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Abstract 

Methane (CH4) is a greenhouse gas (GHG) that contributes to the global warming. One of the 

largest sources of methane is livestock, preferably ruminants which alone counted for 30% of 

the total agricultural anthropogenic methane emissions in the year of 2000. The reason to why 

ruminants are such large contributors of methane are that the gas is produced in the rumen by 

enteric formation and leaves the animals by belching, exhaling or by the excreta. 

 

Diets high in concentrates can result in a lower emission of methane. Also diets with a high 

content of starch, such as alfalfa-grass, have a methane-decreasing. It is profitable to reduce 

enteric methane formation since that form of methane is unavoidably lost. Methane emissions 

from manure, on the other hand, are possible to reduce during storage and manure-derived 

methane can also be collected and used as biogas fuel. It is earlier shown that it is possible by 

dietary means to compensate a reduced enteric methane production by a higher or maintained 

production of methane from manure. 

 

The hypotheses of this study is 1) that the feed regime with high percentage of pea/oat silage 

results in a lower emission of enteric methane compared to grass silage and 2) that this will 

result in maintained or higher methane production from the manure. 

 

In this study four rumen fistulated cows of the Swedish Red Breed was included. The cows 

where held in a separate part of a barn so that the sampling would not be disturbed by the 

other animals. The study was divided into four periods of one week each and two different 

treatments were tested; treatment A: 100% grass silage and treatment B: 25% grass silage and 

75% pea/oat silage. All individuals were in each treatment twice during the study. Enteric 

methane was sampled once a day for five days in a row for each period. The gas samples were 

analyzed for produced methane and sulphur hexafluoride (SF6) and the amount of methane 

produced per day was then calculated by the methane:S F6-ratio. Faeces and urine was 

sampled during the first period and then analyzed for maximum methane producing capacity 

(Bo). Analyses were also conducted on dry matter intake, feed nutrient composition, the 

composition of faeces and urine and on produced milk. 

 

There was, as expected, a significantly higher starch intake in treatment B (25% grass silage, 

75% pea/oat silage) than in treatment A (100% grass silage) (p=0.006). However, the diet 

with pea/oat-silage (treatment B) resulted in more methane per kg of ingested starch 

compared to the diet with grass silage (treatment A), opposite to what was expected. It could 

neither be shown that a reduction in enteric methane was followed by a higher or maintained 

production in methane from manure (faeces and urine). Contrary the difference in methane 

production was similar for enteric production and from manure. Further studies need to be 

conducted where a larger number of animals are included and the difference in starch content 

between diets is larger in order to be able to receive significant results. 
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Sammanfattning 

Metan (CH4) är en växthusgas som bidrar till den globala uppvärmningen. En av de största 

källorna till metan är boskap, företrädesvis idisslare som stod för 30 % av jordbrukets totala 

antropogena metanutsläpp år 2000. Anledningen till att idisslare bidrar till så store utsläpp av 

metan är att gasen produceras i djurens våm genom enterisk bildning och avgår sedan från 

djuren genom rapningar, utandning eller genom avföringen. 

 

Foderstater med hög koncentratandel kan leda till ett lägre utsläpp av metan. Även foderstater 

med ett högt innehåll av stärkelse, som alfalfa-gräs, har en metanminskande effekt. Det är 

lönsamt att minska enterisk metanbildning eftersom denna form av metan oundvikligen går 

förlorad. Metanemissioner från stallgödsel, å andra sidan, går att minska under lagring och 

metan från gödsel kan även användas som biogas. Det är tidigare visat att det genom 

modifieringar i foderstaten går att kompensera en minskad enterisk metanproduktion med en 

högre eller bibehållen produktion av metan från gödseln. 

 

Studiens hypoteser är 1) att foderstaten med hög procentandel av ärt/havreensilage resulterar i 

ett lägre utsläpp av enterisk metan jämfört med gräsensliage och 2) att detta resulterar i en 

högre eller bibehållen produktion av metan från gödseln. 

 

I denna studie ingick fyra våmfistulerade kor i av Svensk rödbrokig boskap (SRB). Korna 

inhystes i en separat del av ladugården så att provtagningen inte skulle störas av andra djur. 

Studien var uppdelad i fyra perioder om vardera en vecka och två olika behandlingar testades; 

behandling A: 100 % gräsensilage och behandling B: 25 % gräsensilage och 75 % 

ärt/havreensilage. Alla individer fick varje behandling två gånger under studien. Prover på 

den enteriska metanproduktionen togs en gång per dag fem dagar i rad varje period. 

Gasproverna analyserades med avseende på producerad metan och svavelhexafluorid (SF6) 

och mängden producerad metan beräknades sedan genom att använda förhållandet mellan 

metan och SF6. Avförings- och urinprover togs under den första perioden och sedan 

analyserades dessa för dess maximala metanproducerande kapacitet (Bo). Analyser 

genomfördes också på torrsubstansintaget, fodersammansättningen, sammansättningen i 

avföring och urin och på producerad mängd mjölk. 

 

Det var som väntat ett signifikant högre stärkelseintag i behandling B (25 % gräsensilage, 75 

% ärt/havreensilage) än i behandling A (100 % gräsensilage) (p = 0,006). Foderstaten med 

ärt/havreensilage (behandling B) resulterade dock i mer metan per kg intagen stärkelse 

jämfört med foderstaten med gräsensilage (behandling A), tvärtemot vad som förväntats. Det 

kunde inte heller visas att en minskning av enteriskt metan följdes av en högre eller bibehållen 

produktion av metan från gödsel (träck och urin). Istället så var skillnaden i 

metanproduktionen liknande för enterisk produktion och från gödsel. Ytterligare studier där 

fler djur ingår och där skillnaden i stärkelseinnehåll är större behöver göras för att kunna få 

signifikanta resultat. 
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Objectives 

Agriculture accounts for about 50% of the global anthropogenic production of methane IPCC 

Fourth Assessment Report, 2007a), and ruminants are the main contributors (US-EPA, 2006). 

It is therefore of interest to investigate possible mitigation options for the agricultural sector. 

The aim of this study is to investigate the amount of methane produced from dairy cows 

depending on the proportion of pea/oat silage in the diet. Also, the feed influence on the 

manure properties concerning methane producing potential will be studied. This master thesis 

is part of a larger project which aim is to provide material for an increased utilization of 

legumes as forage. 
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Introduction 

Methane (CH4) is a potent greenhouse gas (GHG) that contributes to the global warming. The 

main sources of methane from the agricultural sector are rice fields, the burning of biomass, 

handling of manure and enteric fermentation (IPCC Fourth Assessment Report, 2007a). The 

production of methane is conducted in an anaerobic environment by means of 

microorganisms by biological processes such as fermentation (Bertilsson & Börjesson, 2008; 

US-EPA, 2006). 

 

Approximately 40-50% of the earth’s land surface is classified as agricultural land (IPCC 

Fourth Assessment Report, 2007a). Of the anthropogenic emissions of GHGs, agriculture was 

in the year of 2005 accounted for 10-12%. To be able to more easily compare the GHGs with 

each other, the emissions are recalculated as carbon dioxide equivalents (CO2-eq) where 1 

kilogram of methane corresponds to 25 kilograms of carbon dioxide (IPCC Fourth 

Assessment Report, 2007b). The GHG emissions from the agricultural sector was in the year 

of 2005 5.1 to 6.1 GtCO2-eq/yr (IPCC Fourth Assessment Report, 2007a). Of the global 

anthropogenic emissions of GHGs in 2005, agriculture was accounted for 50% of the 

methane. This is an increase by 17% from 1990, which gives an average annual increase of 

about 60 MtCO2-eq/yr. 

 

At the same time, the agricultural sectors’ GHG emissions from the countries in EU decreased 

from the year of 1995 to the year of 2000 by 20% (European Commission, 2008). This was 

mainly a consequence of new techniques used in the sector, but also to a large extent due to a 

reduction in animal numbers. The reduction of GHGs is, in the EU member states, larger in 

the agricultural sector than in any other sector. Despite this, the agricultural sector is still 

responsible for the largest part of the anthropogenic emissions of methane and nitrous oxide 

(N2O). 

 

Livestock, preferably ruminants, are an important source of methane and accounted for about 

30% of the gas’ global agricultural anthropogenic emissions in the year of 2000 (US-EPA, 

2006). Methane is mainly produced in the rumen by enteric fermentation and it leaves the 

cows by belching, exhaling or by the excreta. The total anthropogenic emissions in Sweden 

were in the year of 2008 64 million tCO2-eq/yr whereof the agricultural sector accounted for 

around 13% (Naturvårdsverket, 2009). Approximately 1/3 of the GHG emissions from the 

agriculture are in form of methane and livestock accounts for almost all of these emissions 

(Bertilsson & Börjesson, 2008; US-EPA, 2006). 

