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Abstract  

Drought is a leading constraint to common bean (Phaseolus vulgaris L.) production, yet 

the genetic basis of drought‐resilient seed weight and progeny vigor remains 

incompletely resolved. This study integrated phenotyping of seed weight (GW100) and 

germination traits with genome-wide association (GWAS), and candidate-gene curation 

in a structured panel. Seeds originated from plants grown under either terminal drought 

or well-watered conditions (“maternal environments”). In this 38-accession germination 

subset, maternal drought reduced seed mass by ~15.3% on average, with strategy-

dependent magnitudes, whereas within-environment correlations between GW100 and 

germination index (GI), synchrony (T80T20), or final germination rate (GR) were small 

and non-significant; pooled models indicated no global maternal-environment × weight 

interaction, pointing to predominant genotype effects on germination dynamics.  

  

 

Across the harmonized panel (n = 170), GWAS identified 13 lead SNPs spanning 

GW100 under reference and drought conditions, GI_drought, GR_drought, and 

T80T20, with nine genome-wide and four suggestive signals. LD inspection motivated 

uniform ±150 kb core windows for downstream interpretation. Candidate mining within 

these windows (Phaseolus vulgaris v2.1; Arabidopsis orthologs via UniProt) yielded 

>130 genes overall, of which 36 were stress-related (e.g., receptor-like kinases, redox 

enzymes, transcription factors), alongside genes implicated in seed/reproductive 

biology. Colocalization supported biological plausibility, including overlaps with 

classic seed-size QTL (SW2.1; SL8.1), drought-yield regions on Chr09, a 

domestication/shattering interval around PvPdh1, and seed-quality (cooking-time) QTL 

plausibly linked to seed-coat properties.  

  

 

Collectively, the results indicate that maternal drought commonly reduces seed mass but 

that progeny germination responses are genotype-structured and not well predicted by 

seed weight alone. The mapped loci, compact LD-anchored candidate sets, and QTL 

overlaps provide tractable entry points for fine-mapping and validation toward breeding 

for drought-resilient seed quality and yield.  

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Phaseolus vulgaris; drought; seed weight (GW100); germination; GWAS; 

linkage disequilibrium; candidate genes; QTL colocalization; maternal environment; 

seed vigor.  
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1. Introduction 

The common bean (Phaseolus vulgaris L.) is a major staple for more than 300 

million people due to its favorable nutritional profile, featuring high protein, soluble 

fiber, complex carbohydrates, and mineral density, alongside its adaptability across 

smallholder systems (Beebe et al., 2013; Smith et al., 2019). It can contribute up to one-

third of daily protein intake, underscoring its role in food security (Schmutz et al., 

2014). However, production is predominantly rainfed and thus vulnerable to episodic 

and terminal droughts that can incur severe yield penalties. Multi-environment reports 

attribute up to ~80% losses in extreme seasons, placing drought among the leading 

causes of yield failure after disease (Rosales-Serna et al., 2004; Villordo-Pineda et al., 

2015). Physiological responses to water deficit are commonly framed as four strategies 

described in a consistent manner: tolerance, the capacity to maintain function at low 

tissue water potential via osmotic adjustment and cell-wall elasticity; avoidance, the 

maintenance of plant water status through rooting depth, stomatal regulation, and water 

conservation; escape, the acceleration of phenology and remobilization to complete 

reproduction before severe deficit; and recovery, the ability to re-green and resume 

growth after re-watering (Beebe et al., 2013; Rosales-Serna et al., 2004). In addition, a 

stay-green (SG) strategy denotes delayed foliar senescence that sustains photosynthetic 

capacity during stress; SG occurs in two forms, functional SG (photosynthesis 

maintained) and cosmetic SG (chlorophyll retained but photosynthetic competence lost), 

with functional SG further observed as Type A (delayed onset of senescence) or Type B 

(normal onset with slower progression) (Thomas and Ougham, 2014; Kamal et al., 

2019). 

 

Seed qualities and yield output are quantitatively inherited and strongly context-

dependent in common bean. Classical QTL studies resolved loci for seed size and 

related yield components across several chromosomes, while diversity-panel GWAS 

extended this picture to many small-effect, environment-sensitive associations (Tar'an et 

al., 2002; Blair et al., 2006; Moghaddam et al., 2016). Under stress, dedicated mapping 

has identified drought-yield QTL and indicated possible linkage/pleiotropy with 

domestication and dehiscence loci such as PvPdh1, suggesting shared genetic 

neighborhoods among adaptation traits, pod shattering, and yield stability (Trapp et al., 

2015; Parker et al., 2020; Pour-Aboughadareh et al., 2022; Blair et al., 2010). Together, 

these studies support a polygenic model with partially distinct and partially overlapping 

architectures under well-watered versus water-limited conditions. 

 

Recent phenotyping of natural variation has begun to link whole-plant drought 

strategies to reproductive success. For example, Labastida et al. (2023) surveyed 

multiple gene pools, highlighted accessions with robust stay-green behavior, and 

nominated candidate genes consistent with delayed senescence and sustained assimilate 
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supply into seed filling. In that study, accessions were operationally assigned to stay-

green (greenness maintained in stems and leaves during stress), escape (increased pod 

set under drought with <75% yield loss), recovery (re-greening and renewed leaf/pod 

production after re-watering), or susceptible (>75% yield loss or plant death) (Labastida 

et al., 2023). Such strategy-level differences provide testable hypotheses about how 

genotypes partition yield resilience between source maintenance and sink 

remobilization under terminal stress. 

 

Against this backdrop, this study targets the genomic architecture of seed traits (such 

as seed weight or germination rates) from seeds of two different maternal backgrounds: 

Seeds produced by plants subjected to terminal drought for two weeks before re-

watering and plants kept under optimum (well-watered) conditions. Specific objectives 

are: (i) to quantify condition-specific and shared loci influencing grain yield across 

contrasting water regimes; (ii) to benchmark signals against established QTL for seed 

size, seed-quality, and agronomic performance to assess biological plausibility and 

potential trade-offs; (iii) to integrate population structure and drought-response strategy 

as covariates for improved calibration; and (iv) to prioritize candidate genes within local 

LD windows for downstream validation. Additionally, (v) generating a comprehensive 

reference list for seed weight (100 grain weight) for many European accessions. 

Framing yield genetics across environments aims to inform breeding for drought-

resilient yield, complementing prior emphasis on yield potential under optimum 

management (White et al., 1994; Tar'an et al., 2002; Blair et al., 2006; Trapp et al., 

2015; Pour-Aboughadareh et al., 2022; Labastida et al., 2023). Climate-driven increases 

in the frequency and intensity of heat waves and terminal droughts are constraining seed 

production and seedlot quality, elevating the importance of seed vigor as a predictor of 

stand establishment under variable field conditions. Because germination capacity and 

vigor are acquired during seed development, the maternal environment during 

flowering, seed filling, and maturation can modulate dormancy, longevity, and 

germination kinetics, with consequences for crop establishment under stress (Brunel-

Muguet et al., 2025). 

