
Narrow-panicle ru  unc  brevicau us 60 2   sh J us dat   5 35 40

Bryophyte 35 2   s 5 20 45
Violet Viola pp 2    s 2   
Small cran  Vacc ium xyc cus 2 5 4  berry in  o oc   1
Horsetail qui um p 1 1    E set  ss  3
Spiked m y uhl bergia gl er a 5 1   uhl M en om at 5 4 
Sweet G Myri  ga 15 4    ale ca le  6
America erb ry ta 1     n Wint Ilex verticilla   er
Black Chokeberry ron  me noc pa 1      A ia la ar 5 
Bog golden  olidago u ino 1 2 rod S lig sa  4 5 
Pitcher racenia urpurea 2 25   plant Sar  p  10 10
Bog bea en th trif ata   1 3 n M yan es oli     

Royal fern Osmunda regalis         

Clubmoss Lycopodium spp   1     
Red maple Acer rubrum   1     
Ash Fraxinus ssp     1   
Northern white cedar Thuja occidentalis       15 
Softleaf sedge Carex disperma       3 

3X3 m NE SE SW NW 

Northern white cedar 
saplings 220 / ha         
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Table 38.  
getation survey Lightfoot Bay transition zonVe e 

ass  Lightfoot Bay LB5 transition 1x1m Cover cl

C e NE S S NW ommon name Latin nam  E W 
Swe 15 10 5 et Gale Myrica gale  3  
Tag 7     alder Alnus incana   
Leatherleaf hne calyculata 15 1 25   Chamaedap  0  
Bog- a polifolia 7 3 25   rosemary Andromed  

Bryo 100 5 50   phytes  
Starf alis 3     2 lower Trientalis bore
Dwa 15 5 2 10 rf raspberry Rubus pubescens   
Swa is 7   25   mp rose Rosa palustr  
Bog liata 10   1   bean Menyanthes trifo
Pitch 5       er plant Sarracenia purpurea 
Slen 15 40 15 der sedge Carex lasiocarpa  5  
Hors 10 < 2 5 etail Equisetum ssp  1 
Spik 5       erush Eleocharis ssp 
Sma cus 3 4 15 10 ll cranberry Vaccinium oxycoc
Blac y rpa 1     1 k chokeberr Aronia melanoca
Blue s canadensis 3       joint Calamagrosti
Will 1 <1     ow Salix spp 
Roya 10 75  40 l fern Osmunda regalis   
Labr icum   2   7 ador tea Ledum groenland
Sedge x ssp     Care 15   
Nort Lycopus uniflorus     8   hern bugleweed 
Red rum     1 4 maple Acer rub
Bog-laurel Kalmia polifolia       1 

3X3 m NE SE SW NW 

Sweet Gale Myrica gale 90 80 95 30 
Tag alder Alnus incana 10 2 5 7 
American Winterberry Ilex verticillata 50 15   30 
Mountain Holly Nemopanthus mucronata 10 15 15   
Black Chokeberry Aronia melanocarpa 1 <5 5   
Leatherleaf Chamaedaphne calyculata   5-10 20 25 
Bog-rosemary Andromeda polifolia   1   5 
Red maple Acer rubrum     1   
Labrador tea Ledum groenlandicum     1 <5 
Willow Salix spp     1   
Serviceberry Amelanchier sp       <1 

 

  

88 
 



 

Table 39.  
etation survey Lightfoot Bay transition zone tree dVeg ata 

Trees L
tra SW 

 

B5 NE SE nsition NW st 
per 
haCommon 

name 
Latin 
name # 

D
B

H
 

H # 

D
B

H
 

D
B

H
 

H # 

D
B

H
 

H # H 
B

la
ck

 sp
ru

ce
 

an
a 

Pi
ce

a 
m

ar
i

4 5 <5 <53 3 7 4.5 1  2 7  2 150 
  5     .5 2   <5 1.5   1

          <5 1.
5      3  

  <5         2 1.
5       

            5         4 

Ta
m

ar
ac

a

k 

La
ri

x 
l

ri
ci

na
 28 6 24 <5 .5 2 7 4 1 0 4 30 <5 2  2 9 11

  4   6 .5 <5 .5 4   <5 2 3   2
  7 2.5   5.5 6 4   6 3   4 
  6 5   <5 6 3 4   7 2   
  <5  3   5 3 7 5 2   <5   

N
or

th
er

n
ce

da
r  w

h

a al
isite

  
Th

uj
oc

ci
de

nt

17 15 4 6 3 7   5 9 6 3 18 4 480
  8    6 4 <5 3 4   11 6   
  11 10 5 7 4 5   11 5     
  8 7 5   9 5 6 3 4     
    4               8   

Ta
g 

al
de

r 

nu
s 

Al ca
na

 

