Betets avkastning på olika typer av naturbetesmark – en fält- och metodstudie

Pasture yield on different types of semi-natural pastures – a field and methodology study

av

Josefin Back
Betets avkastning på olika typer av naturbetesmark – en fält- och metodstudie

Pasture yield on different types of semi-natural pastures – a field and methodology study

av

Josefin Back

Handledare: Eva Spörndly
Examinator: Jan Bertilsson

Nyckelord: Bete, produktion, naturliga betesmarker, hagmarker, betesburar

Institutionen för husdjurens utfodring och vård

<table>
<thead>
<tr>
<th>Institutionen för husdjurens utfodring och vård</th>
<th>Examensarbete 352</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swedish University of Agricultural Science</td>
<td>30 hp E-nivå</td>
</tr>
<tr>
<td>Department of Animal Nutrition and Management</td>
<td>Kurskod: EX0551</td>
</tr>
</tbody>
</table>

Uppsala 2011
Innehåll

Abstract ... 7
Sammanfattning ... 8
Introduktion .. 9
 Varför är denna studie intressant? .. 9
Bakgrund .. 10
 Varför skall man bevara naturbetesmarkerna? .. 11
 Hur sköts en naturbetesmark på bästa sätt? ... 11
 Betets näringsinnehåll ... 13
Indelning av vegetationen i olika typer .. 14
 Årsvariation ... 14
Olika metoder att mäta avkastningen på betesmark ... 15
 Betesburar ... 15
 Indirekta metoder ... 16
Material och metod .. 18
 Hagar och vegetationstyper ... 18
 Utplacering av korgar och burar .. 20
 Klippningarna .. 21
 Statistiska analyser ... 22
Resultat .. 23
 Väderlek ... 23
 Avkastning .. 24
 Metodikstudien .. 25
 Tillväxthastighet under säsongen ... 27
Diskussion .. 29
 Metodikstudien .. 30
Tack ... 33
Referenser ... 34
Bilagor ... 36
Abstract

A prerequisite to be able to use semi-natural pastures in an optimal way is knowledge about their conditions and properties. One thing to consider is the amount of herbage mass that can be produced during one season on different types of semi-natural pastures. That knowledge makes it easier to choose which type of animals and how many you are able to have in each paddock to maintain a high biodiversity and achieve the desired production of the animals at the same time.

This study was performed in nine different semi-natural pastures around Uppsala. The paddocks were already mapped with regard to different vegetation types. Exclosure cages were placed on previously fertilized, mesic, dry, shaded and wet vegetation. Primarily, small exclosure cages made of metal wires with the size of 0.5*0.5 m were used, three per vegetation type and paddock. In one paddock, traditional larger exclosure cages of 2*1 m placed in the vicinity of the small cages were also used on mesic, dry and wet vegetation to perform a methodology study, to investigate if small exclosure cages would give approximately the same results as the traditional larger ones. A total of 117 small and 9 large cages were used in the study giving 126 exclosure cages altogether. The grass in all cages was cut with a scissor at a stubble height of 1-2 cm six times during the grazing season between May and September. The samples were dried and the annual yield as well as differences between vegetation types were analyzed statistically using the mixed procedure. A separate analysis was also performed to statistically analyze if there was a difference in the estimation of herbage production between the small and large exclosure cages.

This study showed that previously fertilized and wet vegetation produced most, with an annual yield of approximately 5000 kg DM per ha. Mesic vegetation had an annual production of just over 3000 kg DM per ha while the dry and shaded vegetation produced least, yielding hardly 2000 and 1000 kg DM per ha and year, respectively. The production obtained in the present study was higher than values reported earlier (Pelve, 2010), especially the yield on dry pastures was considerable higher in this study. It is possible that part of the difference between the two studies are due to favourable weather conditions during the season of 2010 compared with the prevailing weather conditions in the earlier study.

Small exclosures gave less accurate results with a bigger variation, especially on wet land which is more uneven and hummocky which complicates the placing of this type of exclosure cages. The lower accuracy is to some extent compensated by the possibility to use much more sample units when using small cages compared to when one works with the larger, traditional cages.
Sammanfattning

En förutsättning för att kunna utnyttja betesmarker optimalt är kunskap om deras förutsättningar och egenskaper, varav en är hur stor avkastning man kan förvänta sig under en säsong. Det underlättar valet av betesdjur och planering av hur många djur man kan och behöver ha på marken för att bibehålla önskad hävd och samtidigt uppnå önskad produktion hos djuren.

Denna studie utfördes i nio olika naturbeteshagar runtom Uppsala. Hagarna var sedan tidigare kartlagda med avseende på vegetationstyp. Betesburar placerades ut på gammal åker/tidigare gödselpåverkad, frisk, torr, skuggpåverkad och fuktig vegetation. Huvudsakligen har små betesburar i form av trådkorgar i storlek 0,5*0,5 m använts, tre per vegetationstyp och hage. I en hage användes också traditionella större burar på 1*2 m på frisk, torr respektive fuktig vegetation för att genomföra en metodikstudie där avkastningen i de små burarna skulle jämföras med avkastningen i de traditionella större burarna. Totalt placerades 117 mindre burar och 9 större burar ut. Gräset i varje betesbur klipptes med sax sex gånger vid en stubbhöjd på 1-2 cm under betessäsongen mellan maj och september. Proverna torkades och årsavkastningen per hektar, samt skillnader mellan vegetationstyper och de olika burarna analyserades statistiskt med proceduren mixed.

Resultaten visade att gammal åker/tidigare gödselpåverkad vegetation och fuktig vegetation, precis som i tidigare studier, avkastade mest med en produktion runt 5000 kg torrsubstans (ts) per ha och år. Därefter följde friskt bete med en avkastning på drygt 3000 kg ts per ha och år och minst producerade torr och skuggpåverkad vegetation med en avkastning på knappt 2000, respektive knappt 1000 kg ts per ha och år. Produktionen som erhållits i denna studie är högre än vad som har rapporterats tidigare (Pelve, 2010), särskilt gällande avkastningen på torr mark som var betydligt högre i denna studie. Till en viss del kan detta kanske förklaras av gynnsammare väder i denna studie.

