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Abstract

Reliable population densities are vital for effective wildlife management and conservation
strategies. In this context, camera traps have become a popular tool for wildlife managers and
researchers. The Random Encounter Model (REM) and Camera-Trap Distance Sampling (CTDS)
are two methods to estimate the population density of unmarked individuals (i.e., non-individually
recognizable). However, these methods have not been previously evaluated together in low-
density contexts, such as Scandinavia. Here, I assessed consistency and precision between the two
models in six reference areas with five ungulate species in Sweden. I incorporated reported
hunting statistics and local knowledge to determine the accuracy of the population density
estimates. Further, I assessed the potential impact of extended sampling periods on the models
where changes in animal activity are likely to occur due to behavioural and environmental shifts.
Comparing REM and CTDS, I did not find significant differences in terms of density estimates in
thirteen of sixteen populations. The REM was consistently more precise, with an average
coefficient of variation of 0.29 compared to 0.43 for CTDS. Both models aligned with the
independent proxies of density. Any potential impact of changes in behaviour influencing density
estimates was masked by low model precision for both the REM and CTDS. Given that CTDS
requires less effort for image processing, it is an attractive alternative to the REM, especially if the
issue of low precision is addressed.

Keywords: wildlife management, population density, remote sensing, behavioural responses,
monitoring, camera-trapping
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1. Introduction

Reliable population density estimates are vital for understanding animal ecology
and implementing adaptive wildlife management (Williams et al. 2002;
Hofmeester et al. 2017; Santini et al. 2022). Decision makers require accurate
estimates of wildlife population density to make informed choices regarding: 1)
management decisions, such as the distribution of hunting quotas (Nichols et al.
2007; Baur et al. 2021; Gren et al. 2024); 2) the implementation and assessment
of conservation strategies (Nichols & Williams 2006; Reynolds et al. 2011); and
3) navigating risks that are associated with human-wildlife interactions (Nyhus
2016; Pandit et al. 2018). However, it is widely acknowledged that deriving
accurate and precise estimates of wildlife populations using traditional methods,
such as transect surveys, aerial surveys, and capture-mark-recapture, is time-
consuming, expensive, and highly invasive (Caughley 1977; Williams et al. 2002;
Palencia et al. 2021). Given these challenges, camera traps have emerged as a
valuable tool in wildlife management and conservation in recent decades
(O’Connell et al. 2011; Burton et al. 2015). Camera traps have grown in
popularity due to their relatively low cost (excluding initial investment) (Palencia
et al. 2021), low level of invasiveness (Meek et al. 2016; Caravaggi et al. 2020),
ability to continuously record multiple species (Caravaggi et al. 2017), and low
effort-to-data volume ratio (Glover-Kapfer et al. 2019), making them an attractive
option for wildlife managers and researchers. The utilization of camera traps to
estimate density was historically limited to species that were individually
distinguishable (e.g., pelage patterns or scars), enabling the application of capture-
mark-recapture models to produce density estimates (Karanth 1995). Given that
relatively few species are individually recognizable (Rowcliffe et al. 2008), most
applications of camera traps focus on questions of relative abundance, behaviour,
occupancy or species richness (Gilbert et al. 2021). However, in recent years,
significant effort has been devoted to the development of methods to estimate the
densities of non-individually recognizable species from camera-trap data (Gilbert
et al. 2021; Santini et al. 2022).

Two popular methods for estimating the density of unmarked species are the
random encounter model (REM) and camera-trap distance sampling (CTDS)
(Rowcliffe et al. 2008; Howe et al. 2017). Both the REM and CTDS estimate
density from the frequency with which animals are captured (i.e., encounter rate)
while correcting for movement parameters (REM) or detection probability
(CTDS) (Palencia et al. 2021). The REM is based on the ideal gas model,
envisioning animals as ideal gas particles moving across the landscape, ‘bumping’
into camera traps based on their densities, movement characteristics, and size
(Rowcliffe et al. 2008; Gilbert et al. 2021). Since its conception, the REM has
become a popular method for deriving density estimates from camera-trap data



(e.g., for red fox, roe deer and wild boar at the European scale, ENETWILD-
consortium et al. 2024). CTDS emerged as an extension of distance sampling
(DS), which is considered one of the most well-developed and applied methods
for estimating animal densities and wildlife monitoring (Buckland et al. 2015;
Howe et al. 2017; Palencia et al. 2021). Both traditional DS and CTDS derive
density by estimating detection probability and then correcting the observed
counts for undetected individuals (Buckland et al. 2015; Howe et al. 2017).
Further, CTDS benefits from the existing theoretical framework and statistical
software established from DS (Palencia et al. 2021). Although the REM and
CTDS both estimate animal density, key differences exist in the parameters they
use, thereby influencing their applicability.

Both the REM and CTDS require the estimation of several parameters;
however, the explicit quantification of day range (i.e., distance travelled by an
animal during a day) is by far the most difficult (Palencia et al. 2021). Initial
applications of the REM relied on telemetry data, which underestimates the
distance travelled by animals (Rowcliffe et al. 2012). Eventually, methods for
estimating day range directly from image data were described, considerably
broadening its applicability (Rowcliffe et al. 2016). Estimating day range from
image data requires annotating the animal’s angle and distance from the camera,
significantly increasing data processing costs (Palencia et al. 2021). Conversely,
CTDS requires only annotating the distance that the animals are from the camera,
thereby reducing time investment during image processing (Palencia et al. 2021).
It has been suggested that CTDS may underestimate the density of highly
abundant species (Corlatti et al. 2020) but may be more appropriate for low-
density species, as it accumulates detections more quickly than the REM (Mason
et al. 2022; Palencia et al. 2022). Given the challenges with estimating the
parameters required by the REM, it would be beneficial for wildlife managers to
know if CTDS could provide similar density estimates and precision in order to
maximize limited resources.

Previous research has demonstrated that at high densities, the REM and CTDS
models can produce similar density estimates (Palencia et al. 2021; Twining et al.
2022; Miles et al. 2024; Wiegers et al. 2025), with Palencia and Wiegers
specifically testing these models on ungulate populations of at least 80 individuals
per 1000 hectares. However, little is known about their performance at low
ungulate densities. Ungulate densities tend to decrease with latitude (Lavsund et
al. 2003), making it crucial to evaluate model performance in northern contexts.
Low population densities also lead to fewer observations, requiring extended
sampling periods to obtain sufficient data for REM and CTDS analyses. Extended
sampling periods may violate some model assumptions, especially if ungulate
behaviour changes over time. Consequently, assessing how these models perform
under extended sampling periods is necessary to ensure reliable density estimates



in low-density contexts. If, compared to the REM, CTDS produces similar results
with substantially less effort, it would be preferred as it could provide robust
estimates at a lower cost.

