KARAKTÄRISERING AV HÄSTENS GÅNGARTER MED ACCELEROMETERTEKNIK

CHARACTERISATION OF GAITS IN HORSES BY USE OF ACCELEROMETER TECHNIQUE

Annelie Johansson

Examinator: Vet med dr Per Michanek

Sveriges lantbruksuniversitet
LTJ-fakulteten Alnarå 2007
FÖRORD

Studien har genomförts på uppdrag av JBT, Alnarp som en del av projektet Hästars rörelsemönster samt banunderlag för träning och tävling – biomekaniska och epidemiologiska fältundersökningar samt metodutveckling.

Ett varmt tack riktas till de hästar, hästägare och medhjälpare som medverkat vid insamling av data.

Ett tack riktas även till Lars Roepstorff som lånat ut mätutrustningen för den praktiska delen av arbetet.

Alnarp maj 2007

Annelie Johansson
INNEHÅLLSFÖRTECKNING

INNEHÅLLSFÖRTECKNING ..2
SAMMANFATTNING ...3
SUMMARY ..4
1 INLEDNING ..5
 1.1 BAKGRUND ..5
 1.2 MÅL ...5
 1.3 SYFTE ..5
 1.4 FRÅGESTÄLLNING ... 6
 1.5 AVGRÄNSNING ...6
2 HÄSTENS GÅNGARTER ...7
 2.1 SKRITT ...7
 2.2 TRAV ...8
 2.3 GALOPP ..8
3 ACCELEROMETERTEKNIK ..10
 3.1 VAD ÄR EN ACCELEROMETER? ..10
 3.2 ACCELEROMETERNS ANVÄNDBARHET ...10
 3.3 ACCELEROMETERTEKNIK INOM HÄSTVÄRLDEN ...10
 3.3.1 Analysera hoppteknik med accelerometer ..10
 3.3.2 Upptäcka hältor med accelerometerteknik ...11
4 MATERIAL OCH METOD ...12
 4.1 MÄTNINGENS/DATAINSAMLINGENS UTFÖRANDE ..12
5 RESULTAT ...15
 5.1 DE OLIKA GÅNGARTERNAS MAX- OCH MINVÄRDEN ...15
 5.2 DE OLIKA GÅNGARTERNAS SIGNALMÖNSTER ..17
6 DISKUSSION ..18
7 REFERENSER ...20
 7.1 SKRITTLIGA ..20
 7.2 MUNTLIGA ...20
8 BILAGOR ..21
SAMMANFATTNING

I dagens hästhållning har man mer och mer blivit medveten om vikten av rörelse och aktivitet för hästens välbefinnande och hållbarhet, samtidigt som traditionen säger att hästar skall hållas i box och små rasthagar.

För att kunna utforma inhysningssystem dvs. stall och hagar som uppfyller och optimerar hästens behov av rörelse och aktivitet behöver man utveckla metoder för att mäta hur frigående hästar rör sig. Ett första steg är att automatiskt kunna detektera gångarter från accelerometerdata.

I denna pilotstudie används befintlig accelerometerteknik för att karakterisera hästens olika gångarter genom att ta reda på hur/om signalmönstret för de olika gångarterna skritt, trav och galopp skiljer sig åt samt om signalmönstret skiljer sig för olika storlekar på hästar. Accelerometern som används i detta arbete mäter rörelsen i tre olika plan; horisontalplan, lateralplan dvs. sidled och vertikalplan.

Det insamlade materialet har analyserats dels genom att jämföra de olika gångarternas typiska amplituder (styrkan i de olika krafterna) dels genom att studera andra egenskaper i deras signalmönster. Frekvensen, det vill säga antal steg/sekund, korrigerade max- och minvärden samt det sätt på vilket krafter i olika plan varierar, uppvisar tydliga skillnader mellan skritt, trav och galopp och torde vara bra utgångspunkter för att gå vidare i arbetet med att automatiskt kunna detektera gångarter från accelerometerdata.
SUMMARY

This work is included as a pilot study in the project, *The horses movement patterns and track foundation for training and competition – biomedical and epidemiological field investigations plus method deployments*, a joint project between the Department of Equine Studies, SLU Ultuna and JBT, SLU Alnarp.