Små betesburar gav ett mer osäkert resultat med en större variation, speciellt på fuktig mark som är mycket ojämn och tuvig vilket komplicerar placeringen av den här typen av bur. Det något osäkrare resultatet kompenseras dock till viss del av att man kan använda många fler försöksytor än när man arbetar med små burar jämfört med de traditionella stora burarna, då dessa är både dyrare att införska och avsevärt mer arbetskrävande att hantera och placera ut.
Introduktion

Svenska Jordbruksverkets (Jordbruksverket, 2011) definition av betesmark är:

"Ett jordbruks-skifte som inte är lämpligt att plöja och som används till bete, samt är bevuxet med gräs, örter eller ris som är dugligt som foder."

Den beskrivningen är relativt ospecifik och inkluderar alla typer av betesmark. Naturbetsesmarker beskrivs därför ofta ytterligare som gräsmarker som under lång tid präglats av bete och vars växt- och djurliv inte är tydligt påverkat av produktionshöjande åtgärder, såsom gödsling, markbearbetning och insådd av vallväxter (Ekstam, 2000b). De karakteriseras ofta av en stor artrikedom bland såväl växtlighet som djurliv, samt av en omfattande heterogenitet. De indelas ofta i olika typer baserat på dominerande vegetation eller markförhållanden.

Varför är denna studie intressant?

För att betesmarkens produktion skall optimeras och djurens tillväxt och produktion dessutom skall uppnå önskade nivåer är det av stor vikt att anpassa djurbeläggningen på marken. Antalet djur man kan ha per hektar beror förstås på flera saker, såsom typ av djur, vegetationstyp på betet men framför allt på betets avkastning. För att kunna bedöma hur många djur som är lämpligt att hålla på en viss betesmark behöver man veta hur mycket den producerar på en säsong. De siffror som finns tillgängliga idag säger att torra marker och skuggpåverkad vegetation avkastar minst, omkring 1000 kg torrsubstans (ts) på en säsong. Friskt naturbete avkastar ca 2600-3000 kg ts på ett år och mest producerar fuktiga marker och gammal åkermark vars årliga produktion är mellan 3500 och 5000 kg ts (Pelve, 2010b).

Under betessäsongen sjunker också såväl produktionen (kg ts/ha och dag) och näringsvärdet i betet och kan därför inte försörja lika många djur med tillräcklig mängd näringer under sensommaren som under försommaren. Därför kan det vara nödvändigt att öka arealen, alternativt minska antalet djur under säsongen (Pehrson & Edelstam, 2001b). Betets näringsvärde behandlas närmare i separat avsnitt om betets näringsinnehåll.

Eftersom de uppgifter som idag finns tillgängliga är relativt gamla är det intressant att arbeta fram nya siffror för säsongsavkastningen på olika typer av naturbetesmark. I denna studie undersöktes avkastningen på fem olika vegetationstyper; frisk, fuktig, skuggpåverkad, torr och gammal åker. I samband med denna studie genomfördes också en metodikstudie där två olika typer av burar användes för att utestänga betesdjuren från försöksytorna. Huvudsakligen användes trådkorgar av storleken 0.5*0.5 m, men intill nio av de mindre trådkorgarna placerades också större betesburar av den traditionella typen med en storlek på 1*2 m. Anledningen till detta är att det är av intresse att utforska möjligheterna att använda de mindre korgarna istället för de traditionella stora burarna, som är betydligt mer otymliga att arbeta med. De är mycket större och tyngre än de mindre korgarna och därför måste man vara minst två personer då man placera ut respektive burarna. En annan nackdel med de stora burarna är också att de är dyra att tillverka. Dessa faktorer tillsammans innebär oftast att man använder betydligt färre burar i varje försök, vilket i sin tur ger ett mindre försöksunderlag och därmed minskar säkerheten i de mätningar man gör. Denna studie möjliggjorde en jämförelse mellan de två olika typerna av burar då de användes i samma hage, på samma vegetationstyper och under samma tidsperiod.

Bakgrund

Varför skall man bevara naturbetesmarkerna?

Dessa marker är inte bara betesmarker. Tack vare att de ofta består av olika typer av vegetation och är mycket varierande är de också hemvist för en mängd olika växter, insekter och fåglar och är således en av de mest artrika marktyperna i Sverige. Av de totalt ca 1700 kärlväxter som finns i Sverige, är åtminstone 600-700 av dem representerade i naturbetesmarker (Pehrson & Edelstam, 2002). Kärlväxter är ett samlingsnamn för växter med ledningsväv näv, såsom barrväxter, ormbunkar, lummerväxter och gömfröiga växter och inkluderar alltså inte mossor, alger och svampar (Nationalencyklopedin).

Tack vare den breda faunan kan markerna dessutom vara värdefulla när de ligger i närheten av fält med odling av vissa grödor som kräver pollinering (t ex oljeväxter och rödklöver), vilka gynnas av ett artrikt insektsbestånd. Pollinering av humlor och bin är speciellt viktigt i ekologisk odling och kan generellt öka avkastningen med upp till 20 % (Logarth, 2010). I ett alltmer öppet odlingslandskap kan humlor och bin ha svårt att hitta bra boplatser, och då kan betesmarker vara till stor hjälp. Dels erbjuder de bra bomiljöer i träd och på skyddade platser nära marken. Dessutom erbjuder betesmarker ofta en variation av blommande växter under hela sommaren. Pollineringen av odlade grödor sker ofta under en kortare period under vår och sommar. Har insektarna gott om föda även under andra delar av sommaren är chansen större att de stannar på platsen och kan föröka sig effektivt till nästa säsong (Logarth, 2010; Risberg, 2008).

Hur sköts en naturbetesmark på bästa sätt?