In this study, I applied both density estimation methods to five ungulate species
(fallow deer Dama dama, moose Alces alces, red deer Cervus elaphus, roe deer
Capreolus capreolus and wild boar Sus scrofa) across six reference areas in
Sweden. The camera traps were part of a national monitoring program managed
by the Swedish Association for Hunting and Wildlife Management (SAHWM).
Of particular interest is that this project marks the first application of CTDS to
ungulates in Sweden. I compared the REM and CTDS in terms of both their
density estimates and relative precision. I made the following hypotheses:

(1) The REM and CTDS will produce similar results both in terms of the
density estimate and model precision.

(2) Density estimates from REM and CTDS will be similar to independently
derived density proxies.

(3) Ungulate density will decrease with increasing latitude.

Additionally, through a series of case studies, I explored the impact of long
sampling periods during which ungulate behaviour is likely to shift and
potentially bias key parameter estimates. Here, I hypothesized that:

(4) The presence of snowfall will reduce day range estimates, thereby
inflating REM density estimates. The CTDS density estimate will be less
influenced, as it does not directly incorporate movement patterns into its
density estimation.

(5) During the rut period, the day range will increase, which will reduce the
REM density estimate compared to periods of regular activity. The CTDS
density estimate will be less influenced, as it does not directly incorporate
movement patterns into its density estimation.
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2. Methods

2.1 Camera-trap surveys

In this study, I analysed data from six reference areas across Sweden. The
reference areas were located in the counties of Gidvleborg, Jimtland, Norrbotten,
Ostergétland, Skéne and Virmland (Figure 1). All camera traps (Orion 4G,
Hunter, Stockholm, Sweden) were installed and maintained by personnel from the
SAHWM, as part of the national digital wildlife monitoring initiative. Each
reference area had between 32 and 36 camera traps, which were deployed from
July 2023 to December 2023 (Appendix 1). The camera trap placement was
determined using a systematic sampling design, in which the camera traps were
deployed in a grid approximately two kilometres apart and randomly placed with
respect to animal movement. The cameras were attached to a pole or tree
approximately 80 cm off the ground, and their sensitivity was set to medium. The
cameras were set to operate continuously throughout the day and take five
consecutive images when triggered.

11
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Figure 1: Map of reference areas and camera-trap locations. The centre map depicts the location of the six reference areas in Sweden. The side panels
show each reference area with camera-trap locations represented as black dots, green represents forest cover, blue represents water bodies, light
yellow represents arable land and brown represents urban development.
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2.2 Camera-trapping and data processing

All images were initially processed by the Megadetector algorithm to identify
those that contained animals (Beery et al. 2019). Trapper Al then processed the
images containing animals to the species level (Bubnicki et al. 2016). Finally,
these species identifications were manually checked (and corrected where
needed), and information on age class, sex, and behaviour was added by me and
personnel at the SAHWM.

During the placement of the cameras, reference images of each camera-trap
location were captured. These reference images consisted of the camera-trap’s
field of view with marking poles in two-meter intervals from the camera to
eighteen meters away, following the approach described by Hofmeester et al.
(2017). By comparing the images with animals to the reference images, it was
possible to estimate the distance the animal was from the camera in two-meter
distance intervals. Images where the animal was further than eighteen meters
away from the camera were excluded from the analysis. The angular position of
the animals in each image was estimated from the centre of the image frame.
Once the distance and angle information had been annotated, the data were
exported for analysis in R. I, along with personnel at SLU, did these distance and
angle estimations. All calculations and analyses were done in R version 4.4.1 (R
Core Team, 2024). Images were grouped into the same sequence if they were
taken less than five minutes apart; if more than five minutes passed between
images, they were grouped into a subsequent sequence. It is recommended that
100 sequences be tracked to derive reasonable precision, with a minimum
threshold of 40 sequences to run the analysis (Palencia & Barroso 2024). Fourteen
species-reference area combinations fell below the minimum threshold and were
excluded from analysis. The final analysis included sixteen combinations:
fourteen exceeded the recommended 100 sequences, while the remaining two (roe
deer and moose in Gévleborg) had more than 40 sequences.

Due to the large quantity of images captured in Skéne, only images from the
end of July to August 31%, 2023, were annotated for all species to reach the 100
sequences minimum. Similarly, for Ostergotland, images of roe deer were only
annotated from the end of July to August 31%, 2024. All other images of ungulates
captured in Ostergdtland were annotated until December 31%, 2023. This ensured
that the recommended number of sequences was reached for all species but
reduced the time investment required to annotate the images.

Once both models had generated density estimates for each species-reference
area combination, I assessed whether they produced similar density values and
precision. The models were considered to produce consistent density estimates if
the mean point density fell within the 95% confidence interval of the reciprocal
model (Palencia et al. 2021; Twining et al. 2022). To assess model precision, I
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calculated the coefficient of variation (CV) for both the REM and CTDS for each
species-reference area combination. I then performed a paired t-test to determine
whether there was a statistical difference in precision between the two models
(Palencia et al. 2021).

2.3 Random Encounter Model parameterization

The REM is based on the ideal gas model, which postulates that the frequency at
which gas molecules collide can be predicted given their abundance, their size and
their speed (Hutchinson & Waser 2007; Rowcliffe et al. 2008). Put simply, as the
abundance, size and speed of gas molecules increase, so does the frequency of
collisions. The REM is an extension of this framework, treating animals as ideal
gas particles moving across the landscape and randomly encountering camera
traps (Rowcliffe et al. 2008; Gilbert et al. 2021). This allows for the REM to
estimate density from trapping rate by correcting for variation in animal
movement patterns and in the effective detection zone (Rowcliffe et al. 2008,
2011; Hofmeester et al. 2017). The REM is particularly sensitive to error in
estimates of day range (Henrich et al. 2022; Morrison et al. 2022; Murphy et al.
2024). A day range estimate that is too high will underestimate density and vice-
versa for a day range estimate that is too low (Palencia et al. 2022).

The REM as a function can be expressed as:

AD= (X)*#
t? vxr*x(2+

In which y is the total number of individuals captured, t is the total survey effort
in days, v is the day range in kilometres, r is the effective detection distance in
kilometres, and a is the effective detection angle in radians. I estimated all the
parameters used in the REM directly from the image data. Following Palencia et
al. (2021), I considered each instance of a target species entering the detection
zone of a camera-trap as an independent encounter.

Here, I defined day range as the cumulative movement of an animal over a 24-
hour period (Klarevas-Irby et al. 2021). I estimated ungulate day range as the
product of their mean speed and the proportion of the day they were active
(Rowcliffe et al. 2016). The speed of individual ungulates was calculated by
summing the distance the animal moved during its capture sequence and then
dividing it by the duration of the sequence. Activity pattern curves were created to
estimate the proportion of the day that each ungulate species was active
(Rowcliffe et al. 2014). Due to Sweden’s northern latitude and relatively long
survey periods, day length changed throughout the sampling period. To reduce
bias introduced by variation in day length, the timestamp data were anchored
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using the solartime function in the activity package (Vazquez et al. 2019;
Rowcliffe 2023). Effective detection distance and angle were estimated from the
animal’s location in the first image of each sequence (Delisle et al. 2023). The
binned distance data were then fitted to a half-normal detection function with a
cosine adjustment term of 0, 1 or 2 to calculate effective detection distance
(Rowcliffe et al. 2011). The angle data were fitted to either a uniform or half-
normal function to calculate the effective detection angle (Rowcliffe et al. 2011).

