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Abstract 
Reliable population densities are vital for effective wildlife management and conservation 
strategies. In this context, camera traps have become a popular tool for wildlife managers and 
researchers. The Random Encounter Model (REM) and Camera-Trap Distance Sampling (CTDS) 
are two methods to estimate the population density of unmarked individuals (i.e., non-individually 
recognizable). However, these methods have not been previously evaluated together in low- 
density contexts, such as Scandinavia. Here, I assessed consistency and precision between the two 
models in six reference areas with five ungulate species in Sweden. I incorporated reported 
hunting statistics and local knowledge to determine the accuracy of the population density 
estimates. Further, I assessed the potential impact of extended sampling periods on the models 
where changes in animal activity are likely to occur due to behavioural and environmental shifts. 
Comparing REM and CTDS, I did not find significant differences in terms of density estimates in 
thirteen of sixteen populations. The REM was consistently more precise, with an average 
coefficient of variation of 0.29 compared to 0.43 for CTDS. Both models aligned with the 
independent proxies of density. Any potential impact of changes in behaviour influencing density 
estimates was masked by low model precision for both the REM and CTDS. Given that CTDS 
requires less effort for image processing, it is an attractive alternative to the REM, especially if the 
issue of low precision is addressed. 

 
Keywords: wildlife management, population density, remote sensing, behavioural responses, 
monitoring, camera-trapping 
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1. Introduction 
 

Reliable population density estimates are vital for understanding animal ecology 
and implementing adaptive wildlife management (Williams et al. 2002; 
Hofmeester et al. 2017; Santini et al. 2022). Decision makers require accurate 
estimates of wildlife population density to make informed choices regarding: 1) 
management decisions, such as the distribution of hunting quotas (Nichols et al. 
2007; Baur et al. 2021; Gren et al. 2024); 2) the implementation and assessment 
of conservation strategies (Nichols & Williams 2006; Reynolds et al. 2011); and 
3) navigating risks that are associated with human-wildlife interactions (Nyhus 
2016; Pandit et al. 2018). However, it is widely acknowledged that deriving 
accurate and precise estimates of wildlife populations using traditional methods, 
such as transect surveys, aerial surveys, and capture-mark-recapture, is time- 
consuming, expensive, and highly invasive (Caughley 1977; Williams et al. 2002; 
Palencia et al. 2021). Given these challenges, camera traps have emerged as a 
valuable tool in wildlife management and conservation in recent decades 
(O’Connell et al. 2011; Burton et al. 2015). Camera traps have grown in 
popularity due to their relatively low cost (excluding initial investment) (Palencia 
et al. 2021), low level of invasiveness (Meek et al. 2016; Caravaggi et al. 2020), 
ability to continuously record multiple species (Caravaggi et al. 2017), and low 
effort-to-data volume ratio (Glover‐Kapfer et al. 2019), making them an attractive 
option for wildlife managers and researchers. The utilization of camera traps to 
estimate density was historically limited to species that were individually 
distinguishable (e.g., pelage patterns or scars), enabling the application of capture- 
mark-recapture models to produce density estimates (Karanth 1995). Given that 
relatively few species are individually recognizable (Rowcliffe et al. 2008), most 
applications of camera traps focus on questions of relative abundance, behaviour, 
occupancy or species richness (Gilbert et al. 2021). However, in recent years, 
significant effort has been devoted to the development of methods to estimate the 
densities of non-individually recognizable species from camera-trap data (Gilbert 
et al. 2021; Santini et al. 2022). 

Two popular methods for estimating the density of unmarked species are the 
random encounter model (REM) and camera-trap distance sampling (CTDS) 
(Rowcliffe et al. 2008; Howe et al. 2017). Both the REM and CTDS estimate 
density from the frequency with which animals are captured (i.e., encounter rate) 
while correcting for movement parameters (REM) or detection probability 
(CTDS) (Palencia et al. 2021). The REM is based on the ideal gas model, 
envisioning animals as ideal gas particles moving across the landscape, ‘bumping’ 
into camera traps based on their densities, movement characteristics, and size 
(Rowcliffe et al. 2008; Gilbert et al. 2021). Since its conception, the REM has 
become a popular method for deriving density estimates from camera-trap data 
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(e.g., for red fox, roe deer and wild boar at the European scale, ENETWILD‐ 
consortium et al. 2024). CTDS emerged as an extension of distance sampling 
(DS), which is considered one of the most well-developed and applied methods 
for estimating animal densities and wildlife monitoring (Buckland et al. 2015; 
Howe et al. 2017; Palencia et al. 2021). Both traditional DS and CTDS derive 
density by estimating detection probability and then correcting the observed 
counts for undetected individuals (Buckland et al. 2015; Howe et al. 2017). 
Further, CTDS benefits from the existing theoretical framework and statistical 
software established from DS (Palencia et al. 2021). Although the REM and 
CTDS both estimate animal density, key differences exist in the parameters they 
use, thereby influencing their applicability. 

Both the REM and CTDS require the estimation of several parameters; 
however, the explicit quantification of day range (i.e., distance travelled by an 
animal during a day) is by far the most difficult (Palencia et al. 2021). Initial 
applications of the REM relied on telemetry data, which underestimates the 
distance travelled by animals (Rowcliffe et al. 2012). Eventually, methods for 
estimating day range directly from image data were described, considerably 
broadening its applicability (Rowcliffe et al. 2016). Estimating day range from 
image data requires annotating the animal’s angle and distance from the camera, 
significantly increasing data processing costs (Palencia et al. 2021). Conversely, 
CTDS requires only annotating the distance that the animals are from the camera, 
thereby reducing time investment during image processing (Palencia et al. 2021). 
It has been suggested that CTDS may underestimate the density of highly 
abundant species (Corlatti et al. 2020) but may be more appropriate for low- 
density species, as it accumulates detections more quickly than the REM (Mason 
et al. 2022; Palencia et al. 2022). Given the challenges with estimating the 
parameters required by the REM, it would be beneficial for wildlife managers to 
know if CTDS could provide similar density estimates and precision in order to 
maximize limited resources. 

Previous research has demonstrated that at high densities, the REM and CTDS 
models can produce similar density estimates (Palencia et al. 2021; Twining et al. 
2022; Miles et al. 2024; Wiegers et al. 2025), with Palencia and Wiegers 
specifically testing these models on ungulate populations of at least 80 individuals 
per 1000 hectares. However, little is known about their performance at low 
ungulate densities. Ungulate densities tend to decrease with latitude (Lavsund et 
al. 2003), making it crucial to evaluate model performance in northern contexts. 
Low population densities also lead to fewer observations, requiring extended 
sampling periods to obtain sufficient data for REM and CTDS analyses. Extended 
sampling periods may violate some model assumptions, especially if ungulate 
behaviour changes over time. Consequently, assessing how these models perform 
under extended sampling periods is necessary to ensure reliable density estimates 
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in low-density contexts. If, compared to the REM, CTDS produces similar results 
with substantially less effort, it would be preferred as it could provide robust 
estimates at a lower cost. 

In this study, I applied both density estimation methods to five ungulate species 
(fallow deer Dama dama, moose Alces alces, red deer Cervus elaphus, roe deer 
Capreolus capreolus and wild boar Sus scrofa) across six reference areas in 
Sweden. The camera traps were part of a national monitoring program managed 
by the Swedish Association for Hunting and Wildlife Management (SAHWM). 
Of particular interest is that this project marks the first application of CTDS to 
ungulates in Sweden. I compared the REM and CTDS in terms of both their 
density estimates and relative precision. I made the following hypotheses: 

 
(1) The REM and CTDS will produce similar results both in terms of the 

density estimate and model precision. 
(2) Density estimates from REM and CTDS will be similar to independently 

derived density proxies. 
(3) Ungulate density will decrease with increasing latitude. 