Nyckeln till den biologiska mångfalden som ofta råder i naturbetesmarker är ljuslyggande, öppenhet och regelbunden avbetning. Att solen kommer åt att belysa stor del av markytan gynnar såväl örter som insekter. Tack vare att det är gott om insekter får också fåglarna tillgång till föda. Öppna gräsytor med ett varierat utbud av blomväxter är också en populär hemvist för många fjärilsarter. (Pehrson & Edelstam, 2002)

Regelbunden avbetning hämmer konkurrenskraftiga växter med stor bladmassa som annars skuggar marken och gör det svårt för långsamtväxande örter med lägre konkurrenskraft att
etablera sig. Då växterna betas förlorar de olika stor andel av sin biomassa, s.k. ”loss rate”. Arter som snabbt utvecklar bladverk och dessutom växer fort på höjden förlorar mycket mer av sin totala massa än en mindre art som växer nära marken och dessutom långsammare. Slätter eller bete jämnar alltså ut förhållandet mellan olika typer av växter och det är den främsta förklaringen till de naturliga betesmarkernas utbredda mångfald. Få arter har, vid god hävd möjlighet att breda ut sig så att det blir på de andra arternas bekostnad. Även om näringsstillgängen på dessa marker normalt är relativt låg kan den räcka för att många arter kan klara sig och förekomma i ett mindre bestånd. (Ekstam, 1996)

Förutom avbetningen, som de flesta hävdgynnade arter tål mycket bra har påverkan av djurens tramp stor betydelse för växtligheten. Tunga djur som hästar och vuxna nötkreatur kan orsaka omfattande trampskador på känsliga marker. Risken är större tidigt och sent på säsongen och på fuktig mark. För att undvika alltför stora skador till följd av tramp bör man tänka på att placera saltsten, vattenkälla, grindhål m.m. på mindre känslig mark. Man bör också se till att beläggningen av djur på marken inte blir för stor. (Pehrson & Edelstam, 2002)
Även om det generellt är önskvärt att ha en tidig betespåsläppning kan det finnas fall där man önskar ett senare betessläpp för att vissa örter ska få tid att hinna fröa av sig innan avbetningen sker. Om det är möjligt kan man då sätta upp tillfälliga elstångsel för att avskilja delar av betesmarken de första veckorna på säsongen. Ett annat alternativ kan vara att ha sent betessläpp vart annat eller vart tredje år. (Pehrson, 2001b)

Betets näringsinnehåll

Det som har störst påverkan på vegetationens näringsinnehåll är växternas utvecklingsstadium, men även andra faktorer såsom ljustillgång, jordmån, klimat och tillgången på näring har betydelse (Pehrson, 2001a).

Tabell 1. Näringsvärde i några gräs som är vanligt förekommande på naturbetesmark.

(Spörndly, 2003)

<table>
<thead>
<tr>
<th></th>
<th>Angsgröe, Ångskavle, Ängshavre, Rödven</th>
<th>Tuvét älta</th>
<th>Fårsvingel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per kg ts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energi, MJ</td>
<td>11,1</td>
<td>10,5</td>
<td>9,4</td>
</tr>
<tr>
<td>Smb protein</td>
<td>125</td>
<td>72</td>
<td>95</td>
</tr>
<tr>
<td>NDF, g/kg ts</td>
<td>491</td>
<td>593</td>
<td>521</td>
</tr>
</tbody>
</table>

Innehållet av omsättbar energi, mätt i megajoule (MJ) är det viktigaste måttet på gräsets näringsmässiga kvalitet. Det har i sin tur ett samband med gräsets smältbarhet, som har ett starkt samband med påverkas mycket av innehållet utav fibrer genom att fiberinnehållet ökar när .

Det är dessutom så att gräsens näringsinnehåll och smaklighet försämras betydligt om de tillåts förväxa (Brockman & Wilkins, 2003). Andersson (1999) undersökte i sin studie näringsvärden i olika betesväxter som är vanligt förkommande på naturbetesmarker. Man kan där se att tuvét älta och färsvingel har betydligt lägre energiinnehåll än övriga arter som

Indelning av vegetationen i olika typer

Årsvariation

Utöver de variationer som mångfalden av mark- och jordtyper samt vattenstånd bidrar till har också vädret betydelse för hur mycket en betesmark kan förväntas producera under en säsong. I studien av Frankow-Lindberg (1988) påvisas stora variationer i avkastningen på betesvall mellan olika år. Där redovisas avkastningen på betesvall i tre olika län under fyra efter varandra följande år. I de tre olika länena ses en variation i avkastningen mellan olika år på maximalt 0,6, 1,6 respektive 2,0 ton ts, där det år med den högsta avkastningen avkastade 9, 31 och 36 % mer jämfört med året med lägst avkastning under de fyra år studien pågick. Då man analyserade skörderesultaten tillsammans med klimatdata från samma period fann man att vädret hade stor inverkan på tillväxtnivån och den totala säsongsavkastningen i samtliga län.
Olika metoder att mäta avkastningen på betesmark

Det finns några olika sätt att gå till väga för att mäta avkastningen på betesmark. Klippning av vegetationen i förutbestämda försöksytor ett antal gånger under säsongen är en s.k. direkt metod. Det kräver ofta mycket tid, material och en stor arbetsinsats och kan därför bli kostsamt. Av de anledningarna har man under åren försökt hitta andra sätt att skatta avkastningen. Så kallade indirekta mätmetoder innebär ofta att man inte tar bort något växtmaterial från platsen. Det kan vara användbart vid studier på små ytor där det annars bortförsatte materialet kan utgöra en procentuell stor del av den totala försöksytan eller på avlägsna platser där är svårt att klippa vegetationen. (Frame, 1993)

Det skulle också vara värdefullt för lantbrukare att på ett tidseffektivt och enkelt sätt kunna uppskatta produktionen på en betesmark för anpassning av djurantalet (Frame, 1993; Harmoney et al. 1997).

Betesburar

När man använder betesburar i försök skall man vara medveten om att vegetationen inom buren alltid påverkas av olika faktorer som blir annorlunda då man avgränsar en yta. Vegetationen i buren utsätts t ex inte för tramp från djuren och vegetationen i buren får oftast inte samma tillgång till näring från urin och gödsel. Påverkan av dessa faktorer blir större ju längre tid buren används på samma yta. Beror på hur betesburan utförs kan också vegetationen inom buren påverkas av att vindstyrkan blir något lägre än utanför buren samt att den relativa fuktigheten inom buren kan bli lite högre än utanför. (Frame, 1993; ’t Mannetje & Jones, 2000)

Indirekta metoder

säkerhet för den här metoden då den används i relativt kort vegetation med få arter och vars densitet är jämn. (Frame, 1993)

tillväxtstadium och förhållandet mellan grönt och dött material. Det innebär att man måste utvärdera förhållandet mellan kapacitansförändringen och avkastningen för olika typer av marker och olika platser (Frame, 1993).