5 <5           <5 2  

in

2   1 60

R
ed

 m
a

Ac
er

 ru
br

um
 3 <5 2 1 <5 4 <5 2 0 

pl
e 

4 4 <5 7 15
  3     .5 2     1
  2     .5 2     5
    5 5         2 
    <5 2                 

W
h pi Pi

ite
 

ne
 

nu
s 

st
ro

bu
s

1 

 

<5 1 11 .5      2 1 8.5 6  6   30

R
e d
d 

os
i

og
w

C
or

n

er
 

oo
d 

us
 

se
ri

ce
a 

3 <5       <5 2  2       2 50
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Table 39 (continued) 

Trees LB5 NE SE SW NW st 
per 

transition 

ha Com tin # H # H # H # H mon La
name name D

B
H

 

D
B

H
 

D
B

H
 

D
B

H
 

Se
rv

ic
e-

ry
 

Am
e- er

 sp
    10 

be
r

la
nc

hi
p 

1 <5 1.
5               

B
la

ck
 c

ho
ke

-
be

rr
y 

Ar
on

ia
 m

el
a-

ar
p

1 10 

no
c

a 

                  1 <5 .5 

M
ou

nt
ai

n

N
em

op
an

th
is

 
m

uc
ro 1 10 

 H
ol

ly
 

na
ta

 

                  1 <5 .5 

Sw
ee

t 
ga

le
 

M
yr

i 1 10 

ca
 

ga
le

 

                  1 <5 .5 

A
m

er
nt

er Ile
x 

ve
rt

ic
ill

aic
an

 
be

rr
y 

w
i

ta
 

                  2 <5 2 20 
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Table 40.  
Vegetation survey Lightfoot Bay upland 

LB upl d 1x1m Cover class an  

Com am L n name  SW  mon n e ati NE SE  NW
Bryophytes 100 25 20 60 

Royal fern Osmunda regalis 25     30  
Black s ic  ma na 5-10     pruce  P ea ria   
Red ma c ubr   30 10  ple A er r um 5 2
Brownish sedge Carex brunnescens 15     15 
Starflower Trientalis borealis 5     5 
Three-l thread Coptis trifolia 2 6     eaf gold
Bunchb gw  Co s c ade s 10   erry do ood rnu an nsi 7   
Yellow Betula alleghaniensis 7 2 5    birch 
Blue bead Clintonia borealis 1 2 5    lily 
Trailing us Epigaea repens   1     arbut
Wood s Oxalis spp   <1     orrel 
Creepin ber  Ga her hisp la <1   g snow ry ult ia idu     
Eastern ck Tsuga canadensis 1 <1 3    Hemlo
Clubmo Lycopodium spp     3   ss 
American interberry Ilex verticillata   4 5 5  W
Canada Mayflowe Ma hemum nade  4 5r iant ca nse      

3X3 m NE SE SW NW 
Black spruce  Picea mariana 7     5 
Yellow bir Betula alleghaniensis 10 5 5 5 ch 
Americ ter rry Ilex erticillata     an Win be  v 3  30
Common b rry Vaccinium myrtillus     5   ilbe
Eastern Hemlock Tsuga canadensis 15       
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Veg ata 
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upland SE SW W 
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Table 41.  
etation survey Lightfoot Bay upland tree d

NE N

Commo
name name 

 

 # 

D
B

H

H #n Latin # 

D
B

H

H

 

# 

D
B

H
 

H  

D
B

H
 

H 
N

or
th

er
n 

w
hi

te
 26 16 8 2 3 39 16 1 930 

ce
da

r de
Th

uj
a 

oc
ci

nt
al

is
 29 12 7 1 1 9  1 

  43 14   7    32 13   4 12 11 
  7 11   33    27 24 10   1 13 12 
      38    10 16 8   14 8 
          8   5 9 4 
                  9   8 

B
la

ck
 

1         1 33 1 20 

sp
ru

ce

Pi
ce

a 
ar

ia

 na
 

m

32 16     3 

Ea
st

er
n 

1 4 19 13         50 

he
m

l

Ts
ug

ca
na

de
ns

is
 

oc
k a 

 32 15     
      30 16         
  6 4             

  11 9                   

Y
el

lo
w

 
bi Be

tu
al

le
g

ni

38 16 2 25     60 

rc
h la

 
ha

-
en

si
s 1 27 14 3 13   

  4   33       23 1 14   

      9 10                

B
al

sa
m

 fi
r   14 2 17 2 10 50 

Ab
ie

s 
sa

m
ba

l
ea

     1 18  12 13 

              24 14   16  15 

R
ed

 
m

ap
le

Ac
er

 
br

um
   18 13 1 30      40  

ru

    3  14   
      27 20         
        24 16             
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