 

Besides being a very potent GHG, production of methane also constitutes a significant loss of 

energy for the animal (Immig, 1996). Of the gross energy in the diet, about 6-10% is lost in 

form of methane (Immig, 1996; Johnson & Johnson, 1995). The turn-over of energy in 

animals is illustrated in figure 1. 

 

Beside the livestock’s methane-production from the fermentation of feed, the gas is also 

produced during storage of manures under anaerobic conditions. In the year of 2004, the 

global methane emission from manure management was 17.52 million tons of which cattle 

(dairy and beef) accounted for 7.49 million tons (FAO, 2008). The magnitude of these 

emissions can be reduced by a range of measures (Clemens and Ahlgrimm, 2001). As an 

example, it might be possible to reduce emissions from manure by changes in feeding 

practices (Clemens and Ahlgrimm, 2001; Külling et al., 2003; Hindrichsen et al., 2006; 

Kreuzer and Hindrichsen, 2006). It is also possible to inversely maximize the production of 
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methane by anaerobe digestion and the methane can then be used as an energy source 

(Clemens et al., 2006). 

 

 
Figure 1. The turn-over of energy in animals. Boxes with dotted outlines represent energy losses. 

(Modified from McDonald et al., 2002). 

For most of the strategies used to minimize the emission of methane, it is still unclear whether 

the measurements taken also will decrease the manure-derived methane, or if the emission 

from the manure will be the same or even higher (Kreuzer and Hindrichsen, 2006). 

 

The global consumption of meat is estimated to increase by 85% from 2000 to 2030 to meet 

the projected demands (The World Bank, 2007). Also the consumption of milk is expected to 

increase (European Commission, 2008). This is mainly due to the fact that the higher 

standards of living in the developing countries imply a larger demand for meat and milk, but 

also partly dependent on the food preferences in the industrial countries. The increase of meat 

consumption is also a consequence of the worlds’ population increase on the whole (US-EPA, 

2006). 

 

The production of milk emits 1 kilo of CO2-eq per kilo produced milk, according to Angervall 

et al. (2008). The production of 1 kilo of cheese emits 10.7 kg CO2-eq to be compared with 

the beef production which emits 17 kilo CO2-eq per kilo product. The largest climate impact 

in the production of milk occurs at farm level; up to 95% of the total emissions of GHGs take 

place in the primary production. 

 

Simultaneously with the impact on the climate from livestock’s emissions of GHG, the 

agricultural sector is affected by the climate changes, mostly negatively (COPA-COGECA, 

2008). Some areas will however get longer growing seasons and some areas will get more 

precipitation as a consequence of the changing climate, which contributes to more favourable 

cultivation conditions (European Commission, 2008). 
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Literature review 

Formation of methane in ruminants 

The structure of the digestive system of ruminants enables the conversion of fibrous biomass 

to energy, allowing the animals to subsist on straw and other products that man cannot use as 

food (Immig, 1996). In that sense, ruminants are important to humans since they do not eat 

the same food as man does and therefore there is no need for competition (Moss et al., 2000). 

However, consumption of fibrous feed also results in the production of methane. When 

carbohydrates are broken down by micro-organisms into molecules small enough to be 

absorbed into the bloodstream through the digestive process of enteric fermentation, it brings 

about the formation of methane as a by-product (IPCC, 2006). In ruminants, formation of 

methane is the result of fiber fermentation in the rumen (Immig, 1996). Methane is also 

produced in the hindgut of ruminants and monogastric animals, but in much smaller amounts. 

Methane emission means, except from being a climate issue, also a loss of energy for the 

animal corresponding to 6-10% of the gross energy intake (Immig, 1996; Johnson & Johnson, 

1995). 

 

Glucose in plant polymers and starch are fermented to puryvate and lactate in an oxidative 

process under anaerobic conditions (Moss et al., 2000). This gives NADH that, to complete 

the fermentation of sugars, then are re-oxidized to NAD (figure 2). By transfer of electrons to 

acceptors other than oxygen, NAD
+
 is regenerated. When propionate is formed from succinate 

the result is the formation of carbon dioxide. This enables carbon dioxide to react with the 

free H2 from the re-oxidation of NADH, which results in the formation of methane and water 

according to following formula: CO2 +4 H2 → CH4 + 2 H2O. 

 

 
 

Figure 2. The metabolism of NADH H
+.

 (Modified from Moss et al., 2000). 

Manure-derived methane 

Manures characteristics 

The term ‘manure’ is here jointly describing both the faeces and the urine produced by the 

animals without additions of bedding material or water. The main basic characteristics of 

manures which are of importance for the potential of methane production are the content of 
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volatile solids (VS), which indicates the content of incinerable substances at 550°C, or the 

amount of carbon. The VS in manure can either be calculated from the dry matter intake 

(DMI) and digestibility of the feed or by analyzing the manure in laboratory (IPPC, 2006).  

However, a large part of the VS is not easily degraded by the microbes under anaerobic 

conditions and does therefore not contribute to the methane production (Sommer et al., 2009). 

The easily degradable VS have a direct influence on methane production from stored 

livestock slurry. A reduction in easily degradable VS would therefor reduce methane 

emissions from stored livestock slurry. 

 

There are different ways of describing the amount of methane produced. The theoretical value 

describes the methane yield if all carbon is converted to methane whilst the maximum or 

ultimate methane producing capacity per g VS of the manures (Bo) (IPCC, 2006) is the 

amount of methane that is formed in a laboratory environment.. The actual methane produced 

under storage of liquid manure (slurry) on farms depends on the authentic environment and is 

much lower than both the theoretical and Bo-values.  Under Swedish conditions, about 3% of 

the Bo is produced during storage of cattle slurry (Rodhe et al., 2009).  

 
Storage systems for manure 

A few different systems of storing manure exist. The most common ways of storing in 

Sweden is in one fraction which contains urine and faeces mixed with some bedding material 

and some water during management to give liquid manure or slurry (Ramiran, 2003).  It could 

also be stored  in two separated fractions, where the  solid manure includes mainly faeces and 

bedding and the liquid includes urine diluted with water and also some solids, respectively 

(Külling et al., 2001 and Külling et al., 2003)?. The proportion of dairy farms in Sweden 

handling their manure as slurry has increased in recent years; in 2003 there were slurry 

systems on more than 60 percent of the dairy farms (SCB, 2003). 
 

Storage system effects on methane emission 

Fresh manure (i.e. manures that is just excreted) does not emit noticeable amounts of methane 

(Sun et al., 2008). When manure is applied on the field little, if any, methane is produced 

since the environment is aerobic (Sommer et al., 2009). In Sweden it is required that manure 

is removed daily from the animal houses with slatted floors, therefore the methane from 

manure in Sweden mainly originates from storage (Rodhe et al., 2009). There are differences 

in greenhouse gas potential for manure in terms of the type of storing used. Two studies, 

differing in the animals’ feeding regimes, comparing different manure storing concluded that, 

independent of feed, the greenhouse gas potential as expressed in CO2-eq are higher for solid 

manure systems with urine separately than for slurry systems (Külling et al., 2001; Külling et 

al., 2003). 

 

The emission of methane is related to storage time and storage temperature (Sommer et al., 

2009).  The procedure used in Sweden to remove the slurry from the livestock house daily, 

together with the low storing temperature may imply a 75% reduce of methane emissions 

compared to scenarios where the slurry is only emptied from the livestock house every fourth 

month and stored in a higher temperature, as is common in southern parts of Europe. In 

summary, less storing during the summer and shorter retention times in the livestock houses 

are two ways of lowering the emission of methane from livestock slurry (Sommer et al., 

2009). 
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Dietary effect on methane from stored slurry 

In a study where dairy cows were fed either 175, 150 or 125 g CP/ kg DM, methane emissions 

from urine-rich slurry were not reduced or rather increased when CP content was reduced 

(Külling et al., 2001). Grass as a base in the ratio instead of hay decreases the methane 

emissions from manure during storage, most evidently for slurry and liquid manure storing 

systems (Külling et al., 2003). 

 

Both the theoretical methane production and the maximal methane yield (Bo) are greater for 

pig manure than for cattle manure (Møller et al., 2004). According to a study by Møller et al. 

(2004) the theoretical methane production for pig manure is 516 l kg
-1

 VS, for sow manure 

530 l kg
-1

 VS and for cattle manure 468 l kg
-1

 VS. The maximal methane yield for pig manure 

was in the same study 354 l kg
-1

 VS, for sow manure 275 l kg
-1

 VS and for cattle manure 148 

l kg
-1

 VS. This is slightly lower than IPCC’s estimated Bo-value of manure from dairy cattle 

in developed countries which is set to 240 l kg
-1

 VS (IPCC, 2006). One reason to the 

differences between cattle and pigs is that manure from cattle contains larger amounts of 

slowly degradable carbohydrates and lignin than manure from pigs since cows is given more 

roughage in their diet. Manure from cows fed on only roughage gives lower yields of methane 

than manure from cows fed both roughage and concentrate. 