 
Additionally, through a series of case studies, I explored the impact of long 
sampling periods during which ungulate behaviour is likely to shift and 
potentially bias key parameter estimates. Here, I hypothesized that: 

 
(4) The presence of snowfall will reduce day range estimates, thereby 

inflating REM density estimates. The CTDS density estimate will be less 
influenced, as it does not directly incorporate movement patterns into its 
density estimation. 

(5) During the rut period, the day range will increase, which will reduce the 
REM density estimate compared to periods of regular activity. The CTDS 
density estimate will be less influenced, as it does not directly incorporate 
movement patterns into its density estimation. 



11  

2. Methods 
 

2.1 Camera-trap surveys 
In this study, I analysed data from six reference areas across Sweden. The 
reference areas were located in the counties of Gävleborg, Jämtland, Norrbotten, 
Östergötland, Skåne and Värmland (Figure 1). All camera traps (Orion 4G, 
Hunter, Stockholm, Sweden) were installed and maintained by personnel from the 
SAHWM, as part of the national digital wildlife monitoring initiative. Each 
reference area had between 32 and 36 camera traps, which were deployed from 
July 2023 to December 2023 (Appendix 1). The camera trap placement was 
determined using a systematic sampling design, in which the camera traps were 
deployed in a grid approximately two kilometres apart and randomly placed with 
respect to animal movement. The cameras were attached to a pole or tree 
approximately 80 cm off the ground, and their sensitivity was set to medium. The 
cameras were set to operate continuously throughout the day and take five 
consecutive images when triggered. 
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Figure 1: Map of reference areas and camera-trap locations. The centre map depicts the location of the six reference areas in Sweden. The side panels 
show each reference area with camera-trap locations represented as black dots, green represents forest cover, blue represents water bodies, light 
yellow represents arable land and brown represents urban development. 
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2.2 Camera-trapping and data processing 
All images were initially processed by the Megadetector algorithm to identify 
those that contained animals (Beery et al. 2019). Trapper AI then processed the 
images containing animals to the species level (Bubnicki et al. 2016). Finally, 
these species identifications were manually checked (and corrected where 
needed), and information on age class, sex, and behaviour was added by me and 
personnel at the SAHWM. 

During the placement of the cameras, reference images of each camera-trap 
location were captured. These reference images consisted of the camera-trap’s 
field of view with marking poles in two-meter intervals from the camera to 
eighteen meters away, following the approach described by Hofmeester et al. 
(2017). By comparing the images with animals to the reference images, it was 
possible to estimate the distance the animal was from the camera in two-meter 
distance intervals. Images where the animal was further than eighteen meters 
away from the camera were excluded from the analysis. The angular position of 
the animals in each image was estimated from the centre of the image frame. 
Once the distance and angle information had been annotated, the data were 
exported for analysis in R. I, along with personnel at SLU, did these distance and 
angle estimations. All calculations and analyses were done in R version 4.4.1 (R 
Core Team, 2024). Images were grouped into the same sequence if they were 
taken less than five minutes apart; if more than five minutes passed between 
images, they were grouped into a subsequent sequence. It is recommended that 
100 sequences be tracked to derive reasonable precision, with a minimum 
threshold of 40 sequences to run the analysis (Palencia & Barroso 2024). Fourteen 
species-reference area combinations fell below the minimum threshold and were 
excluded from analysis. The final analysis included sixteen combinations: 
fourteen exceeded the recommended 100 sequences, while the remaining two (roe 
deer and moose in Gävleborg) had more than 40 sequences. 

Due to the large quantity of images captured in Skåne, only images from the 
end of July to August 31st, 2023, were annotated for all species to reach the 100 
sequences minimum. Similarly, for Östergötland, images of roe deer were only 
annotated from the end of July to August 31st, 2024. All other images of ungulates 
captured in Östergötland were annotated until December 31st, 2023. This ensured 
that the recommended number of sequences was reached for all species but 
reduced the time investment required to annotate the images. 

Once both models had generated density estimates for each species-reference 
area combination, I assessed whether they produced similar density values and 
precision. The models were considered to produce consistent density estimates if 
the mean point density fell within the 95% confidence interval of the reciprocal 
model (Palencia et al. 2021; Twining et al. 2022). To assess model precision, I 
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) 

calculated the coefficient of variation (CV) for both the REM and CTDS for each 
species-reference area combination. I then performed a paired t-test to determine 
whether there was a statistical difference in precision between the two models 
(Palencia et al. 2021). 

2.3 Random Encounter Model parameterization 
The REM is based on the ideal gas model, which postulates that the frequency at 
which gas molecules collide can be predicted given their abundance, their size and 
their speed (Hutchinson & Waser 2007; Rowcliffe et al. 2008). Put simply, as the 
abundance, size and speed of gas molecules increase, so does the frequency of 
collisions. The REM is an extension of this framework, treating animals as ideal 
gas particles moving across the landscape and randomly encountering camera 
traps (Rowcliffe et al. 2008; Gilbert et al. 2021). This allows for the REM to 
estimate density from trapping rate by correcting for variation in animal 
movement patterns and in the effective detection zone (Rowcliffe et al. 2008, 
2011; Hofmeester et al. 2017). The REM is particularly sensitive to error in 
estimates of day range (Henrich et al. 2022; Morrison et al. 2022; Murphy et al. 
2024). A day range estimate that is too high will underestimate density and vice- 
versa for a day range estimate that is too low (Palencia et al. 2022). 

 
The REM as a function can be expressed as: 

 

D̂ = (
y  

∗ 
t 

π 
 

 

v ∗ r ∗ (2 + α) 
 

In which y is the total number of individuals captured, t is the total survey effort 
in days, v is the day range in kilometres, r is the effective detection distance in 
kilometres, and α is the effective detection angle in radians. I estimated all the 
parameters used in the REM directly from the image data. Following Palencia et 
al. (2021), I considered each instance of a target species entering the detection 
zone of a camera-trap as an independent encounter. 

Here, I defined day range as the cumulative movement of an animal over a 24- 
hour period (Klarevas-Irby et al. 2021). I estimated ungulate day range as the 
product of their mean speed and the proportion of the day they were active 
(Rowcliffe et al. 2016). The speed of individual ungulates was calculated by 
summing the distance the animal moved during its capture sequence and then 
dividing it by the duration of the sequence. Activity pattern curves were created to 
estimate the proportion of the day that each ungulate species was active 
(Rowcliffe et al. 2014). Due to Sweden’s northern latitude and relatively long 
survey periods, day length changed throughout the sampling period. To reduce 
bias introduced by variation in day length, the timestamp data were anchored 
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using the solartime function in the activity package (Vazquez et al. 2019; 
Rowcliffe 2023). Effective detection distance and angle were estimated from the 
animal’s location in the first image of each sequence (Delisle et al. 2023). The 
binned distance data were then fitted to a half-normal detection function with a 
cosine adjustment term of 0, 1 or 2 to calculate effective detection distance 
(Rowcliffe et al. 2011). The angle data were fitted to either a uniform or half- 
normal function to calculate the effective detection angle (Rowcliffe et al. 2011). 