Material och metod

Hagar och vegetationstyper

I tabell 2 ges en förklaring till de olika vegetationstyperna, samt en förteckning över några av de vanligast förekommande arterna på respektive typ. I bilaga 10 ges en mer omfattande lista över de inventerade arterna på olika vegetationstyper.
Tabell 2. Beskrivning av de olika vegetationstyperna samt förteckning över några av de vanligaste arterna på respektive typ (Steen et al., 1972; Pelve, 2007; Pelve, 2010a)

<table>
<thead>
<tr>
<th>Vegetationstyp</th>
<th>Beskrivning</th>
<th>Vanliga växtarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gammal åker/tidigare gödselpåverkad (GÅ)</td>
<td>Övergiven åkermark eller vall som tidigare blivit gödslad. Inhyser framför allt kvävegynnade växter. Relativt högproducerande mark.</td>
<td>Skräppor, Maskros, Olika sorters klöver, Röllika, Groblad, Rödsvingel</td>
</tr>
<tr>
<td>Frisk (F)</td>
<td>Medelfuktig mark med god ljustillgång där flertalet bredbladiga gräs trivs men också klöver, maskros och örter. Medelstor avkastning.</td>
<td>Rödven, Daggkåpa, Ängssyra, Gullviva, Klöver</td>
</tr>
<tr>
<td>Torr (T)</td>
<td>Väldränerad mark som ofta är bevuxen med lågväxta och/eller fetbladiga växter, småbladiga gräs samt flertalet örter. Normalt är dessa marker lågproducerande.</td>
<td>Fårsvingel, Gråfibbla, Gulmåra, Tjärblomster, Olika typer av fetbladväxter</td>
</tr>
<tr>
<td>Skuggpåverkad (S)</td>
<td>Vegetation på ytor som delvis skuggas av buskar eller träd. Producerar liten mängd grönmassa.</td>
<td>Hundkäx, Midsommarblomster, Liljekonvalj, Örnbräken, Piprör</td>
</tr>
<tr>
<td>Fuktig/blöt (B)</td>
<td>Fuktig betesmark där grundvattnet står nära markytan. Har ofta utbredda bestånd av tuvtåtel, samt olika typer av starr, tåg och vass. Blöt betesmark hör till de typer som producerar mest grönmassa över säsongen.</td>
<td>Olika typer av starr och tåg, Tuvtåtel, Ålggräs, Humleblomster, Kabbleka</td>
</tr>
</tbody>
</table>
Hagarna innehöll minst tre av de fem vegetationstyperna och fördelningen såg ut enligt tabell 3.

Tabell 3. Tabell över de olika hagarna, dess storlek, vegetationstyper samt vilken djurkategori som den betas av

<table>
<thead>
<tr>
<th>Hage</th>
<th>Storlek, ha</th>
<th>Djur</th>
<th>Vegetationstyper</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>5,5</td>
<td>Mjölkraskvigor</td>
<td>GÅ, F, T, S, B</td>
</tr>
<tr>
<td>LB</td>
<td>7,5</td>
<td>Mjölkraskvigor</td>
<td>GÅ, F, T, S, B</td>
</tr>
<tr>
<td>L</td>
<td>17,0</td>
<td>Mjölkraskvigor</td>
<td>GÅ, F, T, S, B</td>
</tr>
<tr>
<td>E</td>
<td>13,5</td>
<td>Mjölkraskvigor</td>
<td>GÅ, F, T, S</td>
</tr>
<tr>
<td>Ö</td>
<td>16,5</td>
<td>Charolaiskor med kalvar + tjur</td>
<td>GÅ, F, T, S</td>
</tr>
<tr>
<td>L-S</td>
<td>28,0</td>
<td>Dikor (korsningar) med kalvar + tjur</td>
<td>GÅ, F, T, S</td>
</tr>
<tr>
<td>Å</td>
<td>12,0</td>
<td>Herefordkor med kalvar + tjur</td>
<td>GÅ, F, T, S, B</td>
</tr>
<tr>
<td>H</td>
<td>16,0</td>
<td>Dikor (korsningar) med kalvar + tjur</td>
<td>GÅ, F, S</td>
</tr>
<tr>
<td>V</td>
<td>10,0</td>
<td>Dikor (korsningar) med kalvar + tjur</td>
<td>GÅ, F, T, S</td>
</tr>
</tbody>
</table>

Utplacering av korgar och burar

I det aktuella försöket placerades tre trådkorgar ut på respektive vegetationstyp i varje hage. I hage Å placerades, utöver de små trådkorgarna, också nio betesburar av den traditionella större sorten ut, tre burar på blöt, frisk respektive torr vegetation.

Trådkorgarna är 0,5*0,5 meter och utgör därmed en yta på 0,25 kvm. Höjden är 16 cm, förutom på blöt mark och i vissa fall gammal åkermark där korgar med en höjd av 30 cm användes, vilket gjordes för att vegetationen inte skulle hinna växa ur korgen mellan klippningarna. Avståndet mellan trådarna är 3,5 cm och diametern på trådarna är 3 mm. Trådkorgarna fixerades med två stängselstolpar som placerades i varsitt hörn, diagonalt mot varandra. Därutöver sattes också en tältpinne på varje sida för att ytterligare hålla fast korgen. På några av dem som placerades på blöt mark användes dock inte några tältpinnar då de inte fick fäste i den mjuka marken. De traditionella större betesburarna fixerades med två järnspett, ett i varje kortända av buren. De burarna var 1*2 meter vilket ger en yta av två
kvadratmeter. De är vällda och höjden på dessa burar är som mest ca 65 cm. Avståndet mellan träderna och nätet är ca fyra centimeter och diametern på trådarna är mellan 1,5 och 3 millimeter.

I samband med utplaceringen märktes korgarna med en tejpbit varpå vegetationstyp och nummer (1-3) var skrivet, och korgarnas placering ritades in i de kartor som fanns över vegetationstyperna. Vid de tillfällen då djuren fått loss korgen och/eller tryckt ihop den mellan klippningarna rättades den ut och återställdes efter klippningen, alternativt ersattes den med en ny korg. Oavsett påverkan så övergavs aldrig en given placering under säsongen. Händelsen antecknades för att man senare skulle ha bättre förutsättningar att spåra eventuella avvikelser.