 

Maternal stress memory provides a mechanistic and applied framework for these 

effects: stress exposures before or after fertilization can leave inter-, intra-, or 

transgenerational imprints—often via epigenetic marks and small RNAs—that influence 

germination and early seedling performance. A recent Plant Journal viewpoint outlines a 

roadmap for “climate-smart” seedlots by harnessing maternal priming, while 

emphasizing that the stability and predictability of such imprints require further 

validation (Brunel-Muguet et al., 2025). In this context, comparing seeds produced 

under terminal drought versus well-watered conditions directly tests whether maternal 

environments contribute to seed-vigor differences in common bean and helps identify 
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candidate mechanisms and loci that could be leveraged to buffer climate risk in seed 

systems. 
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2.  Material and Methods 

2.1 Plant Material 

The experimental material consisted of common bean (Phaseolus vulgaris L.) seeds 

derived from a previous drought experiment (Labastida et al. 2023), in which plants 

representing 71 accessions from five gene pools—domesticated Andean (A), 

domesticated Mesoamerican (MA), European (EU), Andean wild (AW), and 

Mesoamerican wild (MW)—were subjected to terminal drought stress or maintained 

under well-watered conditions. Plant material was provided by the International Center 

for Tropical Agriculture (CIAT), the Leibniz Institute of Plant Genetics and Crop Plant 

Research (IPK) Gatersleben, and the Nordic Genetic Resource Center (NordGen). Seeds 

harvested from drought-stressed and control plants were used for the present 

germination assay; due to low seed set in drought-susceptible accessions, the final 

germination subset comprised 38 accessions, primarily of European origin. In parallel, a 

broader reference panel was assembled to characterize seed mass by gene pool: GW100 

(g per 100 seeds) measured on non-drought reference harvests was compiled for 170 

accessions. European reference seed weights were measured directly, whereas Central 

American/Mesoamerican values were obtained from the SEAD database. This GW100 

dataset was used for gene-pool comparisons downstream (Fig. 1 and 10), while analyses 

by maternal environment (control vs terminal drought) were conducted on the 38-

accession germination subset. Per-group sample sizes were EU = 98, AW = 21, MW = 

20, MA = 16, and A = 15. The full accession list can be viewed in Table 5 (Appendix) . 

 

2.2 Seed weight measurements 

Prior to the germination assay, seed weight was determined for both control-derived 

seeds and drought-derived seeds. Hundred-seed weight (GW100) was calculated 

separately for each maternal environment (control vs. drought). Additionally, seed weight 

data (GW100, g) was obtained for 170 accessions. European accessions were measured 

directly from reference seed material, as sufficient data was not available from the 

resources of Nordgen and IPK, whereas values for Andean, Mesoamerican, and wild gene 

pools were retrieved from publicly available data provided by the Alliance of Bioversity 

International and CIAT (part of CGIAR). 

 

2.3 Germination experiment 

Seeds were obtained exclusively from the prior drought experiment. For each of the 38 

accessions, ten seeds (five produced under terminal drought and five produced under 

well-watered conditions) were placed on moistened paper in sterile Petri dishes, wetted 
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with 40 mL tap water, and maintained at ≈21–23 °C. Germination was recorded every 

24 h for 7 days; a seed was scored as germinated when the radicle exceeded 1 mm. 

 

2.4 Germination traits 

The following germination parameters were determined: 

 

• Germination Index (GI): 

The GI was calculated according to the Association of Official Seed Analysts 

(AOSA,  1983) records:  

 

𝐺𝐼 = ∑ (
𝐺𝑇

𝑇
) 

 

where GT is the number of seeds germinated on day T (not cumulative). Higher 

values indicate faster early germination or: 

 

𝐺𝐼 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑒𝑒𝑑𝑠 𝑖𝑛 𝑓𝑖𝑟𝑠𝑡 𝑐𝑜𝑢𝑛𝑡

𝐷𝑎𝑦 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑐𝑜𝑢𝑛𝑡
) + ⋯ + (

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑒𝑒𝑑𝑠 𝑖𝑛 𝑓𝑖𝑛𝑎𝑙 𝑐𝑜𝑢𝑛𝑡

𝐷𝑎𝑦 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑐𝑜𝑢𝑛𝑡
) 

 

 

• T80T20: The interval (days) between 20% and 80% germination, used as a 

measure of germination synchrony. 

• GR: Final germination percentage of germinated seeds at the end of the 7-day 

assay. 

 

2.5 Statistical analysis of GW100 by gene pool and 

maternal environment effects 

Metadata (accession ID, gene pool) and reference seed mass (GW100, g per 100 seeds) 

were imported in R (RStudio) using readxl and merged by accession; data wrangling used 

dplyr/tidyr with factor handling via forcats, and graphics via ggplot2. Exploratory 

visualization comprised one-bar-per-accession columns (X = accession, Y = GW100; 

colored by gene pool) and box-and-jitter plots of GW100 by gene pool. For inference on 

GW100 across gene pools (A, MA, EU, AW, MW), a one-way ANOVA (stats::aov) was 

inspected with Shapiro–Wilk residual normality (stats::shapiro.test) and Bartlett 

homogeneity (stats::bartlett.test); because assumptions were violated, group differences 

were evaluated using the Kruskal–Wallis rank-sum test (stats::kruskal.test) with epsilon-

squared (ε²) as effect size, followed by Wilcoxon rank-sum post-hoc contrasts with Holm 
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multiplicity adjustment (stats::pairwise.wilcox.test, p.adjust.method="holm"). Maternal-

environment effects were quantified per accession as derived contrasts (drought − 

control) for GW100, germination index (GI), germination spread (T80T20), and final 

percentage of germinated seeds (GR); a weight-preservation ratio (drought GW100 / 

control GW100) provided a scale-free summary of seed-mass maintenance under 

maternal drought. Within each maternal environment (control, drought), monotonic 

associations between GW100 and germination traits were assessed using Spearman rank 

correlations (stats::cor.test, method="spearman"). Drought sensitivity (per-accession 

change scores) was modeled with ordinary least squares (stats::lm) as a function of 

baseline control-origin GW100 and, in a complementary specification, of the weight-

preservation ratio, including predefined drought-response strategy classes (Escape, 

Recovery, Susceptible, Stay-Green, Not available) as covariates. To test maternal 

environment-specific weight effects, pooled linear models were fit with trait values as the 

response and maternal environment, environment-matched seed weight, strategy, and the 

environment×weight interaction as predictors. Distributions of change scores were 

summarized by location, spread, and counts of positive vs. negative values; model 

assumptions were checked by standard diagnostics (residual patterns, variance 

homogeneity). All tests were two-sided with α = 0.05; no multiplicity adjustment was 

applied to the maternal-environment models, and multiplicity control was applied only to 

pairwise gene-pool contrasts. Visualization additionally included cumulative germination 

curves across days 1–7 with two lines per accession (one per maternal environment) 

faceted by strategy. 

 

2.6 Principal component analyses 

Trait PCA. Principal component analysis was conducted in R using stats::prcomp with 

centering and unit-variance scaling (i.e., PCA of the correlation matrix). The input 

comprised standardized phenotypes GI, T80T20, GR, and GW100 (where available); 

rows with missing values were excluded (complete-case analysis). Eigenvalues, variance 

explained, and loadings were extracted to summarize trait interrelationships. 

Concordance was verified with FactoMineR::PCA under identical settings. 

Genetic PCA. Single-nucleotide polymorphism (SNP) data were used to assess 

population structure and to provide covariates for genome-wide association analysis. 

Principal component analysis (PCA) was carried out using PLINK v1.9, and the first five 

principal components (PCs) were retained. These components captured the principal axes 

of genetic variation and were subsequently included as covariates in the association 

models to correct for population stratification. Analyses operated on an upstream quality-

filtered, LD-pruned marker set; no additional pruning was applied at the PCA stage. 