In today’s horse keeping, there is an increasing awareness of the importance of movement and activity for the horses comfort and tenability, while tradition has it that horses should be kept in boxes and small paddocks. In order to develop housing systems that fulfils and optimizes the horses needs regarding movement and activity, we need to know more about factors that influence the activity patterns of horses. A first step is to be able to record and analyze the gaits in horses with an automated system. This could be done by use of accelerometer data.

In this pilot study, existing accelerometer technique was used to characterize the different gaits in horses (walk, trot and canter) by studying how their respective signal patterns differ and how this is influenced by the size of the horse.

The accelerometers being used in this study measures the movement in three different spaces; horizontal, lateral and vertical. The collected data have been analyzed by comparing the typical amplitudes (signal strengths) for the different gaits and by studying other qualities in their signal patterns. Stride frequency, corrected values of maximum and minimum and the way that forces in different planes variate, show clear differences between walk, trot and canter and should be good starting-points to proceed the work with automatic detection of gaits in horses, using accelerometer data.
1 INLEDNING

1.1 BAKGRUND

Hästen är en stäpplevande gräsätare som i frihet tillbringar största delen av dygnet i rörelse för att bland annat söka föda. Dess rörelseapparat är anpassad till detta liv och om den inte får röra sig tillräckligt, särskilt under uppväxten, kan det leda till bland annat dålig hållbarhet.

I dagens hästhållning har man mer och mer blivit medveten om vikten av rörelse och aktivitet för hästens välbefinnande och hållbarhet, samtidigt som traditionen säger att hästar skall hållas i box och små rasthagar. Genom att kartlägga i vilket tempo och över vilka sträckor hästar i relativ frihet rör sig, skulle man bättre kunna utforma inhysningssystem dvs. stall och hagar som uppfyller och optimiserar hästens behov av rörelse och aktivitet.

För denna kartläggning krävs att man utvecklar passande mätmetoder och som en första studie karaktäriserar hästens olika gångarter. I denna pilotstudie används befintlig accelerometerteknik för att karaktärisera hästens olika gångarter.

1.2 MÅL

Målet med detta arbete är att med hjälp av befintlig accelerometerteknik ta reda på hur/om signalmönstret för de olika gångarterna skritt, trav och galopp på häst skiljer sig åt.

1.3 SYFTE

Syftet med arbetet är att samla in och i viss mån analysera data från hästar i ovan nämnda gångarter. Med mitt arbete vill jag bidra till utvecklingen av lämpliga signalanalytiska funktioner för att automatiskt detektera gångarter från accelerometerdata.
1.4 FRÅGESTÄLLNING

Hur ser signalmönstret för gångarterna skritt, trav och galopp ut? Skiljer signalmönstret sig för olika storlekar på hästar?

1.5 AVGRÄNSNING

I detta arbete har insamling av data begränsats till tre hästar av olika storlek; shetlandponnyn mäter 102 cm, fjordhästen 143 cm och fullblodet 166 cm.

I litteraturen används accelerometer-teknik ofta tillsammans med gyroskoppåmätningar. I detta arbete kommer jag inte att närmare beröra gyroskoppåmätningar, ej heller tekniken bakom accelerometern.
2 HÄSTENS GÅNG ARTER

De tre grundgångarterna hos våra hästar är skritt, trav och galopp. Gångarterna skiljer sig åt genom att extremiteternas det vill säga benens rörelser samordnas på olika sätt och genom att tempot är olika. Tempo är den hastighet som hästen förflyttar sig i.
Kraften mellan hov och underlag – och därmed belastningen i extremiten – beror på tempo, gångart, underlag mm [1]. Ju snabbare tempo desto högre belastning

2.1 SKRITT

Skritt är den långsammaste gångarten. Den är fyrtaktig, varje hov sätts i för sig och man hör fyra hovsättningar för varje fullbordad stegcykel. Hästen har två eller tre hovar i marken samtidigt och rör sig relativt bredbent för att få en bred understödsvyta.
Vanligen sätts bakhoven i framför den samsidiga framhovens tramp.