Once I estimated all the parameters, a REM density estimate was calculated.
The 95% confidence intervals for each density estimate were calculated by
bootstrapping encounter rate, day range, effective detection distance and effective
detection angle with 500 iterations each. Finally, the 2.5" and 97.5" percentiles of
the bootstrapped density estimates were calculated to derive the 95% confidence
intervals.

2.4 Camera-Trap Distance Sampling parameterization

CTDS is an extension of traditional DS in which stationary camera traps replace
human observers to detect moving animals (Howe et al. 2017; Gilbert et al. 2021).
As with traditional DS, CTDS utilizes a detection function derived from the
distances that detected animals were away from observers during surveying
(Buckland et al. 2015). By employing a detection function, an estimate of
undetected animals can then be derived, allowing for a density estimate to be
calculated (Buckland et al. 2015; Gilbert et al. 2021).

CTDS requires an estimate of the proportion of the day that animals were
active and thereby available to be captured by the camera traps (Howe et al.
2017). This can be directly estimated by using the time of day that the animals
were captured (Howe et al. 2017). CTDS as a function can be expressed as:

n n 2xd

R
In which n is the total number of images captured of the target species, m is the
sampling effort as defined by the total number of snapshot moments, d is the
delay between consecutive images (in this case, a fixed value of two seconds), w
is the truncation distance (in this case eighteen meters), 0 is the angle of the field
of view (in this case 58°) and p is the estimated probability that an animal within
the detection zone is detected. In cases where exploratory analysis revealed a lack
of observations between zero and two meters, I left-truncated the data at two
meters (Howe et al. 2017). The detection probability was calculated by fitting the
binned distance data to a half-normal key function (Howe et al. 2017).
Specifically, half-normal key functions with 0, 1 and 2 cosine adjustments were
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considered; I selected the model in which the detection function was
monotonically decreasing with the lowest AIC value (Howe et al. 2017). The
CTDS density estimate, along with the 95% confidence intervals, was calculated
following the vignette published by Howe et al (2023).

2.5 Evaluation of REM and CTDS with reported
hunting statistics

In situations where the actual population size is unknown, it can be challenging to
compare between methods (Corlatti et al. 2020). Both the REM and CTDS have
been shown to be reliable methods when compared to independent density
estimates (Palencia et al. 2021, 2022). However, in this study, acquiring
independent density estimates was outside the scope of this project. Instead,
reported hunting statistics were utilized as a proxy. I obtained the reported hunting
bag statistics from Viltdata (Swedish Environmental Protection Agency 2025).
Only roe deer and moose were assessed, as other species were not available in
enough reference areas for statistical analysis. To evaluate the consistency
between the density rankings derived from REM, CTDS and the reported hunting
statistics, a Kendall’s coefficient of concordance was calculated.

2.6 Effects of body mass and latitude on density

I applied generalized linear models (GLM) to investigate the potential relationship
between latitude and density estimates. The density estimates were obtained from
my previous REM and CTDS analyses, along with the latitudes of the reference
areas. Both the REM and CTDS densities were modelled as a function of latitude
and species. Species as a covariate was included to account for differences in
species distribution across Sweden and was not interpreted further. These models
were fit with a negative binomial and Poisson models (Hofmeester et al. 2017)
and selected based on AIC and residual plot analysis.
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2.7 Case studies

In low-density regions like Scandinavia, long sampling periods are often required
to obtain sufficient data to produce reliable density estimates. However, seasonal
changes in the environment or animal behaviour are known to influence activity
levels and, if unaccounted for, may influence trapping rates, causing bias in both
the REM and CTDS density estimates (Hofmeester et al. 2019; Henrich et al.
2022). Here, I conducted three case studies to evaluate the impact of snow and
mating season on the density estimates produced by both the REM and CTDS
models.

The presence of snow is known to restrict animal movement (Melin et al.
2023). The Norrbotten reference area offered an opportunity to explore the impact
of snow on the REM and CTDS density estimates as the camera traps were active
from July to December. In the Norrbotten reference area, the first permanent
winter snowfall was on October 13, 2023. Following this observation, the image
data was then subset into two time periods: pre-snow and snow. I then applied
both the REM and CTDS to estimate density as well as the 95% confidence
intervals. Finally, the two estimates were compared with each other and with a
combined dataset to assess the effect of having an extended sampling period,
including a period with and without snow cover.

Moose and roe deer have been shown to elevate their movement rates during
their respective mating seasons (Richard et al. 2008; Leblond et al. 2010;
Kdmmerle et al. 2017). To test the impact of mating season on the REM and
CTDS, I chose the Jimtland reference area as the camera traps were active during
both species' mating season and non-mating season. For moose, I subset the image
data into two periods: before mating season (August 1% to August 31%') and mating
season (September 15" to October 15™) (Malmsten et al. 2014). For roe deer, I
subset the image into two periods: mating season (July 13" to August 10™) and
post-mating season (September 15% to October 15™). I then applied the REM and
CTDS to the subset periods of both moose and roe deer to estimate density as well
as the 95% confidence intervals. Finally, a combined dataset encompassing the
mating and non-mating period for both roe deer and moose was created to assess
the effect of having an extended study period, including both mating and non-
mating periods.
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2.8 Model assumptions

It is important to clarify some of the underlying assumptions made by the REM
and CTDS models (Table 1). Because both models use a corrected encounter rate
to estimate density, several underlying assumptions are shared (Palencia et al.
2021). Given that most assumptions are shared, a single study design was suitable.
Assumptions such as the random deployment of camera traps with respect to
animal movement and the independence of observation events were fulfilled
through the study design.

An assumption that may be violated is that the camera traps do not influence
animal movement or behaviour (Houa et al. 2022). This violation is not
uncommon, as it may occur when animals react to the camera (Meek et al. 2016;
Henrich et al. 2020). Common reactions include attraction to the camera (e.g.,
curiosity) or avoidance (e.g., fleeing the detection zone), which violate the
assumption that the camera traps do not influence animal movement or behaviour
(Houa et al. 2022). However, in practice, attraction events are recorded far more
frequently by the camera traps, as fleeing animals generate fewer images before
leaving the detection zone. Animals that are attracted to the camera commonly
approach and linger close to it, thereby generating a cluster of detections near the
camera. This behaviour tends to negatively bias estimates of effective detection
distance (REM) and detection probability (CTDS), resulting in a positive bias in
estimated density (Delisle et al. 2023). One potential solution would be to exclude
consideration of the hazard rate key function when estimating effective detection
distance or detection probability, as it often fits spikes of observations near the
camera and consequently overestimates density (Delisle et al. 2023). My
exploratory analysis revealed that attraction to the camera by target species might
have been an issue in my study, as the hazard rate key function likely
overestimated density and was therefore excluded from the analysis of effective
detection distance and detection probability.