PLINK computed principal components by singular-value decomposition of the 

standardized genotype matrix (each SNP centered at 2p and scaled by √[2p(1−p)]), using 
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mean imputation for missing genotypes. The resulting eigenvectors also provided a low-

dimensional summary for visualization of population structure. 

Genotype dataset summary. The genome-wide catalog contained 161,391 SNPs (SNP-

only; indels excluded), distributed across chromosomes as follows: Chr01, 15,729; 

Chr02, 15,248; Chr03, 15,737; Chr04, 17,667; Chr05, 12,969; Chr06, 9,128; Chr07, 

11,291; Chr08, 21,149; Chr09, 10,607; Chr10, 13,827; Chr11, 18,039. Chromosome 8 

contributed the largest share, whereas chromosome 6 contributed the fewest. PCA 

operated on the previously LD-pruned subset of this catalog, while the full distribution 

provides context for genome coverage. Per-SNP MAF was summarized for descriptive 

purposes and allele-frequency stratification; unless otherwise stated, no MAF exclusion 

threshold was applied in the primary analyses. 

 

2.7 Genome-wide association study (GWAS) 

Genome-wide association analyses were performed in R 4.4.1 (RStudio 2023.9.1.494) 

using GAPIT3 v3.5.0 (Lipka et al., 2012), with BLINK specified as the sole model for 

the final scans (Huang et al., 2019). Models included an intercept and PC1–PC5 as fixed 

covariates and were run on the harmonized panel (n = 170) and the filtered biallelic SNP 

set described above; during method development, alternative GWAS frameworks—

MLM (Zhang et al., 2010), MLMM (Segura et al., 2012), and FarmCPU (Liu et al., 

2016)—were considered under identical quality-control and covariate settings, with a 

VanRaden genomic relationship matrix applied where appropriate (VanRaden, 2008). 

Model choice was based on calibration diagnostics: comparative runs under identical QC 

and covariates indicated that BLINK produced the best-aligned quantile–quantile plots 

and genomic inflation factors closest to 1, and was therefore retained for inference. 

Accordingly, only BLINK results are reported. Associations were declared genome-wide 

significant at a Bonferroni threshold (α=0.05; p < 3.10×10⁻⁷ for m=161,391 tests). 

Suggestive associations were flagged at p < 1/m = 6.20×10⁻⁶. Benjamini–Hochberg FDR 

q-values were computed for reference, but were not used to define significance by GAPIT 

to visualize association signals and evaluate model fit. 

 

2.8 Phenotype imputation and zero-coding rationale 

For GW100_ref, 170 accessions had observed values and were analyzed directly. In 

case of traits with limited observed sample sizes (GW100 under drought, and the 

germination-derived traits), for GWAS sensitivity only, auxiliary zero-coded vectors 

(unmeasured accessions set to 0) were created to preserve genome-wide coverage in 

BLINK. These zero-coded analyses are reported exclusively as sensitivity checks in the 

Supplementary and did not replace the primary inferences based on observed data, given 

their potential to induce zero-inflation and attenuate effect-size interpretability. 
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2.9 Linkage disequilibrium (LD) window calculations 

The SNPs obtained from the prior performed GWAS served as focal sites for linkage 

disequilibrium (LD) analyses. Local LD was computed and visualized with 

LDBlockShow using genotype calls from the variant dataset. For each index SNP, two 

symmetric windows were interrogated: a close-up region (±50 kb) and an overview region 

(±500 kb). Because pairwise LD estimates from the cohort did not support stable numeric 

thresholds across loci, LD bounds were delineated by visual inspection of the D′ heatmaps 

generated by LDBlockShow at both scales. For each locus, the final LD interval was 

called at the first consistent transition from densely high-D′ tiles to a fragmented signal 

visible in both panels. 

 

2.10 Gene mapping and functional annotation 

Candidate genes were retrieved within the ±150 kb core LD window centered on each 

lead SNP, as defined by visual inspection of D′ heatmaps. This uniform window ensures 

comparable locus sizes across traits; any locus-specific deviations are stated explicitly in 

the results. All annotated genes falling within the aforementioned intervals were retrieved 

from the P. vulgaris reference genome (Phytozome v2.1). Gene functions were assigned 

using the functional descriptions available in the reference annotation. To further refine 

the annotations, putative orthologs in Arabidopsis thaliana were identified, and their 

functions were confirmed using curated records in UniProt. On this basis, each gene was 

classified according to its likely biological role, with particular attention given to 

categories related to abiotic stress responses and seed or reproductive development. 

 

2.11 Overlap with published QTL/GWAS intervals 

Chromosomal positions and trait associations for each SNP were cross-referenced with 

peer-reviewed QTL and GWAS literature to evaluate potential colocalization with 

previously reported loci in P. vulgaris. A QTL was considered co-localized if the physical 

position of the SNP fell within or in close proximity (≤250 kb) to the reported boundaries 

of the QTL. The window of ±250 kb was applied in consistency with the extent of linkage 

disequilibrium (LD) decay observed in P. vulgaris (Ariani et al., 2018), and in line with 

thresholds commonly adopted in recent GWAS–QTL integration studies in legumes 

(Díaz et al., 2020; Li et al., 2020). Where applicable, the associated trait and full citation 

of the corresponding publication were recorded. 
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3. Results 

3.1 Seed Weight 

Across the 38-accession germination subset, maternal terminal drought reduced 

reference seed mass by ≈5.37 g per 100 seeds (~15.3%; control − drought), with the 

largest absolute and proportional losses in Escape and Stay-green, intermediate losses in 

Recovery and NA, and the smallest reduction in Susceptible (Table 1). Extending to the 

full reference panel (n = 170), GW100 spanned a wide range from low single-digit 

values to near 100 g per 100 seeds, and clear among-pool differences were evident: 

means (g per 100 seeds) were A = 47.95, EU = 42.94, MA = 32.42, AW = 10.52, and 

MW = 7.15, yielding the ordered pattern MW < AW < MA < EU < A. Assumption 

checks supported the use of distribution-free methods: Shapiro–Wilk indicated non-

normality (W = 0.945, p = 3.42 × 10⁻⁶) and Bartlett’s test indicated heteroscedasticity 

across pools (K² = 100.43, df = 4, p < 2.2 × 10⁻¹⁶). A global Kruskal–Wallis test then 

rejected equal distributions among pools (χ² = 96.783, df = 4, p < 2.2 × 10⁻¹⁶) with a 

large effect size (ε² = 0.562), and Holm-adjusted Wilcoxon contrasts localized the 

differences: both wild pools (AW, MW) were significantly lighter than A, EU, and MA, 

whereas contrasts among A, EU, and MA were not significant after adjustment. A 

Welch ANOVA provided a parametric robustness check that aligned with the rank-

based inference (F = 116.27, df = 4, 45.684, p < 2.2 × 10⁻¹⁶). Collectively, the 

descriptive means, the violation of parametric assumptions, and the convergent results 

from non-parametric and Welch tests demonstrate pronounced gene-pool structuring of 

seed mass, with domesticated pools carrying substantially heavier seeds than the wild 

pools, and MA occupying an intermediate position (Table 1; Figure 1) 

Figure 1: Reference GW100 distribution (left) and GW100 by gene pool (right) box-
and-jitter per genetic group. 
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Strategy Control mean (g) Drought mean (g) Difference (g) Change (%) 

Overall (n=38) 35.08 29.71 5.37 15.3 

Escape (n=11) 35.36 28.79 6.58 18.6 

Recovery (n=9) 37.07 31.78 5.28 14.3 

Susceptible (n=10) 35.64 31.23 4.41 12.4 

Stay-green (n=3) 33.91 27.91 6.00 17.7 

NA (n=5) 30.43 26.01 4.42 14.5 

Table 1: Strategy-wise GW100 means under control and drought and their differences. 
‘n’ refferes to the number of accessions. 