Once I estimated all the parameters, a REM density estimate was calculated. 
The 95% confidence intervals for each density estimate were calculated by 
bootstrapping encounter rate, day range, effective detection distance and effective 
detection angle with 500 iterations each. Finally, the 2.5th and 97.5th percentiles of 
the bootstrapped density estimates were calculated to derive the 95% confidence 
intervals. 

2.4 Camera-Trap Distance Sampling parameterization 
CTDS is an extension of traditional DS in which stationary camera traps replace 
human observers to detect moving animals (Howe et al. 2017; Gilbert et al. 2021). 
As with traditional DS, CTDS utilizes a detection function derived from the 
distances that detected animals were away from observers during surveying 
(Buckland et al. 2015). By employing a detection function, an estimate of 
undetected animals can then be derived, allowing for a density estimate to be 
calculated (Buckland et al. 2015; Gilbert et al. 2021). 

 
CTDS requires an estimate of the proportion of the day that animals were 

active and thereby available to be captured by the camera traps (Howe et al. 
2017). This can be directly estimated by using the time of day that the animals 
were captured (Howe et al. 2017). CTDS as a function can be expressed as: 

 

̂ 𝑛𝑛 2 ∗ 𝑑𝑑 
D = (𝑚𝑚) ∗ (𝑤𝑤2 ∗ θ ∗ p) 

 
In which n is the total number of images captured of the target species, m is the 
sampling effort as defined by the total number of snapshot moments, d is the 
delay between consecutive images (in this case, a fixed value of two seconds), w 
is the truncation distance (in this case eighteen meters), θ is the angle of the field 
of view (in this case 58°) and p is the estimated probability that an animal within 
the detection zone is detected. In cases where exploratory analysis revealed a lack 
of observations between zero and two meters, I left-truncated the data at two 
meters (Howe et al. 2017). The detection probability was calculated by fitting the 
binned distance data to a half-normal key function (Howe et al. 2017). 
Specifically, half-normal key functions with 0, 1 and 2 cosine adjustments were 
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considered; I selected the model in which the detection function was 
monotonically decreasing with the lowest AIC value (Howe et al. 2017). The 
CTDS density estimate, along with the 95% confidence intervals, was calculated 
following the vignette published by Howe et al (2023). 

2.5 Evaluation of REM and CTDS with reported 
hunting statistics 

In situations where the actual population size is unknown, it can be challenging to 
compare between methods (Corlatti et al. 2020). Both the REM and CTDS have 
been shown to be reliable methods when compared to independent density 
estimates (Palencia et al. 2021, 2022). However, in this study, acquiring 
independent density estimates was outside the scope of this project. Instead, 
reported hunting statistics were utilized as a proxy. I obtained the reported hunting 
bag statistics from Viltdata (Swedish Environmental Protection Agency 2025). 
Only roe deer and moose were assessed, as other species were not available in 
enough reference areas for statistical analysis. To evaluate the consistency 
between the density rankings derived from REM, CTDS and the reported hunting 
statistics, a Kendall’s coefficient of concordance was calculated. 

2.6 Effects of body mass and latitude on density 
I applied generalized linear models (GLM) to investigate the potential relationship 
between latitude and density estimates. The density estimates were obtained from 
my previous REM and CTDS analyses, along with the latitudes of the reference 
areas. Both the REM and CTDS densities were modelled as a function of latitude 
and species. Species as a covariate was included to account for differences in 
species distribution across Sweden and was not interpreted further. These models 
were fit with a negative binomial and Poisson models (Hofmeester et al. 2017) 
and selected based on AIC and residual plot analysis. 
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2.7 Case studies 
In low-density regions like Scandinavia, long sampling periods are often required 
to obtain sufficient data to produce reliable density estimates. However, seasonal 
changes in the environment or animal behaviour are known to influence activity 
levels and, if unaccounted for, may influence trapping rates, causing bias in both 
the REM and CTDS density estimates (Hofmeester et al. 2019; Henrich et al. 
2022). Here, I conducted three case studies to evaluate the impact of snow and 
mating season on the density estimates produced by both the REM and CTDS 
models. 

The presence of snow is known to restrict animal movement (Melin et al. 
2023). The Norrbotten reference area offered an opportunity to explore the impact 
of snow on the REM and CTDS density estimates as the camera traps were active 
from July to December. In the Norrbotten reference area, the first permanent 
winter snowfall was on October 13th, 2023. Following this observation, the image 
data was then subset into two time periods: pre-snow and snow. I then applied 
both the REM and CTDS to estimate density as well as the 95% confidence 
intervals. Finally, the two estimates were compared with each other and with a 
combined dataset to assess the effect of having an extended sampling period, 
including a period with and without snow cover. 

Moose and roe deer have been shown to elevate their movement rates during 
their respective mating seasons (Richard et al. 2008; Leblond et al. 2010; 
Kämmerle et al. 2017). To test the impact of mating season on the REM and 
CTDS, I chose the Jämtland reference area as the camera traps were active during 
both species' mating season and non-mating season. For moose, I subset the image 
data into two periods: before mating season (August 1st to August 31st) and mating 
season (September 15th to October 15th) (Malmsten et al. 2014). For roe deer, I 
subset the image into two periods: mating season (July 13th to August 10th) and 
post-mating season (September 15th to October 15th). I then applied the REM and 
CTDS to the subset periods of both moose and roe deer to estimate density as well 
as the 95% confidence intervals. Finally, a combined dataset encompassing the 
mating and non-mating period for both roe deer and moose was created to assess 
the effect of having an extended study period, including both mating and non- 
mating periods. 



18  

2.8 Model assumptions 
It is important to clarify some of the underlying assumptions made by the REM 
and CTDS models (Table 1). Because both models use a corrected encounter rate 
to estimate density, several underlying assumptions are shared (Palencia et al. 
2021). Given that most assumptions are shared, a single study design was suitable. 
Assumptions such as the random deployment of camera traps with respect to 
animal movement and the independence of observation events were fulfilled 
through the study design. 

An assumption that may be violated is that the camera traps do not influence 
animal movement or behaviour (Houa et al. 2022). This violation is not 
uncommon, as it may occur when animals react to the camera (Meek et al. 2016; 
Henrich et al. 2020). Common reactions include attraction to the camera (e.g., 
curiosity) or avoidance (e.g., fleeing the detection zone), which violate the 
assumption that the camera traps do not influence animal movement or behaviour 
(Houa et al. 2022). However, in practice, attraction events are recorded far more 
frequently by the camera traps, as fleeing animals generate fewer images before 
leaving the detection zone. Animals that are attracted to the camera commonly 
approach and linger close to it, thereby generating a cluster of detections near the 
camera. This behaviour tends to negatively bias estimates of effective detection 
distance (REM) and detection probability (CTDS), resulting in a positive bias in 
estimated density (Delisle et al. 2023). One potential solution would be to exclude 
consideration of the hazard rate key function when estimating effective detection 
distance or detection probability, as it often fits spikes of observations near the 
camera and consequently overestimates density (Delisle et al. 2023). My 
exploratory analysis revealed that attraction to the camera by target species might 
have been an issue in my study, as the hazard rate key function likely 
overestimated density and was therefore excluded from the analysis of effective 
detection distance and detection probability. 