Both the assumptions of perfect detection at zero distance and population
closure are problematic in natural settings. To minimize violations of imperfect
detection at zero distance, the SAHWM followed the recommendation of Palencia
et al. (2021) to set the cameras at an appropriate height and to activate as soon as
possible. If the closure assumption is violated and abundance fluctuates, then the
REM and CTDS will provide an average density for the entire sampling period
(Palencia et al. 2021). A key implicit assumption related to population closure is
that the estimated model parameters remain consistent over the sampling period,
which is likely violated during extended sampling periods.

18



Table 1: Summary of the assumptions made for both REM and CTDS models, adapted
from Palencia et al. (2021).

Assumption REM CTDS
Camera traps are deployed randomly with X X
respect to animal movement

Camera traps do not influence animal X X
movement or behaviour

Closed population X X
Measurements are precise X X
Animals at zero distance are always X X
detected

Observations are independent events X X
Detection distance is recorded from where X X
the animal initially entered the detection

zone

Snapshot moments are selected X

independently of animal location

19



3. Results

3.1 REM and CTDS Comparison

Sufficient data for generating density estimates were captured for sixteen species-
reference area combinations (Appendices 2, 3 and 4). The density estimates for
both models ranged from 3.4 individuals per 1000 ha (the REM estimate for roe
deer in Gdvleborg) to 231.2 individuals per 1000 ha (the REM estimate for red
deer in Skane). As expected, the REM and CTDS exhibited a high level of
agreement in their density estimates (Figure 2). Significant differences between
the two methods were detected in only three species-reference area combinations:
fallow deer in Skéne, roe deer in Varmland, and wild boar in Varmland. Although
the density estimates produced by the two models generally agree, some subtle
differences seem to reveal more general patterns (Figure 2). The REM produced
higher mean density estimates in all six estimates derived from fallow deer, red
deer and wild boar. For roe deer and moose, no clear pattern emerged with both
REM and CTDS generating higher density estimates. REM had a higher model
precision (average CV = 0.29) compared to CTDS (CV =0.43; p <0.001).
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Figure 2: Pairwise comparison of the REM and CTDS density estimates (logl0 scale).
Dots represent mean density estimates, and translucent ellipses represent 95%
confidence intervals. The ellipses with the solid outline indicate species-reference area
combinations where the REM and CTDS produced significantly different density
estimates. The dashed diagonal line is the line of equality.
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3.2 REM and CTDS comparison with reported hunting
statistics

The REM, CTDS and reported hunting statistics were ranked for each reference
area from highest density to lowest density for both roe deer and moose (Tables 2
and 3). For the roe deer, significant agreement was found in the ranking order
between methods (Kendall’s coefficient of concordance, p = 0.03). For the moose,
significant agreement was found in the ranking order between methods (Kendall’s
coefficient of concordance, p = 0.03).

Table 2: Roe deer comparison of REM density estimates, CTDS density estimates and
reported harvests by reference area.

Reference REM REM CTDS CTDS Reported | Reported
area density rank density rank hunting hunting
estimate (highest | estimate (highest | yield yield
(ind/1000 | to (ind/1000 | to (harvests/ | rank
ha) lowest) | ha) lowest) 1000 ha)
Ostergétland | 66.3 1 56.0 1 52 1
Skéne 55.2 2 54.7 2 42 3
Viarmland 36.5 3 20.2 4 4.5 2
Jamtland 22.4 4 21.3 3 1.1 4
Gavleborg 34 5 6.3 5 0.7 5

Table 3: Moose comparison of REM density estimates, CTDS density estimates and
reported harvests by reference area.

Reference REM REM CTDS CTDS Reported | Reported
area density rank density rank hunting hunting
estimate (highest | estimate (highest | yield yield
(ind/1000 | to (ind/1000 | to (harvests/ | rank
ha) lowest) | ha) lowest) 1000 ha)
Jamtland 22.0 1 23.6 1 1.9 2
Virmland 11.0 2 11.0 2 1.7 3
Norrbotten 9.2 3 8.6 3 22 1
Ostergétland | 5.6 4 6.4 4 1.4 4
Gavleborg 3.6 5 4.7 5 0.4 5
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3.3 Effects of latitude on density

For both models, a negative binomial model was selected based on residual plot
analysis and comparison of AIC values. Density decreased with latitude for both
the REM (estimate = -0.26, = 0.06, p < 0.001) and CTDS (estimate =-0.19, +
0.06, p = 0.002) estimates (Figure 3).
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Figure 3: Generalized linear models of the relationship between density and latitude.
Panel A (REM) and Panel B (CTDS). The solid points represent mean density values, and
translucent ellipses represent 95% confidence intervals. The dashed diagonal line is the
line of equality.
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3.4 Case Studies

In the three case studies where I explored the potential impact of extended
sampling periods, I detected no significant differences in density when applying
either the REM or CTDS (Figure 4). Although the individual parameters tended to
behave as expected (Appendices 5 and 6), any potential differences were masked
by the low precision of the models.
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Figure 4: Panel A (REM) and Panel B (CTDS) density estimates from the three case
studies. Dots represent mean point density, and the whiskers show the 95% confidence
interval.
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4. Discussion

The development of methods such as the REM and CTDS has enabled estimation
of population density for unmarked species, greatly enhancing the utility of
camera traps as a tool for wildlife monitoring (Palencia et al. 2022). However,
there is a notable lack of studies that directly compare these methods, especially
in areas with low population densities. My work here marks the first direct
comparison between the REM and CTDS at low to medium ungulate densities. |
compared both methodologies by assessing sixteen species-reference area
combinations. I found a high degree of agreement between the two models;
however, the REM provided more precise estimates. When compared with
reported hunting statistics as independent data and local knowledge, both models
displayed a high degree of concordance. Further, density was found to decrease
with increasing latitude. Lastly, using three case studies, I explored the impacts of
employing extended sampling periods. Although individual model parameters
behaved as expected, any potential bias that may have been introduced was
masked by low model precision. Finally, if CTDS precision can be improved, it
could provide a more cost-effective method compared to the REM.

Since its development, the REM has been widely applied to wild populations
(Gilbert et al. 2021; Palencia et al. 2022), whereas CTDS has been applied less
frequently (Palencia et al. 2021). My results show a high level of consistency
between REM and CTDS in estimated densities, with no significant difference
being detected in thirteen of sixteen species-reference area combinations. These
results align with previous studies, which also found relative agreement between
the two methods (Palencia et al. 2021; Twining et al. 2022; Miles et al. 2024;
Wiegers et al. 2025). For example, Palencia and Wiegers found the models
performed similarly at high ungulate densities (> 80 individuals per 1000 ha).
Whereas my density for the species-reference area combinations ranged from 3.4
to 231.2 individuals per 1000 ha, with most estimates below 80 individuals per
1000 ha.