 

 

 

 

3.2 Influence of maternal environment and seed weight 

Although seeds produced under maternal terminal drought were typically lighter 

(Table 1), GW100 showed no clear association with germination performance. Within 

the control environment, Spearman correlations between GW100 and GI, T80–T20, and 

GR were −0.012, −0.009, and 0.083, respectively; within the drought environment, the 

corresponding ρ values were −0.198, 0.053, and −0.079, all small and non-significant. 

Change-score regressions of ΔTrait (drought − control) on baseline control weight (wC) 

yielded slopes that were statistically indistinguishable from zero (GI: −0.008, p = 0.513; 

T80–T20: 0.013, p = 0.123; GR: −0.316, p = 0.288), and environment × weight interaction 

terms were likewise non-significant (GI: p = 0.436; T80–T20: p = 0.484; GR: p = 0.208). 

These results indicate that, at the panel level, neither seed weight nor its interaction with 

maternal environment explains variation in germination traits. Instead, responses were 

structured primarily by genotype: escape accessions germinated robustly irrespective of 

maternal environment; recovery accessions showed intermediate and variable responses; 

susceptible accessions were most consistently reduced under drought; and stay-green 

accessions exhibited mixed effects, including both negative and positive responses. 

Collectively, the correlation, regression, and interaction estimates support genotype as the 

dominant driver of germination dynamics, with maternal drought and seed size exerting 

limited influence at the global scale. 
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3.3 Germination performance across drought strategies 

Cumulative germination curves were calculated and revealed distinct patterns among 

the four drought response strategies (Escape, Recovery, Susceptible, and Stay-Green). 

Although first-day emergence was higher in drought-origin seeds, cumulative curves and 

timing metrics indicate overall slower germination (Fig. 2) 

 

 

 

 

 

 

 

 

 

 

 

  Figure 2: Percentual cumulative germination over time by treatment (c = control, d = maternal drought). 
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Escape accessions generally germinated rapidly and reached high final percentages 

(>75–100%) within the first 2–3 days. Maternal drought stress had little impact on their 

performance, with some accessions (e.g., G14629, PHA13928) even germinating slightly 

faster when derived from drought-stressed plants. Only a few accessions (e.g., 

PHA13666, PHA49) showed consistently lower maximum germination, but this appeared 

to be genotype-intrinsic rather than treatment-related. (Fig. 3) 

 

 

 

 

 

 

 

 

 

Figure 3: Cumulative germination (%) across days for Escape-class accessions 
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Recovery accessions showed more variable responses. While some lines (PHA1139, 

PHA13035, PHA4637) maintained high germination rates irrespective of treatment, 

others (e.g., G3296, PHA13099, PHA5989) exhibited clear reductions under drought, in 

some cases dropping from 100% in controls to below 50%. In several cases (e.g., G7930), 

drought-derived seeds germinated earlier than controls but failed to reach the same final 

percentages, suggesting a trade-off between initiation speed and overall germination 

success. (Fig. 4) 

 

 

 

 

 

 

 

Figure 4: Cumulative germination (%) across days for Recovery-class accessions 
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Susceptible accessions were most strongly affected by maternal drought stress. Most 

susceptible lines could not be evaluated for germination because they failed to produce 

seed after the drought treatment, and thus were excluded from maternal-environment 

comparisons. Several lines (PHA14278, PHA1772, PHA6011) displayed markedly 

reduced final germination percentages (~20–70% under drought versus ~100% in 

controls) and delayed germination onset, indicating impaired seed vigor. While a few 

accessions (PHA13736, PHA13960) reached similar levels across treatments, the group 

as a whole showed the strongest and most consistent negative drought effects. (Fig. 5) 

 

 

 

 

 

 

 

Figure 5: Cumulative germination (%) across days for Susceptible-class accessions 
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Stay-green accessions displayed mixed outcomes. Two accessions (PHA1077, 

PHA2682) exhibited reduced germination under drought (~75–80% vs. 100% in 

controls), while one accession (PHA6155) showed the opposite trend, with drought-

derived seeds outperforming controls (100% vs. ~60%). Across the group, germination 

occurred rapidly within 2–3 days, and treatment effects were primarily reflected in final 

germination percentages rather than speed. (Fig. 6) 

 

 

 

 

3.4 Phenotype-based PCA  

Principal component analysis (PCA) integrating seed weight, yield-related, and 

germination traits explained 65% of the observed variance, with PC1 (47%) driven mainly 

by seed weight (GW100) and related yield traits, while PC2 (18%) was associated with 

germination dynamics (GI, GR, and germination homogeneity) (Fig. 7). This separation 

indicates that seed size and germination vigor represent related but distinct axes of 

variation. Genotypic drought-response strategies showed partial structuring in 

multivariate space, with recovery types clustering toward lighter seed weights, escape 

types distributed across both principal components, and stay-green accessions remaining 

near the center. Several outliers, particularly Mesoamerican accessions (e.g., G3296, 

G12875, G23458), displayed unusual germination behavior relative to seed weight. Trait 

correlation analysis supported these patterns, revealing directionally positive but weak 

and mostly non-significant associations between seed weight and germination indices 

under both control and drought conditions (Fig. 7). For instance, GW100 correlated 

positively with GI and GR, indicating that larger seeds generally germinated faster and 

more uniformly. Negative correlations were observed between germination indices and 

Figure 6: Cumulative germination (%) across days for Stay-green-class accessions 
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time-to-germination traits (T80T20), consistent with expectations that faster germination 

reduces lag and spread. Importantly, these relationships were significant under both 

control- and drought-produced seed conditions, although correlation strengths varied. 

Together, these results highlight that while drought stress reduced overall germination 

performance, genotypic differences in seed weight and stress strategy contributed 

substantially to variation in progeny seed vigor. 

 

 

 

3.5 SNP-based PCA  

Population structure was assessed using principal component analysis (PCA) based on 

genome-wide SNP data. The full dataset comprised 170 genotypes, and the first five 

principal components were retained as covariates for GWAS to account for population 

stratification. An extract of this structure, focusing on the 38 genotypes that produced 

sufficient seed for the germination experiment, is shown in Fig. 8. The first two principal 

components explained 47.0% and 18.9% of the total variance, respectively. Accessions 

Figure 7: Multivariate structure of traits and their correlations. Left: PCA biplot of 
accessions using seed mass (GW100), yield-related, and germination traits from both 
seed origins. (drought and control).  Points are colored by gene pool and shaped by 
drought-response strategy; arrows indicate trait loadings; axis labels show variance 
explained. Right: Pearson correlation matrix; asterisks denote significance (* p < 
0.05, ** p < 0.01, *** p < 0.001). 
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grouped largely according to their genetic background, with European (EU) lines forming 

a compact cluster, while Mesoamerican (MA, MW) and Andean (A, AW) accessions 

appeared more dispersed. Notably, the domesticated Andean accessions G7930 and 

G8697 clustered proximal to the EU group, consistent with ancestral background: 

European common-bean germplasm descends from post-Columbian introductions from 

both domesticated gene pools, with a documented predominance of Andean ancestry and 

extensive introgression (Angioi et al., 2010; Pipan et al., 2019; Bellucci et al., 2023). 