 

Separation of manure is a way to generate manure with a higher methane potential in terms of 

volume since a fraction without water has a higher proportion of total VS (Møller et al., 

2004). Adding straw to the manure enhances the gas potential further. Due to a high content 

of VS, the methane yield of straw is high and however the use of straw as bedding material 

increases the methane yield from manure. The methane production of manure increases with 

1.8 l methane kg
-1

 or 10% for each 10 g of straw added to 1 kg of manure. However, large 

differences can be found in the Bo-value for straw depending on pre-treatment of the straw, 

e.g. cutting length, as well as the digestion conditions. 

 

Reducing enteric methane formation is profitable in all senses since that form of methane is 

unavoidably lost, while handling of manure offers opportunities to reduce losses during 

storage (Külling et al., 2002).  Methane in slurry can also be used as biogas fuel (Külling et 

al., 2002). If the decomposition of animal manure is subjected mainly to anaerobic digestion, 

the handling of manure is potentially a larger source of methane than is the gastrointestinal 

fermentation (Johnson and Ward, 1996). 

 

Factors affecting enteric methane production 

Johnson & Johnson (1995) suggested a range of factors that affect enteric methane emissions, 

such as feed intake, type of carbohydrate fermented, forage processing and lipid addition. 

These factors have their effects by two different mechanisms. The first mechanism described 

is the amount of carbohydrate that is fermented in the reticulorumen. The second mechanism 

is the amount of available hydrogen and the consecutive methane formation through the ratio 

of VFA produced. The relation between the production of propionic and acetic acids has a 

relevant impact on methane production. The VFA’s regulate the hydrogen supply which 

controls the production of methane. If carbohydrate would be fermented to acetic acid only, 

the energy loss from methane formation would be 33% (Wolin & Miller, 1988). If the ratio of 

acetic and propionic acid was 0.5, the loss of energy as methane would be 0%. 
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Feed intake 

When adding concentrates to the diet of lactating cows, the methane production increased 

(Hindrichsen et al., 2006). When replacing the hay silage with maize silage, the methane 

production also increased, both these scenarios were however solely a result of an 

corresponding increase in DMI and the diets with concentrate supplementation had a lower 

methane production per kg DMI than did the diets without concentrate. To reduce methane 

emissions, lauric acid can be used as a supplement to the cows’ diet (Külling et al., 2002). 

This resulted in a decreased enteric emission of methane by 20% but the decrease was also 

followed by a decreased feed intake. 
  

Type of carbohydrate fermented 

Different types of carbohydrates presumably influence methane production through impacts 

on pH in the rumen as well as on the microbial population (Johnson & Johnson, 1995). A 

higher proportion of carbohydrates fermented each day (both fiber and starch) imply a lower 

methane production per DMI. The same is true for feed intake since a higher DMI increases 

the passage speed which implies that less degradation occurs and consequently less methane 

is produced (Johnson et al,. 2003). 

 
Feed composition 

Diets high in concentrates result in a lower emission of methane (Johnson & Johnson, 1995; 

Hindrichsen et al., 2006).  When feeding diets of 90% concentrate the losses of energy as 

methane might be decreased to half the commonly predicted value of 6% of diet GE (Johnson 

& Johnson, 1995). A substantial part of the methane emissions from ruminants originate from 

crude protein, while fat and other ether extract components can decrease the emissions 

(Clemens and Ahlgrimm, 2001). In a study by McCaughey et al. (1999) methane emissions 

from lactating beef cows grazing on either 100% grass or 22% grass and 78% alfalfa-grass 

were compared. A significant difference was found and the group that grazed on the alfalfa-

grass emitted less methane (373.8 l/day) than the group on grass pasture (411.0 l/day). 

 
Improved production by the cow 

When improving the individual cow’s production, more milk or meat can be produced per 

unit. This comes with a higher DMI, but it is at the same time possible to get the same 

production with fewer units. Every individual animal has a need of energy for maintenance 

that has to be covered before any production is possible (McDonald et al., 2002). Using fewer 

animals result in a lower need for energy for maintenance and more can be used for milk or 

meat production (Moss et al., 2002). This brings about a reduction in produced methane per 

kg of milk or meat. 

 

Decrease of enteric methane by dietary means –what are the effects on 
manure-derived methane? 

To design dietary strategies with the purpose to decrease methane-emissions are questionable 

as long as it is not clear whether the manure-derived methane is simultaneously decreased. If 

the manure is used for production of biogas the scenario is different, in that case it is of 

interest to maintain the levels of methane in the manure. 
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Two different scenarios may be of interest in terms of altering the methanogenesis by dietary 

means. The first is to reduce both enteric and manure-derived methane and the second being 

to reduce enteric methane but keep or even increase the levels of methane in the manure 

presupposing that the manure is used as biogas. 

 

Earlier studies have shown that different diets have got an impact not only on enteric methane 

but also on methane derived from manure. Lodman et al. (1993) found a higher methane 

emission per unit of organic matter in manure from feedlot steers fed with a diet consisting of 

11 percent forage and 89 percent concentrate compared to a group that was fed only forage. 

Hindrichsen et al. (2006) found that a group of dairy cows fed hay and grass silages 

supplemented with concentrates at a ratio of 1:1 had a decreased emission of enteric methane 

compared to the control group fed maize and grass silage when adjusted to similar DMI. 

Similarly to the study by Lodman et al., (1993) the manure-derived methane was increased, in 

this study to a proportion of 30 percent of the enteric methane reduction. 

 

When adding lauric acid, which has a known negative effect on methanogenesis, to the diet of 

dairy cows, only a small decrease of enteric methane was shown when adjusted to similar 

DMI (Külling et al., 2002). However, manure-derived methane had an almost nine times 

higher increase. The lauric acid reduced fiber digestibility in the cow which resulted in more 

fermentable fiber in the manure. The use of oat hull concentrate, rich in highly lignified fiber, 

in the diet reduced both enteric methane and manure-derived methane (Hindrichsen et al., 

2005). 

 

Pea/oat silage 

Studies show that forage-based diets have a higher production of methane in comparison with 

diets containing more concentrate (Hindrichsen et al., 2006). There are however reasons to 

why it would be preferable to feed cows large amounts of forage, one being that this is what is 

natural for them to eat, another being that it is advantageous to feed cows substrates that man 

cannot eat. Pea/oat silage has earlier shown to have a concentrate-sparing effect (Rondahl et 

al., 2007) and the high content of starch might have a methane production-decreasing effect 

because of its high degradability. In a study that used a mechanistic model to investigate 

methanogenesis in dairy cows, it was shown that replacing sugars from concentrates with 

starch had a decreasing effect of methane production (Mills et al., 2001). 

 

The voluntary intake of legumes is higher than that of grasses of similar digestibility (Bines, 

1985 and Salawu et al., 2002). One reason for this is that legumes seem to have a high 

degradability of NDF and CP in the rumen (Mustafa et al., 2000). The primary limiting factor 

of ruminants DMI of silage is the content and digestibility of NDF (Dado & Allen, 1995; 

Mertens, 1997). There are also other elements that influence the DMI, such as the content of 

CP (Wright et al., 2000; Broderick, 2003), DM content, levels of ammonia in the rumen 

(Wright et al., 2000), ammonia N content in the silage (Huhtanen et al., 2002; Wright et al., 

2000) and fermentation acids (Huhtanen et al., 2002). The palatability of the feed may also 

have an impact on the DMI (Huhtanen et al., 2002). The physical capacity of the 

reticulorumen is also a limiting factor for DMI (Dado & Allen, 1995). 

  

In a study by Salawu et al. (2002) Holstein-Friesian cows where fed either grass silage from 

the second harvest, or pea-wheat bi-crop silage. The study resulted in the conclusion that the 

pea-wheat bi-crop silage could be fed to dairy cows instead of moderate-quality grass silage. 

The intake of forage was higher for the bi-crop silage than for the grass silage, however the 
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DMI was similar for the cows fed bi-crop silage plus 6 kilos of concentrate and grass silage 

plus 9 kg of concentrates, while the cows fed grass silage plus 6 kilos of concentrate had a 

lower DMI. 

 

The interest in growing protein crops or protein bi-crops at the own farm has increased in later 

years, as well in Sweden as in other countries (Wilkins and Jones, 2000; Frank and Swensson, 

2002; Salawu et al., 2002). This is most importantly true for organic farming, because of the 

EU legislation stating that, from the year of 2005, all feedstuff given to animals in organic 

farming should be organically produced in the largest extent possible (EU regulation no. 