A noticeable trend appeared in all three species-reference area combinations
where the models produced significant differences: in all three cases, the REM
produced higher density estimates compared to CTDS (Figure 1). This pattern
likely indicates that the REM may overestimate densities in these cases.
Specifically, in the cases of fallow deer in Skéne and wild boar in Varmland, day
range appears to be underestimated (Appendix 3), thereby inflating density
estimates (Palencia et al. 2022). For the roe deer in Varmland, the difference does
not seem to be driven by an underestimate of day range, but rather a reduced
effective detection angle (), which was estimated to be lower. This reduction in
effective detection angle narrows the detection zone and inflates the density
estimate (Appendix 3). However, given that most of the effective detection angle
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estimates aligned with the manufacturer’s specifications, this issue seems to be of
secondary importance compared to the estimation of the day range. The day range
showed considerable variation and likely contributed to the differences in density
between the models, particularly contributing to the REM producing inflated
density estimates. Day range is a problematic parameter to estimate for several
reasons. First, estimating the day range is both challenging and time-consuming
(Gilbert et al. 2021; Palencia et al. 2021). Secondly, day range estimates seem to
show a great deal of variation between same-species populations, which REM
seems particularly sensitive to (Palencia et al. 2022). Finally, Murphy et al. (2024)
found that most published REM density estimates misapplied day range, leading
to biased density estimates. Given these challenges, CTDS is an attractive
alternative because it does not incorporate day range into its density estimates.
Regarding precision, I found that the REM was more precise than CTDS,
which is consistent with previous studies (Palencia et al. 2021; Miles et al. 2024;
Wiegers et al. 2025). Specifically, Palencia et al. (2021) reported mean CVs of
0.36 for REM and 0.42 for CTDS, which are similar to my results. This suggests
that precision may be consistent in both low and higher density populations. I
have no solid interpretation of why REM tends to be more precise than CTDS. It
has been recommended that 100 sequences be tracked for both the REM and
CTDS to achieve sufficient precision (Bessone et al. 2020; Palencia & Barroso
2024). However, increasing precision may be slightly more nuanced than simply
tracking more sequences. For example, despite having well over the
recommended number of sequences tracked, red deer in Skane displayed a
relatively low level of precision. This lower level of precision was due to most of
the observations being captured by only a few camera traps, indicating a high
level of microsite heterogeneity (Hofmeester et al. 2019; Palencia et al. 2021).
This is consistent with previous comparisons between the REM and CTDS, where
variation in encounter rate between camera traps seemed to be the primary
determinant of precision (Palencia et al. 2021; Henrich et al. 2022; Camp et al.
2025). A goal of future studies should be to achieve a CV of 0.20, the
recommended threshold for effective wildlife management (Williams et al. 2002;
Skalski et al. 2005). Precision can be improved by increasing the number of
camera-trap locations, either by deploying more cameras or by rotating camera-
trap sites (Schaus et al. 2020; Cappelle et al. 2021; Palencia et al. 2021). To
increase the number of observations, the sampling period could be extended,
which may improve model precision. However, extending the sampling period
may not be ideal as that may introduce more variation into the parameter
estimates (e.g., activity patterns, day range), leading to higher uncertainty.
Palencia et al. (2021) suggested that the small detection zone of the camera traps
causes encounter rates to be particularly sensitive to local microsite conditions.
Accounting for local microsite conditions as a covariate could aid in reducing this
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source of variation. Despite similarity in the REM and CTDS density estimates,
the lack of precision in CTDS requires further consideration.

An interesting pattern emerged regarding the REM and CTDS handling of
solitary and gregarious species. Of the species considered in this study, fallow
deer, red deer, and wild boar are the most communal, often living in social
groups. Notably, two of the three species-reference area combinations that
showed a statistical difference between REM and CTDS densities involved these
group-living species. Additionally, the REM point densities for these group-living
species tended to be higher than the corresponding CTDS point densities. This
suggests that social behaviour may be an important factor when assessing which
model produced the higher point density estimate. This is broadly consistent with
Palencia et al. (2021), who found a similar pattern when estimating ungulate
densities in Spain. Further, Chauvenet et al. (2017) demonstrated that REM was
particularly sensitive to group size. In contrast, CTDS has shown no such pattern
(Bessone et al. 2020). There are several potential reasons why grouping behaviour
may disproportionately impact the REM. One possible explanation could be that
ungulates that forage in groups tend to spend longer times feeding in quality sites
compared to solitary ungulates (Lagory 1986). Therefore, if a group happens to
feed within the detection zone of a camera trap, they may spend more time in
front of the camera compared to a solitary ungulate. This may impact REM, as a
negatively biased day range estimate will inflate density. A potential second
explanation is that in a group, each animal has a chance to trigger the camera
(Chauvenet et al. 2017). For CTDS, closer individuals may trigger the camera,
allowing for the capture of more distant individuals. This could potentially
increase detection probability, thereby decreasing the density estimate. A final
explanation could be due to different definitions of what constitutes an
observation. The REM defines each individual who is captured within the
detection zone as an observation (Rowcliffe et al. 2008; Palencia et al. 2022). In
comparison, CTDS treats each detection occurring within a photoperiod as an
observation (Howe et al. 2017). Although subtle, this distinction may have a
greater impact on the REM density estimates, as every individual in the group will
be counted, whereas in the CTDS, the effect may be muted, as the observation is
not at the individual level. However, it seems that social behaviour can influence
density estimates, particularly in the case of REM.