Klippningarna

Totalt användes 126 rutor i studien och därmed gav varje klippning 126 prover. Vegetationen i försöksrutorna klippes med sax sex gånger under perioden maj-september på en höjd av 1-2 cm. Hagarna klippes i samma ordning varje gång för att antalet dagar mellan klippningarna skulle vara liknande mellan hagarna. Klippningarna utfördes under följande datum:

- 1:a klippningen: 18 - 26/5- 2010
- 2:a klippningen: 7 - 14/6- 2010
- 3:e klippningen: 28/6 - 2/7- 2010
- 4:e klippningen: 19/7 - 23/7- 2010
- 5:e klippningen: 16 - 20/8- 2010
- 6:e klippningen: 16 -24/9- 2010

Figur 1. Trådkorg placerad på vegetationstyp GA i hage L-S. (Eget foto)

Figur 2. Traditionell betesbur placerad på vegetationstyp F i hage Å. (Eget foto)
Vegetationen samlades upp i textilpåsar som märktes med hage, datum och vilken ruta det kom ifrån med hjälp av maskeringsstjp. All vegetation inom ytans kanter kliptes, utan hänsyn till om den var rotad utanför eller innanför rutan. Påsarna förvarades sedan i kylväska tills dagen var slut, då proverna antingen torkades direkt eller lades i frysen för att torkas vid ett senare tillfälle.

Mängden vegetation vid de 6 klippningar som gjordes på varje yta över säsongen summerades och avkastningen räknades sedan ut som mängd ts per ha. Formel för beräkning av avkastningen i kg ts per hektar och säsong för en försöksyta:

Liten trådkorg (50cm*50cm):
\[n = \text{vikten (g) vid respektive klippning} \]
\[\sum(n^1+...+n^6) \times 40 \]

Traditionell betesbur (1m*2m):
\[n = \text{vikten (g) vid respektive klippning} \]
\[\sum(n^1+...+n^6) \times 5 \]

Statistiska analyser

Alla statistiska analyser har genomförts i procedure mixed i Statistical Analysis System (SAS). Den totala avkastningen i samtliga små betesburar (118 st) och dess samband med vegetationstyp analyserades i en modell där den totala betesproduktionen över säsongen i varje försöksruta sattes som beroende variabel och vegetationstypen utgjorde den oberoende variablen. Som ”random” eller slumpvariabel sattes hage och samspellet mellan hage och vegetationstyp. Både hage och vegetationstyp var satta som klassvariabler. Skillnader mellan vegetationstyper bestämdes utifrån skillnader på nivån p<0,05 justerat enligt Tukey.
Den statistiska jämförelsen mellan avkastningen i de små burarna jämfört med de stora burarna gjordes i en regressionsanalys där sambandet mellan avkastningen från närliggande burar analyserades. I denna analys utgick analysen från de stora burarna då dessa har använts tidigare i andra sammanhang och därför valdes avkastningen i de stora burarna som beroende variabel och avkastningen i de små burarna oberoende variabel. Analyser gjordes såväl på sambandet mellan den totala säsongsavkastningen i de båda burtyperna och sedan även på avkastningen vid olika klippningstillfällen under säsongen och på olika vegetationstyper.

Resultat

Väderlek

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medeltemperatur, °C</td>
<td>Nederbörd mm/månad</td>
<td>Nederbörd mm/månad</td>
</tr>
<tr>
<td>Maj</td>
<td>10,8</td>
<td>56,0</td>
<td>32,7</td>
</tr>
<tr>
<td>Juni</td>
<td>15,9</td>
<td>42,9</td>
<td>44,8</td>
</tr>
<tr>
<td>Juli</td>
<td>16,6</td>
<td>37,5</td>
<td>75,2</td>
</tr>
<tr>
<td>Augusti</td>
<td>16,8</td>
<td>39,4</td>
<td>64,8</td>
</tr>
<tr>
<td>September</td>
<td>11,4</td>
<td>60,1</td>
<td>59,2</td>
</tr>
<tr>
<td>Total</td>
<td>14,3</td>
<td>235,9</td>
<td>276,7</td>
</tr>
<tr>
<td>Maj</td>
<td>11,2</td>
<td>46,9</td>
<td></td>
</tr>
<tr>
<td>Juni</td>
<td>15,2</td>
<td>34,7</td>
<td></td>
</tr>
<tr>
<td>Juli</td>
<td>20,6</td>
<td>64,2</td>
<td></td>
</tr>
<tr>
<td>Augusti</td>
<td>16,5</td>
<td>110,0</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>11,1</td>
<td>48,4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14,9</td>
<td>304,2</td>
<td></td>
</tr>
</tbody>
</table>

Avkastning

Resultaten av den statistiska analysen för de olika vegetationstypernas totala säsongsavkastning redovisas i Tabell 5. Av tabellen framgår också att det var signifikant skillnad i avkastning mellan olika vegetationstyper med undantag för skillnaden mellan skuggpåverkad och torr vegetation.
Tabell 5. Medelvärden och standardfel (SE) för avkastningen per säsong för de olika vegetationstyperna. Totala antalet rutor, \(N=117\)

<table>
<thead>
<tr>
<th>Vegetationstyp</th>
<th>Antal rutor (n)</th>
<th>Kg ts/ha*</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gammal Åker</td>
<td>27</td>
<td>4437(^a)</td>
<td>304,58</td>
</tr>
<tr>
<td>Frisk</td>
<td>27</td>
<td>3120(^b)</td>
<td>304,58</td>
</tr>
<tr>
<td>Torr</td>
<td>24</td>
<td>1836(^c)</td>
<td>304,58</td>
</tr>
<tr>
<td>Skuggpåverkad</td>
<td>27</td>
<td>1323(^c)</td>
<td>322,86</td>
</tr>
<tr>
<td>Fuktig</td>
<td>12</td>
<td>6145(^d)</td>
<td>455,15</td>
</tr>
</tbody>
</table>

*Avkastningar som inte har samma bokstav skiljer sig signifikant från varandra (p < 0,05).