1804/1999; Council for the European Union, 1999). In Sweden, organic farms connected to 

KRAV also have to produce 50% of the feedstuff on the own farm (KRAV, 2010). It is 

however also of interest for others than organic farmers to find a cheaper replacement for 

protein sources such as imported soy beans, which often are quite expensive (Salawu et al., 

2007). 

 

The challenge for northern Europe, and especially some areas with low temperatures during 

summer and short growing seasons, is to manage to grow organic crops that give sufficient 

energy and nutrient requirement for high producing cows. Field peas can be cultivated in 

almost all of Scandinavia (Rondahl et al., 2006). Field peas are a protein crop that in northern 

Sweden where the growing season is shorter can be grown as a whole-crop. Mixed pea-cereal 

crops are preferable, since monocultures of peas are at high risk of lodging (Rondahl et al., 

2006). 

 

Criteria that may be used when choosing which cereal to use in the pea-bi crop are the 

establishments of the crops and the rate of ripening (Rondahl et al., 2006). The establishment 

of pea is slow during the development of the root nodule which makes it vulnerable to 

competitors. During this stage of development, barley is more aggressive than oat (Lunnan, 

1989), and so oat is a stronger candidate. Besides, oat dries more slowly than barley, which is 

preferable since field peas mature more slowly than cereals. The pea/oat mixture would also 

contribute to the crop rotation since barley is more commonly grown as a single crop in 

Sweden (Rondahl et al., 2006). 

 

Ineffective utilization of nitrogen creates the need of supplementing protein with the diet 

(Broderick, 2005). The inefficiency in nitrogen use also contributes to environmental impact 

since, for cows, nitrogen is excreted 2-3 times more in the manure than in the milk. Adding 

pea in the silage might also have an impact on methane emission as showed by McCaughey et 

al. (1999) where lactating beef cows on alfalfa-grass pasture emitted less methane than did 

cows on grass pasture. 

 

Methods for measuring enteric methane 

There are a range of options to choose between when measuring enteric methane emissions 

from ruminants (Johnson & Johnson, 1995). Sampling of gas from individuals or from groups 

of animals can be conducted by enclosure techniques or tracer techniques. Enclosure 

measurements can either be conducted using a closed circuit or an open circuit (Mc Donald et 

al., 2002). All techniques have their strengths and weaknesses, so it is important to choose the 

most suitable method for the current experiment. 

 

By using a respiration chamber, respiratory exchange can be measured (McDonald et al., 

2002). In a closed circuit chamber, methane production is measured by sampling and 

analyzing the air in the chamber. The closed circuit method however demands a large quantity 
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of soda lime and silica gel to absorb carbon dioxide and water vapour, which is a 

disadvantage. A more commonly used method of measuring respiratory exchange is the open 

circuit technique. In an open circuit chamber, air is drawn in and out of the chamber in a 

controlled flow. The air is sampled for analyses while entering and exiting the chamber and 

however methane production can be measured using infrared technique. When using the 

chamber technique, methane-emissions both from the ruminal and post-ruminal processes are 

measured (McGinn et al., 2006). The chamber method implies that the animals are kept in an 

enclosed space with controlled ventilation. The flow rate in the chamber is adjusted so that the 

air pressure in the chamber is positive. A flow of fresh air is fed into the recycling fan to make 

sure the air in the chamber is moving. The air inside of the chamber is kept at a constant 

temperature. To measure the methane release from the animals, the methane in the intake and 

the exhaust air streams is monitored, and the difference between the two flows is calculated. 

 

A head box, or a ventilated hood, can be used to measure methane emissions using the same 

principles as for the chamber technique (Johnson & Johnson, 1995). In this method, only the 

head is enclosed in an air tight box. The box allows the animal to move its head inside of the 

box and a drape is placed around the animal’s neck to ensure that no leakage occurs. This is a 

cheaper method than using a chamber that fits the whole animal. A disadvantage is that it only 

measures emissions from the mouth and not the rectum. The disadvantage of all enclosure 

techniques is that they require the animals to be separated from other animals and that it also 

need some extra training to get them used to the environment. 

 

Methane production can also be measured by tracer techniques. The SF6 technique measures 

the methane-emissions from respiration and eructation but do not capture methane released 

from the rectum (McGinn et al., 2006). This technique involves placing a permeation tube 

containing SF6 into the rumen of the animals. This is done some days prior the start of the 

experiment. The flow of SF6 from the permeation tube is known and controlled by a Teflon 

membrane. Air from the nasal cavity is drawn trough tubing into an evacuated canister that is 

often placed around the animal’s neck. The emission of SF6 is presumed to be identical with 

the emission of methane; hence the dilution rates for the two gases are the same (Johnson et 

al., 1994). 

 

After a sampling period of 24 h, the canister is filled with nitrogen to over-pressure (McGinn 

et al., 2006). Before taking samples from the canisters, the gases need to be mixed for at least 

1 hour. The samples are then taken with a syringe via a septum port on the canisters and the 

SF6 and methane are analyzed using gas chromatography (GC). To determine the methane 

emitted from the animal, the ratio between SF6 and methane from the canisters are calculated. 

There may be other sources of methane in the proximity of the equipment since the animals 

often are close to each other. Therefore additional canisters are also used to measure the 

background methane. In a study by McGinn et al. (2006), the emitted methane was 4% lower 

when using the SF6 tracer technique than when using the chamber technique. The differences 

are most likely due to that the chamber technique measures all methane emitted while the SF6 

tracer technique do not measure methane emitted from the rectum. Similar studies by Boadi et 

al. (2002) and Johnson et al. (1994) found no significant differences between enclosure and 

tracer techniques. 

 

Methods for measuring manure-derived methane 

Emissions of methane from manure occur during a much longer period and in much smaller 

amounts than enteric emission. Therefore measuring methane from manure is even more 
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demanding than measuring enteric methane. The methods used to determine manure-derived 

methane stretch from large scale experiments to laboratory scale experiments where bottles 

are used for storing. 

 

The volume of gas produced by a substrate can be determined by placing the substrate in a 

bottle and seal it with rubber lids (Møller et al., 2003; Rodhe et al., 2009). The bottles are 

then kept in a temperature controlled space. The gas production can be calculated either by 

measuring the pressure in the headspace of the bottle or by connecting the bottle to a gas 

sampling bag and then use a syringe to measure the volume of sampled gas. Methane can then 

be analyzed for by chromatography. To mimic the storage of manure on farms, the sampling 

should go on for a period that resembles farm conditions. Külling et al. (2001) used open 10 l 

buckets for methane production measurements. Gas volume was measured using a closed 

chamber technique constructed of a second bucket placed upside down on the bucket with 

substrate. For gases that emits in a slow rate as methane, it is preferable to use the closed 

chamber technique rather than a dynamic chamber. The emission rate of methane are 

calculated from the gradually enrichment of methane to the air in the headspace. 

 

Gas production can also be measured in larger scale. Rodhe et al. (2009) developed a pilot-

scale method to measure gas production from manure using a closed chamber technique. 

Some conditions were found to be important to resemble farm scale conditions, amongst these 

where to keep the temperature at similar levels to full-scale storage systems, to expose the 

manure to changing weather conditions, to fill and empty the storage tank in similar intervals 

as on a farm and to register the amount and properties of the slurry entering and leaving the 

storage tank. The tanks where equipped with an airtight and flexible lid so that the head space 

could be varied. 
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Hypotheses 

The hypothesis of this study is that 1) a starch rich diet with high percentage of pea/oat silage 

results in a lower emission of enteric methane compared to grass silage and that 2) this will be 

followed by a higher  or maintained production of methane from the manure. 
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Materials and methods 

The study was conducted from November of 2009 to March of 2010 at Kungsängen Research 

Centre in Uppsala. 

 

Experimental design 

The study consisted of four periods, each approximately 30 days long. Prior to the first period 

there was a transition period during which all the cows were fed grass silage and pea/oat 

silage at a ratio of 75:25 for two weeks. Each period then started with two weeks when the 

animals were adapting to the new feed regime and the periods were finished off with 5 days of 

sampling of enteric methane. Faeces and urine was sampled during the first period only. The 

study was designed as a changeover experiment, meaning that all cows where in both of the 

treatments during some stage of the study, see table 1. 

Table 1. Experimental periods and the order of treatments per cows 

Period  

Cow ID 
1 2 3 4 

1328 A B B A 

1379 B A B A 

1381 B A A B 

1403 A B A B 

 

Animal data 

The animals taking part in this study were four rumen fistulated cows of the Swedish Red 

breed at Kungsängen Research Centre in Uppsala. The cows in the study were in their 8th-

25th lactation week and their milk yield was assumed to be between 25-50 ECM/day. 