Additionally, my results showed that density decreased with latitude, consistent
with previous studies that have demonstrated a decrease in ungulate density with
lower productivity and greater winter severity (Lavsund et al. 2003; Hinton et al.
2022). In my study, this pattern is most clearly demonstrated with wild boar. For
the other ungulate species assessed, this pattern tended to be evident but not
necessarily consistent across all reference areas. As I included species as a
categorical covariate in the GLMs, the models accounted for differences in
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baseline densities between species. This is because the model sets a separate
intercept for each species, while the slope of latitude is shared across all species.
By doing this, it is unlikely that the pattern observed is driven by species
distribution but rather reflects that, on average across the species, density does
indeed decline with latitude. Given that density decreased with latitude, one could
expect extended sampling periods to obtain the required number of observations.
The reported hunting statistics were found to have a significant level of
concordance with the REM and CTDS in the ranking of reference areas. Previous
work has shown that reported hunting statistics can reflect patterns in wild
ungulate populations (Ronnegard et al. 2008; Carvalho et al. 2024). Given this
context, the high level of concordance in ranking the reference areas indicates
modest support for the notion that the REM and CTDS densities broadly reflect
actual patterns in ungulate densities. Further, communication with local wildlife
managers regarding the REM estimates indicated that the density estimates were
generally consistent with their assessments of ungulate density. Notably, the REM
estimates for fallow deer and red deer in Skane, as well as both the REM and
CTDS estimates for moose in Jimtland, were thought to be overestimates (F.
Andstam, personal communication). In these two cases from Skane, CTDS
appeared to perform better. These findings are broadly consistent with previous
work, which has demonstrated that both the REM and CTDS can produce reliable
density estimates when compared to independently derived estimates (Palencia et
al. 2021; Wiegers et al. 2025). However, it must be mentioned that reported
hunting statistics may not be the most appropriate proxy of ungulate density.
Hunting in Sweden is not primarily determined by animal density but influenced
by cultural norms and co-existence with industries such as agriculture and forestry
(Boman & Mattsson 2012). Specifically, for moose, the hunting yields may be
more reflective of management goals rather than moose densities (Wikenros et al.
2025). Exploratory analysis of moose observations by hunters, when adjusted for
survey effort, showed that the moose observations did not correspond to the
reported yield. This indicates that reported hunting yield was more reflective of
management goals rather than trends in density. This suggests that reported
hunting statistics may not be appropriate as a proxy for density, and perhaps
moose observations or the frequency of moose-vehicle collisions may be more
suitable. However, these approaches also have limitations, particularly in
accessing the appropriate scale for vehicle collisions and the sampling bias
introduced by the non-random nature of hunter observations. Given these
challenges, future studies should be cautious about utilizing density proxies when
attempting to validate their density estimates. Instead, validating density estimates
should be done using independently derived density estimates, such as line-
transect distance sampling or drive counts (Palencia et al. 2021; Wiegers et al.
2025). However, direct model validation is rare, as many studies assume the
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results are valid based on previous demonstrations of model accuracy (Bessone et
al. 2020; Palencia et al. 2021, 2022; Wiegers et al. 2025).

The case studies revealed no detectable difference in the density estimates
derived from either REM or CTDS in periods where animal movement patterns
were assumed to change. This mirrors findings from Henrich et al. (2022), who
suggest that violations of parameter consistency may be masked by low model
precision. Despite the potential for parameter inconsistency to occur during an
extended sampling period, the subset periods generally reflect the expected
seasonal patterns. For example, periods where ungulates are expected to be more
active (e.g., pre-snow period and rut-periods) correspond with a higher level of
observations. This aligns with a core assumption of the REM, which postulates
that the greater an ungulate’s day range, the more likely it is to pass through a
detection zone (Rowcliffe et al. 2008). Alternatively, CTDS derives an estimate of
activity from the proportion of the day that ungulates were active (Howe et al.
2017). During rut periods, both the roe deer and moose in Jdmtland seemed to
display increased levels of activity, consistent with day range matching studies of
other European ungulates (Csényi et al. 2022). The moose in Norrbotten appears
to be the exception, with the estimated activity seemingly increasing during the
snow period despite the day range apparently shrinking. This phenomenon could
be explained by snow limiting the movement range of moose, while at the same
time, increased energy expenditure may require a greater need for foraging in the
presence of snow, thereby increasing activity level. An additional observation
regarding the moose in Norrbotten was that the activity level in the combined data
was higher than both the pre-snow and snow periods. This suggests that if animal
activity patterns shift during an extended study period, the activity level estimate
will be inflated when pooling the data (Vazquez et al. 2019). Further, given the
extended sampling periods required in this study, it is likely that the assumption
of population closure was violated. This is particularly true given that for several
of the species-reference area combinations assessed, the sampling period spanned
the hunting season. In such cases, if ungulate density changes during the sampling
period, both the REM and CTDS provide an estimate of the average density
across the entire sampling period, rather than a density estimate prior to or post-
hunting. (Palencia et al. 2021). The three case studies illustrate this averaging
effect; for example, the parameter estimates shifted as one might expect, but the
density estimates tended to remain similar. This consistency reveals compensatory
effects, where seasonal changes in parameter estimates (e.g., day range) are offset
by the number of detections, resulting in relatively stable averages of density
across the study period.

The cost-effectiveness of any monitoring program is a crucial consideration for
wildlife managers who work with limited budgets (Nichols & Williams 2006;
Lindenmayer & Likens 2010). The process of annotating the image data is the
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most time-consuming when working with camera traps (Steenweg et al. 2017;
Palencia et al. 2021). The REM is more time-consuming as it requires that all
images be annotated with both distance and angle to estimate the necessary
parameters (e.g., day range, effective detection distance, and effective detection
angle) (Rowcliffe et al. 2016; Palencia et al. 2019). Conversely, CTDS requires
only the distance to be recorded, which significantly reduces the image processing
time (Howe et al. 2017; Palencia et al. 2021). Palencia et al. (2021) suggest that,
in terms of data analysis, the CTDS requires slightly more effort due to
exploratory analysis and model selection. However, I suggest that both models
require a similar level of effort regarding exploratory analysis and model
selection, especially if effective detection distance is estimated using a detection
function as described by Hofmeester et al. (2017). Thus, the reduction in image
processing time may make CTDS a preferable method over the REM in the
future.

Currently, the primary limitation of CTDS is its tendency to have lower
precision than the REM. Future research should investigate the drivers of this
pattern and develop additional techniques that improve model precision. If novel
techniques manage to increase the precision of CTDS, the model will be an
attractive option for wildlife managers in low-density regions. In my study, both
the REM and CTDS had a high level of agreement in their density estimates.
However, the day range estimates required for the REM seemed to be a culprit
when the models diverged, causing inflated REM density estimates. CTDS does
not require an estimate of day range, potentially increasing its suitability. When
compared with reported hunting statistics, both models performed well, indicating
that their estimates reflect actual patterns in ungulate density. When compared
with local knowledge, it could be argued that CTDS performed slightly better, as
REM was thought to have been slightly more prone to overestimating density in
some cases. CTDS has been demonstrated to be more cost-effective than REM, as
less effort is required for image annotation. Also, CTDS has explicitly been
recommended for low-density species as it can accumulate observations more
quickly (Palencia et al. 2021). Taken together, these factors indicate that CTDS
presents a promising alternative to REM for wildlife managers in low-density
areas, such as Sweden, especially if CTDS precision is improved.
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5. Conclusion

In this thesis, I assessed density estimates derived from the REM and CTDS in
Sweden, where ungulate densities tend to be low. I found that the REM and
CTDS produced similar results in terms of density estimates. However, the REM
estimates were more precise compared to CTDS. The models were found in
relative concordance with reported hunting statistics and with local wildlife
management. Further, my results indicated that density decreased with latitude,
which likely contributed to the need for extended sampling periods. For both the
REM and CTDS low model precision masked any potential impact of changes in
behaviour over extended sampling periods. In terms of cost-effectiveness, the
CTDS requires less effort in terms of image annotation, which may constitute a
more cost-effective method of deriving density estimates, proving to be an
attractive method for wildlife managers. Future research should seek to improve
the precision of CTDS, which would enhance its applicability for monitoring
wildlife. The continued development and refinement of methods utilizing camera
traps to estimate the density of unmarked species is critical for informed wildlife
management and conservation.
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Popular science summary