Se figur 1.
I skritt arbetar hästen med aktiv ryggverksamhet och taktmässiga huvud- och halsrörelser. Huvudet sänks varje gång ett framben lyfts upp och pendlar även i sidled. Hos en normalstor varmblodshäst är steblängden 1,8-2 m. Med cirka 60 steg per minut tar varje steg cirka 1 sek. [1].

Figur 1. Skrättande häst. I skritt har hästen omväxlande tre eller två ben i markkontakt. Varje steg tar cirka en sekund [1]. (Bo Furugren, 1994, med tecknarens tillstånd)
2.2 TRAV

En varmblodig ridhäst har steglängder från strax över 2 m i samlad trav till närmare 4 m i ökad trav. I arbetstrav tar hästen 80-100 steg per minut och varje steg tar då 0,6-0,8 sekunder [1].

![Figur 2. Travande häst, arbetstrav. I trav har hästen antingen två eller ingen hov i marken [1]. Varje steg tar cirka 0,6-0,8 sekunder. (Bo Furugren, 1994, med tecknarens tillstånd)](image)

2.3 GALOPP

Galopp är hästens snabbaste gångart. Hästen har två grundtyper av galopp, dels tretaktsgalopp eller ”canter”, dels fyrtaktsgalopp eller fyrsprång. Tretaktsgalopp används i lägre tempon och har en mycket aktiv och taktmässig rygg- och halsaktivitet. Andningen är vanligen samordnad med rörelserna med ett andetag per stegcykel. Galoppen benämns höger eller vänster galopp efter vilket framben som sist lämnar marken, det ledande frambenet. Man hör tre hovislag per stegcykel och hästen kommer omväxlande ha: en, tre, två, tre, en och ingen hov i marken. I tretaktsgalopp i tempot 350 m per minut är steglängden cirka 3,5 m och varje steg dvs. galoppsprång tar cirka 0,6 sekunder. *Se figur 3.*
Fyrsprång är den snabba galoppen, hals och rygg arbetar mycket aktivt med böjning - sträckning och hästen sätter under sig ordentligt med bakbenen. Rörelsen blir språngartad och påminner mer om hunden och kattens galopp än vad tretaktsgaloppen gör [1].

Figur 3. Galopperande häst, tretaktsgalopp eller ”canter” i högegalopp. I tretaktsgalopp har hästen omväxlande: en, tre, två, tre, en och ingen hov i marken. Varje steg dvs. galoppsprång tar cirka 0,6 sekunder [1]. (Bo Furugren, 1994, med tecknarens tillstånd)
3 ACCELEROMETERTEKNIK

3.1 VAD ÄR EN ACCELEROMETER?

En accelerometer är en elektromekanisk anordning som mäter accelerationskrafter. Dessa krafter kan vara statiska som gravitationskrafterna eller dynamiska och framkallas då accelerometern flyttas [3].

3.2 ACCELEROMETERNS ANVÄNDBARHET

Accelerometern hjälper till att förstå omgivningen bättre. Går det uppför? Faller det vid nästa steg? Flyger det horisontellt eller dyker det nedåt?

Genom att mäta mängden statisk acceleration i förhållande till gravitationen, kan man finna vinklarna som apparaten lutar åt med hänsyn tagen till Jorden. Genom att avläsa mängden dynamisk acceleration kan man analysera i vilken riktning apparaten rör sig.

Accelerometern kan t.ex. hitta fel i bilmotorer via vibrationstester. I datorns värld har man börjat använda accelerometrar i bärbara datorer, om man råkar tappa datorn detekterar accelerometern det ”plötsliga fria fallet” och stängar av hårddisken så läshuvudena inte gräver sig ner i skivmediet som annars totalförstörs [3].