 

Feed regimes 

The cows were fed with two different feed regimes during the four study periods. 

Treatment A: 100% grass silage 

Treatment B: 25% grass silage, 75% pea/oat silage 

 

In addition to the forage, the cows were also fed 7 kilos of concentrate each day (Solid 120, 

Lantmännen). Minerals were also fed according to Swedish recommendations. The forage 

was fed ad lib and the forage residues were weighted every day. The amount of forage given 

to each animal was calculated individually for the cows according to table 8 in appendix 1. 

During the days of adaptation, the animals were fed from rail hung feeding trucks and during 

the sampling period they were fed manually. The feed was weighed manually throughout the 

study. 

 

Housing and milking 

The cows in the experiment where housed in a tied stable with other cows during the 

transitional and the adapting phases of the study. During the sampling period, the four cows 

where relocated to a separate part of the barn, still in a tied stable, secluded from the rest of 

the animals by wooden walls and a plastic curtain so that the sampling of methane would not 

be disturbed by the other animals. This secluded part was also equipped with better ventilation 
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than the rest of the barn. Milking of the cows took place twice a day at 06.00 and 15.30 

o’clock and they were milked in buckets. 

 

Samplings and analyses 

Sampling of enteric methane 

Each cow was equipped with a specially designed halter for the methane sampling. A hose 

leading to the nostrils along with a capillary tube were fastened to the halter. The capillary 

tube regulated the intake rate in order to keep it on a constant level. An evacuated yoke was 

placed on the neck of the cow. The yoke had a vacuum pressure of -20 - -23 inches of 

mercury (inHg) and it was connected to the hose at the nostrils via a collecting valve, and air 

from the nostrils and mouth where collected in the yoke due to the vacuum. The yoke was 

evacuated using a vacuum pump prior to use. The pressure was measured using a manometer. 

 

 

Figure 3. Picture of one of the cows in the experiment equipped with the sampling gear. (Photo by 

Agnes Willén, 2010). 

The method used to measure methane production was SF6 (sulfur hexafluoride) tracer 

technique. SF6 is a highly potent greenhouse gas that has a 23 900 times higher potential for 
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global warming than carbon dioxide has. The reason to why SF6 is used is because it is inert 

and passes through the abdomen of the cow without reacting with other substances therein. A 

permeation tube containing SF6 was placed in the rumen of the cows approximately 10 days 

prior to sampling. SF6 is released from the capsule and by a Teflon membrane the flow rate is 

regulated. The flow is constant and was calibrated during the 10 weeks prior to the study, the 

capsules different flows are shown in table 2. The different capsules had a slightly varying 

flow and therefore the identification number of each capsule was recorded along with the ID 

of the corresponding cow. Because of the risk that the gas could affect the equipment, the 

equipment and the gas was handled in separate rooms. 

Table 2. Mean flow of SF6 from the permeation tube from individual cows (mg/day) 

Cow 1328 1379 1381 1403 

Tube 93 20 17 21 

Flow (mg/day) 2.584 3.139 3.254 2.584 

 

An evacuated yoke was placed on the neck of the cow, after which the hose on the halter was 

connected to the yoke. The time of the connection and the number of the yoke was recorded. 

The yoke was then tightened to the halter using elastic straps. After approximately 24 hours of 

sampling, the hose was disconnected from the halter and the time of day was recorded. The 

yoke was then removed from the cow. Immediately after disconnecting the yoke, the pressure 

was measured and recorded. When the pressure was in the range of -3 to -12 mbar, the 

equipment was working. There was also three measuring points in the stable, measuring the 

background methane. These yokes was also connected to halters and where treated in the 

same way as the yokes on the cows. 

 

The yokes were then filled up with N2 at a pressure of 1 bar. This was made to create 

overpressure and thereby enable gas sampling. After a minimum of one hour of mixing of the 

gases, the sampling of gases was carried out. This was made by using a 60 ml syringe to 

sample gas from the yoke. Around 60 ml of gas was then injected in a 22 ml test tub equipped 

with a rubber lid. A cannula was inserted through the lid trough which redundant gas could 

escape to make sure that the test tub only contained the gas from the yoke. This procedure 

was repeated five times during period 1 and six times during period 2. The yokes were then 

washed with 2 bar N2 three times in order to be clean before the next sampling. 
 

Sampling of methane from faeces and urine 

Faeces and urine was sampled from the four cows during period 1. Urine was sampled twice a 

day, five days in a row and it was collected in a bucket either while the cow voluntarily 

evacuated or via stimulation by massaging just under the vulva. Faeces were sampled twice a 

day, five days in a row and it was collected in a bucket either while the cow voluntarily 

evacuated or by manually gathering via the cows’ rectum. The samples were then weighed 

and mixed together to one uniform composite sample per cow. Faeces and urine from each 

cow was mixed by a ratio of 2.4:1 according to earlier studies where urine and faeces was 

collected (Bertilsson, personal message, 2010). One sample of mixed faeces and urine (FU) 

from each cow (n=4) was then analyzed along with one pure urine sample (U) from two 

individual cows (n=2). 
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Enteric methane analyses 

The concentrations of methane, SF6 and CO2 in the samples from the yokes were analyzed 

using a Gas Chromatograph (GC) (Pekin-Elmermodel Claus 530, Shelton, CT, USA), by 

Gunnar Börjesson (institutionen för mikrobiologi, SLU, Uppsala). Each sample was analyzed 

in triplicate. The emissions of methane were calculated using following formula: 

 

 
Johnson et al., 1994 

 

QCH4 is the methane produced per day, QSF6 is the known flow of SF6 from the capsule. 

[CH4] and [SF6] are the measured concentrations from the yokes on the cows and [CH4b] and 

[SF6b] are the measured concentrations from the background yokes. 
 

Analyses of methane from faeces and urine 

Nitrogen content in the FU sample was determined using the Kjeldahl method where the 

organic substances in the substrates are decomposed by oxidation to liberate nitrogen as 

ammonium sulphate. The solution is then cooled and mixed with water where after it is 

distilled and filtered with hydrochloric acid to convert ammonium to ammoniac. 

 

The DM content of the FU sample and the U sample was determined by placing substrates in 

crucibles in an oven at 103°C over night and weighing the crucibles with content before and 

after heating. Ash content was determined by placing the crucibles in 550°C for three hours 

and weighing the crucibles with content before and after heating. 

 

The maximum methane production per g VS (Bo) were analyzed for the six substrates (two U 

and four FU samples) by using a laboratory-scale batch digestion test in 1-litre bottle along 

with inoculums at 37°C as described by Rodhe et al., (2009). The substrate (either urine or the 

faeces-urine mixture) was weighed and put in a 1 liter glass bottle. Inoculums and water was 

then added after weighting and the bottles were closed tightly with a rubber lid. The total 

volume of substrate, inoculums and water was somewhere around 600 ml. A triplicate 

digestion test was made for each substrate. The bottles were placed on a shaking table with a 

rotation speed of 130 rph in a room with a constant temperature of 37°C to ensure soft and 

even mixing and heating of the samples. The laboratory-scale batch digestion test was run for 

100 days. 

 

The pressure in the bottles was tested with a digital pressure meter (GMH 3110) with a 

pressure sensor (GMSD 2 BR; -1000 tp 2000 mbar) and recorded. The pressure was then 

recalculated to produce standard gas volume (0°C, 101.3 kPa). Gas was sampled from the 

bottles using a 5 ml syringe. 2 ml of gas was then injected into a 20 ml test tub with rubber 

lid. Each substrate was analyzed in triplicates. The bottles with substrate were after that 

evacuated for air. This was done using a cannula coupled to a plastic bag that sucks out the 

gas until there was no pressure left in the bottle. The sampling from the bottles took place 

daily during the first days and then approximately once every 7-10 days. The date and time 

for sampling was recorded. At the times for sampling, reference samples were also taken from 

a tube with 99% methane gas in order to see changes during handling of the samples. 
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The concentration of methane in the FU and U samples were analyzed using a Gas 

Chromatograph (GC) (Pekin-Elmermodel Claus 530, Shelton, CT, USA), by either Johnny 

Ascue Contreras or Maria del Pilar Castillo, Swedish Institute of Agricultural and 

Environmental Engineering, Uppsala. 

 
Feed sampling and analyses 

Samples of the grass and the pea/oat silages where taken each day. The samples were put in a 

freezer with a maximum temperature of -18°C and were analyzed after the study was finished. 