Drought-response strategies were distributed across the genetic background rather than 

forming discrete clusters, although susceptible types were common within the European 

cluster, whereas stay-green and escape strategies were more broadly distributed. These 

results confirm the presence of clear population structure in the panel and justify the use 

of PCA covariates in GWAS to reduce spurious associations. 

 

 

Figure 8: Population structure of the panel. PCA of genome-wide SNPs for the 38-
accession germination subset. Axes show PC1 (47.01%) and PC2 (18.09%). Points are colored 
by gene pool (A, AW, EU, MA, MW) and shaped by drought-response strategy. European lines 
form a compact cluster, whereas Andean and Mesoamerican accessions are more dispersed; 
strategies are interspersed across genetic backgrounds.  
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3.6 GWAS 

Genome-wide association across five traits (GW100_ref, GW100_drought, 

GI_drought, GR_drought, and T80T20) identified 13 lead SNPs in the harmonized panel 

(n = 170) using BLINK with PC1–PC5 as covariates. Calibration diagnostics (quantile–

quantile behavior and genomic inflation) under identical quality control and covariates 

indicated that BLINK showed the least deviation from expectation and was consequently,  

retained for inference across traits (Fig. 9). For GW100_ref, top loci were on Chr8 and 

Chr2; for GW100_drought, two adjacent loci were on Chr9; for GI_drought, five loci 

were on Chr1, Chr3, Chr8, Chr10, and Chr7; for GR_drought, loci were on Chr8 and 

Chr11; and for T80T20, two independent peaks were on Chr7. Nine loci met the genome-

wide threshold, and four were retained as suggestive (Table 3). 

Table 3: Lead SNPs from genome-wide association across five traits. 

Trait SNP Chr Pos P.value 

GI_drought Chr01_15505693_C_T 1 15505693 4.875888e-10 

 Chr03_9548597_G_A 3 9548597 1.547379e-08 

 Chr07_22968375_A_C 7 22968375 1.588901e-07 

 Chr08_33781184_C_T 8 33781184 1.945306e-08 

 Chr10_8792003_G_A 10 8792003 7.815991e-08 

GR_drought Chr08_62503784_G_A 8 62503784 3.867279e-08 

 Chr11_13009550_C_T 11 13009550 5.260349e-08 

GW100_drought Chr09_35392216_T_C 9 35392216 1.301392e-18 

 Chr09_35434904_G_T 9 35434904 1.460840e-12 

GW100_ref Chr02_40631423_A_G 2 40631423 5.554790e-08 

 Chr08_5236332_G_A 8 5236332 1.755408e-12 

T80T20_drought Chr07_606868_G_A 7 606868 1.244707e-09 

 Chr07_6740141_C_T 7 6740141 3.118105e-08 
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 Figure 9: Genome-wide association results across five traits. Manhattan plots show 
−log10(p) by chromosome from BLINK with PC1–PC5 covariates (n = 170). Horizontal 
lines indicate genome-wide (solid) and suggestive (dashed) thresholds. Adjacent Q–Q 
plots show appropriate calibration with trait-specific tail departures at discovered peaks. 
Lead SNPs correspond to those listed in Table 3. 

A: Germination index - drought 

B: Final Germination  - drought 

C: GW100 - drought 

D: GW100 - ref 

E: T80T20 - drought 
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3.7 LD windows 

LD structure around the GWAS index SNPs was broader than initially assumed. 

Across the 13 focal sites, contiguous high D′ typically extended well beyond 50 kb and 

decayed at ~100–180 kb from the index, consistent with haplotype blocks of ~200–360 

kb. Accordingly, a uniform core window of 300 kb (±150 kb) was adopted for 

downstream gene prioritization and colocalization (Table 4). This choice aligns with 

common practice in bean GWAS that define fixed candidate regions in the ±50–100 kb 

range—e.g., Zia et al. searched 50 kb on each side of significant SNPs and reported panel 

LD decay starting around ~137 kb, and Moghaddam et al. (2016) centered candidate 

searches on 100-kb windows—providing precedent for fixed-width windows whose size 

is tuned to panel-level LD; here, the broader LD observed justifies ±150 kb. The two 

GW100_drought peaks on Chr09 (35.392 and 35.435 Mb; ~43 kb apart) were treated as 

a single locus and summarized with a 300-kb merged window centered at 35.414 Mb; the 

union window (35.263–35.563 Mb) yielded equivalent candidates. All remaining loci 

(GI_drought on Chr01/03/07/08/10; GR_drought on Chr08/11; GW100_ref on Chr02/08; 

T80T20_drought on Chr07) were adequately captured by the ±150-kb core windows. 

Trait Chr Lead SNP (bp) Core window start (bp) Core window end (bp) 

GI_drought 01 15,505,693 15,355,693 15,655,693 

GI_drought 03 9,548,597 9,398,597 9,698,597 

GI_drought 07 22,968,375 22,818,375 23,118,375 

GI_drought 08 33,781,184 33,631,184 33,931,184 

GI_drought 10 8,792,003 8,642,003 8,942,003 

GR_drought 08 62,503,784 62,353,784 62,653,784 

GR_drought 11 13,009,550 12,859,550 13,159,550 

GW100_drought  09 35,392,216 35,263,560 35,563,560 

GW100_drought  09 35,434,904 35,263,560 35,563,560 

GW100_ref 02 40,631,423 40,481,423 40,781,423 

GW100_ref 08 5,236,332 5,086,332 5,386,332 

T80T20_drought  07 606,868 456,868 756,868 

T80T20_drought  07 6,740,141 6,590,141 6,890,141 

Table 4: LD-based core windows around GWAS index SNPs. 



25 

 

3.8 Gene annotation 

More than 130 different genes were identified across all trait-associated SNPs, 

distributed within the LD intervals defined for the nine significant loci. The number of 

potential candidate genes per locus was reduced to a manageable set, by functional 

inspection of the annotated gene set. This revealed that 36 of the 130 genes were 

associated with abiotic stress responses, including receptor-like kinases, transcription 

factors, and enzymes involved in oxidative stress regulation. At least one stress-related 

candidate was present within the interval of each trait-associated SNP. In addition, several 

genes with putative roles in seed development or reproductive processes were identified, 

such as ribose-5-phosphate isomerases, lipid transfer proteins, RNA helicases, and FAR1 

transcription factors. The presence of both stress-associated and seed-related genes within 

the mapped intervals suggests that the loci uncovered in this study capture genetic factors 

involved not only in adaptation to drought but also in processes directly shaping yield 

components such as seed weight. (Table 6; Appendix).  

 

 

3.9 QTL windows 

Ten of the thirteen lead SNPs showed colocalization with previously reported QTLs 

in Phaseolus vulgaris. Evidence for seed size and morphology was supported by two 

loci identified for seed traits: Chr02_40631423_A_G overlapped the seed-weight QTL 

SW2.1, and Chr08_5236332_G_A aligned with a seed-length region (SL8.1) previously 

mapped in recombinant inbred populations (Blair et al., 2006; Tar’an et al., 2002). 