Under försöket påträffades 15 små trådkorgar som var så förstörda att det kan ha påverkat det slutliga resultatet. Det motsvarar ca 2 % av det totala antalet prover från de små försöksytorna.

I tabell 6 redovisas jämförelsen mellan resultaten som erhållits från denna studie och de som Pelve (2010a) kom fram till under sin studie.

Tabell 6. Avkastning(kg ts/ha) och relativtal för avkastning. Data från alla nio hagarna samt från olika år i samma två hagar (egna data samt från Pelve 2011). Relativa tal för avkastningen i varje vegetationstyp har beräknats i jämförelse med avkastningen i gammal åker (GÅ) som sattes till 1.0.

<table>
<thead>
<tr>
<th>Veg.typ (^1)</th>
<th>Avkastning, kg ts/ha</th>
<th>Relativa tal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Back (9 hagar)</td>
<td>Back (2 hagar)</td>
</tr>
<tr>
<td>GÅ</td>
<td>4437</td>
<td>5073</td>
</tr>
<tr>
<td>F</td>
<td>3120</td>
<td>3264</td>
</tr>
<tr>
<td>T</td>
<td>1836</td>
<td>1813</td>
</tr>
<tr>
<td>S</td>
<td>1323</td>
<td>965</td>
</tr>
<tr>
<td>B</td>
<td>6145</td>
<td>4980</td>
</tr>
</tbody>
</table>

\(^1\)GÅ= gammal åker, F= frisk, T= torr, S= skuggpåverkad, B= fuktig

Metodikstudien

I en jämförelse av resultaten mellan de små trådkorgarna och de stora, traditionella burarna visade det sig att de små burarna tenderade att skatta en något högre avkastning än de stora. Detta var fallet i 59 % av fallen då man tittar på samtliga enskilda klippningar och ser man på totalavkastningen över säsongen gav de små burarna en högre avkastning i 67 % av fallen.

Under studien visade det sig att de små trådkorgarna även gav en större varians, och därmed ett något mer osäkert resultat jämfört med de traditionella betesburarna. Resultaten blir mer osäkra då det är mycket vegetation att klippa i buren. Fyra avvikande värden har upptäckts
och tre av dem är från den första klippningen då det var som mest vegetation att klippa. Regressionen för samtliga klippningar från båda burtyperna syns i figur 3. R^2-värdet är då 0,46 vilket är relativt lågt.

Figur 3. Regressionen för samtliga klippningar från bägge burtyperna, $p<0,05$

Om man exkluderar värdena för fuktig vegetation blir regressionen istället som i figur 4, med ett r^2-värde på 0,76 vilket är betydligt bättre. Det tyder på att fuktig vegetation är svårare att mäta, alternativt varierar mer.

Figur 4. Regression för alla observationer utom dem från fuktig vegetation, $p<0,05$

Då man skapar regressionen för totalsumman av alla klippningar över säsongen istället för att inkludera varje klippningstillfälle (figur 5) får man ett r^2-värde på 0,70 vilket är bättre än när man tittar på varje enskild klippning. Om man gör den regressionen och dessutom bortser från den fuktiga vegetationen får man ett r^2-värde som är så högt som 0,83 (figur 6).
Figur 5. Regression för summan av avkastningarna över säsongen, samtliga burar. $p<0,05$

Figur 6. Regression för summan av avkastningarna över säsongen, fuktig vegetation exkluderad. $p<0,05$

Tillväxthastighet under säsongen

Tillväxtkurvan för de olika vegetationstyperna över säsongen såg ut som i figur 7. Man ser där att tillväxten i princip avstannade under juli månad då väderleken var väldigt torr och varm, för att sedan återhämta sig i augusti när väderleken blev svalare och mer nederbörd föll.
Figur 7. Tillväxtkurva för de olika vegetationstyperna över säsongen. Kuvorna är baserade på samtliga prover från de försöksytor där trådkorgar användes, dvs 118 ytor per klipptillfälle. Antalet observationer per vegetationstyp är 72 för fuktig, 162 för gammal åker, 162 för friskt, 144 för torrt och 162 för skuggpåverkad.

Den statistiska bearbetningen gav också standardavvikelsen och variationskoefficienten för stora respektive små burar från hage Å. I tabell 7 redovisas dessa siffror för samtliga observationer från torr, frisk och fuktig vegetation på totalavkastningen utan fuktig vegetation, samt för totalavkastningen för alla vegetationstyper. Man kan där se att både standardavvikelsen och variationskoefficienten är högre för de små burarna i alla tre fallen.
Tabell 7. Standardavvikelse och variationskoefficienter för stora och små burar vid analys av samtliga observationer av avkastningen i kg ts/ha, endast totala avkastningen i kg ts/ha och för total avkastning utan observationer från blöt vegetation.

<table>
<thead>
<tr>
<th></th>
<th>Små burar</th>
<th>Stora burar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardavvikelse alla observationer, n=54</td>
<td>411,3</td>
<td>222,2</td>
</tr>
<tr>
<td>Standardavvikelse total avkastning utan blöt vegetation, n=6</td>
<td>964,4</td>
<td>225,3</td>
</tr>
<tr>
<td>Standardavvikelse, total avkastning, alla vegetationstyper, n=9</td>
<td>1 066,2</td>
<td>787,4</td>
</tr>
<tr>
<td>Variationskoefficient alla observationer (%), n=54</td>
<td>65,6</td>
<td>42,6</td>
</tr>
<tr>
<td>Variationskoefficient, total avkastning utan blöt vegetation (%), n=6</td>
<td>36,1</td>
<td>9,6</td>
</tr>
<tr>
<td>Variationskoefficient, total avkastning, alla vegetationstyper (%), n=9</td>
<td>28,3</td>
<td>25,1</td>
</tr>
</tbody>
</table>

Diskussion

Resultaten från två av hagarna i denna studie (hage L och Å) kan jämföras med de resultat som Pelve (2010a) fick då hon mätte avkastningen med små burar i samma hagar. Avkastningen i denna studie visade sig vara generellt högre än de som Pelve (2010a) erhöll, speciellt på frisk och torr mark där avkastningen över säsongen blev 27 % respektive 60 % högre än i Pelves försök. Detta förhållande är dock inte genomgående för samtliga vegetationstyper då avkastningen på fuktig vegetation blev något lägre än i Pelves studie. I tabell 6 ses de absoluta avkastningarna samt relativa tal då avkastningen på gammal åkermark
är satt som 1,0. De friska försöksytorna och de på gammal åkermark placerades ut lite annorlunda inför denna studie jämfört med när Pelve gjorde sitt försök, vilket troligtvis är en bidragande orsak till skillnaden. Försöksytorna för torr och skuggpåverkad vegetation placerades dock i princip på samma ställen i bågje försöken. Därför är det också sannolikt att olikheter i klpptechnik och stubbhöjd mellan de två studierna inverkar på resultaten.