The samples were pooled to form a composite sample from each animal and measurement 

period. The feed samples were then analyzed for content of DM, ash, starch, NDF, crude 

protein and energy. The feed analysis where conducted as a part of the larger study. The VS in 

the feed was calculated in order to be able to compare methane production from feed with 

methane production from manure. Formula used: ([DMI]*((100-[ash content in % of 

DMI])/100). 
 

Milk samples 

In each of the four periods, milk where taken from each cow two days in a row and analyzed 

by the milk laboratory at Kungsängen Research Centre in Uppsala. The method used was 

infrared technique (Milkoscan FT120, Foss, Denmark) and the analyses performed were for 

content of fat, protein and lactose. Milk yield, the amount of cells and the yield of energy 

corrected milk (ECM) were also measured. 

 
Animal weighing 

The animals were weighed two consecutive days one time per period and an average weight 

for each period and animal was calculated. 

 

Statistic analyses 

The concentrations of methane and SF6 samples from the yokes, the production of methane as 

well as the maximum methane unit producing capacity per g VS of the manures (Bo) were 

calculated using Excel 2007 (Microsoft Office, 2007). The statistical analyses were carried 

out using SAS 9.1 (SAS Institute Inc., Cary, NC). The model used in most cases was mixed 

procedure. The GLM procedure was used for the analyses of FU and U since there were only 

results from one period. 

 

Ethics 

The study set-up was approved by the animal experiment ethical committee in Uppsala 

according to the permission number C/29/8. 
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Results 

Feed 

Energy 

The mean daily total intake of Gross Energy (GE) was for treatment A (100% grass silage) 

434.6 MJ/day and for treatment B (25% grass silage, 75% pea/oat silage) 419.0 MJ/day, as 

shown in Table 3. There was no significant difference between MJ intake between either the 

two different treatments (p=0.459) or between the periods (p=0.744). 

 
Starch 

The mean daily total intake of starch was for treatment A (100% grass silage) 1.7 kg/day and 

for treatment B (25% grass silage, 75% pea/oat silage) 2.8 kg/day, as shown in Table 3. There 

was a statistic difference between treatments concerning intake of starch (p<0.0001) but not 

between periods (p=0.930). 

 
NDF 

The mean daily total intake of NDF was for treatment A (100% grass silage) 7.7 kg/day and 

for treatment B (25% grass silage, 75% pea/oat silage) 7.1 kg/day, as shown in Table 3. There 

was no statistic difference between either treatments (p=0.701) or periods (p=0.288) 

concerning intake of NDF. 

 
Protein  

The mean daily total intake of protein was for treatment A (100% grass silage) 3.7 kg/day and 

for treatment B (25% grass silage, 75% pea/oat silage) 3.3 kg/day, as shown in Table 3. There 

was a statistic difference but between treatments (p=0.048) but not between periods (p=0.305) 

concerning intake of protein. 

 
Dry matter intake 

The average daily intake per cow and period is shown in table 9 appendix 1. The mean daily 

total intake of DM was for A (100% grass silage) 22.9 kg DMI/day and for treatment B (25% 

grass silage, 75% pea/oat silage) 22.3 kg DMI/day, as shown in Figure 4. 
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Figure 4. Intake of DM per cow and day for each treatment and period. A =100% grass silage, B=25% 

grass silage, 75% pea/oat silage. 

No significant differences were found between either treatments (p=0.472) or periods 

(p=0.125). 

Table 3. Summary of feed data for the two different treatments (GE = gross energy, NDF = non 

detergent fiber, DMI = Dry matter intake, MJ = mega joule) 

Treatment 

 

GE 

(MJ/day) 

Starch 

(kg/day) 

NDF 

(kg/day) 

Protein 

(kg/day) 

DMI 

(kg/day) 

A mean 434.6 1.7 7.7 3.7 22.9 

 min 367.5 1.7 6.2 3.3 17.2 

 max 503.9 1.7 9.4 4.3 28.3 

 StDev 39.72 0 0.91 0.31 2.39 

       

B mean 419.0 2.8 7.1 3.3 22.3 

 min 356.8 2.5 5.8 2.9 17.2 

 max 480.0 3.0 8.6 3.9 28.3 

 StDev 45.50 0.16 1.06 0.35 2.50 

       

P-value treatments 0.459 <0.0001 0.701 0.048 0.472 

P-value periods 0.744 0.930 0.288 0.305 0.125 

 

Animal weighing 

The weights of the animals are presented in figure 12 in appendix 1. There were no significant 

differences in animal weights between either periods or treatments. 
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Milk yield 

The cow’s individual production of milk are presented in table 10 in appendix 1.The mean 

milk production per cow in treatment A (100% grass silage) was 27.0 kg/day and in treatment 

B (25% grass silage, 75% pea/oat silage) 24.2 kg/day see table 6. There were no differences in 

milk yield between treatments (p=0.126) but between periods concerning milk yield (p = 

0.015). 

 

The mean production of ECM per cow was for treatment A 28.2 kg/day and for treatment B 

26.9 kg/day. The production of ECM per treatment and period is shown in table 6. 

 

Enteric methane production 

The enteric production of methane per cow and period is presented in table 11 in appendix 1 

and the enteric production per treatment and period is shown in table 12 in appendix 1. The 

mean production per cow of enteric methane was for treatment A (100% grass silage) 504 

g/day and for treatment B (25% grass silage, 75% pea/oat silage) 657 g/day which is shown in 

table 4. There was a significant difference treatments (p=0.045) and between periods 

(p=0.039) concerning enteric methane production, see table G. Figure 5 shows the mean value 

of enteric methane production per treatment for each of the four periods and the overall mean 

for all the periods together. 

Table 4. Mean, minimum, maximum and standard deviation (StDev) for enteric methane production 

per cow and day during all four experimental periods 

Treatment 

 
Enteric CH4 

(g/cow and day) 

A mean 504 

 min 214 

 max 962 

 StDev 194.4 

   

B mean 657 

 min 235 

 max 1032 

 StDev 186.6 

   

P-value treatments 0.045 

P-value periods 0.039 
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Figure 5. Mean enteric methane production (g/day and cow) for the two treatments. A =100% grass 

silage, B=25% grass silage, 75% pea/oat silage. 

 

Methane from faeces and urine 

The results from the analyses of the DM content and ash content of faeces and urine (FU) and 

pure urine (U) are presented in table 13 in appendix 1 and the results from the N content 

analysis of (FU) is presented in table 14 in appendix 1. Since there was only one result per 

cow from the Bo experiment, the GLM procedure with t-test was used as statistical model. 

The result from the analysis was that no significant difference between the two treatments was 

found (p = 0.233). 

 

The results from the FU-experiment showed a Bo-value of 160 l CH4 kg
-1

 VS for treatment A 

(100% grass silage) and 211 l CH4 kg
-1

 VS for treatment B (25% grass silage, 75% pea/oat 

silage) after 114 days of incubation. The Bo-value for U was -46 l CH4 kg
-1

 VS for treatment 

A and 188 CH4 kg
-1

 VS for treatment B after 114 days. The results with standard deviation 

(StDev) are shown in table 5. 

Table 5. The maximum methane production and standard deviation (StDev) per g VS (Bo) from faeces 

and urine (FU) and urine (U) 

 FU U 

Treatment l CH4 kg
-1

 VS StDev l CH4 kg
-1

 VS StDev 

A 160 37.74 -46 0.26 

B 211 11.46 188 8.58 

 

Figure 6 shows the production of methane from FU per treatment over time. The substrate 

was stored for 114 days. Figure 7 shows the production of methane from FU and U from each 

cow individually during the time of storage where 1328U and 1379U are U samples. Cow’s 
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with ID 1328 and 1403 is given the diet for treatment A and 1379 and 1381 for treatment B. 

Each sample was analyzed in triplicates and the figure shows the mean values. 

 

 
Figure 6. Mean methane producing potential for faeces and urine (FU) for the two treatments from 

period 1. 

 
Figure 7. Mean methane producing potential for faeces and urine (FU) and urine (U) for the individual 

cows from period 1. 
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Enteric methane relations 

Starch 

The mean daily value for g produced enteric methane per kg starch in the feed was for 

treatment A (100% grass silage) 341 and for treatment B (25% grass silage, 75% pea/oat 

silage) 196. There was not a significant difference in g produced enteric methane per kg 

starch in the feed between treatments (p=0.063) or between periods (p=0.225). Figure 8 shows 

a linear trend for the relations between enteric methane production and the intake of starch. 

However, there was no significance in the linear trend (p<0.0.63). 

 

 
Figure 8. Relations between enteric methane production (g CH4/day) and starch intake (kg/day). 

 
NDF 

The mean daily value for g produced enteric methane per kg NDF in the feed was for 

treatment A (100% grass silage) 78 and for treatment B (25% grass silage, 75% pea/oat 

silage) 74. There was no significant difference in g produced enteric methane per kg NDF in 

the feed between either treatments (p=0.992) or periods (p=0.261). 