När hårddisken stängs av går läshuvudena tillbaka till ett säkert ställe en så kallad landing zone [2]. Inom bilindustrin används accelerometern i simulerade situationer för att detektera bilkrockar så krockkuddarna löser ut i precis rätt ögonblick [3].

3.3 ACCELEROMETERTEKNIK INOM HÄSTVÄRLDEN

3.3.1 Analysera hoppteknik med accelerometer

Studien visade att hästar med sämre hoppteknik har ett högre förhållande mellan frambenens och bakbenens acceleration än hästar med bra hoppteknik. Frambensaccelerationen var då högre hos hästarna med sämre hoppteknik vilket gav en lägre accelerationsimpuls till bakbenet vid avsprånget vilket leder till fler rivningar.
3.3.2 Upptäcka hälter med accelerometerteknik

När hästarna travade på löparband detekterade systemet alla hälter och identifierade det affekterade benet till 100 %. När samma mätning gjordes utomhus på asfalt fann man ibland svårigheter att plocka ut hältkomponenten för vidare analys. Detta kopplades till att hästen helt naturligt rör mer på huvud och hals utomhus än inne på löparbandet. Det var dessutom svårare att få hästen att hålla samma hastighet utomhus, på löparbandet ställer man in hastigheten.
4 MATERIAL OCH METOD

Under arbetets gång har en litteraturstudie genomförts på engelsk text som min handledare väglett om samt svensk text och artiklar jag funnit på Internet. Insamling av data med accelerometerTeknik har utförts på tre hästar av olika storlek, shetlandponny, fjordhäst samt fullblod. Sammanställning och enklare analys av insamlade data har också gjorts.

4.1 MÄTNINGENS/DATAINSAMLINGENS UTFÖRANDE

Accelerometern och datorn startades och en trådlös förbindelse upprättades mellan accelerometern och en till datorn kabelansluten mottagare.

Mätningen - Datainsamlingen startades från datorn (i detta moment fungerar mottagaren som sändare). Via datorn ser man att signalerna från accelerometern går fram till mottagaren. Se figur 5.
Figur 5. Dator, mottagare, signal, papper och penna – klart för start! (Ahldén, 2007)

Shetlandsponnyn och fullblodet visades vid hand i gångarterna skritt, trav och galopp. Fjordhästen visades vid hand i gångarterna skritt och trav samt löss i ridhus. Vid lössvisningen uppvisades ovan nämnda tre gångarter. Alla mätningar har gjorts på plan mark, dock ej på samma underlag. En mätning med enbart skritt samt en mätning med enbart trav gjordes på varje häst för att få referenser att jämföra övriga mätserier med. Se bilaga 1.

Accelerometern känner av och lagrar variationen i hastigheten dvs. accelerationen som signaler. Accelerationen mäts i tre olika plan i rörelseriktningen; horisontalplan, lateralplan dvs. sidled och vertikalplan. Signalerna kallas förfast, att mätas trådlöst till datorn via en kabellansluten mottagare. Datorn visar det antal sekunder datainsamlingen varar. Antal signaler sekunder samt antal sekunder kan varieras men har i detta arbete varit förutbestämt till 100 signaler sekund i 30 sekunder vilket ger en mätserie bestående av 3000 signaler.

För att ta reda på vilken serie som beskriver vilken rörelse gjordes först en mätning med accelerometern i handen där man först flyttade den i vertikalplan därefter i lateralplan och sedan i horisontalplan. Se figur 6. Den vertikala gula linjen som når både toppen och botten mitt i diagrammet, är rörelsen för när accelerometern lades ner på plan yta. Därefter ligger accelerometern stilla på plan yta.
Figur 6. Accelerometerdata i diagram. Serie 3, gul linje motsvarar rörelsen i vertikalplan, Serie 2, rosa linje motsvarar rörelsen i lateralplan och Serie 1, blå linje motsvarar rörelsen i horisontalplan.
5 RESULTAT

5.1 DE OLIKA GÅNGARTERNAS MAX- OCH MINVÄRDEN

Skritten är den gångart som har lägst skillnad mellan max - och minvärden uträknat från talserierna. I tabell 1 ges en sammanställning av skillnaden mellan max - och minvärden från talserierna med skritt, trav och galopp från shetlandsponnyn, fjordhästen och fullblodet.