Understanding how many animals live in an area is key to successful wildlife
management and conservation. However, it is not easy to estimate how many
animals are in a particular area. Camera traps have become a popular tool to aid
ecologists in estimating population density. Historically, camera traps could only
provide density estimates of individually recognizable animals. However, in
recent years, models have been developed that allow for non-individually
recognizable animals. I compared two such models, the Random Encounter
Model (REM) and Camera-Trap Distance Sampling (CTDS). I used camera-trap
data from six reference areas in Sweden to compare their density estimates of
fallow deer, moose, red deer, roe deer and wild boar. Further, I compared the
results from both models with reported hunting statistics and local experts. I also
examined whether long sampling periods, which capture season changes in animal
behaviour, affected either model’s results. I found that both models produced very
similar density estimates. I also found that they matched well with the reported
hunting statistics and local knowledge. Further, I found that both models lacked
the necessary precision to be impacted by seasonal changes in animal behaviour.
The CTDS requires less effort when it comes to data processing, making it an
attractive option. This research could help ecologists and wildlife managers
produce animal density estimates more cost-effectively, which is crucial for all
wildlife management, as they are working with limited budgets.
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Appendix 1

Appendix table 1: Summary of camera trap deployments by reference area.

Reference Area Number of Sampling period in 2023  Latitude Longitude
camera traps
Giévleborg 35 July - October 62.0°N 154°E
Jamtland 32 July - October 634°N 14.0°E
Norrbotten 32 July - December 66.3°N 21.6°E
Ostergodtland 36 July - December 58.1°N 15.1°E
Skane 36 July - August 5577°N  14.0°E
Virmland 33 August - December 59.5°N  13.6°E
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Appendix 2

Appendix table 2: The REM and CTDS density estimates (mean number of individuals per
1000 ha) of each species by reference area, including the bootstrapped 95% confidence
intervals. In bold are the species-reference area combinations where the mean density
estimate of one model lies outside of the 95% confidence interval of the other model.

Species Reference REM point density | CTDS point density
area estimates in estimates in
individuals/1000 ha | individuals/1000 ha
(95% confidence (95% confidence
intervals) intervals)
Fallow Deer | Skéane 176.4 (94.9 - 274.3) | 90.7 (46.6 - 147.2)
Moose Gévleborg 3.6(1.8-6.2) 4.7 (2.1 -8.0)
Moose Jamtland 22.0 (14.1 - 30.6) 23.6 (14.2 - 37.5)
Moose Norrbotten 9.2 (5.6-13.3) 8.6 (2.7-17.8)
Moose Ostergotland | 5.6 (3.5 - 8.0) 6.4 (2.8-13.2)
Moose Viarmland 11.0 (6.3 -16.7) 11.0 (4.4 - 19.6)
Red Deer Jamtland 12.6 (5.8 - 21.5) 10.7 (3.7 - 20.7)
Red Deer Skéane 231.2 (80.2 -421.6) | 165.0 (43.9 - 370.0)
Roe Deer Giévleborg 3.4(1.0-7.0) 6.3 (1.1-16.6)
Roe Deer Jamtland 22.4 (13.1 - 35.1) 21.3(9.8-37.1)
Roe Deer Ostergodtland | 66.3 (43.4 - 93.7) 56.0 (31.9-91.7)
Roe Deer Skane 55.2(33.7-85.1) 54.7 (26.7 - 102.7)
Roe Deer Virmland | 36.5 (20.4 - 59.6) 20.2 (9.5-34.7)
Wild Boar Ostergotland | 25.8 (11.0 - 50.7) 15.3 (3.1 -40.1)
Wild Boar Skéane 107.7 (57.7 - 164.5) | 68.2 (26.1 - 136.9)
Wild Boar Virmland 14.6 (4.0 - 28.6) 6.4 (1.3-14.5)
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Appendix 3

Appendix table 3: The REM parameter estimates for each species-reference area combination. In bold are the species-reference area combinations
where the mean density estimate of one model lies outside of the 95% confidence interval of the other model.

Species | Reference Density per y-— t— r — Effective Key a— Proportion of Speed estimate | v—Day range
area 1000 ha (95% | Number of | Camera | detectiondistance | function | Effective | the day active in kilometers (km)
confidence individuals | trap in meters (95% detection per hour
intervals) captured days confidence angle
intervals) (radians)
Roe Skéane 55.2 424 1424 6.2 hn2 1.01 0.54 0.70 9.1
Deer (33.7-85.1) (5.5-7.0) (7.7 -10.8)
Roe Ostergétland | 66.3 517 2502 6.2 hnl 0.93 0.48 0.47 5.5
Deer (43.4-93.7) (5.7-6.5) (4.7 - 6.6)
Roe Viarmland | 36.5 587 4435 5.8 hnl 0.79 0.57 0.52 7.1
Deer (204 - 59.6) (5.4-6.1) (6.1-8.5)
Roe Gévleborg 34 61 3383 7.1 hn0 1.01 0.64 0.51 7.8
Deer (1.0-17.0) (6.1-8.3) (53-13.2)
Roe Jamtland 224 362 3075 4.5 hn2 1.01 0.64 0.79 12.2
Deer (13.1-35.1) (4.1-5.0) (9.9-15.9)
Fallow | Skine 176.4 557 1424 5.9 hnl 1.01 0.28 0.58 39
Deer (94.9 - 274.3) (5.4 - 6.5) (3.4 - 4.8)
Wild Skéne 107.7 364 1424 54 hnl 1.01 0.24 0.81 4.6
Boar (57.7 - 164.5) (4.9-6.0) (3.7-5.7)
Wild Ostergétland | 25.8 396 5701 5.1 hnl 0.64 0.42 0.63 6.3
Boar (11.0 - 50.7) (4.7-5.6) (5.2-17.8)
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Wild Virmland 14.6 183 4435 6.4 hnl 1.01 0.25 0.76 4.6
Boar (4.0 - 28.6) (54-8.1) (3.3-6.2)
Red Skane 231.2 396 1424 5.1 hnl 1.01 0.24 0.44 2.5
Deer (80.2 - 421.6) (4.7-5.5) (2.0-3.1)
Red Jamtland 12.6 218 3075 6.3 hn0 1.01 0.76 0.51 9.3
Deer (5.8-21.5) (5.8-6.8) (7.1-12.4)
Moose | Ostergétland | 5.6 149 5701 6.4 hnl 1.01 0.64 0.50 7.6
(3.5-8.0) (5.7-17.6) (5.9-104)
Moose | Vérmland 11.0 126 4435 6.2 hnl 1.01 0.50 0.36 43
(6.3-16.7) (5.5-7.3) (34-6.1)
Moose | Gévleborg 3.6 76 3383 7.4 hn0 1.01 0.45 0.82 8.8
(1.8-6.2) (6.4 -8.4) (6.4-12.2)
Moose | Jamtland 22.0 271 3075 7.4 hn0 1.01 0.42 0.55 5.6
(14.1 - 30.6) (6.8 -8.0) (4.7 - 6.8)
Moose | Norrbotten 9.2 125 4413 59 hnl 1.01 0.67 0.34 5.5
(5.6-13.3) (5.3-6.9) (4.3-173)
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Appendix 4

Appendix table 4: The CTDS parameter estimates for each species-reference area combination.