 
Protein 

The mean daily value for g produced enteric methane per kg protein in the feed was for 

treatment A (100% grass silage) 160 and for treatment B (25% grass silage, 75% pea/oat 

silage) 160. There was no significant difference in g produced enteric methane per kg protein 

in the feed between either treatments (p=0.793) or periods (p=0.275). 
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DMI 

The mean daily value for g produced enteric methane per kg DM was for treatment A (100% 

grass silage) 22 g methane/kg DM and for treatment B (25% grass silage, 75% pea/oat silage) 

29 g methane/kg DM. 

 

There was a significant difference between treatments (p=0.028) and between periods 

(p=0.034) concerning enteric methane production per DM intake. 

 
Milk yield 

The production of g enteric methane per kg ECM was for treatment A 21.9 g/kg ECM and for 

treatment B 17.6 g/kg ECM, se table 6. There was no significant differences between either 

treatments (p=0.303) or periods (p=0.193) concerning enteric methane production per kg 

ECM. 

Table 6. Milk production in kg and ECM, mean for treatment and period, and mean produced methane 

(g) per kg ECM 

Period 

Treatm. 
 1 2 3 4 

Overall 

mean 
n 

A g CH4/kg ECM 13.2 (10.2)
1
 24.9 (5.7) 27.8 (3.7) 21.5 (.)

2
 21.9 (8.0) 7 

 kg ECM 30.2 (8.3)
1
 29.7 (5.1) 24.8 (8.1) 27.9 (6.8) 28.2 (5.9) 8 

 kg milk 31.3 (10.5)
1
 27.6 (4.3) 23.3 (9.3) 25.8 (7.1) 27.0 (6.9) 8 

B g CH4/kg ECM 13.4 (8.6)
1
 20.0 (.)

2
 18.5 (0.2) 22.0 (.)

2
 17.6 (5.2) 6 

 kg ECM 32.2 (0.2)
1
 29.4 (9.4) 27.6 (4.3) 18.6 (17.7) 26.9 (9.5) 8 

 kg milk 30.0 (0.7)
1
 25.9 (8.8) 25.2 (5.6) 15.7 (15.5) 24.2 (9.0) 8 

1
Standard deviation (StDev) within brackets 

2
n=1, therefore no value for StDev 

 
Methane from faeces and urine 

Because there were only data from one period concerning methane from FU and U, no 

statistics where done on comparisons with methane from FU and U. However the relationship 

between methane from FU and enteric methane was investigated by plotting the values in a 

graph, see figure 9. There was no significant linear trend between the two forms of produced 

methane. 



28 

 

 
Figure 9. Relations between enteric methane production (g CH4/VS in feed) and methane from faeces 

and urine (FU) production (g CH4/kg VS in faeces and urine).  

Summary of methane results 

Table 7. Means, standard deviation (StDev) and significance levels for some of the variables studied, 

significant differences are shown in italic 

Variable 
Treatment Significance levels 

A n StDev B n StDev Treatment Period 

Enteric methane         

CH4 (g/day) 504 30 194.44 657 35 186.61 0.045 0.039 

CH4/ kg starch (g/kg) 340 7 136.78 196 6 60.92 0.063 0.225 

CH4/ kg NDF (g/kg) 78 7 32.39 74 6 22.24 0.992 0.261 

CH4/ kg protein (g/kg) 160 7 62.91 160 6 50.02 0.293 0.275 

CH4/DMI (g/kg) 22 30 8.92 29 35 7.10 0.028 0.034 

CH4/ kg ECM (g/kg) 22 7 8.04 18 6 5.20 0.303 0.193  

          

Methane from faeces and urine         

FU CH4 (l/kg VS) 160 2 41.14 211 2 9.53 0.233 -  
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Discussion 

 

The first hypothesis of the study was that using a large amount of legumes in the cow’s feed 

(i.e. treatment B) would have a decreasing effect on the enteric methane production from the 

cows. After analyzing the results from the study, this did not seem to be the case. The 

difference between treatments proved to be significant, but the cows that were fed pea/oat 

silage emitted more methane (657 g/day) than did the cows that was fed grass silage (504 

g/day). This is opposite to previous studies where lactating beef cows on alfalfa-grass pasture 

emitted less methane (373.8 l/day) than cows on grass pasture (411.0 l/day) (McCaughey et 

al., 1999). The result is neither in line with the idea that a decrease in methane production can 

be obtained by replacing sugars from concentrates with starch (Mills et al., 2001). There 

where however not as much starch in the pea/oat silage as expected due to a pea aphid 

infestation that caused losses of pea pods (Rondahl, 2010). This might explain the default 

expected effect. 

  

The second hypothesis of this study was that a low enteric methane production was somewhat 

followed by a high or maintained production of methane from the faeces and urine. This is 

interesting since methane from manures is easier to utilize as energy than enteric methane. 

This turned however out not to be the case. There were no significant differences between the 

two treatments, but the results indicated that treatment A (grass silage) gave less produced 

methane than did treatment B (pea/oat silage), which was the same as for the enteric methane 

produced. 

 

There was a significant difference between period 1 and all other period concerning enteric 

methane production. This difference might be due to that one of the cows had significantly 

lower methane production this period compared to the later three periods, and thereby reduced 

the total production during this period. It might also be a result of DMI intake, since the intake 

of DM was slightly lower as a total during period 1 compared to the other periods. A lower 

DMI has in previous studies proved to decrease methane production (Külling et al., 2002; 

Hindrichsen et al., 2006). 

 

Rodhe et al. (2009) showed that about 3% of the maximum methane production for cattle 

slurry is produced during storage when considering Swedish conditions, and that is how the 

amount of methane from the faeces and urine mixture is calculated in figure 10 and 11. As 

visible in figure 10, the trend is that treatment B generated more methane both from enteric 

production and from the faeces and urine. It is however important to note here that the VS in 

the two different methane sources are different. When considering enteric methane it is the 

VS content of the feed that is implied and considering methane from faeces and urine it is the 

VS content of the faeces and urine mixture that are referred to. If the faeces and urine will be 

used for biogas production it is preferable to choose to give the cows treatment B (pea/oat 

silage), but this will unfortunately also bring about a higher enteric methane production. 
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Figure 10. Distribution of enteric methane and methane from faeces and urine per treatment from 

period 1 (g CH4/kg VS). 

When presenting the results on individual level (Figure 11), the trend is the same as on 

treatment level. When emitting higher amounts of enteric methane, as for cow 1379 and 1381, 

the amount of methane from faeces and urine also seems to be higher. When a linear trend 

was created to compare methane derived from FU and enteric methane fermentation no 

significant difference were found. It did however seem that a higher value of enteric methane 

gave a higher value of methane derived from FU. These findings are not in line with a study 

by Hindrichsen et al. (2006) who found that when enteric methane production was decreased 

by dietary means, the methane production from the manure was simultaneously increased. It 

is however difficult to draw any conclusions from the results from the present study since 

there are not that many earlier studies that have compared enteric produced methane and 

methane production from manure. 
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Figure 11. Distribution of enteric methane and methane from faeces and urine per individual from 

period 1 (g CH4/kg VS). 

The faeces and urine (FU) showed a lower Bo-value for both treatments (A=160 l CH4 kg
-1

 

VS, B=211 l CH4 kg
-1

 VS) compared to the default value of 240 l CH4 kg
-1

 VS for cattle 

slurry from developed countries that are given from IPCC (2006). The Bo for faeces and urine 

in the present study were also lower than for cattle slurry taken from a dairy farm in Sweden 

measured in the same laboratory using the same techniques (294 l CH4 kg
-1

 VS) (Rodhe et al., 

2009). One difference between the present study and the comparing studies is that the 

substrate in this study was sampled directly at excretion from the cows and therefore there 

were no addition of residues of feed or bedding material present. This might explain the 

relatively low Bo from faeces and urine. The reason to why the faeces and urine in the study 

are sampled directly from the animals is that the aim was to investigate the feeds impact on 

production of methane from faeces and urine and therefore it had to be free from bedding 

materials and feed residues. This is different from what is common when doing methane 

production analyses from manure, because most studies are interested in investigating all of 

the material that normally ends up in the manure storing system, including water and bedding 

material. 

 

When measuring maximal methane production (Bo) from manure, it is common to incubate 

the manure for 100 days (Rodhe et al., 2009). However, in this study, the substrate was stored 

for another two weeks, in total 114 days. This was done to make sure that the production of 

methane was stabilized which was not the case after 100 days. However, this does not seem to 

have influenced the results since a longer incubation should imply a higher level of produced 

methane, if any difference at all, and the result was the opposite. 