Both the assumptions of perfect detection at zero distance and population 
closure are problematic in natural settings. To minimize violations of imperfect 
detection at zero distance, the SAHWM followed the recommendation of Palencia 
et al. (2021) to set the cameras at an appropriate height and to activate as soon as 
possible. If the closure assumption is violated and abundance fluctuates, then the 
REM and CTDS will provide an average density for the entire sampling period 
(Palencia et al. 2021). A key implicit assumption related to population closure is 
that the estimated model parameters remain consistent over the sampling period, 
which is likely violated during extended sampling periods. 
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Table 1: Summary of the assumptions made for both REM and CTDS models, adapted 
from Palencia et al. (2021). 

Assumption REM CTDS 
Camera traps are deployed randomly with 
respect to animal movement 

X X 

Camera traps do not influence animal 
movement or behaviour 

X X 

Closed population X X 
Measurements are precise X X 
Animals at zero distance are always 
detected 

X X 

Observations are independent events X X 
Detection distance is recorded from where 
the animal initially entered the detection 
zone 

X X 

Snapshot moments are selected 
independently of animal location 

 X 
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3. Results 
 

3.1 REM and CTDS Comparison 
Sufficient data for generating density estimates were captured for sixteen species- 
reference area combinations (Appendices 2, 3 and 4). The density estimates for 
both models ranged from 3.4 individuals per 1000 ha (the REM estimate for roe 
deer in Gävleborg) to 231.2 individuals per 1000 ha (the REM estimate for red 
deer in Skåne). As expected, the REM and CTDS exhibited a high level of 
agreement in their density estimates (Figure 2). Significant differences between 
the two methods were detected in only three species-reference area combinations: 
fallow deer in Skåne, roe deer in Värmland, and wild boar in Värmland. Although 
the density estimates produced by the two models generally agree, some subtle 
differences seem to reveal more general patterns (Figure 2). The REM produced 
higher mean density estimates in all six estimates derived from fallow deer, red 
deer and wild boar. For roe deer and moose, no clear pattern emerged with both 
REM and CTDS generating higher density estimates. REM had a higher model 
precision (average CV = 0.29) compared to CTDS (CV = 0.43; p < 0.001). 
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Figure 2: Pairwise comparison of the REM and CTDS density estimates (log10 scale). 
Dots represent mean density estimates, and translucent ellipses represent 95% 
confidence intervals. The ellipses with the solid outline indicate species-reference area 
combinations where the REM and CTDS produced significantly different density 
estimates. The dashed diagonal line is the line of equality. 
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3.2 REM and CTDS comparison with reported hunting 
statistics 

The REM, CTDS and reported hunting statistics were ranked for each reference 
area from highest density to lowest density for both roe deer and moose (Tables 2 
and 3). For the roe deer, significant agreement was found in the ranking order 
between methods (Kendall’s coefficient of concordance, p = 0.03). For the moose, 
significant agreement was found in the ranking order between methods (Kendall’s 
coefficient of concordance, p = 0.03). 

Table 2: Roe deer comparison of REM density estimates, CTDS density estimates and 
reported harvests by reference area. 

Reference 
area 

REM 
density 
estimate 
(ind/1000 
ha) 

REM 
rank 
(highest 
to 
lowest) 

CTDS 
density 
estimate 
(ind/1000 
ha) 

CTDS 
rank 
(highest 
to 
lowest) 

Reported 
hunting 
yield 
(harvests/ 
1000 ha) 

Reported 
hunting 
yield 
rank 

Östergötland 66.3 1 56.0 1 5.2 1 
Skåne 55.2 2 54.7 2 4.2 3 
Värmland 36.5 3 20.2 4 4.5 2 
Jämtland 22.4 4 21.3 3 1.1 4 
Gävleborg 3.4 5 6.3 5 0.7 5 

 
 

Table 3: Moose comparison of REM density estimates, CTDS density estimates and 
reported harvests by reference area. 

Reference 
area 

REM 
density 
estimate 
(ind/1000 
ha) 

REM 
rank 
(highest 
to 
lowest) 

CTDS 
density 
estimate 
(ind/1000 
ha) 

CTDS 
rank 
(highest 
to 
lowest) 

Reported 
hunting 
yield 
(harvests/ 
1000 ha) 

Reported 
hunting 
yield 
rank 

Jämtland 22.0 1 23.6 1 1.9 2 
Värmland 11.0 2 11.0 2 1.7 3 
Norrbotten 9.2 3 8.6 3 2.2 1 
Östergötland 5.6 4 6.4 4 1.4 4 
Gävleborg 3.6 5 4.7 5 0.4 5 
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3.3 Effects of latitude on density 
For both models, a negative binomial model was selected based on residual plot 
analysis and comparison of AIC values. Density decreased with latitude for both 
the REM (estimate = -0.26, ± 0.06, p < 0.001) and CTDS (estimate = -0.19, ± 
0.06, p = 0.002) estimates (Figure 3). 

 

Figure 3: Generalized linear models of the relationship between density and latitude. 
Panel A (REM) and Panel B (CTDS). The solid points represent mean density values, and 
translucent ellipses represent 95% confidence intervals. The dashed diagonal line is the 
line of equality. 
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3.4 Case Studies 
In the three case studies where I explored the potential impact of extended 
sampling periods, I detected no significant differences in density when applying 
either the REM or CTDS (Figure 4). Although the individual parameters tended to 
behave as expected (Appendices 5 and 6), any potential differences were masked 
by the low precision of the models. 

 

 
Figure 4: Panel A (REM) and Panel B (CTDS) density estimates from the three case 
studies. Dots represent mean point density, and the whiskers show the 95% confidence 
interval. 
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4. Discussion 
 

The development of methods such as the REM and CTDS has enabled estimation 
of population density for unmarked species, greatly enhancing the utility of 
camera traps as a tool for wildlife monitoring (Palencia et al. 2022). However, 
there is a notable lack of studies that directly compare these methods, especially 
in areas with low population densities. My work here marks the first direct 
comparison between the REM and CTDS at low to medium ungulate densities. I 
compared both methodologies by assessing sixteen species-reference area 
combinations. I found a high degree of agreement between the two models; 
however, the REM provided more precise estimates. When compared with 
reported hunting statistics as independent data and local knowledge, both models 
displayed a high degree of concordance. Further, density was found to decrease 
with increasing latitude. Lastly, using three case studies, I explored the impacts of 
employing extended sampling periods. Although individual model parameters 
behaved as expected, any potential bias that may have been introduced was 
masked by low model precision. Finally, if CTDS precision can be improved, it 
could provide a more cost-effective method compared to the REM. 

Since its development, the REM has been widely applied to wild populations 
(Gilbert et al. 2021; Palencia et al. 2022), whereas CTDS has been applied less 
frequently (Palencia et al. 2021). My results show a high level of consistency 
between REM and CTDS in estimated densities, with no significant difference 
being detected in thirteen of sixteen species-reference area combinations. These 
results align with previous studies, which also found relative agreement between 
the two methods (Palencia et al. 2021; Twining et al. 2022; Miles et al. 2024; 
Wiegers et al. 2025). For example, Palencia and Wiegers found the models 
performed similarly at high ungulate densities (≥ 80 individuals per 1000 ha). 
Whereas my density for the species-reference area combinations ranged from 3.4 
to 231.2 individuals per 1000 ha, with most estimates below 80 individuals per 
1000 ha. 