Metodikstudien

blir mer representativa än i de små burarna. Eftersom de täcker in en större yta inkluderar de oftare naturliga variationer på ett annat sätt än de små burarna. Det kan emellertid vara så att det mer varierade resultatet med de små burarna delvis kan kompenseras av möjligheten att använda många fler burar än om man arbetar med de traditionella betesburarna.

Angående regressionerna för de olika burtyperna ser man att de avvikande värdena påverkar r^2-värdet mycket negativt. Det faktum att r^2-värdet blir betydligt högre då man jämför de totala avkastningarna istället för de enskilda observationerna har förmodligen sin förklaring i att mindre felestimeringar av avkastningen kan kompensera varandra under säsongen.

Vad beträffar burarnas utformning kan man efter denna studie konstatera att de små burarna är något lätta och sköra för att använda till nötkreatur. Vid några tillfällen under säsongen påträffades burar som var hoptryckta och/eller flyttade. Ca 15 förstörda burar påträffades
under försöket, vilket motsvarar ca 2 % av det totala antalet prover från små försöksytor. Ibland hade djuren kunnat beta försöksytan innan detta upptäcktes, vilket naturligtvis har en negativ påverkan på försöksresultat och säkerhet. Antingen bör man försöka göra de små burarna mer hållbara med hjälp av kraftigare material, men riskerar då också att de blir tyngre och otympligare att hantera, samt att de blir dyrare att tillverka. Man förlorar då en del av poängen med att använda den typen av betesbur. Alternativt kan man fundera vidare på hur man kan fästa de små burarna så att djuren inte kan få loss dem lika lätt. Stängselpinarna var mycket populära för djuren att klia sig på och leka med. De stora burarna var däremot inte påverkade av djuren på något sätt under säsongen.

Tack

Slutligen riktas ett stort tack till alla lantbrukare som ställt upp och tillhandahållit hagar för studien, samt till deras nötkreatur som för det mesta varit skötsamma och trevliga och erbjudit trevligt sällskap!
Referenser

Nationalencyklopedin, 2011-01-04. http://www.ne.se/k%C3%A4rlv%C3%A4xter

Bilagor
Bilaga 1. Karta över försöksytornas placering i hage P
Bilaga 2. Karta över försöksytornas placering i hage L-B.
Bilaga 3. Karta över försöksytornas placering i hage L.
Bilaga 4. Karta över försöksytornas placering i hage E.
Bilaga 5. Karta över försöksytornas placering i hage L-S.
Bilaga 6. Karta över försöksytornas placering i hage Ö.
Bilaga 7. Karta över försöksytornas placering i hage Å.
Bilaga 8. Karta över försöksytornas placering i hage H.
Bilaga 9. Karta över försöksytornas placering i hage V.
Bilaga 10. Förteckning över vanligt förekommande växtarter på de olika vegetationstyperna i hage P, L, E, Ö, Å, H och V. (Pelve, 2010b)