These overlaps are consistent with the roles inferred from the GWAS signals for seed 

mass–related phenotypes. 

 

Signals linked to drought tolerance and agronomic performance included both 

chromosome-9 SNPs (Chr09_35392216_T_C and Chr09_35434904_G_T), which fell 

within a QTL associated with yield under drought and combined stress conditions 

(Trapp et al., 2015). Additional concordance with broader agronomic or biomass-related 

regions was observed for Chr03_9548597_G_A (within a multi-trait interval reported 

from a MAGIC population) and for Chr11_13009550_C_T (within a meta-QTL hotspot 

for yield components) (Díaz et al., 2020; Pour-Aboughadareh et al., 2022). 

Chr01_15505693_C_T aligned with intervals reported for morpho-agronomic and seed-

quality traits in biparental mapping (Blair et al., 2010). 

 

A domestication-related overlap was detected for Chr07_606868_G_A, which 

colocalized with a pod shattering resistance region (Shattering7.1) encompassing the 

gene PvPdh1 (Parker et al., 2020). Pod shattering has been a key trait under selection 

during domestication, as it directly influences harvestability and seed retention. In the 
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context of drought response, variation in shattering-related loci may also affect seed 

release timing, potentially interacting with escape strategies or influencing the onset of 

germination under dry post-maturity conditions. 

 

For seed quality and germination-related traits, two germination-index SNPs 

colocalized with QTLs for cooking time (Chr08_33781184_C_T near CT8.2, and 

Chr10_8792003_G_A near CT10.2) as reported by Cichy et al. (2021). Although 

cooking time is primarily a post-harvest trait, it is strongly influenced by seed coat 

permeability and structure—factors that also affect water uptake and seed imbibition 

during germination. As such, overlaps between cooking time QTLs and germination-

associated loci may reflect shared physiological mechanisms related to seed coat 

composition, hardness, or testa development. 

 

No convincing overlap with published intervals was found for Chr07_6740141_C_T, 

Chr07_22968375_A_C, or Chr08_62503784_G_A in the literature surveyed. 
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4. Discussion 

The present results indicate that maternal terminal drought generally reduced seed 

mass and, in many cases, dampened progeny germination performance, but with 

pronounced genotype-by-environment contingencies. Across 38 accession pairs, seeds 

produced in the face of terminal drought tended to be lighter, yet, correlations between 

seed weight and germination metrics (GI, GR, T80T20) were uniformly small and non-

significant, and environment × weight interactions were likewise negligible. This pattern 

suggests that maternal drought alters seed vigor through mechanisms that are not captured 

by seed mass alone, aligning with reports that stress during grain filling depresses 

assimilate supply and vigor while producing heterogeneous offspring responses across 

genotypes (Rosales-Serna et al., 2004; Beebe et al., 2013). Rare cases of equal or superior 

vigor in seeds produced under drought resemble priming-like "stress memory," consistent 

with observations in legumes and other species (Damalas et al., 2019; Chen et al., 2021). 

These inferences are consistent with the accession-level contrasts and multivariate 

summaries in the dataset (Tables 3; Figs. 2–6).Viewed through the lens of maternal stress 

memory, these findings fit a framework in which pre- or post-fertilization stress leaves 

heritable physiological/epigenetic imprints that decouple seed size from vigor traits such 

as rate and synchrony of germination (Brunel-Muguet et al., 2025).  

 

Several non-exclusive mechanisms plausibly link maternal drought to the observed 

vigor outcomes. First, drought during maturation can shift hormone and redox balance 

(ABA/ROS), delaying or desynchronizing germination; the present GWAS intervals 

include kinases and redox-associated enzymes that could mediate such signaling effects 

(Beebe et al., 2013). Second, seed-coat physiology likely contributes: maternal stress can 

harden seed coats, slow imbibition, and broaden the T80T20 window without damaging 

the embryo, a view supported here by colocalization with cooking-time/seed-quality QTL 

that reflect coat permeability and texture (Cichy et al., 2021). Third, the outcome depends 

on developmental timing and remobilization: accessions with "escape/efficient 

remobilization" strategies are expected to sustain seed filling under terminal stress, 

whereas lines prioritizing photoprotection without strong late remobilization may still 

produce inferior seed (Rosales-Serna et al., 2004; Beebe et al., 2013). The strategy-

stratified germination curves in this study align with these predictions.  

 

Germination-related phenotypes behaved as polygenic and context-sensitive traits. 

BLINK-based mapping yielded 13 lead SNPs distributed across GW100_ref, 

GW100_drought, GI_drought, GR_drought, and T80T20; 9 passed p < 3.10×10⁻⁷, with 

four retained as transparent suggestive signals (Table 3). Gene inventories within these 

intervals highlighted stress-regulatory modules (receptor-like kinases, redox enzymes, 

transcription factors) as well as genes tied to seed development, consistent with a 

dispersed, small-effect architecture commonly reported for seed morphology and 
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germination vigor in common bean and other crops (Tar'an et al., 2002; Blair et al., 2006; 

Moghaddam et al., 2016; Wu et al., 2021; Giordani et al., 2022; Shi et al., 2017). The 

balance of credible biology and modest effect sizes underscores environmental sensitivity 

and the likelihood that different molecular routes produce similar germination phenotypes 

under stress. Consistent with the maternal-memory roadmap, overlaying these GWAS 

intervals with methylome and small-RNA profiles from matched maternal environments 

could elevate candidates that co-localize with stress-responsive epigenetic features and 

thereby improve prediction of vigor outcomes (Brunel-Muguet et al., 2025).  

 

Colocalization analyses reinforce biological plausibility and hint at trade-offs. Two 

GW100_drought peaks on Chr9 overlap drought-yield QTL (Trapp et al., 2015), while a 

T80T20 signal near 0.61 Mb on Chr7 falls within a domestication region associated with 

pod shattering resistance around PvPdh1 (Parker et al., 2020). Seed-size loci at 

Chr2:40.63 Mb and Chr8:5.24 Mb intersect classic QTL for seed weight and length 

(SW2.1, SL8.1) (Blair et al., 2006; Tar'an et al., 2002). Two GI_drought loci (Chr8, 

Chr10) align with cooking-time/seed-quality QTL (Cichy et al., 2021), cohering with the 

seed-coat hypothesis for altered imbibition and spread. Overlaps with broader 

agronomic/meta-QTL intervals (Blair et al., 2010; Díaz et al., 2020; Pour-Aboughadareh 

et al., 2022) suggest either pleiotropy or tight linkage among adaptation, seed-quality, and 

yield components. These intersections provide immediate shortlists for validation while 

flagging potential linkage drag (e.g., shattering resistance vs. seed traits) that breeders 

should anticipate.  

 

The strategy-level lens further clarifies phenotypic patterns. Accessions characterized 

as escape/efficient remobilizers typically buffered both seed filling and progeny vigor, 

consistent with maintained source–sink continuity during terminal stress. 

Recovery/resistance lines exhibited mixed outcomes, underscoring that photoprotective 

capacity alone does not guarantee high-quality seeds in the absence of robust late-stage 

remobilization. Susceptible lines performed worst, with lower yield and inferior next-

generation germination. Stay-green responses were heterogeneous, an outcome that likely 

reflects diversity in senescence control and source–sink regulation captured in recent 

surveys (Bengoa Luoni et al., 2019; Beebe et al., 2013; Labastida et al., 2023). Integrating 

strategy classification with genetic signals thus provides a mechanistic scaffold for 

interpreting accession-specific departures from average trends (e.g., rare priming-like 

improvements under drought). Given projected increases in heat waves and terminal 

droughts, aligning accession-specific stress windows with reproductive timing may help 

realize the maternal-priming concept for resilient establishment (Brunel-Muguet et al., 

2025).  