A noticeable trend appeared in all three species-reference area combinations 
where the models produced significant differences: in all three cases, the REM 
produced higher density estimates compared to CTDS (Figure 1). This pattern 
likely indicates that the REM may overestimate densities in these cases. 
Specifically, in the cases of fallow deer in Skåne and wild boar in Värmland, day 
range appears to be underestimated (Appendix 3), thereby inflating density 
estimates (Palencia et al. 2022). For the roe deer in Värmland, the difference does 
not seem to be driven by an underestimate of day range, but rather a reduced 
effective detection angle (α), which was estimated to be lower. This reduction in 
effective detection angle narrows the detection zone and inflates the density 
estimate (Appendix 3). However, given that most of the effective detection angle 



26  

estimates aligned with the manufacturer’s specifications, this issue seems to be of 
secondary importance compared to the estimation of the day range. The day range 
showed considerable variation and likely contributed to the differences in density 
between the models, particularly contributing to the REM producing inflated 
density estimates. Day range is a problematic parameter to estimate for several 
reasons. First, estimating the day range is both challenging and time-consuming 
(Gilbert et al. 2021; Palencia et al. 2021). Secondly, day range estimates seem to 
show a great deal of variation between same-species populations, which REM 
seems particularly sensitive to (Palencia et al. 2022). Finally, Murphy et al. (2024) 
found that most published REM density estimates misapplied day range, leading 
to biased density estimates. Given these challenges, CTDS is an attractive 
alternative because it does not incorporate day range into its density estimates. 

Regarding precision, I found that the REM was more precise than CTDS, 
which is consistent with previous studies (Palencia et al. 2021; Miles et al. 2024; 
Wiegers et al. 2025). Specifically, Palencia et al. (2021) reported mean CVs of 
0.36 for REM and 0.42 for CTDS, which are similar to my results. This suggests 
that precision may be consistent in both low and higher density populations. I 
have no solid interpretation of why REM tends to be more precise than CTDS. It 
has been recommended that 100 sequences be tracked for both the REM and 
CTDS to achieve sufficient precision (Bessone et al. 2020; Palencia & Barroso 
2024). However, increasing precision may be slightly more nuanced than simply 
tracking more sequences. For example, despite having well over the 
recommended number of sequences tracked, red deer in Skåne displayed a 
relatively low level of precision. This lower level of precision was due to most of 
the observations being captured by only a few camera traps, indicating a high 
level of microsite heterogeneity (Hofmeester et al. 2019; Palencia et al. 2021). 
This is consistent with previous comparisons between the REM and CTDS, where 
variation in encounter rate between camera traps seemed to be the primary 
determinant of precision (Palencia et al. 2021; Henrich et al. 2022; Camp et al. 
2025). A goal of future studies should be to achieve a CV of 0.20, the 
recommended threshold for effective wildlife management (Williams et al. 2002; 
Skalski et al. 2005). Precision can be improved by increasing the number of 
camera-trap locations, either by deploying more cameras or by rotating camera- 
trap sites (Schaus et al. 2020; Cappelle et al. 2021; Palencia et al. 2021). To 
increase the number of observations, the sampling period could be extended, 
which may improve model precision. However, extending the sampling period 
may not be ideal as that may introduce more variation into the parameter 
estimates (e.g., activity patterns, day range), leading to higher uncertainty. 
Palencia et al. (2021) suggested that the small detection zone of the camera traps 
causes encounter rates to be particularly sensitive to local microsite conditions. 
Accounting for local microsite conditions as a covariate could aid in reducing this 
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source of variation. Despite similarity in the REM and CTDS density estimates, 
the lack of precision in CTDS requires further consideration. 

An interesting pattern emerged regarding the REM and CTDS handling of 
solitary and gregarious species. Of the species considered in this study, fallow 
deer, red deer, and wild boar are the most communal, often living in social 
groups. Notably, two of the three species-reference area combinations that 
showed a statistical difference between REM and CTDS densities involved these 
group-living species. Additionally, the REM point densities for these group-living 
species tended to be higher than the corresponding CTDS point densities. This 
suggests that social behaviour may be an important factor when assessing which 
model produced the higher point density estimate. This is broadly consistent with 
Palencia et al. (2021), who found a similar pattern when estimating ungulate 
densities in Spain. Further, Chauvenet et al. (2017) demonstrated that REM was 
particularly sensitive to group size. In contrast, CTDS has shown no such pattern 
(Bessone et al. 2020). There are several potential reasons why grouping behaviour 
may disproportionately impact the REM. One possible explanation could be that 
ungulates that forage in groups tend to spend longer times feeding in quality sites 
compared to solitary ungulates (Lagory 1986). Therefore, if a group happens to 
feed within the detection zone of a camera trap, they may spend more time in 
front of the camera compared to a solitary ungulate. This may impact REM, as a 
negatively biased day range estimate will inflate density. A potential second 
explanation is that in a group, each animal has a chance to trigger the camera 
(Chauvenet et al. 2017). For CTDS, closer individuals may trigger the camera, 
allowing for the capture of more distant individuals. This could potentially 
increase detection probability, thereby decreasing the density estimate. A final 
explanation could be due to different definitions of what constitutes an 
observation. The REM defines each individual who is captured within the 
detection zone as an observation (Rowcliffe et al. 2008; Palencia et al. 2022). In 
comparison, CTDS treats each detection occurring within a photoperiod as an 
observation (Howe et al. 2017). Although subtle, this distinction may have a 
greater impact on the REM density estimates, as every individual in the group will 
be counted, whereas in the CTDS, the effect may be muted, as the observation is 
not at the individual level. However, it seems that social behaviour can influence 
density estimates, particularly in the case of REM. 

Additionally, my results showed that density decreased with latitude, consistent 
with previous studies that have demonstrated a decrease in ungulate density with 
lower productivity and greater winter severity (Lavsund et al. 2003; Hinton et al. 
2022). In my study, this pattern is most clearly demonstrated with wild boar. For 
the other ungulate species assessed, this pattern tended to be evident but not 
necessarily consistent across all reference areas. As I included species as a 
categorical covariate in the GLMs, the models accounted for differences in 
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baseline densities between species. This is because the model sets a separate 
intercept for each species, while the slope of latitude is shared across all species. 
By doing this, it is unlikely that the pattern observed is driven by species 
distribution but rather reflects that, on average across the species, density does 
indeed decline with latitude. Given that density decreased with latitude, one could 
expect extended sampling periods to obtain the required number of observations. 

The reported hunting statistics were found to have a significant level of 
concordance with the REM and CTDS in the ranking of reference areas. Previous 
work has shown that reported hunting statistics can reflect patterns in wild 
ungulate populations (Rönnegård et al. 2008; Carvalho et al. 2024). Given this 
context, the high level of concordance in ranking the reference areas indicates 
modest support for the notion that the REM and CTDS densities broadly reflect 
actual patterns in ungulate densities. Further, communication with local wildlife 
managers regarding the REM estimates indicated that the density estimates were 
generally consistent with their assessments of ungulate density. Notably, the REM 
estimates for fallow deer and red deer in Skåne, as well as both the REM and 
CTDS estimates for moose in Jämtland, were thought to be overestimates (F. 
Ånöstam, personal communication). In these two cases from Skåne, CTDS 
appeared to perform better. These findings are broadly consistent with previous 
work, which has demonstrated that both the REM and CTDS can produce reliable 
density estimates when compared to independently derived estimates (Palencia et 
al. 2021; Wiegers et al. 2025). However, it must be mentioned that reported 
hunting statistics may not be the most appropriate proxy of ungulate density. 
Hunting in Sweden is not primarily determined by animal density but influenced 
by cultural norms and co-existence with industries such as agriculture and forestry 
(Boman & Mattsson 2012). Specifically, for moose, the hunting yields may be 
more reflective of management goals rather than moose densities (Wikenros et al. 
2025). Exploratory analysis of moose observations by hunters, when adjusted for 
survey effort, showed that the moose observations did not correspond to the 
reported yield. This indicates that reported hunting yield was more reflective of 
management goals rather than trends in density. This suggests that reported 
hunting statistics may not be appropriate as a proxy for density, and perhaps 
moose observations or the frequency of moose-vehicle collisions may be more 
suitable. However, these approaches also have limitations, particularly in 
accessing the appropriate scale for vehicle collisions and the sampling bias 
introduced by the non-random nature of hunter observations. Given these 
challenges, future studies should be cautious about utilizing density proxies when 
attempting to validate their density estimates. Instead, validating density estimates 
should be done using independently derived density estimates, such as line- 
transect distance sampling or drive counts (Palencia et al. 2021; Wiegers et al. 
2025). However, direct model validation is rare, as many studies assume the 
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results are valid based on previous demonstrations of model accuracy (Bessone et 
al. 2020; Palencia et al. 2021, 2022; Wiegers et al. 2025). 