<table>
<thead>
<tr>
<th>Torr (T)</th>
<th>Frisk (F)</th>
<th>Fuktig (B)</th>
<th>Skugg-påverkad(S)</th>
<th>Gemål Åker (GÅ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backnejlka</td>
<td>Blåbär</td>
<td>Blekstarr</td>
<td>Blåbär</td>
<td>Brunört</td>
</tr>
<tr>
<td>Backtimjan</td>
<td>Brudbröd</td>
<td>Blodrot</td>
<td>Blåsippa</td>
<td>Daggkäpa spp.</td>
</tr>
<tr>
<td>Bergsyra</td>
<td>Brunört</td>
<td>Brunört</td>
<td>Färsvingel</td>
<td>Groblad</td>
</tr>
<tr>
<td>Blodrot</td>
<td>Daggkäpa spp.</td>
<td>Gulvial</td>
<td>Gran</td>
<td>Grässtjärnblomma</td>
</tr>
<tr>
<td>Blåsuga</td>
<td>En</td>
<td>Gåsört</td>
<td>Grässtjärnblomma</td>
<td>Hundkäx</td>
</tr>
<tr>
<td>Bockrot</td>
<td>Femfingerört</td>
<td>Harstarr</td>
<td>Gökärt</td>
<td>Hönsarv</td>
</tr>
<tr>
<td>Brudbröd</td>
<td>Färsvingel</td>
<td>Kabbleka</td>
<td>Hassel</td>
<td>Kummin</td>
</tr>
<tr>
<td>Daggkäpa spp.</td>
<td>Groblad</td>
<td>Klibbal</td>
<td>Humleblomster</td>
<td>Kärrsilja</td>
</tr>
<tr>
<td>Darrrgräs</td>
<td>Gräfibbla</td>
<td>Knapp-/veketåg</td>
<td>Hundkäx</td>
<td>Maskros spp.</td>
</tr>
<tr>
<td>En</td>
<td>Grässtjärnblomma</td>
<td>Kärringtand</td>
<td>Husmossa</td>
<td>Piggstarr</td>
</tr>
<tr>
<td>Femfingerört</td>
<td>Gul fetknopp</td>
<td>Maskros spp.</td>
<td>Korsört spp.</td>
<td>Renfana</td>
</tr>
<tr>
<td>Färsvingel</td>
<td>Gulmåra</td>
<td>Rödsvingel</td>
<td>Krusbär</td>
<td>Revfingerört</td>
</tr>
<tr>
<td>Groblad</td>
<td>Hundkäx</td>
<td>Rödsvingel</td>
<td>Krustätel</td>
<td>Rödsvingel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smörblomma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gräfibelbla</td>
<td>Höstfibbla</td>
<td>koll.</td>
<td>Maskros spp.</td>
<td>Rödsvingel</td>
</tr>
<tr>
<td>Grässtjärnblomma</td>
<td>Johannesört spp.</td>
<td>Strandleysing</td>
<td>Ros spp.</td>
<td>Röllika</td>
</tr>
<tr>
<td>Grönknavel</td>
<td>Klocka ssp.</td>
<td>Tuvtåtel</td>
<td>Rödsvingel</td>
<td>Smörblomma</td>
</tr>
<tr>
<td>Gul fetknopp</td>
<td>Knippfryle</td>
<td>Vattenmåra</td>
<td>Rödven</td>
<td>Smörblomma</td>
</tr>
<tr>
<td>Gulmåra</td>
<td>Kärringtand</td>
<td>Vitklover</td>
<td>Röllika</td>
<td>koll.</td>
</tr>
<tr>
<td>Harklöver</td>
<td>Liten blåklocka</td>
<td>Vårbrodd</td>
<td>Rönn</td>
<td>Vicker ssp.</td>
</tr>
<tr>
<td>Islandslav koll.</td>
<td>Maskros ssp.</td>
<td>Åkerfräken</td>
<td>Skogsnäva</td>
<td>Vitklover</td>
</tr>
<tr>
<td>Johannesört spp.</td>
<td>Ros ssp.</td>
<td>Älgört</td>
<td>Skogsviol koll.</td>
<td>Vägtistel</td>
</tr>
<tr>
<td>Jungfrulin</td>
<td>Rödsvingel</td>
<td>Smultron ssp.</td>
<td>Smultron ssp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smörblomma</td>
<td>Smörblomma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ängssyra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klocka ssp.</td>
<td>Rödkämpar</td>
<td></td>
<td>Rödsvingel</td>
<td></td>
</tr>
<tr>
<td>Krustätel</td>
<td>Rödsvingel</td>
<td></td>
<td>Stensöta</td>
<td></td>
</tr>
<tr>
<td>Kvastmossa ssp.</td>
<td>Rödven</td>
<td></td>
<td>Stor blåklocka</td>
<td></td>
</tr>
<tr>
<td>Kärringtand</td>
<td>Röllika</td>
<td></td>
<td>Tall</td>
<td></td>
</tr>
<tr>
<td>Liten blåklocka</td>
<td>Skogsklöver</td>
<td></td>
<td>Teverynka</td>
<td></td>
</tr>
<tr>
<td>Ljung</td>
<td>Smultron ssp.</td>
<td></td>
<td>Vicker ssp.</td>
<td></td>
</tr>
<tr>
<td>Ros ssp.</td>
<td></td>
<td>Smörblomma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>koll.</td>
<td></td>
<td>Vitklover</td>
<td></td>
</tr>
<tr>
<td>Rödklint</td>
<td>Stor blåklocka</td>
<td></td>
<td>Vitmåra</td>
<td></td>
</tr>
<tr>
<td>Rödköver</td>
<td>Svarthämper</td>
<td></td>
<td>Vitsippa</td>
<td></td>
</tr>
<tr>
<td>Rödkämpar</td>
<td>Teverynka</td>
<td></td>
<td>Vårbrodd</td>
<td></td>
</tr>
<tr>
<td>Rödsvingel</td>
<td>Tjärbloomster</td>
<td></td>
<td>Vårfryle</td>
<td></td>
</tr>
<tr>
<td>Rödven</td>
<td>Tuvåtel</td>
<td></td>
<td>Väggnossa</td>
<td></td>
</tr>
<tr>
<td>Röllika</td>
<td>Vicker ssp.</td>
<td></td>
<td>Ärenpris</td>
<td></td>
</tr>
<tr>
<td>Skogsklöver</td>
<td>Vitklover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skogsviol koll.</td>
<td>Vitmåra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smultron ssp.</td>
<td>Vårbrodd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smörblomma koll.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stor blåklocka</td>
<td>Ängsfryle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svarthämper</td>
<td>Ångshavre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teveronika</td>
<td>Ängssyra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tjärblomster</td>
<td>Årenpris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vicker spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitklöver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitmåra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vårbrodd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väggmossa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ängsfryle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ängshavre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ängssyra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Årenpris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Övr renlav</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Titel och författare</td>
<td>År</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>345</td>
<td>Giftiga växter för hästar på sommarbete
Poisonous plants for horses on summer pasture
Niina Kangas</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>346</td>
<td>Glycerol till mjölkraskalvar – effekter på tarmhälsa och vätskebalans
Glycerol to dairy calves – effects on intestinal health and fluid balance
Emma Mellgren</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>347</td>
<td>Effekten av suggans näringsstatus på fostertillväxt och smågrisöverlevnad
The effect of the metabolic state of the sow on foetal growth and piglet survival
Sophia Isberg</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>348</td>
<td>Lungmask och löpmagsnematod hos nötkreatur
Lungworm and gastrointestinal nematode in cattle
Veronika Stennemark</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>349</td>
<td>Infektionssjukdomen kolibacillos hos värphöns – orsaker till uppkomst och åtgärder för reducerad utbrottsrisk
The infectious disease colibacillosis in laying hens – causes of emergence and actions to reduce the risk of outbreaks
Sofia Holmberg</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>Effekt av spensugande kvigor samt dess effekt på mjölkkörteln
Effect of intersucking and its impact on the mammary gland
Caroline Eriksson</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>Jämförelse mellan renskötsel och betesbaserad färskötsel
Comparison of reindeer husbandry and pasture based sheep husbandry
Julia Bäckström</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I denna serie publiceras examensarbeten (motsvarande 15 eller 30 högskolepoäng) samt större enskilda arbeten (15-30 högskolepoäng) vid Institutionen för husdjurens utfodring och vård, Sveriges Lantbruksuniversitet. En förteckning över senast utgivna arbeten i denna serie återfinns sist i häftet. Dessa samt tidigare arbeten kan i mån av tillgång erhållas från institutionen.

DISTRIBUTION:
Sveriges Lantbruksuniversitet
Institutionen för husdjurens utfodring och vård
Box 7024
750 07 UPPSALA
Tel. 018-67 28 17