Species Reference area | Density per 1000ha | n— m— w— 0— Left truncation | Key function | p -
(95% confidence Total Number of | truncation detection | of first two Probability
intervals) number | snapshot distance angle meters of detection

of moments (km) (radians)
capture
images

Roe Deer Skane 54.7 1321 33305781 0.018 1.01 Yes hnl 0.09
(26.7 - 102.7)

Roe Deer Ostergodtland 56.0 2136 52032835 0.018 1.01 No hnl 0.09
(31.9-91.7)

Roe Deer Virmland 20.2 1711 109660005 | 0.018 1.01 Yes hnl 0.10
9.5-34.7)

Roe Deer Gévleborg 6.3 296 93858222 0.018 1.01 Yes hnl 0.06
(1.1-16.6)

Roe Deer Jamtland 213 923 85239588 0.018 1.01 Yes hn2 0.06
(9.8-37.1)

Fallow Deer Skéne 90.7 1695 17464097 0.018 1.01 Yes hnl 0.13
(46.6 - 147.2)

Wild Boar Skéne 68.2 671 14497254 0.018 1.01 Yes hn2 0.08
(26.1 - 136.9)

Wild Boar Ostergotland 15.3 901 104970377 | 0.018 1.01 Yes hnl 0.07
(3.1-40.1)
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Wild Boar Viirmland 6.4 737 48357497 | 0.018 1.01 Yes hn0 0.24
(1.3 - 14.5)

Red Deer Skane 165.0 1708 14476761 | 0.018 1.01 No hnl 0.09
(43.9 - 370.0)

Red Deer Jamtland 10.7 996 101184389 | 0.018 1.01 Yes hn0 0.11
(3.7-20.7)

Moose Ostergotland | 6.4 1001 160423004 | 0.018 1.01 No hn0 0.12
(2.8-13.2)

Moose Varmland 11.0 790 92920587 | 0.018 1.01 No hnl 0.09
(4.4-19.6)

Moose Gavleborg 47 354 65395334 | 0.018 1.01 No hn0 0.14
2.1 -8.0)

Moose Jamtland 236 1378 56320728 | 0.018 1.01 Yes hn0 0.13
(142 -37.5)

Moose Norrbotten 8.6 885 123488593 | 0.018 1.01 No hn0 0.10
(2.7-17.8)
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Appendix 5

Appendix table 5: The REM parameter estimates for the case studies.

Species- Sampling Density per y— t— r — Effective Key a— Effective | Proportion | Speed estimate | v—Day range
reference period 1000 ha Number of | Camera detection distance | function detection of the day | in kilometers in kilometers
area (95% individuals | trap days | in meters (95% angle active per hour (95% | (95%
confidence captured confidence (radians) confidence confidence
intervals) intervals) intervals) intervals)
Moose- pre-snow 9.1 68 2004 7.5 hn0 1.01 0.48 0.45 5.16
Norrbotten (5.1-14.0) (6.4-8.7) (0.34 - 0.63) (3.9-72)
Moose- SNOw 10.1 57 2408 5.7 hn0 1.01 0.66 0.27 4.27
Norrbotten (4.5-179) (4.7-6.7) (0.20 - 0.38) (3.2-6.0)
Moose- combined 8.0 125 4412 6.7 hn0 1.01 0.67 0.34 5.47
Norrbotten 49-11.7) (5.9-17.5) (0.27 - 0.46) (4.4-173)
Roe deer- mating 20.0 108 687 5.6 hn0 1.01 0.61 1.00 14.6
Jamtland season (9.8-31.6 (5.0-6.2) (0.73 - 1.48) (10.7 - 21.5)
Roe deer- not mating | 21.1 101 961 5.8 hn0 1.01 0.47 0.82 8.9
Jamtland season (8.4 -40.7) (5.1-6.5) (0.51-1.38) (5.8-15.5)
Roe deer- combined 19.5 209 1648 5.7 hn0 1.01 0.55 0.89 11.9
Jamtland (10.7 - 33.0) (5.3-6.1) (0.66 - 1.22) (8.8-16.2)
Moose- not mating | 19.9 79 992 7.6 hn0 1.01 0.44 0.51 5.5
Jamtland season (12.4 - 29.5) (6.4 -8.9) (0.41 - 0.67) 43-17.1)
Moose- mating 14.2 80 961 7.6 hn0 1.01 0.55 0.61 8.0
Jamtland season (6.8-254) (6.4 - 8.8) (0.40 - 0.98) (5.3-13.0)
Moose- combined 17.7 159 1953 7.6 hn0 1.01 0.47 0.56 6.3
Jamtland (11.0-26.7) (6.8 -8.5) (0.43-0.72) (4.9-82)
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Appendix 6

Appendix table 6: The CTDS parameter estimates for the case studies.

Species- Sampling Density per n— Total m — Number w— 0- Left Key p - Probability
reference period 1000 ha (95% number of | of snapshot truncation | detection truncation of | function of detection
area confidence capture moments distance angle first two (95%
intervals) images (km) (radians) meters confidence
intervals)
Moose- pre-snow 12.3 495 42333703 0.018 1.01 No hn0 0.12
Norrbotten (3.1-33.6) (0.10-0.13)
Moose- snow 8.4 390 67755701 0.018 1.01 No hn0 0.08
Norrbotten (2.6-17.0) (0.07-0.09)
Moose- combined 8.6 885 123488593 0.018 1.01 No hn0 0.10
Norrbotten (2.7-17.8) (0.09-0.11)
Roe deer- mating 16.2 284 17978379 0.018 1.01 No hn0 0.12
Jamtland season (9.3-26.4) (0.10-0.13)
Roe deer- not mating 14.7 320 19444324 0.018 1.01 No hn0 0.14
Jamtland season (7.3-24.4) (0.12-0.15)
Roe deer- combined 14.6 604 39439509 0.018 1.01 No hn0 0.13
Jamtland (3.6-9.8) (0.12-0.14)
Moose- not mating 25.8 484 18996085 0.018 1.01 No hn0 0.12
Jamtland season (10.6-58.4) (0.10-0.14)
Moose- mating 19.2 457 22914980 0.018 1.01 No hn0 0.13
Jamtland season (7.3-36.6) (0.11-0.14)
Moose- combined 234 941 39801781 0.018 1.01 No hn0 0.12
Jamtland (12.3-36.4) (0.11-0.13)
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