The case studies revealed no detectable difference in the density estimates 
derived from either REM or CTDS in periods where animal movement patterns 
were assumed to change. This mirrors findings from Henrich et al. (2022), who 
suggest that violations of parameter consistency may be masked by low model 
precision. Despite the potential for parameter inconsistency to occur during an 
extended sampling period, the subset periods generally reflect the expected 
seasonal patterns. For example, periods where ungulates are expected to be more 
active (e.g., pre-snow period and rut-periods) correspond with a higher level of 
observations. This aligns with a core assumption of the REM, which postulates 
that the greater an ungulate’s day range, the more likely it is to pass through a 
detection zone (Rowcliffe et al. 2008). Alternatively, CTDS derives an estimate of 
activity from the proportion of the day that ungulates were active (Howe et al. 
2017). During rut periods, both the roe deer and moose in Jämtland seemed to 
display increased levels of activity, consistent with day range matching studies of 
other European ungulates (Csányi et al. 2022). The moose in Norrbotten appears 
to be the exception, with the estimated activity seemingly increasing during the 
snow period despite the day range apparently shrinking. This phenomenon could 
be explained by snow limiting the movement range of moose, while at the same 
time, increased energy expenditure may require a greater need for foraging in the 
presence of snow, thereby increasing activity level. An additional observation 
regarding the moose in Norrbotten was that the activity level in the combined data 
was higher than both the pre-snow and snow periods. This suggests that if animal 
activity patterns shift during an extended study period, the activity level estimate 
will be inflated when pooling the data (Vazquez et al. 2019). Further, given the 
extended sampling periods required in this study, it is likely that the assumption 
of population closure was violated. This is particularly true given that for several 
of the species-reference area combinations assessed, the sampling period spanned 
the hunting season. In such cases, if ungulate density changes during the sampling 
period, both the REM and CTDS provide an estimate of the average density 
across the entire sampling period, rather than a density estimate prior to or post- 
hunting. (Palencia et al. 2021). The three case studies illustrate this averaging 
effect; for example, the parameter estimates shifted as one might expect, but the 
density estimates tended to remain similar. This consistency reveals compensatory 
effects, where seasonal changes in parameter estimates (e.g., day range) are offset 
by the number of detections, resulting in relatively stable averages of density 
across the study period. 

The cost-effectiveness of any monitoring program is a crucial consideration for 
wildlife managers who work with limited budgets (Nichols & Williams 2006; 
Lindenmayer & Likens 2010). The process of annotating the image data is the 
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most time-consuming when working with camera traps (Steenweg et al. 2017; 
Palencia et al. 2021). The REM is more time-consuming as it requires that all 
images be annotated with both distance and angle to estimate the necessary 
parameters (e.g., day range, effective detection distance, and effective detection 
angle) (Rowcliffe et al. 2016; Palencia et al. 2019). Conversely, CTDS requires 
only the distance to be recorded, which significantly reduces the image processing 
time (Howe et al. 2017; Palencia et al. 2021). Palencia et al. (2021) suggest that, 
in terms of data analysis, the CTDS requires slightly more effort due to 
exploratory analysis and model selection. However, I suggest that both models 
require a similar level of effort regarding exploratory analysis and model 
selection, especially if effective detection distance is estimated using a detection 
function as described by Hofmeester et al. (2017). Thus, the reduction in image 
processing time may make CTDS a preferable method over the REM in the 
future. 

Currently, the primary limitation of CTDS is its tendency to have lower 
precision than the REM. Future research should investigate the drivers of this 
pattern and develop additional techniques that improve model precision. If novel 
techniques manage to increase the precision of CTDS, the model will be an 
attractive option for wildlife managers in low-density regions. In my study, both 
the REM and CTDS had a high level of agreement in their density estimates. 
However, the day range estimates required for the REM seemed to be a culprit 
when the models diverged, causing inflated REM density estimates. CTDS does 
not require an estimate of day range, potentially increasing its suitability. When 
compared with reported hunting statistics, both models performed well, indicating 
that their estimates reflect actual patterns in ungulate density. When compared 
with local knowledge, it could be argued that CTDS performed slightly better, as 
REM was thought to have been slightly more prone to overestimating density in 
some cases. CTDS has been demonstrated to be more cost-effective than REM, as 
less effort is required for image annotation. Also, CTDS has explicitly been 
recommended for low-density species as it can accumulate observations more 
quickly (Palencia et al. 2021). Taken together, these factors indicate that CTDS 
presents a promising alternative to REM for wildlife managers in low-density 
areas, such as Sweden, especially if CTDS precision is improved. 



31  

5. Conclusion 
 

In this thesis, I assessed density estimates derived from the REM and CTDS in 
Sweden, where ungulate densities tend to be low. I found that the REM and 
CTDS produced similar results in terms of density estimates. However, the REM 
estimates were more precise compared to CTDS. The models were found in 
relative concordance with reported hunting statistics and with local wildlife 
management. Further, my results indicated that density decreased with latitude, 
which likely contributed to the need for extended sampling periods. For both the 
REM and CTDS low model precision masked any potential impact of changes in 
behaviour over extended sampling periods. In terms of cost-effectiveness, the 
CTDS requires less effort in terms of image annotation, which may constitute a 
more cost-effective method of deriving density estimates, proving to be an 
attractive method for wildlife managers. Future research should seek to improve 
the precision of CTDS, which would enhance its applicability for monitoring 
wildlife. The continued development and refinement of methods utilizing camera 
traps to estimate the density of unmarked species is critical for informed wildlife 
management and conservation. 
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Popular science summary 
 

Understanding how many animals live in an area is key to successful wildlife 
management and conservation. However, it is not easy to estimate how many 
animals are in a particular area. Camera traps have become a popular tool to aid 
ecologists in estimating population density. Historically, camera traps could only 
provide density estimates of individually recognizable animals. However, in 
recent years, models have been developed that allow for non-individually 
recognizable animals. I compared two such models, the Random Encounter 
Model (REM) and Camera-Trap Distance Sampling (CTDS). I used camera-trap 
data from six reference areas in Sweden to compare their density estimates of 
fallow deer, moose, red deer, roe deer and wild boar. Further, I compared the 
results from both models with reported hunting statistics and local experts. I also 
examined whether long sampling periods, which capture season changes in animal 
behaviour, affected either model’s results. I found that both models produced very 
similar density estimates. I also found that they matched well with the reported 
hunting statistics and local knowledge. Further, I found that both models lacked 
the necessary precision to be impacted by seasonal changes in animal behaviour. 
The CTDS requires less effort when it comes to data processing, making it an 
attractive option. This research could help ecologists and wildlife managers 
produce animal density estimates more cost-effectively, which is crucial for all 
wildlife management, as they are working with limited budgets. 
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Appendix 1 
 

Appendix table 1: Summary of camera trap deployments by reference area. 
Reference Area Number of 

camera traps 
Sampling period in 2023 Latitude Longitude 

Gävleborg 35 July - October 62.0° N 15.4° E 
Jämtland 32 July - October 63.4° N 14.0° E 
Norrbotten 32 July - December 66.3° N 21.6° E 
Östergötland 36 July - December 58.1° N 15.1° E 
Skåne 36 July - August 55.7° N 14.0° E 
Värmland 33 August - December 59.5° N 13.6° E 
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Appendix 2 
 

Appendix table 2: The REM and CTDS density estimates (mean number of individuals per 
1000 ha) of each species by reference area, including the bootstrapped 95% confidence 
intervals. In bold are the species-reference area combinations where the mean density 
estimate of one model lies outside of the 95% confidence interval of the other model. 