 

Multivariate analyses separate a "seed filling/size" axis from a "germination 

dynamics" axis, implying partially independent selection targets. In this panel, phenotypic 
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PCA attributed ~47% of variance to a weight-dominated PC1 and ~18% to germination 

timing and synchrony (PC2), while genetic PCA supported clear population structure and 

justified the use of PC covariates in GWAS. The two-axis view resonates with classical 

quantitative findings that yield components and seed vigor are related yet not 

interchangeable (White et al., 1994), and with agronomic studies emphasizing emergence 

as a practical bottleneck for climate-robust cultivation and northward expansion 

(Raveneau et al., 2011; Lamichhane et al., 2020). Selection solely on GW100 risks 

suboptimal establishment, whereas prioritizing early, synchronous germination without 

maintaining filling could erode yield potential. Consequently, drought-resilient seed 

quality—the capacity to maintain both seed filling and favorable germination profiles 

under maternal stress—emerges as a coherent breeding target—co-localized intervals tied 

to seed-coat properties and stress signaling offer tractable entry points for marker-assisted 

and genomic selection.  

 

Several limitations shape inference. The number of maternal pairs was modest, and 

germination assays were performed under controlled laboratory conditions that only 

approximate field emergence. For GWAS, prespecified zero-coding used to align sparse 

phenotypes to the full genotype panel may inflate variance and attenuate effect-size 

interpretability, even with genome-wide covariates. Some signals remain suggestive, and 

LD-based candidate lists, though compact, are not definitive. These limitations motivate 

a focused next phase: fine-mapping of lead loci and construction of near-isogenic 

contrasts; targeted physiology on matched seed lots (coat permeability tests; ABA and 

ROS profiling) to link candidate pathways with phenotype; reciprocal maternal designs 

to partition maternal versus zygotic genetic effects; and field emergence trials to calibrate 

GI/T80T20/GR as predictors of stand establishment. Cross-referencing validated loci 

against domestication and seed-quality regions (e.g., shattering, cooking time) will help 

resolve pleiotropy versus linkage and anticipate breeding trade-offs.  

 

In the context of climate change, these results provide an empirical scaffold for 

developing climate-smart seed lots by identifying stress windows that avoid vigor 

penalties, validating molecular indicators of favorable imprints, and integrating those 

markers with GWAS/QTL information to inform breeding and seed-production decisions 

(Brunel-Muguet et al., 2025).  

 

 

 

4.1 Limitations and next steps 

Inference is limited by the modest number of maternal pairs (38 accessions) and the 

small within-accession replication (five seeds per maternal environment), which together 

reduce statistical power, widen confidence intervals, and make interaction terms (e.g., 
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environment × weight, strategy-specific slopes) sensitive to sampling noise. Population 

structure further lowers the effective sample size for GWAS, such that true small-effect 

loci may go undetected and some effect estimates may be upwardly biased (“winner’s 

curse”) even with PC covariates. External validity is also constrained by context-

dependent germination assays performed under controlled conditions; translation to field 

emergence across soils and temperatures remains to be established. Finally, LD-anchored 

candidate lists, while compact for a selfing species, still encompass multiple genes, and 

functional inference is limited by annotation depth and the absence of immediate knock-

out resources. 

 

Priority next steps are therefore twofold. Genetic validation should include fine-

mapping and near-isogenic contrasts for lead intervals; multi-environment field trials to 

relate GI, T80T20, and GR to stand establishment; and seed-physiology assays (seed-coat 

permeability, ABA/ROS quantification) in matched maternal treatments to test 

mechanistic hypotheses. Cross-referencing validated signals with seed-quality and 

domestication regions (e.g., cooking time and shattering) will help resolve pleiotropy 

versus tight linkage and anticipate breeding trade-offs (Cichy et al., 2021; Parker et al., 

2020; Pour-Aboughadareh et al., 2022). Epigenetic prospects merit dedicated designs: 

multigenerational maternal drought and recovery cycles (e.g., F₁–F₃) to test persistence 

or resetting of “stress memory”; reciprocal crosses to partition maternal versus zygotic 

contributions; and paired methylome and small-RNA profiling of seeds from drought- 

versus control-environment plants to identify differentially methylated regions and sRNA 

signatures associated with vigor (reviews: Crisp et al., 2016; Lämke & Bäurle, 2017; 

Quadrana & Colot, 2016). Pharmacological demethylation or targeted demethylation in 

seedlings could provide complementary evidence for causality where feasible. Together, 

these steps would distinguish heritable epigenetic marks from transient maternal 

provisioning effects, refine candidate genes within the GWAS windows, and strengthen 

the link from laboratory phenotyping to field establishment and breeding utility. 
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Popular science summary 

Beans feed hundreds of millions of people and are a key, affordable source of protein, 

minerals, and fiber. But in many regions, bean crops rely on rainfall and are hit hard by 

heat and dry spells. This thesis asks a practical question with big consequences for 

farmers and breeders: which parts of the bean genome help maintain seed quality and 

reliable crop establishment when mother plants experience drought—and do lighter 

seeds from droughted plants necessarily produce weaker seedlings? 

To find out, seeds were taken from plants grown either under normal watering or under 

a short, well-timed drought just before maturity. Seed weight was measured, and simple 

germination tests tracked how quickly and how completely seeds sprouted. On average, 

droughted mother plants produced lighter seeds (about 15% lighter), but lighter seeds 

did not automatically mean poorer germination: across the collection, differences in 

germination speed and success were mostly explained by the plant’s genetic background 

rather than by seed size alone.  

Next, the study scanned the genome to look for “signposts” (DNA variants) associated 

with seed weight and germination traits. Thirteen genomic regions stood out across the 

different traits. These regions were then examined more closely, looking ~150,000 

DNA letters to either side to list nearby genes and to check whether past studies had 

linked those areas to useful traits. The shortlists included genes involved in stress 

responses and seed development, and several regions overlapped with previously known 

areas for seed size, cooking time (a trait related to the seed coat), and even pod 

shattering—a domestication trait affecting harvestability. These overlaps make 

biological sense: for example, changes to the seed coat can influence both how long 

beans need to cook and how easily seeds take up water to germinate.  