Tabell 1. Skillnaden mellan max- och minvärden från mätserierna. Serie 1 motsvarar rörelsen i horisontalplan, Serie 2 motsvarar rörelsen i lateralplan och Serie 3 motsvarar rörelsen i vertikalplan.

<table>
<thead>
<tr>
<th></th>
<th>Skritt</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serie 1</td>
<td>Serie 2</td>
<td>Serie 3</td>
<td>Serie 1</td>
<td>Serie 2</td>
<td>Serie 3</td>
<td>Serie 1</td>
</tr>
<tr>
<td>Shetlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ponny</td>
<td>54</td>
<td>36</td>
<td>28</td>
<td>117</td>
<td>70</td>
<td>120</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>86</td>
<td>63</td>
<td>31</td>
<td>122</td>
<td>65</td>
<td>111</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>59</td>
<td>28</td>
<td>127</td>
<td>86</td>
<td>127</td>
<td>164</td>
</tr>
<tr>
<td>Fjordhäst</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>57</td>
<td>33</td>
<td>171</td>
<td>86</td>
<td>134</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>65</td>
<td>48</td>
<td>131</td>
<td>51</td>
<td>81</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>45</td>
<td>37</td>
<td>195</td>
<td>90</td>
<td>153</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>47</td>
<td>50</td>
<td>267</td>
<td>134</td>
<td>150</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>52</td>
<td>33</td>
<td>328</td>
<td>149</td>
<td>176</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>42</td>
<td>29</td>
<td>166</td>
<td>73</td>
<td>103</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>273</td>
<td>202</td>
<td>181</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>211</td>
<td>75</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Fullblod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>29</td>
<td>25</td>
<td>112</td>
<td>86</td>
<td>83</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>40</td>
<td>29</td>
<td>125</td>
<td>116</td>
<td>94</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>51</td>
<td>40</td>
<td>107</td>
<td>82</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>43</td>
<td>27</td>
<td>111</td>
<td>86</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>46</td>
<td>30</td>
<td>110</td>
<td>97</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

Värdet från Serie 1 är högre än Serie 2 och 3 oberoende av gångart och storlek på häst. Serie 1 beskriver rörelsen i horisontalplan (fram- bak). Då max och minvärden endast tar hänsyn till högsta och lägsta värde i talserien skulle man behöva korrigera för detta eftersom det kan bli väldigt fel utslag om hästen t.ex.
skulle ta ett snabbt hopp till sidan eller tvärbromsa för att sedan gasa för fullt igen, vilket ju hästar faktiskt gör ganska ofta.

I tabell 2 ges en liknande sammanställning av skillnaden mellan max- och minvärden, korrigerad för 10 % av de högsta respektive lägsta värdena från talserierna med skritt, trav och galopp från shetlandsponnyn, fjordhästen och fullblodet.

Tabell 2. Skillnader mellan max- och minvärden från mätserierna korrigerad för 10 % av de högsta respektive lägsta värdena. Serie 1 motsvarar rörelsen i horisontalplan, Serie 2 motsvarar rörelsen i lateralplan och Serie 3 motsvarar rörelsen i vertikalplan.