Species Reference 
area 

REM point density 
estimates in 
individuals/1000 ha 
(95% confidence 
intervals) 

CTDS point density 
estimates in 
individuals/1000 ha 
(95% confidence 
intervals) 

Fallow Deer Skåne 176.4 (94.9 - 274.3) 90.7 (46.6 - 147.2) 
Moose Gävleborg 3.6 (1.8 - 6.2) 4.7 (2.1 - 8.0) 
Moose Jämtland 22.0 (14.1 - 30.6) 23.6 (14.2 - 37.5) 
Moose Norrbotten 9.2 (5.6 - 13.3) 8.6 (2.7 - 17.8) 
Moose Östergötland 5.6 (3.5 - 8.0) 6.4 (2.8 - 13.2) 
Moose Värmland 11.0 (6.3 - 16.7) 11.0 (4.4 - 19.6) 
Red Deer Jämtland 12.6 (5.8 - 21.5) 10.7 (3.7 - 20.7) 
Red Deer Skåne 231.2 (80.2 - 421.6) 165.0 (43.9 - 370.0) 
Roe Deer Gävleborg 3.4 (1.0 – 7.0) 6.3 (1.1 - 16.6) 
Roe Deer Jämtland 22.4 (13.1 - 35.1) 21.3 (9.8 - 37.1) 
Roe Deer Östergötland 66.3 (43.4 - 93.7) 56.0 (31.9 - 91.7) 
Roe Deer Skåne 55.2 (33.7 - 85.1) 54.7 (26.7 - 102.7) 
Roe Deer Värmland 36.5 (20.4 - 59.6) 20.2 (9.5 - 34.7) 
Wild Boar Östergötland 25.8 (11.0 - 50.7) 15.3 (3.1 - 40.1) 
Wild Boar Skåne 107.7 (57.7 - 164.5) 68.2 (26.1 - 136.9) 
Wild Boar Värmland 14.6 (4.0 - 28.6) 6.4 (1.3 - 14.5) 
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Appendix 3 

 
Appendix table 3: The REM parameter estimates for each species-reference area combination. In bold are the species-reference area combinations 
where the mean density estimate of one model lies outside of the 95% confidence interval of the other model. 

Species Reference 
area 

Density per 
1000 ha (95% 
confidence 
intervals) 

y – 
Number of 
individuals 
captured 

t – 
Camera 
trap 
days 

r – Effective 
detection distance 
in meters (95% 
confidence 
intervals) 

Key 
function 

α – 
Effective 
detection 
angle 
(radians) 

Proportion of 
the day active 

Speed estimate 
in kilometers 
per hour 

v – Day range 
(km) 

Roe 
Deer 

Skåne 55.2 
(33.7 – 85.1) 

424 1424 6.2 
(5.5 - 7.0) 

hn2 1.01 0.54 0.70 9.1 
(7.7 - 10.8) 

Roe 
Deer 

Östergötland 66.3 
(43.4 - 93.7) 

517 2502 6.2 
(5.7 - 6.5) 

hn1 0.93 0.48 0.47 5.5 
(4.7 - 6.6) 

Roe 
Deer 

Värmland 36.5 
(20.4 - 59.6) 

587 4435 5.8 
(5.4 - 6.1) 

hn1 0.79 0.57 0.52 7.1 
(6.1 - 8.5) 

Roe 
Deer 

Gävleborg 3.4 
(1.0 - 7.0) 

61 3383 7.1 
(6.1 - 8.3) 

hn0 1.01 0.64 0.51 7.8 
(5.3 - 13.2) 

Roe 
Deer 

Jämtland 22.4 
(13.1 - 35.1) 

362 3075 4.5 
(4.1 – 5.0) 

hn2 1.01 0.64 0.79 12.2 
(9.9 - 15.9) 

Fallow 
Deer 

Skåne 176.4 
(94.9 - 274.3) 

557 1424 5.9 
(5.4 – 6.5) 

hn1 1.01 0.28 0.58 3.9 
(3.4 - 4.8) 

Wild 
Boar 

Skåne 107.7 
(57.7 - 164.5) 

364 1424 5.4 
(4.9 – 6.0) 

hn1 1.01 0.24 0.81 4.6 
(3.7 - 5.7) 

Wild 
Boar 

Östergötland 25.8 
(11.0 - 50.7) 

396 5701 5.1 
(4.7 – 5.6) 

hn1 0.64 0.42 0.63 6.3 
(5.2 - 7.8) 
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Wild 
Boar 

Värmland 14.6 
(4.0 - 28.6) 

183 4435 6.4 
(5.4 – 8.1) 

hn1 1.01 0.25 0.76 4.6 
(3.3 - 6.2) 

Red 
Deer 

Skåne 231.2 
(80.2 - 421.6) 

396 1424 5.1 
(4.7 - 5.5) 

hn1 1.01 0.24 0.44 2.5 
(2.0 - 3.1) 

Red 
Deer 

Jämtland 12.6 
(5.8 - 21.5) 

218 3075 6.3 
(5.8 - 6.8) 

hn0 1.01 0.76 0.51 9.3 
(7.1 - 12.4) 

Moose Östergötland 5.6 
(3.5 - 8.0) 

149 5701 6.4 
(5.7 - 7.6) 

hn1 1.01 0.64 0.50 7.6 
(5.9 - 10.4) 

Moose Värmland 11.0 
(6.3 - 16.7) 

126 4435 6.2 
(5.5 - 7.3) 

hn1 1.01 0.50 0.36 4.3 
(3.4 - 6.1) 

Moose Gävleborg 3.6 
(1.8 - 6.2) 

76 3383 7.4 
(6.4 - 8.4) 

hn0 1.01 0.45 0.82 8.8 
(6.4 - 12.2) 

Moose Jämtland 22.0 
(14.1 - 30.6) 

271 3075 7.4 
(6.8 - 8.0) 

hn0 1.01 0.42 0.55 5.6 
(4.7 - 6.8) 

Moose Norrbotten 9.2 
(5.6 - 13.3) 

125 4413 5.9 
(5.3 – 6.9) 

hn1 1.01 0.67 0.34 5.5 
(4.3 - 7.3) 
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Appendix 4 

 
Appendix table 4: The CTDS parameter estimates for each species-reference area combination. 