What does this mean in practice? First, breeding for drought-resilient beans should not 

focus only on making seeds heavier. Instead, it should combine seed weight with traits 

that promote fast, even germination after stress. Second, the genomic regions 

highlighted here provide concrete starting points for developing DNA markers to help 

select better lines. Finally, while the lab experiments are informative, field trials are the 

next step to confirm which genetic signals translate into stronger crop stands under real-

world conditions. Put simply: this work narrows the search for drought-smart beans that 

still establish well—an important piece of making affordable, nutritious food more 

climate-resilient.  
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7. Appendix  

7.1 Accessions 

ID Group Strategy ID Group ID Group 

G11015 MA E G10000 MA G24345 MW 

G1282 EU R G10075 EU G24390 MW 

G13094 MA S G10093 EU G24404 MW 

G14629 EU E G10966 MA G24408 MW 

G23556 MW S G11053 MW G24412 MW 

G23578A MA R G12138 A G24605 MW 

G3296 MA R G1281 EU G2868 MA 

G4383 MA S G12856 AW G4338 MA 

G5340 EU R G12865 MW G4681 MA 

G7930 A R G12873 MW G5341 EU 

G8658 EU E G12875 MW G7229 A 

NGB13468 EU S G12879 MW G8697 A 

NGB17826 EU R G12947 MW G8811 EU 

NGB18415 EU SG G12949 MW G8920 MA 

NGB20124 EU R G13177 MA G900 EU 

NGB23857 EU S G13614 MA G9836 A 

NGB23858 EU R G13948 A NGB24316 EU 

NGB23934 EU S G13955 A PHA109 EU 

NGB23936 EU E G1460 EU PHA13112 EU 

NGB24038 EU S G15914 EU PHA13181 EU 

NGB9300 EU SG G16310 MA PHA13184 EU 

PHA1022 EU R G1683 EU PHA13188 EU 

PHA1076 EU E G16843 A PHA14277 EU 

PHA1077 EU SG G18939 EU PHA143 EU 

PHA1086 EU S G18939D EU PHA154 EU 

PHA1137 EU E G19889 AW PHA158 EU 

PHA1139 EU R G19893 AW PHA1697 EU 

PHA1142 EU E G19898 AW PHA1753 EU 

PHA12934 EU S G21043 A PHA1780 EU 

PHA13035 EU R G21056 A PHA1887 EU 

PHA13099 EU R G21069 A PHA244 EU 

PHA13228 EU S G21194 AW PHA2899 EU 

PHA13609 EU S G21197 AW PHA295 EU 

PHA13666 EU E G21201 AW PHA307 EU 



37 

 

PHA13736 EU S G22033 MA PHA332 EU 

PHA13928 EU E G22303 MW PHA339 EU 

PHA13960 EU S G22837 MW PHA361 EU 

PHA14278 EU S G23418 MW PHA3620 EU 

PHA167 EU R G23419A AW PHA3669 EU 

PHA1772 EU S G23421 AW PHA3687 EU 

PHA2682 EU SG G23422 AW PHA5877 EU 

PHA366 EU SG G23423 AW PHA5909 EU 

PHA3673 EU S G23426 AW PHA6287 EU 

PHA4008 EU S G23434A MA PHA722 EU 

PHA419 EU S G23435 MW PHA725 EU 

PHA4534 EU E G23442 AW PHA7686 EU 

PHA4620 EU E G23444 AW PHA841 EU 

PHA49 EU E G23445 AW PHA865 EU 

PHA5866 EU S G23447 A PHA987 EU 

PHA5934 EU E G23455 AW PHA99 EU 

PHA5989 EU R G23457A A   

PHA6011 EU S G23458 AW   

PHA6066 EU E G23459 AW   

PHA6155 EU SG G23464 MW   

PHA6254 EU E G23589 AW   

PHA6389 EU S G23604A A   

PHA6437 EU R G23777 A   

PHA7150 EU S G24318 AW   

PHA7309 EU R G24322 AW   

PHA7313 EU R G24323 MW   

Table 5: List of all 170 accessions in the harmonized panel, with assigned drought-response 
strategy (Escape, Recovery, Susceptible, Stay-green) and gene-pool (A = Andean domesticated, 
AW = Andean wild, EU = European, MA = Mesoamerican domesticated, MW = Mesoamerican 
wild). Strategy annotations are provided where available; remaining entries are to be 
considered marked NA. 
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7.2 Weight 
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Figure 10: Ordered GW100 by accession, colored by gene pool. 
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7.3 LD windows 

      

 

 

A: Germination Index drought  - Chr1 - Pos 15505693 

B: Germination Index drought - Chr03 - Pos 9548597 
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C: Germination Index drought - Chr07 -  Pos 22968375 

D: Germination  Index drought - Chr08 - Pos 33781184 

E: Germination Index drought - Chr10 - Pos 8792003 
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F: Growth Rate drought - Chr08 - Pos 62503784 

G: Growth Rate drought - Chr11 - Pos 13009550 

H: GW100 drought - Chr09 - Pos 35392216 – Pos 35434904 
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I: GW100 ref - Chr02 - Pos 40631423 

J: GW100 ref - Chr08 - Pos 5236332 

K: T80T20 drought - Chr07 - Pos 606868 
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L: T80T20 drought - Chr07 - Pos 6740141 

Figure 11: Local and regional LD context for GWAS index SNPs. 
For each lead SNP, LDBlockShow heatmaps (D′) are aligned with the corresponding 
Manhattan track. Left panels show ±50 kb windows; right panels show ±500 kb windows. 
Several loci exhibit extended high-LD segments beyond ±50 kb, motivating the ±150 kb 
core windows used for gene prioritization. 
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7.4 Gene annotation 

Trait 
Phvul ID Chr:Pos 

Arabidopsis 
orthologs 

Function  

GR_drought 
Phvul.008G285400 Chr08:62,503,784 

AT3G07770 
(HSP90) 

Heat shock 
protein 89.1 
(HSP90 family) 

 

Phvul.008G284900 / .1 Chr08:62,503,784 
AT3G63380 
(ACA-type) 

Ca²⁺-transporting 
ATPase 12, PM-
type 

GI_drought 
Phvul.008G150313 Chr08:33,781,184 

AT2G29100 
(GLR2.8) 

Glutamate 
receptor 2.8-
related 

 
Phvul.008G136500 Chr08:33,781,184 

AT2G44480 
(BGLU17) 

β-Glucosidase 17 

 

Phvul.003G111900 Chr03:9,548,597 
AT4G16150 
(CAMTA5) 

Calmodulin-
binding 
transcription 
activator 5-
related 

T80T20_drought 
Phvul.007G072300.3/.4.v2.1 Chr07:6,740,141 

AT3G49060 
(PUB32) 

U-box domain E3 
ligase 32 

 

Phvul.007G008500 / .1(.v2.1) Chr07:606,868 
AT3G55120 
(CHI) 

PF02431 → 
chalcone 
isomerase 

 
Phvul.007G008400.1 Chr07:606,868 

AT5G05340 
(PRX52) 

Peroxidase 52 

GW100_drought 
Phvul.009G236600.1 /.1.v2.1 Chr09:35,392,216 

AT4G29950 
(TBC1D5) 

PF00566 → 
TBC1D5 (Rab7 
GAP) 

 

Phvul.009G236000 /.1 Chr09:35,392,216 AT1G55770 
Invertase/Pectin 
methylesterase 
inhibitor family 

GW100_ref 
Phvul.002G234600 / .1 Chr02:40,631,423 

AT2G01290 
(RPI2) 

Ribose-5-
phosphate 
isomerase 2 

 
Phvul.002G234900 / .1 Chr02:40,631,423 

AT2G42520 
(RH37) 

DEAD-box RNA 
helicase 37 

 
Phvul.008G058500.1 Chr08:5,236,332 

AT4G21410 
(CRK28) 

Cys-rich RLK28-
related 

Table 6: Annotated candidate genes within GWAS LD windows. For each GWAS signal, the table 
lists the associated trait, Phaseolus vulgaris gene model (Phvul.*), chromosome and genomic 
position (bp), putative Arabidopsis thaliana ortholog(s), and a concise functional annotation. Genes 
were collected from LD-based core windows (±150 kb around each index SNP).  
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