<table>
<thead>
<tr>
<th></th>
<th>Skritt</th>
<th></th>
<th></th>
<th></th>
<th>Trav</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Galopp</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Serie 1</td>
<td>Serie 2</td>
<td>Serie 3</td>
<td></td>
<td>Serie 1</td>
<td>Serie 2</td>
<td>Serie 3</td>
<td></td>
<td>Serie 1</td>
<td>Serie 2</td>
<td>Serie 3</td>
<td></td>
</tr>
<tr>
<td>Shetlands ponny</td>
<td>28</td>
<td>21</td>
<td>10</td>
<td></td>
<td>69</td>
<td>22</td>
<td>67</td>
<td></td>
<td>77</td>
<td>54</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>26</td>
<td>16</td>
<td></td>
<td>67</td>
<td>20</td>
<td>60</td>
<td></td>
<td>96</td>
<td>64</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>22</td>
<td>12</td>
<td></td>
<td>60</td>
<td>23</td>
<td>65</td>
<td></td>
<td>74</td>
<td>57</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>26</td>
<td>15</td>
<td></td>
<td>72</td>
<td>21</td>
<td>67</td>
<td></td>
<td>66</td>
<td>39</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td>25</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjordhäst</td>
<td>25</td>
<td>27</td>
<td>14</td>
<td></td>
<td>62</td>
<td>26</td>
<td>65</td>
<td></td>
<td>62</td>
<td>55</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>18</td>
<td>11</td>
<td></td>
<td>62</td>
<td>24</td>
<td>54</td>
<td></td>
<td>74</td>
<td>106</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>21</td>
<td>12</td>
<td></td>
<td>66</td>
<td>36</td>
<td>72</td>
<td></td>
<td>71</td>
<td>110</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td>14</td>
<td></td>
<td>67</td>
<td>38</td>
<td>73</td>
<td></td>
<td>68</td>
<td>118</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>27</td>
<td>15</td>
<td></td>
<td>72</td>
<td>39</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>20</td>
<td>10</td>
<td></td>
<td>66</td>
<td>27</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>25</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
<td>29</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>34</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td>27</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fullblod</td>
<td>11</td>
<td>16</td>
<td>10</td>
<td></td>
<td>38</td>
<td>28</td>
<td>57</td>
<td></td>
<td>61</td>
<td>44</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>18</td>
<td>10</td>
<td></td>
<td>42</td>
<td>40</td>
<td>64</td>
<td></td>
<td>51</td>
<td>38</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>21</td>
<td>17</td>
<td></td>
<td>43</td>
<td>33</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>19</td>
<td>13</td>
<td></td>
<td>43</td>
<td>32</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td>15</td>
<td></td>
<td>42</td>
<td>37</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 DE OLIKA GÅNGARTERNAS SIGNALMÖNSTER

Diagrammen för trav i bilaga 1 och 2, figur 13, 16, 19, 22, 25 och 28 visar att topparna i Serie 1 (rörelsen fram - bak) följs av en successivt sjunkande linje, då linjen nått botten går den i stort sett rakt upp till toppen. Serie 3 (rörelsen upp – ner) har sitt bottenläge på ungefär samma ställe som Serie 1 men går istället snett uppfåt, har en planare topp och lite brantare ner till botten. Serie 1 och 3 har sina toppar mittemellan varandra. Serie 2 (rörelsen vänster – höger) beskriver en mer utfasad linje med mindre svängningar.

Diagrammen för galopp i bilaga 2 och 3, figur 14, 17, 20, 23, 26 och 29 visar att dalarna för Serie 3 (rörelsen upp – ner) följs av att linjen går snett uppåt, har en längre och planare topp än i traven för att sedan gå ner i botten. Frekvensen för bottenvärdena (min. värdena) är lägre i galopp än i trav.
6 DISKUSSION

De högsta topparna och de lägsta dalarna man kan utläsa ur diagrammen i bilaga 2 och 3 skulle kunna förklaras med att hästarna som användes vid mätningarna har olika kroppskonstitution dvs. kroppssform. Det gör att accelerometern inte hamnar i exakt horisontellt läge. Den tippar bakåt, hur mycket beror bland annat på hur välutvecklad hästens manke är – läget strax framför där accelerometern placerades, se figur 1. När accelerometern tippar bakåt delas rörelsen i vertikalplan så den även ger utslag för horisontalplan, se figur 7. (Observera att figur 7 endast vill visa rörelsens (kraftens) uppdelning då accelerometern tippas och gör inte anspråk på skalenlighet.)