 

The result from the storing of pure urine shows a partitioned result. The urine from the cow in 

treatment A had a negative Bo-value, whilst the urine from the cow in treatment B started off 

with a negative Bo-value but after a month of storing it steadily increased to a Bo of 188 l CH4 

kg
-1

 VS. High content of nitrogen (N) in the substrate can have an inhibiting effect on 
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methane production (Hansen et al., 1998). In a study where swine manure was used, the 

authors found that a concentration of free ammonia of 1.1 g-N/litre or more had an inhibiting 

effect on the methane production. The N-content might be the reason to why Bo for the urine 

showed these results. 

 

One reason to why the methane production did not show the expected results could be the 

ratio between faeces and urine used. The faeces to urine ratio were 2.4:1, which was 

calculated from earlier studies (Personal message, Bertilsson, 2009). However, there are not 

common in this kind of studies to mention the ratio between faeces and urine, probably 

because it is common to sample the materials when it is already mixed, and therefore it is not 

sure that the ratio used corresponds to the normal conditions. 

 

As suspected, there were significant differences between the treatments concerning intake of 

starch. There was however not a significant difference between the treatments concerning 

produced enteric methane per kg ingested starch. This is not in line with the result of an 

earlier study where it was shown that methane production can be reduced by including feeds 

rich in starch that act to enhance propionic acid (Johnson & Johnson, 1995). Also a study by 

Russel & Jeraci (1984) showed that using starch as the energy source inhibited methane 

production. 

 

When creating a linear trend for both treatments together to investigate the relations between 

enteric methane production and the intake of starch, no significance was obtained. There was 

however a trend that as the amount of starch in the diet raises so does the enteric methane 

production. This is not quite in line with the result discussed above and might be an effect of 

the fact that the individuals in treatment A all ate the same amount of starch. 
 
The enteric methane production per kg DMI was higher for treatment B (pea/oat silage) than 

for treatment A (grass silage). This is not a result of higher DMI for treatment B, as could be 

suspected, since there were no significant differences between treatments concerning DMI. 

When only comparing numbers but not significance, the DMI was even slightly lower for 

treatment B then for treatment A which makes it even clearer that the DMI is not the reason 

for differences in enteric methane production. 

 

The amount enteric methane produced per kg of ECM is lower for period 1 then the rest of the 

periods. This is probably an effect of the low enteric methane production from one individual 

cow along with the slightly higher production of ECM during this period. 

 

Another interesting property of pea/oat silage that earlier studies have shown is a concentrate 

saving effect. In this study, the cows were fed with the same amounts of concentrate but with 

different ratios of grass silage versus pea/oat silage. According to earlier studies, the cows fed 

with the higher amount of pea/oat silage should produce more milk. This was however not the 

case for this study. There were no significant differences between the treatments at all 

concerning milk yield. 

 

The sampling of enteric methane was conducted during five days in each period. Though, 

during period 2, one extra day of sampling was added and the first day was removed from the 

analysis since there were some problems with the gear that first day. During the other periods, 

some of the values were not used due to them being deviate and sometimes some values were 

even missing. Missing and deviating values was most often due to equipment problems such 

as water in the yokes or clogging of the hose. 
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When missing values from one of the three backgrounds occurred, it was dealt with by using 

the average value from that specific background the remaining four days of the period. There 

was one of the four cows that sometimes got suspiciously low values on enteric methane 

production. One conceivable reason to the low values is leaking from the fistula, this specific 

cow did show more leakage from her fistula than did any of the other cows in the study. No 

previous studies have been found on the correlation of leaking fistulas and enteric methane 

production, so this is only my guessing. 
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Conclusions 

It could not be concluded, as was the hypothesis, that a diet with high content of pea/oat silage 

decreases the amount of produced enteric methane compared to a diet with grass silage. 

Neither were there any signs that a lower enteric methane production is followed by a high or 

maintained production of methane from the faeces and urine as suspected. Diets with pea/oat 

silage contains as expected significant higher amounts of starch than diets with grass silage. It 

was however not shown that a diet with high content of pea/oat silage generates less methane 

per kg of ingested starch than a diet with grass silage. Further studies need to be conducted 

and to be able to receive results of a higher significance a larger number of animals need to be 

included in the study and the difference in starch content has to be larger. 
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Appendix 1 

Table 8. Adjustment of the silage ratio depending on residues 

Residues Ratio 

No residues Increase ratio with 3.0 kg/day 

0.1-3.0 kg residues Unchanged ratio 

3.1-6.0 kg residues Decrease ratio with 2.0 kg/day 

More than 6.0 kg residues Decrease ratio with 4.0 kg/day 

 

Table 9. Average daily DMI in kg per cow and period 

Period 

Cow ID 

 
1 2 3 4 

1328 Mean 22.0 24.5 26.2 25.0 

 StDev 0.42 0.42 2.01 1.38 

 Min 21.3 24.0 23.3 23.4 

 Max 22.4 25.0 28.3 26.7 

      

1379 Mean 20.7 20.1 21.5 22.3 

 StDev 1.04 1.69 0.90 2.12 

 Min 19.9 17.2 20.3 19.3 

 Max 22.2 21.4 22.5 24.3 

      

1381 Mean 21.6 22.8 23.3 23.8 

 StDev 1.51 1.91 1.56 1.62 

 Min 19.2 19.6 22.0 21.3 

 Max 23.3 24.5 25.9 25.6 

      

1403 Mean 21.3 20.2 26.6 19.9 

 StDev 1.57 1.46 1.63 1.70 

 Min 19.3 18.3 24.3 17.2 

 Max 23.3 21.9 28.3 21.8 
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Figure 12. Individual animal weights in kg per period. 

 

Table 10. Milk yield and energy corrected milk (ECM) per cow and period  

Period 

Cow ID 

 
1 2 3 4 

1328 kg milk 38.7 32.1 29.1 30.8 

 kg ECM 36.1 36.0 30.6 32.7 

1379 kg milk 30.5 24.5 21.2 20.7 

 kg ECM 32.3 26.1 24.5 23.1 

1381 kg milk 29.5 30.6 29.9 26.6 

 kg ECM 32.0 33.3 30.5 31.1 

1403 kg milk 23.8 19.7 16.7 4.7 

 kg ECM 24.3 22.7 19.1 6.1 

 

Table 11. Enteric CH4 (g/day), mean for cow and period 

Period 

Cow ID 
1 2 3 4 

Overall 

mean 

1328 240 681 817 714 613 

1379 517 567 521 486 523 

1381 591 687 608 804 673 

1403 391 614 569 658 558 
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Table 12. Enteric CH4 (g/day), mean for treatment and period 

Period Treatment 
CH4 

(g/day) 
StDev n 

1 A 307 122.0 9 

 B 550 174.4 9 

2 A 601 180.8 7 

 B 652 160.8 9 

3 A 580 113.4 7 

 B 685 199.7 9 

4 A 584 184.3 7 

 B 750 183.9 8 

Overall mean A 504 194.4 30 

  B 657 186.6 35 

 

Tabell 13. Results from DM and ash analyses for FU and U 

ID Crucible Tare 

(g) 

Weigh-in 

(g) 

After 

drying 

(g) 

After 

burning 

(g) 

DM 

% 

Mean 

DM 

% 

Ash 

% 

Mean 

Ash  

% 

1403 (FU) 2f 17.876 7.020 18.782 18.048 12.91 12.94 2.45 2.46 

 580 22.444 6.999 23.351 22.616 12.96  2.46  

1328 (FU) 3f 18.543 8.651 19.381 18.697 9.69 9.70 1.78 1.76 

 553 21.260 6.013 21.843 21.364 9.70  1.73  

1379 (FU) 526 21.894 7.691 22.768 22.030 11.36 11.16 1.77 1.76 

 444 17.997 8.815 18.962 18.151 10.95  1.75  

1381 (FU) 508 21.934 6.283 22.547 22.009 9.76 9.81 . 1.67 

 561 21.809 6.414 22.441 21.916 9.85  1.67  

1328 (U) 8 43.072 20.230 42.980 43.592 4.49 4.52 2.57 2.58 

 10 47.858 20.368 48.782 48.384 4.54  2.58  

1379 (U) 13 44.296 21.048 45.618 44.861 6.28 6.28 2.68 2.64 

 14 43.494 20.244 44.766 44.019 6.28  2.59  
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Tabell 14. Results from N content analyses of FU 

ID Tube Results 

(%) 

Mean 

(%) 

1403 8 0.71 0.69 

 9 0.68  

 10 0.68  

1328 11 0.42 0.42 

 12 0.42  

 13 0.42  

1379 14 0.52 0.52 

 15 0.52  

 16 0.52  

1381 17 0.48 0.48 

 18 0.48  

 19 0.48  

 

 