Species Reference area Density per 1000 ha 
(95% confidence 
intervals) 

n – 
Total 
number 
of 
capture 
images 

m – 
Number of 
snapshot 
moments 

w – 
truncation 
distance 
(km) 

θ – 
detection 
angle 
(radians) 

Left truncation 
of first two 
meters 

Key function p - 
Probability 
of detection 

Roe Deer Skåne 54.7 
(26.7 - 102.7) 

1321 33305781 0.018 1.01 Yes hn1 0.09 

Roe Deer Östergötland 56.0 
(31.9 - 91.7) 

2136 52032835 0.018 1.01 No hn1 0.09 

Roe Deer Värmland 20.2 
(9.5 - 34.7) 

1711 109660005 0.018 1.01 Yes hn1 0.10 

Roe Deer Gävleborg 6.3 
(1.1 - 16.6) 

296 93858222 0.018 1.01 Yes hn1 0.06 

Roe Deer Jämtland 21.3 
(9.8 - 37.1) 

923 85239588 0.018 1.01 Yes hn2 0.06 

Fallow Deer Skåne 90.7 
(46.6 - 147.2) 

1695 17464097 0.018 1.01 Yes hn1 0.13 

Wild Boar Skåne 68.2 
(26.1 - 136.9) 

671 14497254 0.018 1.01 Yes hn2 0.08 

Wild Boar Östergötland 15.3 
(3.1 - 40.1) 

901 104970377 0.018 1.01 Yes hn1 0.07 
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Wild Boar Värmland 6.4 

(1.3 - 14.5) 
737 48357497 0.018 1.01 Yes hn0 0.24 

Red Deer Skåne 165.0 
(43.9 - 370.0) 

1708 14476761 0.018 1.01 No hn1 0.09 

Red Deer Jämtland 10.7 
(3.7 - 20.7) 

996 101184389 0.018 1.01 Yes hn0 0.11 

Moose Östergötland 6.4 
(2.8 - 13.2) 

1001 160423004 0.018 1.01 No hn0 0.12 

Moose Värmland 11.0 
(4.4 - 19.6) 

790 92920587 0.018 1.01 No hn1 0.09 

Moose Gävleborg 4.7 
(2.1 - 8.0) 

354 65395334 0.018 1.01 No hn0 0.14 

Moose Jämtland 23.6 
(14.2 - 37.5) 

1378 56320728 0.018 1.01 Yes hn0 0.13 

Moose Norrbotten 8.6 
(2.7 - 17.8) 

885 123488593 0.018 1.01 No hn0 0.10 
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Appendix 5 

 
Appendix table 5: The REM parameter estimates for the case studies. 

Species- 
reference 
area 

Sampling 
period 

Density per 
1000 ha 
(95% 
confidence 
intervals) 

y – 
Number of 
individuals 
captured 

t – 
Camera 
trap days 

r – Effective 
detection distance 
in meters (95% 
confidence 
intervals) 

Key 
function 

α – Effective 
detection 
angle 
(radians) 

Proportion 
of the day 
active 

Speed estimate 
in kilometers 
per hour (95% 
confidence 
intervals) 

v – Day range 
in kilometers 
(95% 
confidence 
intervals) 

Moose- 
Norrbotten 

pre-snow 9.1 
(5.1 - 14.0) 

68 2004 7.5 
(6.4 - 8.7) 

hn0 1.01 0.48 0.45 
(0.34 - 0.63) 

5.16 
(3.9 - 7.2) 

Moose- 
Norrbotten 

snow 10.1 
(4.5 - 17.9) 

57 2408 5.7 
(4.7 - 6.7) 

hn0 1.01 0.66 0.27 
(0.20 - 0.38) 

4.27 
(3.2 - 6.0) 

Moose- 
Norrbotten 

combined 8.0 
(4.9 - 11.7) 

125 4412 6.7 
(5.9 - 7.5) 

hn0 1.01 0.67 0.34 
(0.27 - 0.46) 

5.47 
(4.4 - 7.3) 

Roe deer- 
Jämtland 

mating 
season 

20.0 
(9.8 - 31.6 

108 687 5.6 
(5.0 - 6.2) 

hn0 1.01 0.61 1.00 
(0.73 - 1.48) 

14.6 
(10.7 - 21.5) 

Roe deer- 
Jämtland 

not mating 
season 

21.1 
(8.4 - 40.7) 

101 961 5.8 
(5.1 - 6.5) 

hn0 1.01 0.47 0.82 
(0.51 - 1.38) 

8.9 
(5.8 - 15.5) 

Roe deer- 
Jämtland 

combined 19.5 
(10.7 - 33.0) 

209 1648 5.7 
(5.3 - 6.1) 

hn0 1.01 0.55 0.89 
(0.66 - 1.22) 

11.9 
(8.8 - 16.2) 

Moose- 
Jämtland 

not mating 
season 

19.9 
(12.4 - 29.5) 

79 992 7.6 
(6.4 - 8.9) 

hn0 1.01 0.44 0.51 
(0.41 - 0.67) 

5.5 
(4.3 - 7.1) 

Moose- 
Jämtland 

mating 
season 

14.2 
(6.8 - 25.4) 

80 961 7.6 
(6.4 - 8.8) 

hn0 1.01 0.55 0.61 
(0.40 - 0.98) 

8.0 
(5.3 - 13.0) 

Moose- 
Jämtland 

combined 17.7 
(11.0 - 26.7) 

159 1953 7.6 
(6.8 - 8.5) 

hn0 1.01 0.47 0.56 
(0.43 - 0.72) 

6.3 
(4.9 - 8.2) 
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Appendix table 6: The CTDS parameter estimates for the case studies. 

Species- 
reference 
area 

Sampling 
period 

Density per 
1000 ha (95% 
confidence 
intervals) 

n – Total 
number of 
capture 
images 

m – Number 
of snapshot 
moments 

w – 
truncation 
distance 
(km) 

θ – 
detection 
angle 
(radians) 

Left 
truncation of 
first two 
meters 

Key 
function 

p - Probability 
of detection 
(95% 
confidence 
intervals) 

Moose- 
Norrbotten 

pre-snow 12.3 
(3.1-33.6) 

495 42333703 0.018 1.01 No hn0 0.12 
(0.10-0.13) 

Moose- 
Norrbotten 

snow 8.4 
(2.6-17.0) 

390 67755701 0.018 1.01 No hn0 0.08 
(0.07-0.09) 

Moose- 
Norrbotten 

combined 8.6 
(2.7-17.8) 

885 123488593 0.018 1.01 No hn0 0.10 
(0.09-0.11) 

Roe deer- 
Jämtland 

mating 
season 

16.2 
(9.3-26.4) 

284 17978379 0.018 1.01 No hn0 0.12 
(0.10-0.13) 

Roe deer- 
Jämtland 

not mating 
season 

14.7 
(7.3-24.4) 

320 19444324 0.018 1.01 No hn0 0.14 
(0.12-0.15) 

Roe deer- 
Jämtland 

combined 14.6 
(3.6-9.8) 

604 39439509 0.018 1.01 No hn0 0.13 
(0.12-0.14) 

Moose- 
Jämtland 

not mating 
season 

25.8 
(10.6-58.4) 

484 18996085 0.018 1.01 No hn0 0.12 
(0.10-0.14) 

Moose- 
Jämtland 

mating 
season 

19.2 
(7.3-36.6) 

457 22914980 0.018 1.01 No hn0 0.13 
(0.11-0.14) 

Moose- 
Jämtland 

combined 23.4 
(12.3-36.4) 

941 39801781 0.018 1.01 No hn0 0.12 
(0.11-0.13) 
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