![Figur 7a](image1)
![Figur 7b](image2)

Intressant att notera är trots att hästarna ej har visats på samma underlag och med tanke på att hästens rörelser påverkas av olika underlag, visar diagrammen i bilaga 2 och 3 tydliga likheter mellan gångarterna för de olika hästarna. Det tillsammans med som tidigare nämnts, att skritt är en fyrtaktig rörelse, trav en tvåtaktig och galopp i långsammare tempon en tretaktig rörelse gör att jag drar slutsatsen att signalmönstret i stort ser likadant ut oberoende av hästens storlek.

Galopp i snabbare tempon dvs. fyrsprång har inte ingått i någon mätserie i denna studie. Fyrsprång är förvisso en fyrtaktig rörelse liksom skritt men med tanke på skillnaden i
både stegländ och hastighet för de båda gångarterna, borde det inte råda något tvivel om vilket signalmönster som visar skritt respektive galopp vid en eventuell mätning.

Frekvensen dvs. antal steg/sekund tillsammans med de korrigerade max- och minvärdena samt de olika seriernas specifika förhållande till varandra torde vara en bra utgångspunkt för att automatiskt kunna detektera gångarter från accelerometerdata.

Vilken procentsats man ska använda vid korrigering av max- och minvärden behöver dock granskas mer. I tabell 2 använde jag 10 %, vilket verkar vara för högt då det här var svårare att se några direkta samband eller olikheter mellan serierna än i tabell 1.

Efter alla ”bestämda mätningar” som gjorts hade det varit intressant att se hur signalmönstret över en häst som ”bara” går och betar ser ut.
Det är intressant att veta hur hästen rör sig över dygnet, både vad gäller sträckor och gångarter för att kunna planera inhysningssystem som tar hänsyn till hästens behov så den kan utvecklas till en frisk, stark och hållbar individ och få förbli det också!

Genom att även mäta hästens rörelser med GPS, ett navigeringssystem, kan man därtill få reda på var hästen befinner sig och i vilket tempo den förflyttar sig. Då är det kanske inte ens nödvändigt att veta vilken gångart hästen har, det kanske är mer intressant att veta vilket tempo och sträckor hästen håller över dygnet? Se figur 8. Accelerometerdata kan dock ge en mer exakt bild av vilka krafter hästens rörelseapparat utsätts för.

Figur 8. Fjordhästar på sommarbete. Damen längst till höger, Wilma 24-02-1081, har varit vänlig nog att medverka vid insamling av data.
7 REFERENSER

7.1 SKRIFTLIGA

7.2 MUNTLIGA

8 BILAGOR

30 sekunders mätserie som visar signalmönstret för fjordhäst i skritt, trav och galopp.

Figur 10. Fjordhäst i trav som saktar ner till skritt vid pilen.

Figur 11. Fjordhäst i trav som slår över i galopp vid pilen.
De olika gångarternas signalmönster under 1 sekunds mätserie.

Figur 12. Shetlandsponny i skritt.

Figur 13. Shetlandsponny i trav.

Figur 15. Fjordhäst i skritt.

Figur 16. Fjordhäst i trav.

Figur 17. Fjordhäst i galopp.

Figur 18. Fullblod i skritt.

Figur 19. Fullblod i trav.

Figur 20. Fullblod i galopp.
De olika gångarternas signalmönster under 5 sekunders mätserie.

Figur 21. Shetlandsponny i skritt.

Figur 22. Shetlandsponny i trav.

Figur 23. Shetlandsponny i galopp.

Figur 24. Fjordhäst i skritt.

Figur 25. Fjordhäst i trav.

Figur 26. Fjordhäst i galopp.

Figur 27. Fullblod i skritt.

Figur 28. Fullblod i trav.

Figur 29. Fullblod i galopp.